2 Copyright (C) 1996-1997 Id Software, Inc.
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 See the GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 // mathlib.c -- math primitives
25 vec3_t vec3_origin = {0,0,0};
28 /*-----------------------------------------------------------------*/
30 float m_bytenormals[NUMVERTEXNORMALS][3] =
32 {-0.525731, 0.000000, 0.850651}, {-0.442863, 0.238856, 0.864188},
33 {-0.295242, 0.000000, 0.955423}, {-0.309017, 0.500000, 0.809017},
34 {-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000},
35 {0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718},
36 {0.147621, 0.716567, 0.681718}, {0.000000, 0.525731, 0.850651},
37 {0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651},
38 {0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188},
39 {0.162460, 0.262866, 0.951056}, {-0.681718, 0.147621, 0.716567},
40 {-0.809017, 0.309017, 0.500000}, {-0.587785, 0.425325, 0.688191},
41 {-0.850651, 0.525731, 0.000000}, {-0.864188, 0.442863, 0.238856},
42 {-0.716567, 0.681718, 0.147621}, {-0.688191, 0.587785, 0.425325},
43 {-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863},
44 {-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621},
45 {-0.500000, 0.809017, -0.309017}, {-0.525731, 0.850651, 0.000000},
46 {0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863},
47 {0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460},
48 {0.000000, 1.000000, 0.000000}, {0.000000, 0.955423, 0.295242},
49 {-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863},
50 {0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017},
51 {0.238856, 0.864188, -0.442863}, {0.262866, 0.951056, -0.162460},
52 {0.500000, 0.809017, -0.309017}, {0.850651, 0.525731, 0.000000},
53 {0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621},
54 {0.525731, 0.850651, 0.000000}, {0.425325, 0.688191, 0.587785},
55 {0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325},
56 {0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567},
57 {0.587785, 0.425325, 0.688191}, {0.955423, 0.295242, 0.000000},
58 {1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866},
59 {0.850651, -0.525731, 0.000000}, {0.955423, -0.295242, 0.000000},
60 {0.864188, -0.442863, 0.238856}, {0.951056, -0.162460, 0.262866},
61 {0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567},
62 {0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856},
63 {0.809017, 0.309017, -0.500000}, {0.951056, 0.162460, -0.262866},
64 {0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567},
65 {0.681718, -0.147621, -0.716567}, {0.850651, 0.000000, -0.525731},
66 {0.809017, -0.309017, -0.500000}, {0.864188, -0.442863, -0.238856},
67 {0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718},
68 {0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785},
69 {0.442863, 0.238856, -0.864188}, {0.587785, 0.425325, -0.688191},
70 {0.688191, 0.587785, -0.425325}, {-0.147621, 0.716567, -0.681718},
71 {-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651},
72 {-0.525731, 0.000000, -0.850651}, {-0.442863, 0.238856, -0.864188},
73 {-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056},
74 {0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423},
75 {0.162460, 0.262866, -0.951056}, {-0.442863, -0.238856, -0.864188},
76 {-0.309017, -0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056},
77 {0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718},
78 {0.147621, -0.716567, -0.681718}, {0.000000, -0.525731, -0.850651},
79 {0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188},
80 {0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863},
81 {0.500000, -0.809017, -0.309017}, {0.425325, -0.688191, -0.587785},
82 {0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325},
83 {0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242},
84 {0.000000, -1.000000, 0.000000}, {0.262866, -0.951056, -0.162460},
85 {0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242},
86 {0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460},
87 {0.500000, -0.809017, 0.309017}, {0.716567, -0.681718, 0.147621},
88 {0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863},
89 {-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460},
90 {-0.850651, -0.525731, 0.000000}, {-0.716567, -0.681718, -0.147621},
91 {-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000},
92 {-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863},
93 {-0.262866, -0.951056, 0.162460}, {-0.864188, -0.442863, 0.238856},
94 {-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325},
95 {-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188},
96 {-0.587785, -0.425325, 0.688191}, {-0.309017, -0.500000, 0.809017},
97 {-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785},
98 {-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188},
99 {0.162460, -0.262866, 0.951056}, {0.309017, -0.500000, 0.809017},
100 {0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651},
101 {0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191},
102 {0.688191, -0.587785, 0.425325}, {-0.955423, 0.295242, 0.000000},
103 {-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000},
104 {-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000},
105 {-0.951056, -0.162460, 0.262866}, {-0.864188, 0.442863, -0.238856},
106 {-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000},
107 {-0.864188, -0.442863, -0.238856}, {-0.951056, -0.162460, -0.262866},
108 {-0.809017, -0.309017, -0.500000}, {-0.681718, 0.147621, -0.716567},
109 {-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731},
110 {-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191},
111 {-0.425325, 0.688191, -0.587785}, {-0.425325, -0.688191, -0.587785},
112 {-0.587785, -0.425325, -0.688191}, {-0.688191, -0.587785, -0.425325},
116 qbyte NormalToByte(const vec3_t n)
119 float bestdistance, distance;
122 bestdistance = DotProduct (n, m_bytenormals[0]);
123 for (i = 1;i < NUMVERTEXNORMALS;i++)
125 distance = DotProduct (n, m_bytenormals[i]);
126 if (distance > bestdistance)
128 bestdistance = distance;
135 // note: uses byte partly to force unsigned for the validity check
136 void ByteToNormal(qbyte num, vec3_t n)
138 if (num < NUMVERTEXNORMALS)
139 VectorCopy(m_bytenormals[num], n);
141 VectorClear(n); // FIXME: complain?
144 float Q_RSqrt(float number)
151 *((int *)&y) = 0x5f3759df - ((* (int *) &number) >> 1);
152 return y * (1.5f - (number * 0.5f * y * y));
155 // assumes "src" is normalized
156 void PerpendicularVector( vec3_t dst, const vec3_t src )
158 // LordHavoc: optimized to death and beyond
172 minelem = fabs(src[0]);
173 if (fabs(src[1]) < minelem)
176 minelem = fabs(src[1]);
178 if (fabs(src[2]) < minelem)
182 dst[0] -= src[pos] * src[0];
183 dst[1] -= src[pos] * src[1];
184 dst[2] -= src[pos] * src[2];
186 // normalize the result
187 VectorNormalize(dst);
208 // LordHavoc: like AngleVectors, but taking a forward vector instead of angles, useful!
209 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
213 right[0] = forward[2];
214 right[1] = -forward[0];
215 right[2] = forward[1];
217 d = DotProduct(forward, right);
218 VectorMA(right, -d, forward, right);
219 VectorNormalizeFast(right);
220 CrossProduct(right, forward, up);
223 void VectorVectorsDouble(const double *forward, double *right, double *up)
227 right[0] = forward[2];
228 right[1] = -forward[0];
229 right[2] = forward[1];
231 d = DotProduct(forward, right);
232 VectorMA(right, -d, forward, right);
233 VectorNormalize(right);
234 CrossProduct(right, forward, up);
237 void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
243 angle = DEG2RAD(degrees);
247 VectorVectors(vf, vr, vu);
249 t0 = vr[0] * c + vu[0] * -s;
250 t1 = vr[0] * s + vu[0] * c;
251 dst[0] = (t0 * vr[0] + t1 * vu[0] + vf[0] * vf[0]) * point[0]
252 + (t0 * vr[1] + t1 * vu[1] + vf[0] * vf[1]) * point[1]
253 + (t0 * vr[2] + t1 * vu[2] + vf[0] * vf[2]) * point[2];
255 t0 = vr[1] * c + vu[1] * -s;
256 t1 = vr[1] * s + vu[1] * c;
257 dst[1] = (t0 * vr[0] + t1 * vu[0] + vf[1] * vf[0]) * point[0]
258 + (t0 * vr[1] + t1 * vu[1] + vf[1] * vf[1]) * point[1]
259 + (t0 * vr[2] + t1 * vu[2] + vf[1] * vf[2]) * point[2];
261 t0 = vr[2] * c + vu[2] * -s;
262 t1 = vr[2] * s + vu[2] * c;
263 dst[2] = (t0 * vr[0] + t1 * vu[0] + vf[2] * vf[0]) * point[0]
264 + (t0 * vr[1] + t1 * vu[1] + vf[2] * vf[1]) * point[1]
265 + (t0 * vr[2] + t1 * vu[2] + vf[2] * vf[2]) * point[2];
268 /*-----------------------------------------------------------------*/
271 void PlaneClassify(mplane_t *p)
273 // for optimized plane comparisons
274 if (p->normal[0] == 1)
276 else if (p->normal[1] == 1)
278 else if (p->normal[2] == 1)
282 // for BoxOnPlaneSide
284 if (p->normal[0] < 0) // 1
286 if (p->normal[1] < 0) // 2
288 if (p->normal[2] < 0) // 4
292 int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, const mplane_t *p)
295 return ((emaxs[p->type] >= p->dist) | ((emins[p->type] < p->dist) << 1));
300 return (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) < p->dist) << 1));
302 return (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) < p->dist) << 1));
304 return (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) < p->dist) << 1));
306 return (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) < p->dist) << 1));
308 return (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));
310 return (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));
312 return (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));
314 return (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));
318 void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
320 double angle, sr, sp, sy, cr, cp, cy;
322 angle = angles[YAW] * (M_PI*2 / 360);
325 angle = angles[PITCH] * (M_PI*2 / 360);
336 angle = angles[ROLL] * (M_PI*2 / 360);
341 right[0] = -1*(sr*sp*cy+cr*-sy);
342 right[1] = -1*(sr*sp*sy+cr*cy);
343 right[2] = -1*(sr*cp);
347 up[0] = (cr*sp*cy+-sr*-sy);
348 up[1] = (cr*sp*sy+-sr*cy);
354 void AngleVectorsFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up)
356 double angle, sr, sp, sy, cr, cp, cy;
358 angle = angles[YAW] * (M_PI*2 / 360);
361 angle = angles[PITCH] * (M_PI*2 / 360);
372 angle = angles[ROLL] * (M_PI*2 / 360);
377 left[0] = sr*sp*cy+cr*-sy;
378 left[1] = sr*sp*sy+cr*cy;
383 up[0] = cr*sp*cy+-sr*-sy;
384 up[1] = cr*sp*sy+-sr*cy;
391 void AngleMatrix (const vec3_t angles, const vec3_t translate, vec_t matrix[][4])
393 double angle, sr, sp, sy, cr, cp, cy;
395 angle = angles[YAW] * (M_PI*2 / 360);
398 angle = angles[PITCH] * (M_PI*2 / 360);
401 angle = angles[ROLL] * (M_PI*2 / 360);
404 matrix[0][0] = cp*cy;
405 matrix[0][1] = sr*sp*cy+cr*-sy;
406 matrix[0][2] = cr*sp*cy+-sr*-sy;
407 matrix[0][3] = translate[0];
408 matrix[1][0] = cp*sy;
409 matrix[1][1] = sr*sp*sy+cr*cy;
410 matrix[1][2] = cr*sp*sy+-sr*cy;
411 matrix[1][3] = translate[1];
413 matrix[2][1] = sr*cp;
414 matrix[2][2] = cr*cp;
415 matrix[2][3] = translate[2];
420 // LordHavoc: renamed this to Length, and made the normal one a #define
421 float VectorNormalizeLength (vec3_t v)
423 float length, ilength;
425 length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
426 length = sqrt (length);
446 void R_ConcatRotations (const float in1[3*3], const float in2[3*3], float out[3*3])
448 out[0*3+0] = in1[0*3+0] * in2[0*3+0] + in1[0*3+1] * in2[1*3+0] + in1[0*3+2] * in2[2*3+0];
449 out[0*3+1] = in1[0*3+0] * in2[0*3+1] + in1[0*3+1] * in2[1*3+1] + in1[0*3+2] * in2[2*3+1];
450 out[0*3+2] = in1[0*3+0] * in2[0*3+2] + in1[0*3+1] * in2[1*3+2] + in1[0*3+2] * in2[2*3+2];
451 out[1*3+0] = in1[1*3+0] * in2[0*3+0] + in1[1*3+1] * in2[1*3+0] + in1[1*3+2] * in2[2*3+0];
452 out[1*3+1] = in1[1*3+0] * in2[0*3+1] + in1[1*3+1] * in2[1*3+1] + in1[1*3+2] * in2[2*3+1];
453 out[1*3+2] = in1[1*3+0] * in2[0*3+2] + in1[1*3+1] * in2[1*3+2] + in1[1*3+2] * in2[2*3+2];
454 out[2*3+0] = in1[2*3+0] * in2[0*3+0] + in1[2*3+1] * in2[1*3+0] + in1[2*3+2] * in2[2*3+0];
455 out[2*3+1] = in1[2*3+0] * in2[0*3+1] + in1[2*3+1] * in2[1*3+1] + in1[2*3+2] * in2[2*3+1];
456 out[2*3+2] = in1[2*3+0] * in2[0*3+2] + in1[2*3+1] * in2[1*3+2] + in1[2*3+2] * in2[2*3+2];
465 void R_ConcatTransforms (const float in1[3*4], const float in2[3*4], float out[3*4])
467 out[0*4+0] = in1[0*4+0] * in2[0*4+0] + in1[0*4+1] * in2[1*4+0] + in1[0*4+2] * in2[2*4+0];
468 out[0*4+1] = in1[0*4+0] * in2[0*4+1] + in1[0*4+1] * in2[1*4+1] + in1[0*4+2] * in2[2*4+1];
469 out[0*4+2] = in1[0*4+0] * in2[0*4+2] + in1[0*4+1] * in2[1*4+2] + in1[0*4+2] * in2[2*4+2];
470 out[0*4+3] = in1[0*4+0] * in2[0*4+3] + in1[0*4+1] * in2[1*4+3] + in1[0*4+2] * in2[2*4+3] + in1[0*4+3];
471 out[1*4+0] = in1[1*4+0] * in2[0*4+0] + in1[1*4+1] * in2[1*4+0] + in1[1*4+2] * in2[2*4+0];
472 out[1*4+1] = in1[1*4+0] * in2[0*4+1] + in1[1*4+1] * in2[1*4+1] + in1[1*4+2] * in2[2*4+1];
473 out[1*4+2] = in1[1*4+0] * in2[0*4+2] + in1[1*4+1] * in2[1*4+2] + in1[1*4+2] * in2[2*4+2];
474 out[1*4+3] = in1[1*4+0] * in2[0*4+3] + in1[1*4+1] * in2[1*4+3] + in1[1*4+2] * in2[2*4+3] + in1[1*4+3];
475 out[2*4+0] = in1[2*4+0] * in2[0*4+0] + in1[2*4+1] * in2[1*4+0] + in1[2*4+2] * in2[2*4+0];
476 out[2*4+1] = in1[2*4+0] * in2[0*4+1] + in1[2*4+1] * in2[1*4+1] + in1[2*4+2] * in2[2*4+1];
477 out[2*4+2] = in1[2*4+0] * in2[0*4+2] + in1[2*4+1] * in2[1*4+2] + in1[2*4+2] * in2[2*4+2];
478 out[2*4+3] = in1[2*4+0] * in2[0*4+3] + in1[2*4+1] * in2[1*4+3] + in1[2*4+2] * in2[2*4+3] + in1[2*4+3];
481 float RadiusFromBounds (const vec3_t mins, const vec3_t maxs)
484 VectorMultiply(mins, mins, m1);
485 VectorMultiply(maxs, maxs, m2);
486 return sqrt(max(m1[0], m2[0]) + max(m1[1], m2[1]) + max(m1[2], m2[2]));
489 float RadiusFromBoundsAndOrigin (const vec3_t mins, const vec3_t maxs, const vec3_t origin)
492 VectorSubtract(mins, origin, m1);VectorMultiply(m1, m1, m1);
493 VectorSubtract(maxs, origin, m2);VectorMultiply(m2, m2, m2);
494 return sqrt(max(m1[0], m2[0]) + max(m1[1], m2[1]) + max(m1[2], m2[2]));
497 void Mathlib_Init(void)
501 // LordHavoc: setup 1.0f / N table for quick recipricols of integers
503 for (a = 1;a < 4096;a++)
504 ixtable[a] = 1.0f / a;
507 #include "matrixlib.h"
509 void Matrix4x4_Print (const matrix4x4_t *in)
511 Con_Printf("%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n"
512 , in->m[0][0], in->m[0][1], in->m[0][2], in->m[0][3]
513 , in->m[1][0], in->m[1][1], in->m[1][2], in->m[1][3]
514 , in->m[2][0], in->m[2][1], in->m[2][2], in->m[2][3]
515 , in->m[3][0], in->m[3][1], in->m[3][2], in->m[3][3]);
518 int Math_atov(const char *s, vec3_t out)
524 for (i = 0;i < 3;i++)
526 while (*s == ' ' || *s == '\t')
529 if (out[i] == 0 && *s != '-' && *s != '+' && (*s < '0' || *s > '9'))
530 break; // not a number
531 while (*s && *s != ' ' && *s !='\t' && *s != '\'')