]> de.git.xonotic.org Git - xonotic/gmqcc.git/blob - ast.c
parsing of vararg-counter
[xonotic/gmqcc.git] / ast.c
1 /*
2  * Copyright (C) 2012, 2013
3  *     Wolfgang Bumiller
4  *     Dale Weiler 
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy of
7  * this software and associated documentation files (the "Software"), to deal in
8  * the Software without restriction, including without limitation the rights to
9  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
10  * of the Software, and to permit persons to whom the Software is furnished to do
11  * so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27
28 #include "gmqcc.h"
29 #include "ast.h"
30
31 #define ast_instantiate(T, ctx, destroyfn)                          \
32     T* self = (T*)mem_a(sizeof(T));                                 \
33     if (!self) {                                                    \
34         return NULL;                                                \
35     }                                                               \
36     ast_node_init((ast_node*)self, ctx, TYPE_##T);                  \
37     ( (ast_node*)self )->node.destroy = (ast_node_delete*)destroyfn
38
39
40 /* It must not be possible to get here. */
41 static GMQCC_NORETURN void _ast_node_destroy(ast_node *self)
42 {
43     (void)self;
44     con_err("ast node missing destroy()\n");
45     abort();
46 }
47
48 /* Initialize main ast node aprts */
49 static void ast_node_init(ast_node *self, lex_ctx ctx, int nodetype)
50 {
51     self->node.context = ctx;
52     self->node.destroy = &_ast_node_destroy;
53     self->node.keep    = false;
54     self->node.nodetype = nodetype;
55     self->node.side_effects = false;
56 }
57
58 /* weight and side effects */
59 static void _ast_propagate_effects(ast_node *self, ast_node *other)
60 {
61     if (ast_side_effects(other))
62         ast_side_effects(self) = true;
63 }
64 #define ast_propagate_effects(s,o) _ast_propagate_effects(((ast_node*)(s)), ((ast_node*)(o)))
65
66 /* General expression initialization */
67 static void ast_expression_init(ast_expression *self,
68                                 ast_expression_codegen *codegen)
69 {
70     self->expression.codegen  = codegen;
71     self->expression.vtype    = TYPE_VOID;
72     self->expression.next     = NULL;
73     self->expression.outl     = NULL;
74     self->expression.outr     = NULL;
75     self->expression.params   = NULL;
76     self->expression.count    = 0;
77     self->expression.flags    = 0;
78     self->expression.varparam = NULL;
79 }
80
81 static void ast_expression_delete(ast_expression *self)
82 {
83     size_t i;
84     if (self->expression.next)
85         ast_delete(self->expression.next);
86     for (i = 0; i < vec_size(self->expression.params); ++i) {
87         ast_delete(self->expression.params[i]);
88     }
89     vec_free(self->expression.params);
90 }
91
92 static void ast_expression_delete_full(ast_expression *self)
93 {
94     ast_expression_delete(self);
95     mem_d(self);
96 }
97
98 ast_value* ast_value_copy(const ast_value *self)
99 {
100     size_t i;
101     const ast_expression_common *fromex;
102     ast_expression_common *selfex;
103     ast_value *cp = ast_value_new(self->expression.node.context, self->name, self->expression.vtype);
104     if (self->expression.next) {
105         cp->expression.next = ast_type_copy(self->expression.node.context, self->expression.next);
106         if (!cp->expression.next) {
107             ast_value_delete(cp);
108             return NULL;
109         }
110     }
111     fromex   = &self->expression;
112     selfex = &cp->expression;
113     selfex->count    = fromex->count;
114     selfex->flags    = fromex->flags;
115     for (i = 0; i < vec_size(fromex->params); ++i) {
116         ast_value *v = ast_value_copy(fromex->params[i]);
117         if (!v) {
118             ast_value_delete(cp);
119             return NULL;
120         }
121         vec_push(selfex->params, v);
122     }
123     return cp;
124 }
125
126 bool ast_type_adopt_impl(ast_expression *self, const ast_expression *other)
127 {
128     size_t i;
129     const ast_expression_common *fromex;
130     ast_expression_common *selfex;
131     self->expression.vtype = other->expression.vtype;
132     if (other->expression.next) {
133         self->expression.next = (ast_expression*)ast_type_copy(ast_ctx(self), other->expression.next);
134         if (!self->expression.next)
135             return false;
136     }
137     fromex   = &other->expression;
138     selfex = &self->expression;
139     selfex->count    = fromex->count;
140     selfex->flags    = fromex->flags;
141     for (i = 0; i < vec_size(fromex->params); ++i) {
142         ast_value *v = ast_value_copy(fromex->params[i]);
143         if (!v)
144             return false;
145         vec_push(selfex->params, v);
146     }
147     return true;
148 }
149
150 static ast_expression* ast_shallow_type(lex_ctx ctx, int vtype)
151 {
152     ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
153     ast_expression_init(self, NULL);
154     self->expression.codegen = NULL;
155     self->expression.next    = NULL;
156     self->expression.vtype   = vtype;
157     return self;
158 }
159
160 ast_expression* ast_type_copy(lex_ctx ctx, const ast_expression *ex)
161 {
162     size_t i;
163     const ast_expression_common *fromex;
164     ast_expression_common *selfex;
165
166     if (!ex)
167         return NULL;
168     else
169     {
170         ast_instantiate(ast_expression, ctx, ast_expression_delete_full);
171         ast_expression_init(self, NULL);
172
173         fromex   = &ex->expression;
174         selfex = &self->expression;
175
176         /* This may never be codegen()d */
177         selfex->codegen = NULL;
178
179         selfex->vtype = fromex->vtype;
180         if (fromex->next)
181         {
182             selfex->next = ast_type_copy(ctx, fromex->next);
183             if (!selfex->next) {
184                 ast_expression_delete_full(self);
185                 return NULL;
186             }
187         }
188         else
189             selfex->next = NULL;
190
191         selfex->count    = fromex->count;
192         selfex->flags    = fromex->flags;
193         for (i = 0; i < vec_size(fromex->params); ++i) {
194             ast_value *v = ast_value_copy(fromex->params[i]);
195             if (!v) {
196                 ast_expression_delete_full(self);
197                 return NULL;
198             }
199             vec_push(selfex->params, v);
200         }
201
202         return self;
203     }
204 }
205
206 bool ast_compare_type(ast_expression *a, ast_expression *b)
207 {
208     if (a->expression.vtype == TYPE_NIL ||
209         b->expression.vtype == TYPE_NIL)
210         return true;
211     if (a->expression.vtype != b->expression.vtype)
212         return false;
213     if (!a->expression.next != !b->expression.next)
214         return false;
215     if (vec_size(a->expression.params) != vec_size(b->expression.params))
216         return false;
217     if ((a->expression.flags & AST_FLAG_TYPE_MASK) !=
218         (b->expression.flags & AST_FLAG_TYPE_MASK) )
219     {
220         return false;
221     }
222     if (vec_size(a->expression.params)) {
223         size_t i;
224         for (i = 0; i < vec_size(a->expression.params); ++i) {
225             if (!ast_compare_type((ast_expression*)a->expression.params[i],
226                                   (ast_expression*)b->expression.params[i]))
227                 return false;
228         }
229     }
230     if (a->expression.next)
231         return ast_compare_type(a->expression.next, b->expression.next);
232     return true;
233 }
234
235 static size_t ast_type_to_string_impl(ast_expression *e, char *buf, size_t bufsize, size_t pos)
236 {
237     const char *typestr;
238     size_t typelen;
239     size_t i;
240
241     if (!e) {
242         if (pos + 6 >= bufsize)
243             goto full;
244         strcpy(buf + pos, "(null)");
245         return pos + 6;
246     }
247
248     if (pos + 1 >= bufsize)
249         goto full;
250
251     switch (e->expression.vtype) {
252         case TYPE_VARIANT:
253             strcpy(buf + pos, "(variant)");
254             return pos + 9;
255
256         case TYPE_FIELD:
257             buf[pos++] = '.';
258             return ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
259
260         case TYPE_POINTER:
261             if (pos + 3 >= bufsize)
262                 goto full;
263             buf[pos++] = '*';
264             buf[pos++] = '(';
265             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
266             if (pos + 1 >= bufsize)
267                 goto full;
268             buf[pos++] = ')';
269             return pos;
270
271         case TYPE_FUNCTION:
272             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
273             if (pos + 2 >= bufsize)
274                 goto full;
275             if (!vec_size(e->expression.params)) {
276                 buf[pos++] = '(';
277                 buf[pos++] = ')';
278                 return pos;
279             }
280             buf[pos++] = '(';
281             pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[0]), buf, bufsize, pos);
282             for (i = 1; i < vec_size(e->expression.params); ++i) {
283                 if (pos + 2 >= bufsize)
284                     goto full;
285                 buf[pos++] = ',';
286                 buf[pos++] = ' ';
287                 pos = ast_type_to_string_impl((ast_expression*)(e->expression.params[i]), buf, bufsize, pos);
288             }
289             if (pos + 1 >= bufsize)
290                 goto full;
291             buf[pos++] = ')';
292             return pos;
293
294         case TYPE_ARRAY:
295             pos = ast_type_to_string_impl(e->expression.next, buf, bufsize, pos);
296             if (pos + 1 >= bufsize)
297                 goto full;
298             buf[pos++] = '[';
299             pos += snprintf(buf + pos, bufsize - pos - 1, "%i", (int)e->expression.count);
300             if (pos + 1 >= bufsize)
301                 goto full;
302             buf[pos++] = ']';
303             return pos;
304
305         default:
306             typestr = type_name[e->expression.vtype];
307             typelen = strlen(typestr);
308             if (pos + typelen >= bufsize)
309                 goto full;
310             strcpy(buf + pos, typestr);
311             return pos + typelen;
312     }
313
314 full:
315     buf[bufsize-3] = '.';
316     buf[bufsize-2] = '.';
317     buf[bufsize-1] = '.';
318     return bufsize;
319 }
320
321 void ast_type_to_string(ast_expression *e, char *buf, size_t bufsize)
322 {
323     size_t pos = ast_type_to_string_impl(e, buf, bufsize-1, 0);
324     buf[pos] = 0;
325 }
326
327 ast_value* ast_value_new(lex_ctx ctx, const char *name, int t)
328 {
329     ast_instantiate(ast_value, ctx, ast_value_delete);
330     ast_expression_init((ast_expression*)self,
331                         (ast_expression_codegen*)&ast_value_codegen);
332     self->expression.node.keep = true; /* keep */
333
334     self->name = name ? util_strdup(name) : NULL;
335     self->expression.vtype = t;
336     self->expression.next  = NULL;
337     self->isfield  = false;
338     self->cvq      = CV_NONE;
339     self->hasvalue = false;
340     self->uses    = 0;
341     memset(&self->constval, 0, sizeof(self->constval));
342
343     self->ir_v           = NULL;
344     self->ir_values      = NULL;
345     self->ir_value_count = 0;
346
347     self->setter = NULL;
348     self->getter = NULL;
349     self->desc   = NULL;
350
351     self->argcounter = NULL;
352
353     return self;
354 }
355
356 void ast_value_delete(ast_value* self)
357 {
358     if (self->name)
359         mem_d((void*)self->name);
360     if (self->argcounter)
361         mem_d((void*)self->argcounter);
362     if (self->hasvalue) {
363         switch (self->expression.vtype)
364         {
365         case TYPE_STRING:
366             mem_d((void*)self->constval.vstring);
367             break;
368         case TYPE_FUNCTION:
369             /* unlink us from the function node */
370             self->constval.vfunc->vtype = NULL;
371             break;
372         /* NOTE: delete function? currently collected in
373          * the parser structure
374          */
375         default:
376             break;
377         }
378     }
379     if (self->ir_values)
380         mem_d(self->ir_values);
381
382     if (self->desc)
383         mem_d(self->desc);
384
385     ast_expression_delete((ast_expression*)self);
386     mem_d(self);
387 }
388
389 void ast_value_params_add(ast_value *self, ast_value *p)
390 {
391     vec_push(self->expression.params, p);
392 }
393
394 bool ast_value_set_name(ast_value *self, const char *name)
395 {
396     if (self->name)
397         mem_d((void*)self->name);
398     self->name = util_strdup(name);
399     return !!self->name;
400 }
401
402 ast_binary* ast_binary_new(lex_ctx ctx, int op,
403                            ast_expression* left, ast_expression* right)
404 {
405     ast_instantiate(ast_binary, ctx, ast_binary_delete);
406     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binary_codegen);
407
408     self->op = op;
409     self->left = left;
410     self->right = right;
411
412     ast_propagate_effects(self, left);
413     ast_propagate_effects(self, right);
414
415     if (op >= INSTR_EQ_F && op <= INSTR_GT)
416         self->expression.vtype = TYPE_FLOAT;
417     else if (op == INSTR_AND || op == INSTR_OR) {
418         if (OPTS_FLAG(PERL_LOGIC))
419             ast_type_adopt(self, right);
420         else
421             self->expression.vtype = TYPE_FLOAT;
422     }
423     else if (op == INSTR_BITAND || op == INSTR_BITOR)
424         self->expression.vtype = TYPE_FLOAT;
425     else if (op == INSTR_MUL_VF || op == INSTR_MUL_FV)
426         self->expression.vtype = TYPE_VECTOR;
427     else if (op == INSTR_MUL_V)
428         self->expression.vtype = TYPE_FLOAT;
429     else
430         self->expression.vtype = left->expression.vtype;
431
432     return self;
433 }
434
435 void ast_binary_delete(ast_binary *self)
436 {
437     ast_unref(self->left);
438     ast_unref(self->right);
439     ast_expression_delete((ast_expression*)self);
440     mem_d(self);
441 }
442
443 ast_binstore* ast_binstore_new(lex_ctx ctx, int storop, int op,
444                                ast_expression* left, ast_expression* right)
445 {
446     ast_instantiate(ast_binstore, ctx, ast_binstore_delete);
447     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_binstore_codegen);
448
449     ast_side_effects(self) = true;
450
451     self->opstore = storop;
452     self->opbin   = op;
453     self->dest    = left;
454     self->source  = right;
455
456     self->keep_dest = false;
457
458     if (!ast_type_adopt(self, left)) {
459         ast_delete(self);
460         return NULL;
461     }
462
463     return self;
464 }
465
466 void ast_binstore_delete(ast_binstore *self)
467 {
468     if (!self->keep_dest)
469         ast_unref(self->dest);
470     ast_unref(self->source);
471     ast_expression_delete((ast_expression*)self);
472     mem_d(self);
473 }
474
475 ast_unary* ast_unary_new(lex_ctx ctx, int op,
476                          ast_expression *expr)
477 {
478     ast_instantiate(ast_unary, ctx, ast_unary_delete);
479     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_unary_codegen);
480
481     self->op = op;
482     self->operand = expr;
483
484     ast_propagate_effects(self, expr);
485
486     if (op >= INSTR_NOT_F && op <= INSTR_NOT_FNC) {
487         self->expression.vtype = TYPE_FLOAT;
488     } else
489         compile_error(ctx, "cannot determine type of unary operation %s", asm_instr[op].m);
490
491     return self;
492 }
493
494 void ast_unary_delete(ast_unary *self)
495 {
496     if (self->operand) ast_unref(self->operand);
497     ast_expression_delete((ast_expression*)self);
498     mem_d(self);
499 }
500
501 ast_return* ast_return_new(lex_ctx ctx, ast_expression *expr)
502 {
503     ast_instantiate(ast_return, ctx, ast_return_delete);
504     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_return_codegen);
505
506     self->operand = expr;
507
508     if (expr)
509         ast_propagate_effects(self, expr);
510
511     return self;
512 }
513
514 void ast_return_delete(ast_return *self)
515 {
516     if (self->operand)
517         ast_unref(self->operand);
518     ast_expression_delete((ast_expression*)self);
519     mem_d(self);
520 }
521
522 ast_entfield* ast_entfield_new(lex_ctx ctx, ast_expression *entity, ast_expression *field)
523 {
524     if (field->expression.vtype != TYPE_FIELD) {
525         compile_error(ctx, "ast_entfield_new with expression not of type field");
526         return NULL;
527     }
528     return ast_entfield_new_force(ctx, entity, field, field->expression.next);
529 }
530
531 ast_entfield* ast_entfield_new_force(lex_ctx ctx, ast_expression *entity, ast_expression *field, const ast_expression *outtype)
532 {
533     ast_instantiate(ast_entfield, ctx, ast_entfield_delete);
534
535     if (!outtype) {
536         mem_d(self);
537         /* Error: field has no type... */
538         return NULL;
539     }
540
541     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_entfield_codegen);
542
543     self->entity = entity;
544     self->field  = field;
545     ast_propagate_effects(self, entity);
546     ast_propagate_effects(self, field);
547
548     if (!ast_type_adopt(self, outtype)) {
549         ast_entfield_delete(self);
550         return NULL;
551     }
552
553     return self;
554 }
555
556 void ast_entfield_delete(ast_entfield *self)
557 {
558     ast_unref(self->entity);
559     ast_unref(self->field);
560     ast_expression_delete((ast_expression*)self);
561     mem_d(self);
562 }
563
564 ast_member* ast_member_new(lex_ctx ctx, ast_expression *owner, unsigned int field, const char *name)
565 {
566     ast_instantiate(ast_member, ctx, ast_member_delete);
567     if (field >= 3) {
568         mem_d(self);
569         return NULL;
570     }
571
572     if (owner->expression.vtype != TYPE_VECTOR &&
573         owner->expression.vtype != TYPE_FIELD) {
574         compile_error(ctx, "member-access on an invalid owner of type %s", type_name[owner->expression.vtype]);
575         mem_d(self);
576         return NULL;
577     }
578
579     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_member_codegen);
580     self->expression.node.keep = true; /* keep */
581
582     if (owner->expression.vtype == TYPE_VECTOR) {
583         self->expression.vtype = TYPE_FLOAT;
584         self->expression.next  = NULL;
585     } else {
586         self->expression.vtype = TYPE_FIELD;
587         self->expression.next = ast_shallow_type(ctx, TYPE_FLOAT);
588     }
589
590     self->rvalue = false;
591     self->owner  = owner;
592     ast_propagate_effects(self, owner);
593
594     self->field = field;
595     if (name)
596         self->name = util_strdup(name);
597     else
598         self->name = NULL;
599
600     return self;
601 }
602
603 void ast_member_delete(ast_member *self)
604 {
605     /* The owner is always an ast_value, which has .keep=true,
606      * also: ast_members are usually deleted after the owner, thus
607      * this will cause invalid access
608     ast_unref(self->owner);
609      * once we allow (expression).x to access a vector-member, we need
610      * to change this: preferably by creating an alternate ast node for this
611      * purpose that is not garbage-collected.
612     */
613     ast_expression_delete((ast_expression*)self);
614     mem_d(self);
615 }
616
617 bool ast_member_set_name(ast_member *self, const char *name)
618 {
619     if (self->name)
620         mem_d((void*)self->name);
621     self->name = util_strdup(name);
622     return !!self->name;
623 }
624
625 ast_array_index* ast_array_index_new(lex_ctx ctx, ast_expression *array, ast_expression *index)
626 {
627     ast_expression *outtype;
628     ast_instantiate(ast_array_index, ctx, ast_array_index_delete);
629
630     outtype = array->expression.next;
631     if (!outtype) {
632         mem_d(self);
633         /* Error: field has no type... */
634         return NULL;
635     }
636
637     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_array_index_codegen);
638
639     self->array = array;
640     self->index = index;
641     ast_propagate_effects(self, array);
642     ast_propagate_effects(self, index);
643
644     if (!ast_type_adopt(self, outtype)) {
645         ast_array_index_delete(self);
646         return NULL;
647     }
648     if (array->expression.vtype == TYPE_FIELD && outtype->expression.vtype == TYPE_ARRAY) {
649         if (self->expression.vtype != TYPE_ARRAY) {
650             compile_error(ast_ctx(self), "array_index node on type");
651             ast_array_index_delete(self);
652             return NULL;
653         }
654         self->array = outtype;
655         self->expression.vtype = TYPE_FIELD;
656     }
657
658     return self;
659 }
660
661 void ast_array_index_delete(ast_array_index *self)
662 {
663     ast_unref(self->array);
664     ast_unref(self->index);
665     ast_expression_delete((ast_expression*)self);
666     mem_d(self);
667 }
668
669 ast_ifthen* ast_ifthen_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
670 {
671     ast_instantiate(ast_ifthen, ctx, ast_ifthen_delete);
672     if (!ontrue && !onfalse) {
673         /* because it is invalid */
674         mem_d(self);
675         return NULL;
676     }
677     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ifthen_codegen);
678
679     self->cond     = cond;
680     self->on_true  = ontrue;
681     self->on_false = onfalse;
682     ast_propagate_effects(self, cond);
683     if (ontrue)
684         ast_propagate_effects(self, ontrue);
685     if (onfalse)
686         ast_propagate_effects(self, onfalse);
687
688     return self;
689 }
690
691 void ast_ifthen_delete(ast_ifthen *self)
692 {
693     ast_unref(self->cond);
694     if (self->on_true)
695         ast_unref(self->on_true);
696     if (self->on_false)
697         ast_unref(self->on_false);
698     ast_expression_delete((ast_expression*)self);
699     mem_d(self);
700 }
701
702 ast_ternary* ast_ternary_new(lex_ctx ctx, ast_expression *cond, ast_expression *ontrue, ast_expression *onfalse)
703 {
704     ast_expression *exprtype = ontrue;
705     ast_instantiate(ast_ternary, ctx, ast_ternary_delete);
706     /* This time NEITHER must be NULL */
707     if (!ontrue || !onfalse) {
708         mem_d(self);
709         return NULL;
710     }
711     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_ternary_codegen);
712
713     self->cond     = cond;
714     self->on_true  = ontrue;
715     self->on_false = onfalse;
716     ast_propagate_effects(self, cond);
717     ast_propagate_effects(self, ontrue);
718     ast_propagate_effects(self, onfalse);
719
720     if (ontrue->expression.vtype == TYPE_NIL)
721         exprtype = onfalse;
722     if (!ast_type_adopt(self, exprtype)) {
723         ast_ternary_delete(self);
724         return NULL;
725     }
726
727     return self;
728 }
729
730 void ast_ternary_delete(ast_ternary *self)
731 {
732     /* the if()s are only there because computed-gotos can set them
733      * to NULL
734      */
735     if (self->cond)     ast_unref(self->cond);
736     if (self->on_true)  ast_unref(self->on_true);
737     if (self->on_false) ast_unref(self->on_false);
738     ast_expression_delete((ast_expression*)self);
739     mem_d(self);
740 }
741
742 ast_loop* ast_loop_new(lex_ctx ctx,
743                        ast_expression *initexpr,
744                        ast_expression *precond, bool pre_not,
745                        ast_expression *postcond, bool post_not,
746                        ast_expression *increment,
747                        ast_expression *body)
748 {
749     ast_instantiate(ast_loop, ctx, ast_loop_delete);
750     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_loop_codegen);
751
752     self->initexpr  = initexpr;
753     self->precond   = precond;
754     self->postcond  = postcond;
755     self->increment = increment;
756     self->body      = body;
757
758     self->pre_not   = pre_not;
759     self->post_not  = post_not;
760
761     if (initexpr)
762         ast_propagate_effects(self, initexpr);
763     if (precond)
764         ast_propagate_effects(self, precond);
765     if (postcond)
766         ast_propagate_effects(self, postcond);
767     if (increment)
768         ast_propagate_effects(self, increment);
769     if (body)
770         ast_propagate_effects(self, body);
771
772     return self;
773 }
774
775 void ast_loop_delete(ast_loop *self)
776 {
777     if (self->initexpr)
778         ast_unref(self->initexpr);
779     if (self->precond)
780         ast_unref(self->precond);
781     if (self->postcond)
782         ast_unref(self->postcond);
783     if (self->increment)
784         ast_unref(self->increment);
785     if (self->body)
786         ast_unref(self->body);
787     ast_expression_delete((ast_expression*)self);
788     mem_d(self);
789 }
790
791 ast_breakcont* ast_breakcont_new(lex_ctx ctx, bool iscont, unsigned int levels)
792 {
793     ast_instantiate(ast_breakcont, ctx, ast_breakcont_delete);
794     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_breakcont_codegen);
795
796     self->is_continue = iscont;
797     self->levels      = levels;
798
799     return self;
800 }
801
802 void ast_breakcont_delete(ast_breakcont *self)
803 {
804     ast_expression_delete((ast_expression*)self);
805     mem_d(self);
806 }
807
808 ast_switch* ast_switch_new(lex_ctx ctx, ast_expression *op)
809 {
810     ast_instantiate(ast_switch, ctx, ast_switch_delete);
811     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_switch_codegen);
812
813     self->operand = op;
814     self->cases   = NULL;
815
816     ast_propagate_effects(self, op);
817
818     return self;
819 }
820
821 void ast_switch_delete(ast_switch *self)
822 {
823     size_t i;
824     ast_unref(self->operand);
825
826     for (i = 0; i < vec_size(self->cases); ++i) {
827         if (self->cases[i].value)
828             ast_unref(self->cases[i].value);
829         ast_unref(self->cases[i].code);
830     }
831     vec_free(self->cases);
832
833     ast_expression_delete((ast_expression*)self);
834     mem_d(self);
835 }
836
837 ast_label* ast_label_new(lex_ctx ctx, const char *name, bool undefined)
838 {
839     ast_instantiate(ast_label, ctx, ast_label_delete);
840     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_label_codegen);
841
842     self->expression.vtype = TYPE_NOEXPR;
843
844     self->name      = util_strdup(name);
845     self->irblock   = NULL;
846     self->gotos     = NULL;
847     self->undefined = undefined;
848
849     return self;
850 }
851
852 void ast_label_delete(ast_label *self)
853 {
854     mem_d((void*)self->name);
855     vec_free(self->gotos);
856     ast_expression_delete((ast_expression*)self);
857     mem_d(self);
858 }
859
860 void ast_label_register_goto(ast_label *self, ast_goto *g)
861 {
862     vec_push(self->gotos, g);
863 }
864
865 ast_goto* ast_goto_new(lex_ctx ctx, const char *name)
866 {
867     ast_instantiate(ast_goto, ctx, ast_goto_delete);
868     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_goto_codegen);
869
870     self->name    = util_strdup(name);
871     self->target  = NULL;
872     self->irblock_from = NULL;
873
874     return self;
875 }
876
877 void ast_goto_delete(ast_goto *self)
878 {
879     mem_d((void*)self->name);
880     ast_expression_delete((ast_expression*)self);
881     mem_d(self);
882 }
883
884 void ast_goto_set_label(ast_goto *self, ast_label *label)
885 {
886     self->target = label;
887 }
888
889 ast_call* ast_call_new(lex_ctx ctx,
890                        ast_expression *funcexpr)
891 {
892     ast_instantiate(ast_call, ctx, ast_call_delete);
893     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_call_codegen);
894
895     ast_side_effects(self) = true;
896
897     self->params = NULL;
898     self->func   = funcexpr;
899
900     ast_type_adopt(self, funcexpr->expression.next);
901
902     return self;
903 }
904
905 void ast_call_delete(ast_call *self)
906 {
907     size_t i;
908     for (i = 0; i < vec_size(self->params); ++i)
909         ast_unref(self->params[i]);
910     vec_free(self->params);
911
912     if (self->func)
913         ast_unref(self->func);
914
915     ast_expression_delete((ast_expression*)self);
916     mem_d(self);
917 }
918
919 bool ast_call_check_types(ast_call *self)
920 {
921     char texp[1024];
922     char tgot[1024];
923     size_t i;
924     bool   retval = true;
925     const  ast_expression *func = self->func;
926     size_t count = vec_size(self->params);
927     if (count > vec_size(func->expression.params))
928         count = vec_size(func->expression.params);
929
930     for (i = 0; i < count; ++i) {
931         if (!ast_compare_type(self->params[i], (ast_expression*)(func->expression.params[i])))
932         {
933             ast_type_to_string(self->params[i], tgot, sizeof(tgot));
934             ast_type_to_string((ast_expression*)func->expression.params[i], texp, sizeof(texp));
935             compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
936                      (unsigned int)(i+1), texp, tgot);
937             /* we don't immediately return */
938             retval = false;
939         }
940     }
941     count = vec_size(self->params);
942     if (count > vec_size(func->expression.params) && func->expression.varparam) {
943         for (; i < count; ++i) {
944             if (!ast_compare_type(self->params[i], func->expression.varparam))
945             {
946                 ast_type_to_string(self->params[i], tgot, sizeof(tgot));
947                 ast_type_to_string(func->expression.varparam, texp, sizeof(texp));
948                 compile_error(ast_ctx(self), "invalid type for parameter %u in function call: expected %s, got %s",
949                          (unsigned int)(i+1), texp, tgot);
950                 /* we don't immediately return */
951                 retval = false;
952             }
953         }
954     }
955     return retval;
956 }
957
958 ast_store* ast_store_new(lex_ctx ctx, int op,
959                          ast_expression *dest, ast_expression *source)
960 {
961     ast_instantiate(ast_store, ctx, ast_store_delete);
962     ast_expression_init((ast_expression*)self, (ast_expression_codegen*)&ast_store_codegen);
963
964     ast_side_effects(self) = true;
965
966     self->op = op;
967     self->dest = dest;
968     self->source = source;
969
970     if (!ast_type_adopt(self, dest)) {
971         ast_delete(self);
972         return NULL;
973     }
974
975     return self;
976 }
977
978 void ast_store_delete(ast_store *self)
979 {
980     ast_unref(self->dest);
981     ast_unref(self->source);
982     ast_expression_delete((ast_expression*)self);
983     mem_d(self);
984 }
985
986 ast_block* ast_block_new(lex_ctx ctx)
987 {
988     ast_instantiate(ast_block, ctx, ast_block_delete);
989     ast_expression_init((ast_expression*)self,
990                         (ast_expression_codegen*)&ast_block_codegen);
991
992     self->locals  = NULL;
993     self->exprs   = NULL;
994     self->collect = NULL;
995
996     return self;
997 }
998
999 bool ast_block_add_expr(ast_block *self, ast_expression *e)
1000 {
1001     ast_propagate_effects(self, e);
1002     vec_push(self->exprs, e);
1003     if (self->expression.next) {
1004         ast_delete(self->expression.next);
1005         self->expression.next = NULL;
1006     }
1007     if (!ast_type_adopt(self, e)) {
1008         compile_error(ast_ctx(self), "internal error: failed to adopt type");
1009         return false;
1010     }
1011     return true;
1012 }
1013
1014 void ast_block_collect(ast_block *self, ast_expression *expr)
1015 {
1016     vec_push(self->collect, expr);
1017     expr->expression.node.keep = true;
1018 }
1019
1020 void ast_block_delete(ast_block *self)
1021 {
1022     size_t i;
1023     for (i = 0; i < vec_size(self->exprs); ++i)
1024         ast_unref(self->exprs[i]);
1025     vec_free(self->exprs);
1026     for (i = 0; i < vec_size(self->locals); ++i)
1027         ast_delete(self->locals[i]);
1028     vec_free(self->locals);
1029     for (i = 0; i < vec_size(self->collect); ++i)
1030         ast_delete(self->collect[i]);
1031     vec_free(self->collect);
1032     ast_expression_delete((ast_expression*)self);
1033     mem_d(self);
1034 }
1035
1036 bool ast_block_set_type(ast_block *self, ast_expression *from)
1037 {
1038     if (self->expression.next)
1039         ast_delete(self->expression.next);
1040     if (!ast_type_adopt(self, from))
1041         return false;
1042     return true;
1043 }
1044
1045 ast_function* ast_function_new(lex_ctx ctx, const char *name, ast_value *vtype)
1046 {
1047     ast_instantiate(ast_function, ctx, ast_function_delete);
1048
1049     if (!vtype ||
1050         vtype->hasvalue ||
1051         vtype->expression.vtype != TYPE_FUNCTION)
1052     {
1053         compile_error(ast_ctx(self), "internal error: ast_function_new condition %i %i type=%i (probably 2 bodies?)",
1054                  (int)!vtype,
1055                  (int)vtype->hasvalue,
1056                  vtype->expression.vtype);
1057         mem_d(self);
1058         return NULL;
1059     }
1060
1061     self->vtype  = vtype;
1062     self->name   = name ? util_strdup(name) : NULL;
1063     self->blocks = NULL;
1064
1065     self->labelcount = 0;
1066     self->builtin = 0;
1067
1068     self->ir_func = NULL;
1069     self->curblock = NULL;
1070
1071     self->breakblocks    = NULL;
1072     self->continueblocks = NULL;
1073
1074     vtype->hasvalue = true;
1075     vtype->constval.vfunc = self;
1076
1077     return self;
1078 }
1079
1080 void ast_function_delete(ast_function *self)
1081 {
1082     size_t i;
1083     if (self->name)
1084         mem_d((void*)self->name);
1085     if (self->vtype) {
1086         /* ast_value_delete(self->vtype); */
1087         self->vtype->hasvalue = false;
1088         self->vtype->constval.vfunc = NULL;
1089         /* We use unref - if it was stored in a global table it is supposed
1090          * to be deleted from *there*
1091          */
1092         ast_unref(self->vtype);
1093     }
1094     for (i = 0; i < vec_size(self->blocks); ++i)
1095         ast_delete(self->blocks[i]);
1096     vec_free(self->blocks);
1097     vec_free(self->breakblocks);
1098     vec_free(self->continueblocks);
1099     mem_d(self);
1100 }
1101
1102 const char* ast_function_label(ast_function *self, const char *prefix)
1103 {
1104     size_t id;
1105     size_t len;
1106     char  *from;
1107
1108     if (!opts.dump && !opts.dumpfin && !opts.debug)
1109         return NULL;
1110
1111     id  = (self->labelcount++);
1112     len = strlen(prefix);
1113
1114     from = self->labelbuf + sizeof(self->labelbuf)-1;
1115     *from-- = 0;
1116     do {
1117         *from-- = (id%10) + '0';
1118         id /= 10;
1119     } while (id);
1120     ++from;
1121     memcpy(from - len, prefix, len);
1122     return from - len;
1123 }
1124
1125 /*********************************************************************/
1126 /* AST codegen part
1127  * by convention you must never pass NULL to the 'ir_value **out'
1128  * parameter. If you really don't care about the output, pass a dummy.
1129  * But I can't imagine a pituation where the output is truly unnecessary.
1130  */
1131
1132 void _ast_codegen_output_type(ast_expression_common *self, ir_value *out)
1133 {
1134     if (out->vtype == TYPE_FIELD)
1135         out->fieldtype = self->next->expression.vtype;
1136     if (out->vtype == TYPE_FUNCTION)
1137         out->outtype = self->next->expression.vtype;
1138 }
1139
1140 #define codegen_output_type(a,o) (_ast_codegen_output_type(&((a)->expression),(o)))
1141
1142 bool ast_value_codegen(ast_value *self, ast_function *func, bool lvalue, ir_value **out)
1143 {
1144     (void)func;
1145     (void)lvalue;
1146     if (self->expression.vtype == TYPE_NIL) {
1147         *out = func->ir_func->owner->nil;
1148         return true;
1149     }
1150     /* NOTE: This is the codegen for a variable used in an expression.
1151      * It is not the codegen to generate the value. For this purpose,
1152      * ast_local_codegen and ast_global_codegen are to be used before this
1153      * is executed. ast_function_codegen should take care of its locals,
1154      * and the ast-user should take care of ast_global_codegen to be used
1155      * on all the globals.
1156      */
1157     if (!self->ir_v) {
1158         char tname[1024]; /* typename is reserved in C++ */
1159         ast_type_to_string((ast_expression*)self, tname, sizeof(tname));
1160         compile_error(ast_ctx(self), "ast_value used before generated %s %s", tname, self->name);
1161         return false;
1162     }
1163     *out = self->ir_v;
1164     return true;
1165 }
1166
1167 bool ast_global_codegen(ast_value *self, ir_builder *ir, bool isfield)
1168 {
1169     ir_value *v = NULL;
1170
1171     if (self->expression.vtype == TYPE_NIL) {
1172         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1173         return false;
1174     }
1175
1176     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1177     {
1178         ir_function *func = ir_builder_create_function(ir, self->name, self->expression.next->expression.vtype);
1179         if (!func)
1180             return false;
1181         func->context = ast_ctx(self);
1182         func->value->context = ast_ctx(self);
1183
1184         self->constval.vfunc->ir_func = func;
1185         self->ir_v = func->value;
1186         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1187             self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1188         /* The function is filled later on ast_function_codegen... */
1189         return true;
1190     }
1191
1192     if (isfield && self->expression.vtype == TYPE_FIELD) {
1193         ast_expression *fieldtype = self->expression.next;
1194
1195         if (self->hasvalue) {
1196             compile_error(ast_ctx(self), "TODO: constant field pointers with value");
1197             goto error;
1198         }
1199
1200         if (fieldtype->expression.vtype == TYPE_ARRAY) {
1201             size_t ai;
1202             char   *name;
1203             size_t  namelen;
1204
1205             ast_expression_common *elemtype;
1206             int                    vtype;
1207             ast_value             *array = (ast_value*)fieldtype;
1208
1209             if (!ast_istype(fieldtype, ast_value)) {
1210                 compile_error(ast_ctx(self), "internal error: ast_value required");
1211                 return false;
1212             }
1213
1214             /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1215             if (!array->expression.count || array->expression.count > opts.max_array_size)
1216                 compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)array->expression.count);
1217
1218             elemtype = &array->expression.next->expression;
1219             vtype = elemtype->vtype;
1220
1221             v = ir_builder_create_field(ir, self->name, vtype);
1222             if (!v) {
1223                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1224                 return false;
1225             }
1226             v->context = ast_ctx(self);
1227             v->unique_life = true;
1228             v->locked      = true;
1229             array->ir_v = self->ir_v = v;
1230             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1231                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1232
1233             namelen = strlen(self->name);
1234             name    = (char*)mem_a(namelen + 16);
1235             strcpy(name, self->name);
1236
1237             array->ir_values = (ir_value**)mem_a(sizeof(array->ir_values[0]) * array->expression.count);
1238             array->ir_values[0] = v;
1239             for (ai = 1; ai < array->expression.count; ++ai) {
1240                 snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1241                 array->ir_values[ai] = ir_builder_create_field(ir, name, vtype);
1242                 if (!array->ir_values[ai]) {
1243                     mem_d(name);
1244                     compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1245                     return false;
1246                 }
1247                 array->ir_values[ai]->context = ast_ctx(self);
1248                 array->ir_values[ai]->unique_life = true;
1249                 array->ir_values[ai]->locked      = true;
1250                 if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1251                     self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1252             }
1253             mem_d(name);
1254         }
1255         else
1256         {
1257             v = ir_builder_create_field(ir, self->name, self->expression.next->expression.vtype);
1258             if (!v)
1259                 return false;
1260             v->context = ast_ctx(self);
1261             self->ir_v = v;
1262             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1263                 self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1264         }
1265         return true;
1266     }
1267
1268     if (self->expression.vtype == TYPE_ARRAY) {
1269         size_t ai;
1270         char   *name;
1271         size_t  namelen;
1272
1273         ast_expression_common *elemtype = &self->expression.next->expression;
1274         int vtype = elemtype->vtype;
1275
1276         /* same as with field arrays */
1277         if (!self->expression.count || self->expression.count > opts.max_array_size)
1278             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1279
1280         v = ir_builder_create_global(ir, self->name, vtype);
1281         if (!v) {
1282             compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", self->name);
1283             return false;
1284         }
1285         v->context = ast_ctx(self);
1286         v->unique_life = true;
1287         v->locked      = true;
1288         if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1289             v->flags |= IR_FLAG_INCLUDE_DEF;
1290
1291         namelen = strlen(self->name);
1292         name    = (char*)mem_a(namelen + 16);
1293         strcpy(name, self->name);
1294
1295         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1296         self->ir_values[0] = v;
1297         for (ai = 1; ai < self->expression.count; ++ai) {
1298             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1299             self->ir_values[ai] = ir_builder_create_global(ir, name, vtype);
1300             if (!self->ir_values[ai]) {
1301                 mem_d(name);
1302                 compile_error(ast_ctx(self), "ir_builder_create_global failed `%s`", name);
1303                 return false;
1304             }
1305             self->ir_values[ai]->context = ast_ctx(self);
1306             self->ir_values[ai]->unique_life = true;
1307             self->ir_values[ai]->locked      = true;
1308             if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1309                 self->ir_values[ai]->flags |= IR_FLAG_INCLUDE_DEF;
1310         }
1311         mem_d(name);
1312     }
1313     else
1314     {
1315         /* Arrays don't do this since there's no "array" value which spans across the
1316          * whole thing.
1317          */
1318         v = ir_builder_create_global(ir, self->name, self->expression.vtype);
1319         if (!v) {
1320             compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", self->name);
1321             return false;
1322         }
1323         codegen_output_type(self, v);
1324         v->context = ast_ctx(self);
1325     }
1326
1327     if (self->hasvalue) {
1328         switch (self->expression.vtype)
1329         {
1330             case TYPE_FLOAT:
1331                 if (!ir_value_set_float(v, self->constval.vfloat))
1332                     goto error;
1333                 break;
1334             case TYPE_VECTOR:
1335                 if (!ir_value_set_vector(v, self->constval.vvec))
1336                     goto error;
1337                 break;
1338             case TYPE_STRING:
1339                 if (!ir_value_set_string(v, self->constval.vstring))
1340                     goto error;
1341                 break;
1342             case TYPE_ARRAY:
1343                 compile_error(ast_ctx(self), "TODO: global constant array");
1344                 break;
1345             case TYPE_FUNCTION:
1346                 compile_error(ast_ctx(self), "global of type function not properly generated");
1347                 goto error;
1348                 /* Cannot generate an IR value for a function,
1349                  * need a pointer pointing to a function rather.
1350                  */
1351             case TYPE_FIELD:
1352                 if (!self->constval.vfield) {
1353                     compile_error(ast_ctx(self), "field constant without vfield set");
1354                     goto error;
1355                 }
1356                 if (!self->constval.vfield->ir_v) {
1357                     compile_error(ast_ctx(self), "field constant generated before its field");
1358                     goto error;
1359                 }
1360                 if (!ir_value_set_field(v, self->constval.vfield->ir_v))
1361                     goto error;
1362                 break;
1363             default:
1364                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1365                 break;
1366         }
1367     }
1368
1369     /* link us to the ir_value */
1370     v->cvq = self->cvq;
1371     self->ir_v = v;
1372     if (self->expression.flags & AST_FLAG_INCLUDE_DEF)
1373         self->ir_v->flags |= IR_FLAG_INCLUDE_DEF;
1374     return true;
1375
1376 error: /* clean up */
1377     ir_value_delete(v);
1378     return false;
1379 }
1380
1381 bool ast_local_codegen(ast_value *self, ir_function *func, bool param)
1382 {
1383     ir_value *v = NULL;
1384
1385     if (self->expression.vtype == TYPE_NIL) {
1386         compile_error(ast_ctx(self), "internal error: trying to generate a variable of TYPE_NIL");
1387         return false;
1388     }
1389
1390     if (self->hasvalue && self->expression.vtype == TYPE_FUNCTION)
1391     {
1392         /* Do we allow local functions? I think not...
1393          * this is NOT a function pointer atm.
1394          */
1395         return false;
1396     }
1397
1398     if (self->expression.vtype == TYPE_ARRAY) {
1399         size_t ai;
1400         char   *name;
1401         size_t  namelen;
1402
1403         ast_expression_common *elemtype = &self->expression.next->expression;
1404         int vtype = elemtype->vtype;
1405
1406         func->flags |= IR_FLAG_HAS_ARRAYS;
1407
1408         if (param) {
1409             compile_error(ast_ctx(self), "array-parameters are not supported");
1410             return false;
1411         }
1412
1413         /* we are lame now - considering the way QC works we won't tolerate arrays > 1024 elements */
1414         if (!self->expression.count || self->expression.count > opts.max_array_size) {
1415             compile_error(ast_ctx(self), "Invalid array of size %lu", (unsigned long)self->expression.count);
1416         }
1417
1418         self->ir_values = (ir_value**)mem_a(sizeof(self->ir_values[0]) * self->expression.count);
1419         if (!self->ir_values) {
1420             compile_error(ast_ctx(self), "failed to allocate array values");
1421             return false;
1422         }
1423
1424         v = ir_function_create_local(func, self->name, vtype, param);
1425         if (!v) {
1426             compile_error(ast_ctx(self), "ir_function_create_local failed");
1427             return false;
1428         }
1429         v->context = ast_ctx(self);
1430         v->unique_life = true;
1431         v->locked      = true;
1432
1433         namelen = strlen(self->name);
1434         name    = (char*)mem_a(namelen + 16);
1435         strcpy(name, self->name);
1436
1437         self->ir_values[0] = v;
1438         for (ai = 1; ai < self->expression.count; ++ai) {
1439             snprintf(name + namelen, 16, "[%u]", (unsigned int)ai);
1440             self->ir_values[ai] = ir_function_create_local(func, name, vtype, param);
1441             if (!self->ir_values[ai]) {
1442                 compile_error(ast_ctx(self), "ir_builder_create_global failed on `%s`", name);
1443                 return false;
1444             }
1445             self->ir_values[ai]->context = ast_ctx(self);
1446             self->ir_values[ai]->unique_life = true;
1447             self->ir_values[ai]->locked      = true;
1448         }
1449     }
1450     else
1451     {
1452         v = ir_function_create_local(func, self->name, self->expression.vtype, param);
1453         if (!v)
1454             return false;
1455         codegen_output_type(self, v);
1456         v->context = ast_ctx(self);
1457     }
1458
1459     /* A constant local... hmmm...
1460      * I suppose the IR will have to deal with this
1461      */
1462     if (self->hasvalue) {
1463         switch (self->expression.vtype)
1464         {
1465             case TYPE_FLOAT:
1466                 if (!ir_value_set_float(v, self->constval.vfloat))
1467                     goto error;
1468                 break;
1469             case TYPE_VECTOR:
1470                 if (!ir_value_set_vector(v, self->constval.vvec))
1471                     goto error;
1472                 break;
1473             case TYPE_STRING:
1474                 if (!ir_value_set_string(v, self->constval.vstring))
1475                     goto error;
1476                 break;
1477             default:
1478                 compile_error(ast_ctx(self), "TODO: global constant type %i", self->expression.vtype);
1479                 break;
1480         }
1481     }
1482
1483     /* link us to the ir_value */
1484     v->cvq = self->cvq;
1485     self->ir_v = v;
1486
1487     if (!ast_generate_accessors(self, func->owner))
1488         return false;
1489     return true;
1490
1491 error: /* clean up */
1492     ir_value_delete(v);
1493     return false;
1494 }
1495
1496 bool ast_generate_accessors(ast_value *self, ir_builder *ir)
1497 {
1498     size_t i;
1499     bool warn = OPTS_WARN(WARN_USED_UNINITIALIZED);
1500     if (!self->setter || !self->getter)
1501         return true;
1502     for (i = 0; i < self->expression.count; ++i) {
1503         if (!self->ir_values) {
1504             compile_error(ast_ctx(self), "internal error: no array values generated for `%s`", self->name);
1505             return false;
1506         }
1507         if (!self->ir_values[i]) {
1508             compile_error(ast_ctx(self), "internal error: not all array values have been generated for `%s`", self->name);
1509             return false;
1510         }
1511         if (self->ir_values[i]->life) {
1512             compile_error(ast_ctx(self), "internal error: function containing `%s` already generated", self->name);
1513             return false;
1514         }
1515     }
1516
1517     opts_set(opts.warn, WARN_USED_UNINITIALIZED, false);
1518     if (self->setter) {
1519         if (!ast_global_codegen  (self->setter, ir, false) ||
1520             !ast_function_codegen(self->setter->constval.vfunc, ir) ||
1521             !ir_function_finalize(self->setter->constval.vfunc->ir_func))
1522         {
1523             compile_error(ast_ctx(self), "internal error: failed to generate setter for `%s`", self->name);
1524             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1525             return false;
1526         }
1527     }
1528     if (self->getter) {
1529         if (!ast_global_codegen  (self->getter, ir, false) ||
1530             !ast_function_codegen(self->getter->constval.vfunc, ir) ||
1531             !ir_function_finalize(self->getter->constval.vfunc->ir_func))
1532         {
1533             compile_error(ast_ctx(self), "internal error: failed to generate getter for `%s`", self->name);
1534             opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1535             return false;
1536         }
1537     }
1538     for (i = 0; i < self->expression.count; ++i) {
1539         vec_free(self->ir_values[i]->life);
1540     }
1541     opts_set(opts.warn, WARN_USED_UNINITIALIZED, warn);
1542     return true;
1543 }
1544
1545 bool ast_function_codegen(ast_function *self, ir_builder *ir)
1546 {
1547     ir_function *irf;
1548     ir_value    *dummy;
1549     ast_expression_common *ec;
1550     size_t    i;
1551
1552     (void)ir;
1553
1554     irf = self->ir_func;
1555     if (!irf) {
1556         compile_error(ast_ctx(self), "ast_function's related ast_value was not generated yet");
1557         return false;
1558     }
1559
1560     /* fill the parameter list */
1561     ec = &self->vtype->expression;
1562     for (i = 0; i < vec_size(ec->params); ++i)
1563     {
1564         if (ec->params[i]->expression.vtype == TYPE_FIELD)
1565             vec_push(irf->params, ec->params[i]->expression.next->expression.vtype);
1566         else
1567             vec_push(irf->params, ec->params[i]->expression.vtype);
1568         if (!self->builtin) {
1569             if (!ast_local_codegen(ec->params[i], self->ir_func, true))
1570                 return false;
1571         }
1572     }
1573
1574     if (self->builtin) {
1575         irf->builtin = self->builtin;
1576         return true;
1577     }
1578
1579     if (!vec_size(self->blocks)) {
1580         compile_error(ast_ctx(self), "function `%s` has no body", self->name);
1581         return false;
1582     }
1583
1584     self->curblock = ir_function_create_block(ast_ctx(self), irf, "entry");
1585     if (!self->curblock) {
1586         compile_error(ast_ctx(self), "failed to allocate entry block for `%s`", self->name);
1587         return false;
1588     }
1589
1590     for (i = 0; i < vec_size(self->blocks); ++i) {
1591         ast_expression_codegen *gen = self->blocks[i]->expression.codegen;
1592         if (!(*gen)((ast_expression*)self->blocks[i], self, false, &dummy))
1593             return false;
1594     }
1595
1596     /* TODO: check return types */
1597     if (!self->curblock->final)
1598     {
1599         if (!self->vtype->expression.next ||
1600             self->vtype->expression.next->expression.vtype == TYPE_VOID)
1601         {
1602             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1603         }
1604         else if (vec_size(self->curblock->entries))
1605         {
1606             /* error("missing return"); */
1607             if (compile_warning(ast_ctx(self), WARN_MISSING_RETURN_VALUES,
1608                                 "control reaches end of non-void function (`%s`) via %s",
1609                                 self->name, self->curblock->label))
1610             {
1611                 return false;
1612             }
1613             return ir_block_create_return(self->curblock, ast_ctx(self), NULL);
1614         }
1615     }
1616     return true;
1617 }
1618
1619 /* Note, you will not see ast_block_codegen generate ir_blocks.
1620  * To the AST and the IR, blocks are 2 different things.
1621  * In the AST it represents a block of code, usually enclosed in
1622  * curly braces {...}.
1623  * While in the IR it represents a block in terms of control-flow.
1624  */
1625 bool ast_block_codegen(ast_block *self, ast_function *func, bool lvalue, ir_value **out)
1626 {
1627     size_t i;
1628
1629     /* We don't use this
1630      * Note: an ast-representation using the comma-operator
1631      * of the form: (a, b, c) = x should not assign to c...
1632      */
1633     if (lvalue) {
1634         compile_error(ast_ctx(self), "not an l-value (code-block)");
1635         return false;
1636     }
1637
1638     if (self->expression.outr) {
1639         *out = self->expression.outr;
1640         return true;
1641     }
1642
1643     /* output is NULL at first, we'll have each expression
1644      * assign to out output, thus, a comma-operator represention
1645      * using an ast_block will return the last generated value,
1646      * so: (b, c) + a  executed both b and c, and returns c,
1647      * which is then added to a.
1648      */
1649     *out = NULL;
1650
1651     /* generate locals */
1652     for (i = 0; i < vec_size(self->locals); ++i)
1653     {
1654         if (!ast_local_codegen(self->locals[i], func->ir_func, false)) {
1655             if (opts.debug)
1656                 compile_error(ast_ctx(self), "failed to generate local `%s`", self->locals[i]->name);
1657             return false;
1658         }
1659     }
1660
1661     for (i = 0; i < vec_size(self->exprs); ++i)
1662     {
1663         ast_expression_codegen *gen;
1664         if (func->curblock->final && !ast_istype(self->exprs[i], ast_label)) {
1665             if (compile_warning(ast_ctx(self->exprs[i]), WARN_UNREACHABLE_CODE, "unreachable statement"))
1666                 return false;
1667             continue;
1668         }
1669         gen = self->exprs[i]->expression.codegen;
1670         if (!(*gen)(self->exprs[i], func, false, out))
1671             return false;
1672     }
1673
1674     self->expression.outr = *out;
1675
1676     return true;
1677 }
1678
1679 bool ast_store_codegen(ast_store *self, ast_function *func, bool lvalue, ir_value **out)
1680 {
1681     ast_expression_codegen *cgen;
1682     ir_value *left  = NULL;
1683     ir_value *right = NULL;
1684
1685     ast_value       *arr;
1686     ast_value       *idx = 0;
1687     ast_array_index *ai = NULL;
1688
1689     if (lvalue && self->expression.outl) {
1690         *out = self->expression.outl;
1691         return true;
1692     }
1693
1694     if (!lvalue && self->expression.outr) {
1695         *out = self->expression.outr;
1696         return true;
1697     }
1698
1699     if (ast_istype(self->dest, ast_array_index))
1700     {
1701
1702         ai = (ast_array_index*)self->dest;
1703         idx = (ast_value*)ai->index;
1704
1705         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1706             ai = NULL;
1707     }
1708
1709     if (ai) {
1710         /* we need to call the setter */
1711         ir_value  *iridx, *funval;
1712         ir_instr  *call;
1713
1714         if (lvalue) {
1715             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1716             return false;
1717         }
1718
1719         arr = (ast_value*)ai->array;
1720         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1721             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1722             return false;
1723         }
1724
1725         cgen = idx->expression.codegen;
1726         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1727             return false;
1728
1729         cgen = arr->setter->expression.codegen;
1730         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1731             return false;
1732
1733         cgen = self->source->expression.codegen;
1734         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1735             return false;
1736
1737         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1738         if (!call)
1739             return false;
1740         ir_call_param(call, iridx);
1741         ir_call_param(call, right);
1742         self->expression.outr = right;
1743     }
1744     else
1745     {
1746         /* regular code */
1747
1748         cgen = self->dest->expression.codegen;
1749         /* lvalue! */
1750         if (!(*cgen)((ast_expression*)(self->dest), func, true, &left))
1751             return false;
1752         self->expression.outl = left;
1753
1754         cgen = self->source->expression.codegen;
1755         /* rvalue! */
1756         if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1757             return false;
1758
1759         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->op, left, right))
1760             return false;
1761         self->expression.outr = right;
1762     }
1763
1764     /* Theoretically, an assinment returns its left side as an
1765      * lvalue, if we don't need an lvalue though, we return
1766      * the right side as an rvalue, otherwise we have to
1767      * somehow know whether or not we need to dereference the pointer
1768      * on the left side - that is: OP_LOAD if it was an address.
1769      * Also: in original QC we cannot OP_LOADP *anyway*.
1770      */
1771     *out = (lvalue ? left : right);
1772
1773     return true;
1774 }
1775
1776 bool ast_binary_codegen(ast_binary *self, ast_function *func, bool lvalue, ir_value **out)
1777 {
1778     ast_expression_codegen *cgen;
1779     ir_value *left, *right;
1780
1781     /* A binary operation cannot yield an l-value */
1782     if (lvalue) {
1783         compile_error(ast_ctx(self), "not an l-value (binop)");
1784         return false;
1785     }
1786
1787     if (self->expression.outr) {
1788         *out = self->expression.outr;
1789         return true;
1790     }
1791
1792     if ((OPTS_FLAG(SHORT_LOGIC) || OPTS_FLAG(PERL_LOGIC)) &&
1793         (self->op == INSTR_AND || self->op == INSTR_OR))
1794     {
1795         /* short circuit evaluation */
1796         ir_block *other, *merge;
1797         ir_block *from_left, *from_right;
1798         ir_instr *phi;
1799         size_t    merge_id;
1800
1801         /* prepare end-block */
1802         merge_id = vec_size(func->ir_func->blocks);
1803         merge    = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_merge"));
1804
1805         /* generate the left expression */
1806         cgen = self->left->expression.codegen;
1807         if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1808             return false;
1809         /* remember the block */
1810         from_left = func->curblock;
1811
1812         /* create a new block for the right expression */
1813         other = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "sce_other"));
1814         if (self->op == INSTR_AND) {
1815             /* on AND: left==true -> other */
1816             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, other, merge))
1817                 return false;
1818         } else {
1819             /* on OR: left==false -> other */
1820             if (!ir_block_create_if(func->curblock, ast_ctx(self), left, merge, other))
1821                 return false;
1822         }
1823         /* use the likely flag */
1824         vec_last(func->curblock->instr)->likely = true;
1825
1826         /* enter the right-expression's block */
1827         func->curblock = other;
1828         /* generate */
1829         cgen = self->right->expression.codegen;
1830         if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1831             return false;
1832         /* remember block */
1833         from_right = func->curblock;
1834
1835         /* jump to the merge block */
1836         if (!ir_block_create_jump(func->curblock, ast_ctx(self), merge))
1837             return false;
1838
1839         vec_remove(func->ir_func->blocks, merge_id, 1);
1840         vec_push(func->ir_func->blocks, merge);
1841
1842         func->curblock = merge;
1843         phi = ir_block_create_phi(func->curblock, ast_ctx(self),
1844                                   ast_function_label(func, "sce_value"),
1845                                   self->expression.vtype);
1846         ir_phi_add(phi, from_left, left);
1847         ir_phi_add(phi, from_right, right);
1848         *out = ir_phi_value(phi);
1849         if (!*out)
1850             return false;
1851
1852         if (!OPTS_FLAG(PERL_LOGIC)) {
1853             /* cast-to-bool */
1854             if (OPTS_FLAG(CORRECT_LOGIC) && (*out)->vtype == TYPE_VECTOR) {
1855                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1856                                              ast_function_label(func, "sce_bool_v"),
1857                                              INSTR_NOT_V, *out);
1858                 if (!*out)
1859                     return false;
1860                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1861                                              ast_function_label(func, "sce_bool"),
1862                                              INSTR_NOT_F, *out);
1863                 if (!*out)
1864                     return false;
1865             }
1866             else if (OPTS_FLAG(FALSE_EMPTY_STRINGS) && (*out)->vtype == TYPE_STRING) {
1867                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1868                                              ast_function_label(func, "sce_bool_s"),
1869                                              INSTR_NOT_S, *out);
1870                 if (!*out)
1871                     return false;
1872                 *out = ir_block_create_unary(func->curblock, ast_ctx(self),
1873                                              ast_function_label(func, "sce_bool"),
1874                                              INSTR_NOT_F, *out);
1875                 if (!*out)
1876                     return false;
1877             }
1878             else {
1879                 *out = ir_block_create_binop(func->curblock, ast_ctx(self),
1880                                              ast_function_label(func, "sce_bool"),
1881                                              INSTR_AND, *out, *out);
1882                 if (!*out)
1883                     return false;
1884             }
1885         }
1886
1887         self->expression.outr = *out;
1888         codegen_output_type(self, *out);
1889         return true;
1890     }
1891
1892     cgen = self->left->expression.codegen;
1893     if (!(*cgen)((ast_expression*)(self->left), func, false, &left))
1894         return false;
1895
1896     cgen = self->right->expression.codegen;
1897     if (!(*cgen)((ast_expression*)(self->right), func, false, &right))
1898         return false;
1899
1900     *out = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "bin"),
1901                                  self->op, left, right);
1902     if (!*out)
1903         return false;
1904     self->expression.outr = *out;
1905     codegen_output_type(self, *out);
1906
1907     return true;
1908 }
1909
1910 bool ast_binstore_codegen(ast_binstore *self, ast_function *func, bool lvalue, ir_value **out)
1911 {
1912     ast_expression_codegen *cgen;
1913     ir_value *leftl = NULL, *leftr, *right, *bin;
1914
1915     ast_value       *arr;
1916     ast_value       *idx = 0;
1917     ast_array_index *ai = NULL;
1918     ir_value        *iridx = NULL;
1919
1920     if (lvalue && self->expression.outl) {
1921         *out = self->expression.outl;
1922         return true;
1923     }
1924
1925     if (!lvalue && self->expression.outr) {
1926         *out = self->expression.outr;
1927         return true;
1928     }
1929
1930     if (ast_istype(self->dest, ast_array_index))
1931     {
1932
1933         ai = (ast_array_index*)self->dest;
1934         idx = (ast_value*)ai->index;
1935
1936         if (ast_istype(ai->index, ast_value) && idx->hasvalue && idx->cvq == CV_CONST)
1937             ai = NULL;
1938     }
1939
1940     /* for a binstore we need both an lvalue and an rvalue for the left side */
1941     /* rvalue of destination! */
1942     if (ai) {
1943         cgen = idx->expression.codegen;
1944         if (!(*cgen)((ast_expression*)(idx), func, false, &iridx))
1945             return false;
1946     }
1947     cgen = self->dest->expression.codegen;
1948     if (!(*cgen)((ast_expression*)(self->dest), func, false, &leftr))
1949         return false;
1950
1951     /* source as rvalue only */
1952     cgen = self->source->expression.codegen;
1953     if (!(*cgen)((ast_expression*)(self->source), func, false, &right))
1954         return false;
1955
1956     /* now the binary */
1957     bin = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "binst"),
1958                                 self->opbin, leftr, right);
1959     self->expression.outr = bin;
1960
1961
1962     if (ai) {
1963         /* we need to call the setter */
1964         ir_value  *funval;
1965         ir_instr  *call;
1966
1967         if (lvalue) {
1968             compile_error(ast_ctx(self), "array-subscript assignment cannot produce lvalues");
1969             return false;
1970         }
1971
1972         arr = (ast_value*)ai->array;
1973         if (!ast_istype(ai->array, ast_value) || !arr->setter) {
1974             compile_error(ast_ctx(self), "value has no setter (%s)", arr->name);
1975             return false;
1976         }
1977
1978         cgen = arr->setter->expression.codegen;
1979         if (!(*cgen)((ast_expression*)(arr->setter), func, true, &funval))
1980             return false;
1981
1982         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "store"), funval, false);
1983         if (!call)
1984             return false;
1985         ir_call_param(call, iridx);
1986         ir_call_param(call, bin);
1987         self->expression.outr = bin;
1988     } else {
1989         /* now store them */
1990         cgen = self->dest->expression.codegen;
1991         /* lvalue of destination */
1992         if (!(*cgen)((ast_expression*)(self->dest), func, true, &leftl))
1993             return false;
1994         self->expression.outl = leftl;
1995
1996         if (!ir_block_create_store_op(func->curblock, ast_ctx(self), self->opstore, leftl, bin))
1997             return false;
1998         self->expression.outr = bin;
1999     }
2000
2001     /* Theoretically, an assinment returns its left side as an
2002      * lvalue, if we don't need an lvalue though, we return
2003      * the right side as an rvalue, otherwise we have to
2004      * somehow know whether or not we need to dereference the pointer
2005      * on the left side - that is: OP_LOAD if it was an address.
2006      * Also: in original QC we cannot OP_LOADP *anyway*.
2007      */
2008     *out = (lvalue ? leftl : bin);
2009
2010     return true;
2011 }
2012
2013 bool ast_unary_codegen(ast_unary *self, ast_function *func, bool lvalue, ir_value **out)
2014 {
2015     ast_expression_codegen *cgen;
2016     ir_value *operand;
2017
2018     /* An unary operation cannot yield an l-value */
2019     if (lvalue) {
2020         compile_error(ast_ctx(self), "not an l-value (binop)");
2021         return false;
2022     }
2023
2024     if (self->expression.outr) {
2025         *out = self->expression.outr;
2026         return true;
2027     }
2028
2029     cgen = self->operand->expression.codegen;
2030     /* lvalue! */
2031     if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2032         return false;
2033
2034     *out = ir_block_create_unary(func->curblock, ast_ctx(self), ast_function_label(func, "unary"),
2035                                  self->op, operand);
2036     if (!*out)
2037         return false;
2038     self->expression.outr = *out;
2039
2040     return true;
2041 }
2042
2043 bool ast_return_codegen(ast_return *self, ast_function *func, bool lvalue, ir_value **out)
2044 {
2045     ast_expression_codegen *cgen;
2046     ir_value *operand;
2047
2048     *out = NULL;
2049
2050     /* In the context of a return operation, we don't actually return
2051      * anything...
2052      */
2053     if (lvalue) {
2054         compile_error(ast_ctx(self), "return-expression is not an l-value");
2055         return false;
2056     }
2057
2058     if (self->expression.outr) {
2059         compile_error(ast_ctx(self), "internal error: ast_return cannot be reused, it bears no result!");
2060         return false;
2061     }
2062     self->expression.outr = (ir_value*)1;
2063
2064     if (self->operand) {
2065         cgen = self->operand->expression.codegen;
2066         /* lvalue! */
2067         if (!(*cgen)((ast_expression*)(self->operand), func, false, &operand))
2068             return false;
2069
2070         if (!ir_block_create_return(func->curblock, ast_ctx(self), operand))
2071             return false;
2072     } else {
2073         if (!ir_block_create_return(func->curblock, ast_ctx(self), NULL))
2074             return false;
2075     }
2076
2077     return true;
2078 }
2079
2080 bool ast_entfield_codegen(ast_entfield *self, ast_function *func, bool lvalue, ir_value **out)
2081 {
2082     ast_expression_codegen *cgen;
2083     ir_value *ent, *field;
2084
2085     /* This function needs to take the 'lvalue' flag into account!
2086      * As lvalue we provide a field-pointer, as rvalue we provide the
2087      * value in a temp.
2088      */
2089
2090     if (lvalue && self->expression.outl) {
2091         *out = self->expression.outl;
2092         return true;
2093     }
2094
2095     if (!lvalue && self->expression.outr) {
2096         *out = self->expression.outr;
2097         return true;
2098     }
2099
2100     cgen = self->entity->expression.codegen;
2101     if (!(*cgen)((ast_expression*)(self->entity), func, false, &ent))
2102         return false;
2103
2104     cgen = self->field->expression.codegen;
2105     if (!(*cgen)((ast_expression*)(self->field), func, false, &field))
2106         return false;
2107
2108     if (lvalue) {
2109         /* address! */
2110         *out = ir_block_create_fieldaddress(func->curblock, ast_ctx(self), ast_function_label(func, "efa"),
2111                                             ent, field);
2112     } else {
2113         *out = ir_block_create_load_from_ent(func->curblock, ast_ctx(self), ast_function_label(func, "efv"),
2114                                              ent, field, self->expression.vtype);
2115         /* Done AFTER error checking: 
2116         codegen_output_type(self, *out);
2117         */
2118     }
2119     if (!*out) {
2120         compile_error(ast_ctx(self), "failed to create %s instruction (output type %s)",
2121                  (lvalue ? "ADDRESS" : "FIELD"),
2122                  type_name[self->expression.vtype]);
2123         return false;
2124     }
2125     if (!lvalue)
2126         codegen_output_type(self, *out);
2127
2128     if (lvalue)
2129         self->expression.outl = *out;
2130     else
2131         self->expression.outr = *out;
2132
2133     /* Hm that should be it... */
2134     return true;
2135 }
2136
2137 bool ast_member_codegen(ast_member *self, ast_function *func, bool lvalue, ir_value **out)
2138 {
2139     ast_expression_codegen *cgen;
2140     ir_value *vec;
2141
2142     /* in QC this is always an lvalue */
2143     if (lvalue && self->rvalue) {
2144         compile_error(ast_ctx(self), "not an l-value (member access)");
2145         return false;
2146     }
2147     if (self->expression.outl) {
2148         *out = self->expression.outl;
2149         return true;
2150     }
2151
2152     cgen = self->owner->expression.codegen;
2153     if (!(*cgen)((ast_expression*)(self->owner), func, false, &vec))
2154         return false;
2155
2156     if (vec->vtype != TYPE_VECTOR &&
2157         !(vec->vtype == TYPE_FIELD && self->owner->expression.next->expression.vtype == TYPE_VECTOR))
2158     {
2159         return false;
2160     }
2161
2162     *out = ir_value_vector_member(vec, self->field);
2163     self->expression.outl = *out;
2164
2165     return (*out != NULL);
2166 }
2167
2168 bool ast_array_index_codegen(ast_array_index *self, ast_function *func, bool lvalue, ir_value **out)
2169 {
2170     ast_value *arr;
2171     ast_value *idx;
2172
2173     if (!lvalue && self->expression.outr) {
2174         *out = self->expression.outr;
2175     }
2176     if (lvalue && self->expression.outl) {
2177         *out = self->expression.outl;
2178     }
2179
2180     if (!ast_istype(self->array, ast_value)) {
2181         compile_error(ast_ctx(self), "array indexing this way is not supported");
2182         /* note this would actually be pointer indexing because the left side is
2183          * not an actual array but (hopefully) an indexable expression.
2184          * Once we get integer arithmetic, and GADDRESS/GSTORE/GLOAD instruction
2185          * support this path will be filled.
2186          */
2187         return false;
2188     }
2189
2190     arr = (ast_value*)self->array;
2191     idx = (ast_value*)self->index;
2192
2193     if (!ast_istype(self->index, ast_value) || !idx->hasvalue || idx->cvq != CV_CONST) {
2194         /* Time to use accessor functions */
2195         ast_expression_codegen *cgen;
2196         ir_value               *iridx, *funval;
2197         ir_instr               *call;
2198
2199         if (lvalue) {
2200             compile_error(ast_ctx(self), "(.2) array indexing here needs a compile-time constant");
2201             return false;
2202         }
2203
2204         if (!arr->getter) {
2205             compile_error(ast_ctx(self), "value has no getter, don't know how to index it");
2206             return false;
2207         }
2208
2209         cgen = self->index->expression.codegen;
2210         if (!(*cgen)((ast_expression*)(self->index), func, false, &iridx))
2211             return false;
2212
2213         cgen = arr->getter->expression.codegen;
2214         if (!(*cgen)((ast_expression*)(arr->getter), func, true, &funval))
2215             return false;
2216
2217         call = ir_block_create_call(func->curblock, ast_ctx(self), ast_function_label(func, "fetch"), funval, false);
2218         if (!call)
2219             return false;
2220         ir_call_param(call, iridx);
2221
2222         *out = ir_call_value(call);
2223         self->expression.outr = *out;
2224         return true;
2225     }
2226
2227     if (idx->expression.vtype == TYPE_FLOAT) {
2228         unsigned int arridx = idx->constval.vfloat;
2229         if (arridx >= self->array->expression.count)
2230         {
2231             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2232             return false;
2233         }
2234         *out = arr->ir_values[arridx];
2235     }
2236     else if (idx->expression.vtype == TYPE_INTEGER) {
2237         unsigned int arridx = idx->constval.vint;
2238         if (arridx >= self->array->expression.count)
2239         {
2240             compile_error(ast_ctx(self), "array index out of bounds: %i", arridx);
2241             return false;
2242         }
2243         *out = arr->ir_values[arridx];
2244     }
2245     else {
2246         compile_error(ast_ctx(self), "array indexing here needs an integer constant");
2247         return false;
2248     }
2249     return true;
2250 }
2251
2252 bool ast_ifthen_codegen(ast_ifthen *self, ast_function *func, bool lvalue, ir_value **out)
2253 {
2254     ast_expression_codegen *cgen;
2255
2256     ir_value *condval;
2257     ir_value *dummy;
2258
2259     ir_block *cond;
2260     ir_block *ontrue;
2261     ir_block *onfalse;
2262     ir_block *ontrue_endblock = NULL;
2263     ir_block *onfalse_endblock = NULL;
2264     ir_block *merge = NULL;
2265
2266     /* We don't output any value, thus also don't care about r/lvalue */
2267     (void)out;
2268     (void)lvalue;
2269
2270     if (self->expression.outr) {
2271         compile_error(ast_ctx(self), "internal error: ast_ifthen cannot be reused, it bears no result!");
2272         return false;
2273     }
2274     self->expression.outr = (ir_value*)1;
2275
2276     /* generate the condition */
2277     cgen = self->cond->expression.codegen;
2278     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2279         return false;
2280     /* update the block which will get the jump - because short-logic or ternaries may have changed this */
2281     cond = func->curblock;
2282
2283     /* on-true path */
2284
2285     if (self->on_true) {
2286         /* create on-true block */
2287         ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "ontrue"));
2288         if (!ontrue)
2289             return false;
2290
2291         /* enter the block */
2292         func->curblock = ontrue;
2293
2294         /* generate */
2295         cgen = self->on_true->expression.codegen;
2296         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &dummy))
2297             return false;
2298
2299         /* we now need to work from the current endpoint */
2300         ontrue_endblock = func->curblock;
2301     } else
2302         ontrue = NULL;
2303
2304     /* on-false path */
2305     if (self->on_false) {
2306         /* create on-false block */
2307         onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "onfalse"));
2308         if (!onfalse)
2309             return false;
2310
2311         /* enter the block */
2312         func->curblock = onfalse;
2313
2314         /* generate */
2315         cgen = self->on_false->expression.codegen;
2316         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &dummy))
2317             return false;
2318
2319         /* we now need to work from the current endpoint */
2320         onfalse_endblock = func->curblock;
2321     } else
2322         onfalse = NULL;
2323
2324     /* Merge block were they all merge in to */
2325     if (!ontrue || !onfalse || !ontrue_endblock->final || !onfalse_endblock->final)
2326     {
2327         merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "endif"));
2328         if (!merge)
2329             return false;
2330         /* add jumps ot the merge block */
2331         if (ontrue && !ontrue_endblock->final && !ir_block_create_jump(ontrue_endblock, ast_ctx(self), merge))
2332             return false;
2333         if (onfalse && !onfalse_endblock->final && !ir_block_create_jump(onfalse_endblock, ast_ctx(self), merge))
2334             return false;
2335
2336         /* Now enter the merge block */
2337         func->curblock = merge;
2338     }
2339
2340     /* we create the if here, that way all blocks are ordered :)
2341      */
2342     if (!ir_block_create_if(cond, ast_ctx(self), condval,
2343                             (ontrue  ? ontrue  : merge),
2344                             (onfalse ? onfalse : merge)))
2345     {
2346         return false;
2347     }
2348
2349     return true;
2350 }
2351
2352 bool ast_ternary_codegen(ast_ternary *self, ast_function *func, bool lvalue, ir_value **out)
2353 {
2354     ast_expression_codegen *cgen;
2355
2356     ir_value *condval;
2357     ir_value *trueval, *falseval;
2358     ir_instr *phi;
2359
2360     ir_block *cond = func->curblock;
2361     ir_block *cond_out = NULL;
2362     ir_block *ontrue, *ontrue_out = NULL;
2363     ir_block *onfalse, *onfalse_out = NULL;
2364     ir_block *merge;
2365
2366     /* Ternary can never create an lvalue... */
2367     if (lvalue)
2368         return false;
2369
2370     /* In theory it shouldn't be possible to pass through a node twice, but
2371      * in case we add any kind of optimization pass for the AST itself, it
2372      * may still happen, thus we remember a created ir_value and simply return one
2373      * if it already exists.
2374      */
2375     if (self->expression.outr) {
2376         *out = self->expression.outr;
2377         return true;
2378     }
2379
2380     /* In the following, contraty to ast_ifthen, we assume both paths exist. */
2381
2382     /* generate the condition */
2383     func->curblock = cond;
2384     cgen = self->cond->expression.codegen;
2385     if (!(*cgen)((ast_expression*)(self->cond), func, false, &condval))
2386         return false;
2387     cond_out = func->curblock;
2388
2389     /* create on-true block */
2390     ontrue = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_T"));
2391     if (!ontrue)
2392         return false;
2393     else
2394     {
2395         /* enter the block */
2396         func->curblock = ontrue;
2397
2398         /* generate */
2399         cgen = self->on_true->expression.codegen;
2400         if (!(*cgen)((ast_expression*)(self->on_true), func, false, &trueval))
2401             return false;
2402
2403         ontrue_out = func->curblock;
2404     }
2405
2406     /* create on-false block */
2407     onfalse = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_F"));
2408     if (!onfalse)
2409         return false;
2410     else
2411     {
2412         /* enter the block */
2413         func->curblock = onfalse;
2414
2415         /* generate */
2416         cgen = self->on_false->expression.codegen;
2417         if (!(*cgen)((ast_expression*)(self->on_false), func, false, &falseval))
2418             return false;
2419
2420         onfalse_out = func->curblock;
2421     }
2422
2423     /* create merge block */
2424     merge = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "tern_out"));
2425     if (!merge)
2426         return false;
2427     /* jump to merge block */
2428     if (!ir_block_create_jump(ontrue_out, ast_ctx(self), merge))
2429         return false;
2430     if (!ir_block_create_jump(onfalse_out, ast_ctx(self), merge))
2431         return false;
2432
2433     /* create if instruction */
2434     if (!ir_block_create_if(cond_out, ast_ctx(self), condval, ontrue, onfalse))
2435         return false;
2436
2437     /* Now enter the merge block */
2438     func->curblock = merge;
2439
2440     /* Here, now, we need a PHI node
2441      * but first some sanity checking...
2442      */
2443     if (trueval->vtype != falseval->vtype && trueval->vtype != TYPE_NIL && falseval->vtype != TYPE_NIL) {
2444         /* error("ternary with different types on the two sides"); */
2445         compile_error(ast_ctx(self), "internal error: ternary operand types invalid");
2446         return false;
2447     }
2448
2449     /* create PHI */
2450     phi = ir_block_create_phi(merge, ast_ctx(self), ast_function_label(func, "phi"), self->expression.vtype);
2451     if (!phi) {
2452         compile_error(ast_ctx(self), "internal error: failed to generate phi node");
2453         return false;
2454     }
2455     ir_phi_add(phi, ontrue_out,  trueval);
2456     ir_phi_add(phi, onfalse_out, falseval);
2457
2458     self->expression.outr = ir_phi_value(phi);
2459     *out = self->expression.outr;
2460
2461     codegen_output_type(self, *out);
2462
2463     return true;
2464 }
2465
2466 bool ast_loop_codegen(ast_loop *self, ast_function *func, bool lvalue, ir_value **out)
2467 {
2468     ast_expression_codegen *cgen;
2469
2470     ir_value *dummy      = NULL;
2471     ir_value *precond    = NULL;
2472     ir_value *postcond   = NULL;
2473
2474     /* Since we insert some jumps "late" so we have blocks
2475      * ordered "nicely", we need to keep track of the actual end-blocks
2476      * of expressions to add the jumps to.
2477      */
2478     ir_block *bbody      = NULL, *end_bbody      = NULL;
2479     ir_block *bprecond   = NULL, *end_bprecond   = NULL;
2480     ir_block *bpostcond  = NULL, *end_bpostcond  = NULL;
2481     ir_block *bincrement = NULL, *end_bincrement = NULL;
2482     ir_block *bout       = NULL, *bin            = NULL;
2483
2484     /* let's at least move the outgoing block to the end */
2485     size_t    bout_id;
2486
2487     /* 'break' and 'continue' need to be able to find the right blocks */
2488     ir_block *bcontinue     = NULL;
2489     ir_block *bbreak        = NULL;
2490
2491     ir_block *tmpblock      = NULL;
2492
2493     (void)lvalue;
2494     (void)out;
2495
2496     if (self->expression.outr) {
2497         compile_error(ast_ctx(self), "internal error: ast_loop cannot be reused, it bears no result!");
2498         return false;
2499     }
2500     self->expression.outr = (ir_value*)1;
2501
2502     /* NOTE:
2503      * Should we ever need some kind of block ordering, better make this function
2504      * move blocks around than write a block ordering algorithm later... after all
2505      * the ast and ir should work together, not against each other.
2506      */
2507
2508     /* initexpr doesn't get its own block, it's pointless, it could create more blocks
2509      * anyway if for example it contains a ternary.
2510      */
2511     if (self->initexpr)
2512     {
2513         cgen = self->initexpr->expression.codegen;
2514         if (!(*cgen)((ast_expression*)(self->initexpr), func, false, &dummy))
2515             return false;
2516     }
2517
2518     /* Store the block from which we enter this chaos */
2519     bin = func->curblock;
2520
2521     /* The pre-loop condition needs its own block since we
2522      * need to be able to jump to the start of that expression.
2523      */
2524     if (self->precond)
2525     {
2526         bprecond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "pre_loop_cond"));
2527         if (!bprecond)
2528             return false;
2529
2530         /* the pre-loop-condition the least important place to 'continue' at */
2531         bcontinue = bprecond;
2532
2533         /* enter */
2534         func->curblock = bprecond;
2535
2536         /* generate */
2537         cgen = self->precond->expression.codegen;
2538         if (!(*cgen)((ast_expression*)(self->precond), func, false, &precond))
2539             return false;
2540
2541         end_bprecond = func->curblock;
2542     } else {
2543         bprecond = end_bprecond = NULL;
2544     }
2545
2546     /* Now the next blocks won't be ordered nicely, but we need to
2547      * generate them this early for 'break' and 'continue'.
2548      */
2549     if (self->increment) {
2550         bincrement = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_increment"));
2551         if (!bincrement)
2552             return false;
2553         bcontinue = bincrement; /* increment comes before the pre-loop-condition */
2554     } else {
2555         bincrement = end_bincrement = NULL;
2556     }
2557
2558     if (self->postcond) {
2559         bpostcond = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "post_loop_cond"));
2560         if (!bpostcond)
2561             return false;
2562         bcontinue = bpostcond; /* postcond comes before the increment */
2563     } else {
2564         bpostcond = end_bpostcond = NULL;
2565     }
2566
2567     bout_id = vec_size(func->ir_func->blocks);
2568     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_loop"));
2569     if (!bout)
2570         return false;
2571     bbreak = bout;
2572
2573     /* The loop body... */
2574     /* if (self->body) */
2575     {
2576         bbody = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "loop_body"));
2577         if (!bbody)
2578             return false;
2579
2580         /* enter */
2581         func->curblock = bbody;
2582
2583         vec_push(func->breakblocks,    bbreak);
2584         if (bcontinue)
2585             vec_push(func->continueblocks, bcontinue);
2586         else
2587             vec_push(func->continueblocks, bbody);
2588
2589         /* generate */
2590         if (self->body) {
2591             cgen = self->body->expression.codegen;
2592             if (!(*cgen)((ast_expression*)(self->body), func, false, &dummy))
2593                 return false;
2594         }
2595
2596         end_bbody = func->curblock;
2597         vec_pop(func->breakblocks);
2598         vec_pop(func->continueblocks);
2599     }
2600
2601     /* post-loop-condition */
2602     if (self->postcond)
2603     {
2604         /* enter */
2605         func->curblock = bpostcond;
2606
2607         /* generate */
2608         cgen = self->postcond->expression.codegen;
2609         if (!(*cgen)((ast_expression*)(self->postcond), func, false, &postcond))
2610             return false;
2611
2612         end_bpostcond = func->curblock;
2613     }
2614
2615     /* The incrementor */
2616     if (self->increment)
2617     {
2618         /* enter */
2619         func->curblock = bincrement;
2620
2621         /* generate */
2622         cgen = self->increment->expression.codegen;
2623         if (!(*cgen)((ast_expression*)(self->increment), func, false, &dummy))
2624             return false;
2625
2626         end_bincrement = func->curblock;
2627     }
2628
2629     /* In any case now, we continue from the outgoing block */
2630     func->curblock = bout;
2631
2632     /* Now all blocks are in place */
2633     /* From 'bin' we jump to whatever comes first */
2634     if      (bprecond)   tmpblock = bprecond;
2635     else if (bbody)      tmpblock = bbody;
2636     else if (bpostcond)  tmpblock = bpostcond;
2637     else                 tmpblock = bout;
2638     if (!ir_block_create_jump(bin, ast_ctx(self), tmpblock))
2639         return false;
2640
2641     /* From precond */
2642     if (bprecond)
2643     {
2644         ir_block *ontrue, *onfalse;
2645         if      (bbody)      ontrue = bbody;
2646         else if (bincrement) ontrue = bincrement;
2647         else if (bpostcond)  ontrue = bpostcond;
2648         else                 ontrue = bprecond;
2649         onfalse = bout;
2650         if (self->pre_not) {
2651             tmpblock = ontrue;
2652             ontrue   = onfalse;
2653             onfalse  = tmpblock;
2654         }
2655         if (!ir_block_create_if(end_bprecond, ast_ctx(self), precond, ontrue, onfalse))
2656             return false;
2657     }
2658
2659     /* from body */
2660     if (bbody)
2661     {
2662         if      (bincrement) tmpblock = bincrement;
2663         else if (bpostcond)  tmpblock = bpostcond;
2664         else if (bprecond)   tmpblock = bprecond;
2665         else                 tmpblock = bbody;
2666         if (!end_bbody->final && !ir_block_create_jump(end_bbody, ast_ctx(self), tmpblock))
2667             return false;
2668     }
2669
2670     /* from increment */
2671     if (bincrement)
2672     {
2673         if      (bpostcond)  tmpblock = bpostcond;
2674         else if (bprecond)   tmpblock = bprecond;
2675         else if (bbody)      tmpblock = bbody;
2676         else                 tmpblock = bout;
2677         if (!ir_block_create_jump(end_bincrement, ast_ctx(self), tmpblock))
2678             return false;
2679     }
2680
2681     /* from postcond */
2682     if (bpostcond)
2683     {
2684         ir_block *ontrue, *onfalse;
2685         if      (bprecond)   ontrue = bprecond;
2686         else if (bbody)      ontrue = bbody;
2687         else if (bincrement) ontrue = bincrement;
2688         else                 ontrue = bpostcond;
2689         onfalse = bout;
2690         if (self->post_not) {
2691             tmpblock = ontrue;
2692             ontrue   = onfalse;
2693             onfalse  = tmpblock;
2694         }
2695         if (!ir_block_create_if(end_bpostcond, ast_ctx(self), postcond, ontrue, onfalse))
2696             return false;
2697     }
2698
2699     /* Move 'bout' to the end */
2700     vec_remove(func->ir_func->blocks, bout_id, 1);
2701     vec_push(func->ir_func->blocks, bout);
2702
2703     return true;
2704 }
2705
2706 bool ast_breakcont_codegen(ast_breakcont *self, ast_function *func, bool lvalue, ir_value **out)
2707 {
2708     ir_block *target;
2709
2710     *out = NULL;
2711
2712     if (lvalue) {
2713         compile_error(ast_ctx(self), "break/continue expression is not an l-value");
2714         return false;
2715     }
2716
2717     if (self->expression.outr) {
2718         compile_error(ast_ctx(self), "internal error: ast_breakcont cannot be reused!");
2719         return false;
2720     }
2721     self->expression.outr = (ir_value*)1;
2722
2723     if (self->is_continue)
2724         target = func->continueblocks[vec_size(func->continueblocks)-1-self->levels];
2725     else
2726         target = func->breakblocks[vec_size(func->breakblocks)-1-self->levels];
2727
2728     if (!target) {
2729         compile_error(ast_ctx(self), "%s is lacking a target block", (self->is_continue ? "continue" : "break"));
2730         return false;
2731     }
2732
2733     if (!ir_block_create_jump(func->curblock, ast_ctx(self), target))
2734         return false;
2735     return true;
2736 }
2737
2738 bool ast_switch_codegen(ast_switch *self, ast_function *func, bool lvalue, ir_value **out)
2739 {
2740     ast_expression_codegen *cgen;
2741
2742     ast_switch_case *def_case     = NULL;
2743     ir_block        *def_bfall    = NULL;
2744     ir_block        *def_bfall_to = NULL;
2745     bool set_def_bfall_to = false;
2746
2747     ir_value *dummy     = NULL;
2748     ir_value *irop      = NULL;
2749     ir_block *bout      = NULL;
2750     ir_block *bfall     = NULL;
2751     size_t    bout_id;
2752     size_t    c;
2753
2754     char      typestr[1024];
2755     uint16_t  cmpinstr;
2756
2757     if (lvalue) {
2758         compile_error(ast_ctx(self), "switch expression is not an l-value");
2759         return false;
2760     }
2761
2762     if (self->expression.outr) {
2763         compile_error(ast_ctx(self), "internal error: ast_switch cannot be reused!");
2764         return false;
2765     }
2766     self->expression.outr = (ir_value*)1;
2767
2768     (void)lvalue;
2769     (void)out;
2770
2771     cgen = self->operand->expression.codegen;
2772     if (!(*cgen)((ast_expression*)(self->operand), func, false, &irop))
2773         return false;
2774
2775     if (!vec_size(self->cases))
2776         return true;
2777
2778     cmpinstr = type_eq_instr[irop->vtype];
2779     if (cmpinstr >= AINSTR_END) {
2780         ast_type_to_string(self->operand, typestr, sizeof(typestr));
2781         compile_error(ast_ctx(self), "invalid type to perform a switch on: %s", typestr);
2782         return false;
2783     }
2784
2785     bout_id = vec_size(func->ir_func->blocks);
2786     bout = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "after_switch"));
2787     if (!bout)
2788         return false;
2789
2790     /* setup the break block */
2791     vec_push(func->breakblocks, bout);
2792
2793     /* Now create all cases */
2794     for (c = 0; c < vec_size(self->cases); ++c) {
2795         ir_value *cond, *val;
2796         ir_block *bcase, *bnot;
2797         size_t bnot_id;
2798
2799         ast_switch_case *swcase = &self->cases[c];
2800
2801         if (swcase->value) {
2802             /* A regular case */
2803             /* generate the condition operand */
2804             cgen = swcase->value->expression.codegen;
2805             if (!(*cgen)((ast_expression*)(swcase->value), func, false, &val))
2806                 return false;
2807             /* generate the condition */
2808             cond = ir_block_create_binop(func->curblock, ast_ctx(self), ast_function_label(func, "switch_eq"), cmpinstr, irop, val);
2809             if (!cond)
2810                 return false;
2811
2812             bcase = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "case"));
2813             bnot_id = vec_size(func->ir_func->blocks);
2814             bnot = ir_function_create_block(ast_ctx(self), func->ir_func, ast_function_label(func, "not_case"));
2815             if (!bcase || !bnot)
2816                 return false;
2817             if (set_def_bfall_to) {
2818                 set_def_bfall_to = false;
2819                 def_bfall_to = bcase;
2820             }
2821             if (!ir_block_create_if(func->curblock, ast_ctx(self), cond, bcase, bnot))
2822                 return false;
2823
2824             /* Make the previous case-end fall through */
2825             if (bfall && !bfall->final) {
2826                 if (!ir_block_create_jump(bfall, ast_ctx(self), bcase))
2827                     return false;
2828             }
2829
2830             /* enter the case */
2831             func->curblock = bcase;
2832             cgen = swcase->code->expression.codegen;
2833             if (!(*cgen)((ast_expression*)swcase->code, func, false, &dummy))
2834                 return false;
2835
2836             /* remember this block to fall through from */
2837             bfall = func->curblock;
2838
2839             /* enter the else and move it down */
2840             func->curblock = bnot;
2841             vec_remove(func->ir_func->blocks, bnot_id, 1);
2842             vec_push(func->ir_func->blocks, bnot);
2843         } else {
2844             /* The default case */
2845             /* Remember where to fall through from: */
2846             def_bfall = bfall;
2847             bfall     = NULL;
2848             /* remember which case it was */
2849             def_case  = swcase;
2850             /* And the next case will be remembered */
2851             set_def_bfall_to = true;
2852         }
2853     }
2854
2855     /* Jump from the last bnot to bout */
2856     if (bfall && !bfall->final && !ir_block_create_jump(bfall, ast_ctx(self), bout)) {
2857         /*
2858         astwarning(ast_ctx(bfall), WARN_???, "missing break after last case");
2859         */
2860         return false;
2861     }
2862
2863     /* If there was a default case, put it down here */
2864     if (def_case) {
2865         ir_block *bcase;
2866
2867         /* No need to create an extra block */
2868         bcase = func->curblock;
2869
2870         /* Insert the fallthrough jump */
2871         if (def_bfall && !def_bfall->final) {
2872             if (!ir_block_create_jump(def_bfall, ast_ctx(self), bcase))
2873                 return false;
2874         }
2875
2876         /* Now generate the default code */
2877         cgen = def_case->code->expression.codegen;
2878         if (!(*cgen)((ast_expression*)def_case->code, func, false, &dummy))
2879             return false;
2880
2881         /* see if we need to fall through */
2882         if (def_bfall_to && !func->curblock->final)
2883         {
2884             if (!ir_block_create_jump(func->curblock, ast_ctx(self), def_bfall_to))
2885                 return false;
2886         }
2887     }
2888
2889     /* Jump from the last bnot to bout */
2890     if (!func->curblock->final && !ir_block_create_jump(func->curblock, ast_ctx(self), bout))
2891         return false;
2892     /* enter the outgoing block */
2893     func->curblock = bout;
2894
2895     /* restore the break block */
2896     vec_pop(func->breakblocks);
2897
2898     /* Move 'bout' to the end, it's nicer */
2899     vec_remove(func->ir_func->blocks, bout_id, 1);
2900     vec_push(func->ir_func->blocks, bout);
2901
2902     return true;
2903 }
2904
2905 bool ast_label_codegen(ast_label *self, ast_function *func, bool lvalue, ir_value **out)
2906 {
2907     size_t i;
2908     ir_value *dummy;
2909
2910     if (self->undefined) {
2911         compile_error(ast_ctx(self), "internal error: ast_label never defined");
2912         return false;
2913     }
2914
2915     *out = NULL;
2916     if (lvalue) {
2917         compile_error(ast_ctx(self), "internal error: ast_label cannot be an lvalue");
2918         return false;
2919     }
2920
2921     /* simply create a new block and jump to it */
2922     self->irblock = ir_function_create_block(ast_ctx(self), func->ir_func, self->name);
2923     if (!self->irblock) {
2924         compile_error(ast_ctx(self), "failed to allocate label block `%s`", self->name);
2925         return false;
2926     }
2927     if (!func->curblock->final) {
2928         if (!ir_block_create_jump(func->curblock, ast_ctx(self), self->irblock))
2929             return false;
2930     }
2931
2932     /* enter the new block */
2933     func->curblock = self->irblock;
2934
2935     /* Generate all the leftover gotos */
2936     for (i = 0; i < vec_size(self->gotos); ++i) {
2937         if (!ast_goto_codegen(self->gotos[i], func, false, &dummy))
2938             return false;
2939     }
2940
2941     return true;
2942 }
2943
2944 bool ast_goto_codegen(ast_goto *self, ast_function *func, bool lvalue, ir_value **out)
2945 {
2946     *out = NULL;
2947     if (lvalue) {
2948         compile_error(ast_ctx(self), "internal error: ast_goto cannot be an lvalue");
2949         return false;
2950     }
2951
2952     if (self->target->irblock) {
2953         if (self->irblock_from) {
2954             /* we already tried once, this is the callback */
2955             self->irblock_from->final = false;
2956             if (!ir_block_create_goto(self->irblock_from, ast_ctx(self), self->target->irblock)) {
2957                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2958                 return false;
2959             }
2960         }
2961         else
2962         {
2963             if (!ir_block_create_goto(func->curblock, ast_ctx(self), self->target->irblock)) {
2964                 compile_error(ast_ctx(self), "failed to generate goto to `%s`", self->name);
2965                 return false;
2966             }
2967         }
2968     }
2969     else
2970     {
2971         /* the target has not yet been created...
2972          * close this block in a sneaky way:
2973          */
2974         func->curblock->final = true;
2975         self->irblock_from = func->curblock;
2976         ast_label_register_goto(self->target, self);
2977     }
2978
2979     return true;
2980 }
2981
2982 bool ast_call_codegen(ast_call *self, ast_function *func, bool lvalue, ir_value **out)
2983 {
2984     ast_expression_codegen *cgen;
2985     ir_value              **params;
2986     ir_instr               *callinstr;
2987     size_t i;
2988
2989     ir_value *funval = NULL;
2990
2991     /* return values are never lvalues */
2992     if (lvalue) {
2993         compile_error(ast_ctx(self), "not an l-value (function call)");
2994         return false;
2995     }
2996
2997     if (self->expression.outr) {
2998         *out = self->expression.outr;
2999         return true;
3000     }
3001
3002     cgen = self->func->expression.codegen;
3003     if (!(*cgen)((ast_expression*)(self->func), func, false, &funval))
3004         return false;
3005     if (!funval)
3006         return false;
3007
3008     params = NULL;
3009
3010     /* parameters */
3011     for (i = 0; i < vec_size(self->params); ++i)
3012     {
3013         ir_value *param;
3014         ast_expression *expr = self->params[i];
3015
3016         cgen = expr->expression.codegen;
3017         if (!(*cgen)(expr, func, false, &param))
3018             goto error;
3019         if (!param)
3020             goto error;
3021         vec_push(params, param);
3022     }
3023
3024     callinstr = ir_block_create_call(func->curblock, ast_ctx(self),
3025                                      ast_function_label(func, "call"),
3026                                      funval, !!(self->func->expression.flags & AST_FLAG_NORETURN));
3027     if (!callinstr)
3028         goto error;
3029
3030     for (i = 0; i < vec_size(params); ++i) {
3031         ir_call_param(callinstr, params[i]);
3032     }
3033
3034     *out = ir_call_value(callinstr);
3035     self->expression.outr = *out;
3036
3037     codegen_output_type(self, *out);
3038
3039     vec_free(params);
3040     return true;
3041 error:
3042     vec_free(params);
3043     return false;
3044 }