X-Git-Url: http://de.git.xonotic.org/?a=blobdiff_plain;ds=sidebyside;f=mathlib.h;h=3d5678525c5ef3c912fa67d1541835b302feacb3;hb=1105f0122d5f9081a406eb4586d7d03d6e321567;hp=bd20e910ef797bb530a7856e326460256bf39e63;hpb=389eca27b114c815564a9335af4d2d845ed97a9b;p=xonotic%2Fdarkplaces.git diff --git a/mathlib.h b/mathlib.h index bd20e910..3d567852 100644 --- a/mathlib.h +++ b/mathlib.h @@ -19,6 +19,11 @@ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.h +#ifndef MATHLIB_H +#define MATHLIB_H + +#include "qtypes.h" + #ifndef M_PI #define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif @@ -37,15 +42,17 @@ extern vec3_t vec3_origin; #define nanmask (255<<23) #define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask) -#define bound(min,num,max) (num >= min ? (num < max ? num : max) : min) +#define bound(min,num,max) ((num) >= (min) ? ((num) < (max) ? (num) : (max)) : (min)) #ifndef min -#define min(A,B) (A < B ? A : B) -#define max(A,B) (A > B ? A : B) +#define min(A,B) ((A) < (B) ? (A) : (B)) +#define max(A,B) ((A) > (B) ? (A) : (B)) #endif #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) +#define invpow(base,number) (log(number) / log(base)) + #define DEG2RAD(a) ((a) * ((float) M_PI / 180.0f)) #define RAD2DEG(a) ((a) * (180.0f / (float) M_PI)) #define ANGLEMOD(a) (((int) ((a) * (65536.0f / 360.0f)) & 65535) * (360.0f / 65536.0f)) @@ -57,16 +64,21 @@ extern vec3_t vec3_origin; #define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2]) #define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2]) #define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) +#define VectorMultiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2]) #define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) -#define VectorNormalize(v) {float ilength = 1.0f / (float) sqrt(DotProduct(v,v));v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} -#define VectorNormalize2(v,dest) {float ilength = 1.0f / (float) sqrt(DotProduct(v,v));dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength;} -#define VectorNormalizeDouble(v) {double ilength = 1.0 / (float) sqrt(DotProduct(v,v));v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} +#define VectorNormalize(v) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} +#define VectorNormalize2(v,dest) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength;} +#define VectorNormalizeDouble(v) {double ilength = sqrt(DotProduct(v,v));if (ilength) ilength = 1.0 / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} #define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2])) #define VectorDistance(a, b) (sqrt(VectorDistance2(a,b))) #define VectorLength(a) sqrt(DotProduct(a, a)) #define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale)) #define VectorCompare(a,b) (((a)[0]==(b)[0])&&((a)[1]==(b)[1])&&((a)[2]==(b)[2])) #define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2]) +#define VectorM(scale1, b1, c) ((c)[0] = (scale1) * (b1)[0],(c)[1] = (scale1) * (b1)[1],(c)[2] = (scale1) * (b1)[2]) +#define VectorMAM(scale1, b1, scale2, b2, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2]) +#define VectorMAMAM(scale1, b1, scale2, b2, scale3, b3, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2]) +#define VectorMAMAMAM(scale1, b1, scale2, b2, scale3, b3, scale4, b4, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0] + (scale4) * (b4)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1] + (scale4) * (b4)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2] + (scale4) * (b4)[2]) #define VectorNormalizeFast(_v)\ {\ float _y, _number;\ @@ -78,33 +90,69 @@ extern vec3_t vec3_origin; VectorScale(_v, _y, _v);\ }\ } -#define VectorRandom(v) {do{(v)[0] = lhrandom(-1, 1);(v)[1] = lhrandom(-1, 1);(v)[2] = lhrandom(-1, 1);}while(DotProduct(v, v) > 1);} +#define VectorRandom(v) do{(v)[0] = lhrandom(-1, 1);(v)[1] = lhrandom(-1, 1);(v)[2] = lhrandom(-1, 1);}while(DotProduct(v, v) > 1) +#define VectorBlend(b1, b2, blend, c) do{float iblend = 1 - (blend);VectorMAM(iblend, b1, blend, b2, c);}while(0) +#define BoxesOverlap(a,b,c,d) ((a)[0] <= (d)[0] && (b)[0] >= (c)[0] && (a)[1] <= (d)[1] && (b)[1] >= (c)[1] && (a)[2] <= (d)[2] && (b)[2] >= (c)[2]) + +// fast PointInfrontOfTriangle +// subtracts v1 from v0 and v2, combined into a crossproduct, combined with a +// dotproduct of the light location relative to the first point of the +// triangle (any point works, since any triangle is obviously flat), and +// finally a comparison to determine if the light is infront of the triangle +// (the goal of this statement) we do not need to normalize the surface +// normal because both sides of the comparison use it, therefore they are +// both multiplied the same amount... furthermore the subtract can be done +// on the vectors, saving a little bit of math in the dotproducts +#define PointInfrontOfTriangle(p,a,b,c) (((p)[0] - (a)[0]) * (((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1])) + ((p)[1] - (a)[1]) * (((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2])) + ((p)[2] - (a)[2]) * (((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0])) > 0) +#if 0 +// readable version, kept only for explanatory reasons +int PointInfrontOfTriangle(const float *p, const float *a, const float *b, const float *c) +{ + float dir0[3], dir1[3], normal[3]; + + // calculate two mostly perpendicular edge directions + VectorSubtract(a, b, dir0); + VectorSubtract(c, b, dir1); + + // we have two edge directions, we can calculate a third vector from + // them, which is the direction of the surface normal (it's magnitude + // is not 1 however) + CrossProduct(dir0, dir1, normal); + + // compare distance of light along normal, with distance of any point + // of the triangle along the same normal (the triangle is planar, + // I.E. flat, so all points give the same answer) + return DotProduct(p, normal) > DotProduct(a, normal); +} +#endif +/* // LordHavoc: quaternion math, untested, don't know if these are correct, // need to add conversion to/from matrices +// LordHavoc: later note: the matrix faq is useful: http://skal.planet-d.net/demo/matrixfaq.htm +// LordHavoc: these are probably very wrong and I'm not sure I care, not used by anything // returns length of quaternion #define qlen(a) ((float) sqrt((a)[0]*(a)[0]+(a)[1]*(a)[1]+(a)[2]*(a)[2]+(a)[3]*(a)[3])) // returns squared length of quaternion #define qlen2(a) ((a)[0]*(a)[0]+(a)[1]*(a)[1]+(a)[2]*(a)[2]+(a)[3]*(a)[3]) // makes a quaternion from x, y, z, and a rotation angle (in degrees) -// FIXME: this is almost definitely broken, need a rewrite #define QuatMake(x,y,z,r,c)\ {\ -r2 = (r) * M_PI / 360;\ if (r == 0)\ {\ -(c)[0]=(float) ((x)*sin(r2));\ -(c)[1]=(float) ((y)*sin(r2));\ -(c)[2]=(float) ((z)*sin(r2));\ -(c)[3]=(float) 1;\ +(c)[0]=(float) ((x) * (1.0f / 0.0f));\ +(c)[1]=(float) ((y) * (1.0f / 0.0f));\ +(c)[2]=(float) ((z) * (1.0f / 0.0f));\ +(c)[3]=(float) 1.0f;\ }\ else\ {\ float r2 = (r) * 0.5 * (M_PI / 180);\ -(c)[0]=(float) ((x)*sin(r2));\ -(c)[1]=(float) ((y)*sin(r2));\ -(c)[2]=(float) ((z)*sin(r2));\ +float r2is = 1.0f / sin(r2);\ +(c)[0]=(float) ((x)/r2is);\ +(c)[1]=(float) ((y)/r2is);\ +(c)[2]=(float) ((z)/r2is);\ (c)[3]=(float) (cos(r2));\ }\ } @@ -121,6 +169,7 @@ float r2 = (r) * 0.5 * (M_PI / 180);\ //#define QuatMultiplyAdd(a,b,d,c) {(c)[0]=(a)[0]*(b)[0]+d[0];(c)[1]=(a)[1]*(b)[1]+d[1];(c)[2]=(a)[2]*(b)[2]+d[2];(c)[3]=(a)[3]*(b)[3]+d[3];} #define qdist(a,b) ((float) sqrt(((b)[0]-(a)[0])*((b)[0]-(a)[0])+((b)[1]-(a)[1])*((b)[1]-(a)[1])+((b)[2]-(a)[2])*((b)[2]-(a)[2])+((b)[3]-(a)[3])*((b)[3]-(a)[3]))) #define qdist2(a,b) (((b)[0]-(a)[0])*((b)[0]-(a)[0])+((b)[1]-(a)[1])*((b)[1]-(a)[1])+((b)[2]-(a)[2])*((b)[2]-(a)[2])+((b)[3]-(a)[3])*((b)[3]-(a)[3])) +*/ #define VectorCopy4(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];(b)[2]=(a)[2];(b)[3]=(a)[3];} @@ -134,8 +183,8 @@ extern float m_bytenormals[NUMVERTEXNORMALS][3]; qbyte NormalToByte(const vec3_t n); void ByteToNormal(qbyte num, vec3_t n); -void R_ConcatRotations (const float in1[3][3], const float in2[3][3], float out[3][3]); -void R_ConcatTransforms (const float in1[3][4], const float in2[3][4], float out[3][4]); +void R_ConcatRotations (const float in1[3*3], const float in2[3*3], float out[3*3]); +void R_ConcatTransforms (const float in1[3*4], const float in2[3*4], float out[3*4]); void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up); // LordHavoc: proper matrix version of AngleVectors @@ -148,27 +197,10 @@ void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up); void VectorVectorsDouble(const double *forward, double *right, double *up); void PlaneClassify(struct mplane_s *p); - -#define BOX_ON_PLANE_SIDE(emins, emaxs, p) \ - (((p)->type < 3)? \ - ( \ - ((p)->dist <= (emins)[(p)->type])? \ - 1 \ - : \ - ( \ - ((p)->dist >= (emaxs)[(p)->type])?\ - 2 \ - : \ - 3 \ - ) \ - ) \ - : \ - (p)->BoxOnPlaneSideFunc( (emins), (emaxs), (p))) +int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p); #define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) #define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) -//#define PlaneDist(point,plane) (DotProduct((point), (plane)->normal)) -//#define PlaneDiff(point,plane) (DotProduct((point), (plane)->normal) - (plane)->dist) // LordHavoc: minimal plane structure typedef struct @@ -184,3 +216,13 @@ typedef struct tinydoubleplane_t; void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees); + +float RadiusFromBounds (const vec3_t mins, const vec3_t maxs); +float RadiusFromBoundsAndOrigin (const vec3_t mins, const vec3_t maxs, const vec3_t origin); + +// print a matrix to the console +struct matrix4x4_s; +void Matrix4x4_Print(const struct matrix4x4_s *in); + +#endif +