X-Git-Url: http://de.git.xonotic.org/?a=blobdiff_plain;f=libs%2Fmathlib.h;h=64f3f6e43d8db5e2019fc4410d859483fbd20f73;hb=42856811f2b174e37a761bfcb9fbeb8c6af2f558;hp=44bf01c9bca8e0efd38eaeb51a2e8dec36bab33e;hpb=f36b40ae62b9267fa5b4aa6ba0e1c6f08a237437;p=xonotic%2Fnetradiant.git diff --git a/libs/mathlib.h b/libs/mathlib.h index 44bf01c9..64f3f6e4 100644 --- a/libs/mathlib.h +++ b/libs/mathlib.h @@ -1,302 +1,480 @@ /* -Copyright (C) 1999-2007 id Software, Inc. and contributors. -For a list of contributors, see the accompanying CONTRIBUTORS file. + Copyright (C) 1999-2006 Id Software, Inc. and contributors. + For a list of contributors, see the accompanying CONTRIBUTORS file. -This file is part of GtkRadiant. + This file is part of GtkRadiant. -GtkRadiant is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + GtkRadiant is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. -GtkRadiant is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + GtkRadiant is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with GtkRadiant; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ + You should have received a copy of the GNU General Public License + along with GtkRadiant; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ #ifndef __MATHLIB__ #define __MATHLIB__ // mathlib.h #include - -#include "bytebool.h" +#include #ifdef __cplusplus + +// start declarations of functions defined in C library. extern "C" { + #endif +#include "bytebool.h" + typedef float vec_t; typedef vec_t vec3_t[3]; typedef vec_t vec5_t[5]; typedef vec_t vec4_t[4]; -#define SIDE_FRONT 0 -#define SIDE_ON 2 -#define SIDE_BACK 1 -#define SIDE_CROSS -2 +// Smallest positive value for vec_t such that 1.0 + VEC_SMALLEST_EPSILON_AROUND_ONE != 1.0. +// In the case of 32 bit floats (which is almost certainly the case), it's 0.00000011921. +// Don't forget that your epsilons should depend on the possible range of values, +// because for example adding VEC_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect. +#define VEC_SMALLEST_EPSILON_AROUND_ONE FLT_EPSILON + +#define SIDE_FRONT 0 +#define SIDE_ON 2 +#define SIDE_BACK 1 +#define SIDE_CROSS -2 // plane types are used to speed some tests // 0-2 are axial planes -#define PLANE_X 0 -#define PLANE_Y 1 -#define PLANE_Z 2 -#define PLANE_NON_AXIAL 3 +#define PLANE_X 0 +#define PLANE_Y 1 +#define PLANE_Z 2 +#define PLANE_NON_AXIAL 3 -#define Q_PI 3.14159265358979323846f +#define Q_PI 3.14159265358979323846f -extern vec3_t vec3_origin; +extern const vec3_t vec3_origin; -#define EQUAL_EPSILON 0.001 +extern const vec3_t g_vec3_axis_x; +extern const vec3_t g_vec3_axis_y; +extern const vec3_t g_vec3_axis_z; -#ifndef VEC_MAX -#define VEC_MAX 3.402823466e+38F -#endif +#define EQUAL_EPSILON 0.001 + +#define DotProduct( x,y ) ( ( x )[0] * ( y )[0] + ( x )[1] * ( y )[1] + ( x )[2] * ( y )[2] ) +#define VectorSubtract( a,b,c ) ( ( c )[0] = ( a )[0] - ( b )[0],( c )[1] = ( a )[1] - ( b )[1],( c )[2] = ( a )[2] - ( b )[2] ) +#define VectorAdd( a,b,c ) ( ( c )[0] = ( a )[0] + ( b )[0],( c )[1] = ( a )[1] + ( b )[1],( c )[2] = ( a )[2] + ( b )[2] ) +#define VectorIncrement( a,b ) ( ( b )[0] += ( a )[0],( b )[1] += ( a )[1],( b )[2] += ( a )[2] ) +#define VectorCopy( a,b ) ( ( b )[0] = ( a )[0],( b )[1] = ( a )[1],( b )[2] = ( a )[2] ) +#define VectorSet( v, a, b, c ) ( ( v )[0] = ( a ),( v )[1] = ( b ),( v )[2] = ( c ) ) +#define VectorScale( a,b,c ) ( ( c )[0] = ( b ) * ( a )[0],( c )[1] = ( b ) * ( a )[1],( c )[2] = ( b ) * ( a )[2] ) +#define VectorMid( a,b,c ) ( ( c )[0] = ( ( a )[0] + ( b )[0] ) * 0.5f,( c )[1] = ( ( a )[1] + ( b )[1] ) * 0.5f,( c )[2] = ( ( a )[2] + ( b )[2] ) * 0.5f ) +#define VectorNegate( a,b ) ( ( b )[0] = -( a )[0],( b )[1] = -( a )[1],( b )[2] = -( a )[2] ) +#define CrossProduct( a,b,c ) ( ( c )[0] = ( a )[1] * ( b )[2] - ( a )[2] * ( b )[1],( c )[1] = ( a )[2] * ( b )[0] - ( a )[0] * ( b )[2],( c )[2] = ( a )[0] * ( b )[1] - ( a )[1] * ( b )[0] ) +#define VectorClear( x ) ( ( x )[0] = ( x )[1] = ( x )[2] = 0 ) -qboolean VectorCompare (vec3_t v1, vec3_t v2); +#define FLOAT_SNAP( f,snap ) ( (float)( floor( ( f ) / ( snap ) + 0.5 ) * ( snap ) ) ) +#define FLOAT_TO_INTEGER( f ) ( (float)( floor( ( f ) + 0.5 ) ) ) -#define DotProduct(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2]) -#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2]) -#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2]) -#define VectorIncrement(a,b) ((b)[0]+=(a)[0],(b)[1]+=(a)[1],(b)[2]+=(a)[2]) -#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) -#define VectorSet(v, a, b, c) ((v)[0]=(a),(v)[1]=(b),(v)[2]=(c)) -#define VectorScale(a,b,c) ((c)[0]=(b)*(a)[0],(c)[1]=(b)*(a)[1],(c)[2]=(b)*(a)[2]) -#define VectorMid(a,b,c) ((c)[0]=((a)[0]+(b)[0])*0.5f,(c)[1]=((a)[1]+(b)[1])*0.5f,(c)[2]=((a)[2]+(b)[2])*0.5f) -#define VectorNegative(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2]) -#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) -#define VectorClear(x) ((x)[0]=(x)[1]=(x)[2]=0) +#define RGBTOGRAY( x ) ( (float)( ( x )[0] ) * 0.2989f + (float)( ( x )[1] ) * 0.5870f + (float)( ( x )[2] ) * 0.1140f ) -#define Q_rint(in) ((vec_t)floor(in+0.5)) +#define Q_rint( in ) ( (vec_t)floor( in + 0.5 ) ) -vec_t VectorLength(vec3_t v); +qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ); + +qboolean VectorIsOnAxis( vec3_t v ); +qboolean VectorIsOnAxialPlane( vec3_t v ); + +vec_t VectorLength( const vec3_t v ); void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc ); -void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross); -vec_t VectorNormalize (const vec3_t in, vec3_t out); +void _CrossProduct( vec3_t v1, vec3_t v2, vec3_t cross ); +// I need this define in order to test some of the regression tests from time to time. +// This define affect the precision of VectorNormalize() function only. +#define MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX 1 +vec_t VectorNormalize( const vec3_t in, vec3_t out ); vec_t ColorNormalize( const vec3_t in, vec3_t out ); -void VectorInverse (vec3_t v); -void VectorPolar(vec3_t v, float radius, float theta, float phi); +void VectorInverse( vec3_t v ); +void VectorPolar( vec3_t v, float radius, float theta, float phi ); // default snapping, to 1 -void VectorSnap(vec3_t v); +void VectorSnap( vec3_t v ); // integer snapping -void VectorISnap(vec3_t point, int snap); +void VectorISnap( vec3_t point, int snap ); // Gef: added snap to float for sub-integer grid sizes // TTimo: we still use the int version of VectorSnap when possible // to avoid potential rounding issues // TTimo: renaming to VectorFSnap for C implementation -void VectorFSnap(vec3_t point, float snap); +void VectorFSnap( vec3_t point, float snap ); // NOTE: added these from Ritual's Q3Radiant -void ClearBounds (vec3_t mins, vec3_t maxs); -void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs); +void ClearBounds( vec3_t mins, vec3_t maxs ); +void AddPointToBounds( vec3_t v, vec3_t mins, vec3_t maxs ); + -void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up); +#define PITCH 0 // up / down +#define YAW 1 // left / right +#define ROLL 2 // fall over + +void AngleVectors( vec3_t angles, vec3_t forward, vec3_t right, vec3_t up ); void VectorToAngles( vec3_t vec, vec3_t angles ); #define ZERO_EPSILON 1.0E-6 #define RAD2DEGMULT 57.29577951308232f #define DEG2RADMULT 0.01745329251994329f -#define RAD2DEG( a ) ( (a) * RAD2DEGMULT ) -#define DEG2RAD( a ) ( (a) * DEG2RADMULT ) +#define RAD2DEG( a ) ( ( a ) * RAD2DEGMULT ) +#define DEG2RAD( a ) ( ( a ) * DEG2RADMULT ) -void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out); -void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out); +void VectorRotate( vec3_t vIn, vec3_t vRotation, vec3_t out ); +void VectorRotateOrigin( vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out ); // some function merged from tools mathlib code qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ); void NormalToLatLong( const vec3_t normal, byte bytes[2] ); -int PlaneTypeForNormal (vec3_t normal); +int PlaneTypeForNormal( vec3_t normal ); void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ); -// Spog -// code imported from geomlib /*! -\todo -FIXME test calls such as intersect tests should be named test_ -*/ + \todo + FIXME test calls such as intersect tests should be named test_ + */ typedef vec_t m3x3_t[9]; -/*!NOTE -m4x4 looks like this.. +/*!NOTE + m4x4 looks like this.. x y z -x axis ( 0 1 2) -y axis ( 4 5 6) -z axis ( 8 9 10) -translation (12 13 14) -scale ( 0 5 10) -*/ + x axis ( 0 1 2) + y axis ( 4 5 6) + z axis ( 8 9 10) + translation (12 13 14) + scale ( 0 5 10) + */ typedef vec_t m4x4_t[16]; -#define M4X4_INDEX(m,row,col) (m[(col<<2)+row]) - -typedef enum { TRANSLATE, SCALE, ROTATE } transformtype; // legacy, used only in pmesh.cpp +#define M4X4_INDEX( m,row,col ) ( m[( col << 2 ) + row] ) typedef enum { eXYZ, eYZX, eZXY, eXZY, eYXZ, eZYX } eulerOrder_t; +#define CLIP_PASS 0x00 // 000000 +#define CLIP_LT_X 0x01 // 000001 +#define CLIP_GT_X 0x02 // 000010 +#define CLIP_LT_Y 0x04 // 000100 +#define CLIP_GT_Y 0x08 // 001000 +#define CLIP_LT_Z 0x10 // 010000 +#define CLIP_GT_Z 0x20 // 100000 +#define CLIP_FAIL 0x3F // 111111 +typedef unsigned char clipmask_t; + +extern const m4x4_t g_m4x4_identity; + +#define M4X4_COPY( dst,src ) ( \ + ( dst )[0] = ( src )[0], \ + ( dst )[1] = ( src )[1], \ + ( dst )[2] = ( src )[2], \ + ( dst )[3] = ( src )[3], \ + ( dst )[4] = ( src )[4], \ + ( dst )[5] = ( src )[5], \ + ( dst )[6] = ( src )[6], \ + ( dst )[7] = ( src )[7], \ + ( dst )[8] = ( src )[8], \ + ( dst )[9] = ( src )[9], \ + ( dst )[10] = ( src )[10], \ + ( dst )[11] = ( src )[11], \ + ( dst )[12] = ( src )[12], \ + ( dst )[13] = ( src )[13], \ + ( dst )[14] = ( src )[14], \ + ( dst )[15] = ( src )[15] ) + +typedef enum +{ + eRightHanded = 0, + eLeftHanded = 1, +} +m4x4Handedness_t; + +m4x4Handedness_t m4x4_handedness( const m4x4_t matrix ); + +/*! assign other m4x4 to this m4x4 */ +void m4x4_assign( m4x4_t matrix, const m4x4_t other ); + // constructors /*! create m4x4 as identity matrix */ -void m4x4_identity(m4x4_t matrix); +void m4x4_identity( m4x4_t matrix ); /*! create m4x4 as a translation matrix, for a translation vec3 */ -void m4x4_translation_for_vec3(m4x4_t matrix, const vec3_t translation); +void m4x4_translation_for_vec3( m4x4_t matrix, const vec3_t translation ); /*! create m4x4 as a rotation matrix, for an euler angles (degrees) vec3 */ -void m4x4_rotation_for_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order); +void m4x4_rotation_for_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order ); /*! create m4x4 as a scaling matrix, for a scale vec3 */ -void m4x4_scale_for_vec3(m4x4_t matrix, const vec3_t scale); +void m4x4_scale_for_vec3( m4x4_t matrix, const vec3_t scale ); /*! create m4x4 as a rotation matrix, for a quaternion vec4 */ -void m4x4_rotation_for_quat(m4x4_t matrix, const vec4_t rotation); +void m4x4_rotation_for_quat( m4x4_t matrix, const vec4_t rotation ); /*! create m4x4 as a rotation matrix, for an axis vec3 and an angle (radians) */ -void m4x4_rotation_for_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle); +void m4x4_rotation_for_axisangle( m4x4_t matrix, const vec3_t axis, double angle ); +/*! generate a perspective matrix by specifying the view frustum */ +void m4x4_frustum( m4x4_t matrix, vec_t left, vec_t right, vec_t bottom, vec_t top, vec_t nearval, vec_t farval ); + +// a valid m4x4 to access is always first argument +/*! extract translation vec3 from matrix */ +void m4x4_get_translation_vec3( const m4x4_t matrix, vec3_t translation ); +/*! extract euler rotation angles from a rotation-only matrix */ +void m4x4_get_rotation_vec3( const m4x4_t matrix, vec3_t euler, eulerOrder_t order ); +/*! extract scale vec3 from matrix */ +void m4x4_get_scale_vec3( const m4x4_t matrix, vec3_t scale ); +/*! extract translation/euler/scale from an orthogonal matrix. NOTE: requires right-handed axis-base */ +void m4x4_get_transform_vec3( const m4x4_t matrix, vec3_t translation, vec3_t euler, eulerOrder_t order, vec3_t scale ); // a valid m4x4 to be modified is always first argument /*! translate m4x4 by a translation vec3 */ -void m4x4_translate_by_vec3(m4x4_t matrix, const vec3_t translation); +void m4x4_translate_by_vec3( m4x4_t matrix, const vec3_t translation ); /*! rotate m4x4 by a euler (degrees) vec3 */ -void m4x4_rotate_by_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order); +void m4x4_rotate_by_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order ); /*! scale m4x4 by a scaling vec3 */ -void m4x4_scale_by_vec3(m4x4_t matrix, const vec3_t scale); +void m4x4_scale_by_vec3( m4x4_t matrix, const vec3_t scale ); /*! rotate m4x4 by a quaternion vec4 */ -void m4x4_rotate_by_quat(m4x4_t matrix, const vec4_t rotation); +void m4x4_rotate_by_quat( m4x4_t matrix, const vec4_t rotation ); /*! rotate m4x4 by an axis vec3 and an angle (radians) */ -void m4x4_rotate_by_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle); -/*! transform m4x4 by translation/euler/scaling vec3 (transform = translation.euler.scale) */ -void m4x4_transform_by_vec3(m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale); -/*! rotate m4x4 around a pivot point by euler(degrees) vec3 */ -void m4x4_pivoted_rotate_by_vec3(m4x4_t matrix, const vec3_t euler, eulerOrder_t order, const vec3_t pivotpoint); +void m4x4_rotate_by_axisangle( m4x4_t matrix, const vec3_t axis, double angle ); +/*! transform m4x4 by translation/eulerZYX/scaling vec3 (transform = scale * eulerZ * eulerY * eulerX * translation) */ +void m4x4_transform_by_vec3( m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale ); +/*! rotate m4x4 around a pivot point by eulerZYX vec3 */ +void m4x4_pivoted_rotate_by_vec3( m4x4_t matrix, const vec3_t euler, eulerOrder_t order, const vec3_t pivotpoint ); /*! scale m4x4 around a pivot point by scaling vec3 */ -void m4x4_pivoted_scale_by_vec3(m4x4_t matrix, const vec3_t scale, const vec3_t pivotpoint); -/*! transform m4x4 around a pivot point by translation/euler/scaling vec3 */ -void m4x4_pivoted_transform_by_vec3(m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale, const vec3_t pivotpoint); +void m4x4_pivoted_scale_by_vec3( m4x4_t matrix, const vec3_t scale, const vec3_t pivotpoint ); +/*! transform m4x4 around a pivot point by translation/eulerZYX/scaling vec3 */ +void m4x4_pivoted_transform_by_vec3( m4x4_t matrix, const vec3_t translation, const vec3_t euler, eulerOrder_t order, const vec3_t scale, const vec3_t pivotpoint ); +/*! transform m4x4 around a pivot point by translation/rotation/scaling vec3 */ +void m4x4_pivoted_transform_by_rotation( m4x4_t matrix, const vec3_t translation, const m4x4_t rotation, const vec3_t scale, const vec3_t pivotpoint ); /*! rotate m4x4 around a pivot point by quaternion vec4 */ -void m4x4_pivoted_rotate_by_quat(m4x4_t matrix, const vec4_t rotation, const vec3_t pivotpoint); +void m4x4_pivoted_rotate_by_quat( m4x4_t matrix, const vec4_t quat, const vec3_t pivotpoint ); /*! rotate m4x4 around a pivot point by axis vec3 and angle (radians) */ -void m4x4_pivoted_rotate_by_axisangle(m4x4_t matrix, const vec3_t axis, vec_t angle, const vec3_t pivotpoint); -/*! post-multiply m4x4 by another m4x4 */ -void m4x4_multiply_by_m4x4(m4x4_t matrix, const m4x4_t other); -/*! pre-multiply m4x4 by another m4x4 */ -void m4x4_premultiply_by_m4x4(m4x4_t matrix, const m4x4_t other); +void m4x4_pivoted_rotate_by_axisangle( m4x4_t matrix, const vec3_t axis, double angle, const vec3_t pivotpoint ); + +/*! postmultiply m4x4 by another m4x4 */ +void m4x4_multiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); +/*! premultiply m4x4 by another m4x4 */ +void m4x4_premultiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); +/*! postmultiply orthogonal m4x4 by another orthogonal m4x4 */ +void m4x4_orthogonal_multiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); +/*! premultiply orthogonal m4x4 by another orthogonal m4x4 */ +void m4x4_orthogonal_premultiply_by_m4x4( m4x4_t matrix, const m4x4_t matrix_src ); /*! multiply a point (x,y,z,1) by matrix */ -void m4x4_transform_point(const m4x4_t matrix, vec3_t point); +void m4x4_transform_point( const m4x4_t matrix, vec3_t point ); /*! multiply a normal (x,y,z,0) by matrix */ -void m4x4_transform_normal(const m4x4_t matrix, vec3_t normal); +void m4x4_transform_normal( const m4x4_t matrix, vec3_t normal ); /*! multiply a vec4 (x,y,z,w) by matrix */ -void m4x4_transform_vec4(const m4x4_t matrix, vec4_t vector); +void m4x4_transform_vec4( const m4x4_t matrix, vec4_t vector ); /*! multiply a point (x,y,z,1) by matrix */ -void m4x4_transform_point(const m4x4_t matrix, vec3_t point); +void m4x4_transform_point( const m4x4_t matrix, vec3_t point ); /*! multiply a normal (x,y,z,0) by matrix */ -void m4x4_transform_normal(const m4x4_t matrix, vec3_t normal); +void m4x4_transform_normal( const m4x4_t matrix, vec3_t normal ); /*! transpose a m4x4 */ -void m4x4_transpose(m4x4_t matrix); +void m4x4_transpose( m4x4_t matrix ); /*! invert an orthogonal 4x3 subset of a 4x4 matrix */ -void m4x4_orthogonal_invert(m4x4_t matrix); +int m4x4_orthogonal_invert( m4x4_t matrix ); +/*! m4_det */ +float m4_det( m4x4_t mr ); /*! invert any m4x4 using Kramer's rule.. return 1 if matrix is singular, else return 0 */ -int m4x4_invert(m4x4_t matrix); +int m4x4_invert( m4x4_t matrix ); + +/*! clip a point (x,y,z,1) by canonical matrix */ +clipmask_t m4x4_clip_point( const m4x4_t matrix, const vec3_t point, vec4_t clipped ); +/*! device-space polygon for clipped triangle */ +unsigned int m4x4_clip_triangle( const m4x4_t matrix, const vec3_t p0, const vec3_t p1, const vec3_t p2, vec4_t clipped[9] ); +/*! device-space line for clipped line */ +unsigned int m4x4_clip_line( const m4x4_t matrix, const vec3_t p0, const vec3_t p1, vec4_t clipped[2] ); + + +//! quaternion identity +void quat_identity( vec4_t quat ); +//! quaternion from two unit vectors +void quat_for_unit_vectors( vec4_t quat, const vec3_t from, const vec3_t to ); +//! quaternion from axis and angle (radians) +void quat_for_axisangle( vec4_t quat, const vec3_t axis, double angle ); +//! concatenates two rotations.. equivalent to m4x4_multiply_by_m4x4 .. postmultiply.. the right-hand side is the first rotation performed +void quat_multiply_by_quat( vec4_t quat, const vec4_t other ); +//! negate a quaternion +void quat_conjugate( vec4_t quat ); +//! normalise a quaternion +void quat_normalise( vec4_t quat ); + + /*! -\todo object/ray intersection functions should maybe return a point rather than a distance? -*/ + \todo object/ray intersection functions should maybe return a point rather than a distance? + */ /*! -aabb_t - "axis-aligned" bounding box... - origin: centre of bounding box... - extents: +/- extents of box from origin... - radius: cached length of extents vector... -*/ + aabb_t - "axis-aligned" bounding box... + origin: centre of bounding box... + extents: +/- extents of box from origin... + */ typedef struct aabb_s { - vec3_t origin; - vec3_t extents; - vec_t radius; + vec3_t origin; + vec3_t extents; } aabb_t; +extern const aabb_t g_aabb_null; + /*! -bbox_t - oriented bounding box... - aabb: axis-aligned bounding box... - axes: orientation axes... -*/ + bbox_t - oriented bounding box... + aabb: axis-aligned bounding box... + axes: orientation axes... + */ typedef struct bbox_s { - aabb_t aabb; - vec3_t axes[3]; + aabb_t aabb; + vec3_t axes[3]; + vec_t radius; } bbox_t; /*! -ray_t - origin point and direction unit-vector -*/ + ray_t - origin point and direction unit-vector + */ typedef struct ray_s { - vec3_t origin; - vec3_t direction; + vec3_t origin; + vec3_t direction; } ray_t; +/*! + line_t - centre point and displacement of end point from centre + */ +typedef struct line_s +{ + vec3_t origin; + vec3_t extents; +} line_t; + + +/*! Generate line from start/end points. */ +void line_construct_for_vec3( line_t* line, const vec3_t start, const vec3_t end ); +/*! Return 2 if line is behind plane, else return 1 if line intersects plane, else return 0. */ +int line_test_plane( const line_t* line, const vec4_t plane ); /*! Generate AABB from min/max. */ -void aabb_construct_for_vec3(aabb_t *aabb, const vec3_t min, const vec3_t max); -/*! Update bounding-sphere radius. */ -void aabb_update_radius(aabb_t *aabb); +void aabb_construct_for_vec3( aabb_t* aabb, const vec3_t min, const vec3_t max ); /*! Initialise AABB to negative size. */ -void aabb_clear(aabb_t *aabb); +void aabb_clear( aabb_t* aabb ); /*! Extend AABB to include point. */ -void aabb_extend_by_point(aabb_t *aabb, const vec3_t point); +void aabb_extend_by_point( aabb_t* aabb, const vec3_t point ); /*! Extend AABB to include aabb_src. */ -void aabb_extend_by_aabb(aabb_t *aabb, const aabb_t *aabb_src); +void aabb_extend_by_aabb( aabb_t* aabb, const aabb_t* aabb_src ); /*! Extend AABB by +/- extension vector. */ -void aabb_extend_by_vec3(aabb_t *aabb, vec3_t extension); +void aabb_extend_by_vec3( aabb_t* aabb, vec3_t extension ); /*! Return 2 if point is inside, else 1 if point is on surface, else 0. */ -int aabb_intersect_point(const aabb_t *aabb, const vec3_t point); +int aabb_test_point( const aabb_t* aabb, const vec3_t point ); /*! Return 2 if aabb_src intersects, else 1 if aabb_src touches exactly, else 0. */ -int aabb_intersect_aabb(const aabb_t *aabb, const aabb_t *aabb_src); +int aabb_test_aabb( const aabb_t* aabb, const aabb_t* aabb_src ); /*! Return 2 if aabb is behind plane, else 1 if aabb intersects plane, else 0. */ -int aabb_intersect_plane(const aabb_t *aabb, const float *plane); +int aabb_test_plane( const aabb_t* aabb, const float* plane ); /*! Return 1 if aabb intersects ray, else 0... dist = closest intersection. */ -int aabb_intersect_ray(const aabb_t *aabb, const ray_t *ray, vec_t *dist); +int aabb_intersect_ray( const aabb_t* aabb, const ray_t* ray, vec3_t intersection ); /*! Return 1 if aabb intersects ray, else 0. Faster, but does not provide point of intersection */ -int aabb_test_ray(const aabb_t* aabb, const ray_t* ray); +int aabb_test_ray( const aabb_t* aabb, const ray_t* ray ); -/*! Generate AABB from oriented bounding box. */ -void aabb_for_bbox(aabb_t *aabb, const bbox_t *bbox); -/*! Generate AABB from 2-dimensions of min/max, specified by axis. */ -void aabb_for_area(aabb_t *aabb, vec3_t area_tl, vec3_t area_br, int axis); -/*! Generate AABB to contain src * transform. NOTE: transform must be orthogonal */ -void aabb_for_transformed_aabb(aabb_t* dst, const aabb_t* src, const m4x4_t transform); +/*! Return 2 if oriented aabb is behind plane, else 1 if aabb intersects plane, else 0. */ +int aabb_oriented_intersect_plane( const aabb_t* aabb, const m4x4_t transform, const vec_t* plane ); +/*! Calculate the corners of the aabb. */ +void aabb_corners( const aabb_t * aabb, vec3_t corners[8] ); +/*! (deprecated) Generate AABB from oriented bounding box. */ +void aabb_for_bbox( aabb_t* aabb, const bbox_t* bbox ); +/*! (deprecated) Generate AABB from 2-dimensions of min/max, specified by axis. */ +void aabb_for_area( aabb_t* aabb, vec3_t area_tl, vec3_t area_br, int axis ); +/*! Generate AABB to contain src* transform. NOTE: transform must be orthogonal */ +void aabb_for_transformed_aabb( aabb_t* dst, const aabb_t* src, const m4x4_t transform ); + +/*! Update bounding-sphere radius. */ +void bbox_update_radius( bbox_t* bbox ); /*! Generate oriented bounding box from AABB and transformation matrix. */ -/*!\todo Remove need to specify euler/scale. */ -void bbox_for_oriented_aabb(bbox_t *bbox, const aabb_t *aabb, - const m4x4_t matrix, const vec3_t euler, const vec3_t scale); -/*! Return 2 is bbox is behind plane, else return 1 if bbox intersects plane, else return 0. */ -int bbox_intersect_plane(const bbox_t *bbox, const vec_t* plane); +/*!\todo Remove need to specify eulerZYX/scale. */ +void bbox_for_oriented_aabb( bbox_t* bbox, const aabb_t* aabb, + const m4x4_t matrix, const vec3_t eulerZYX, const vec3_t scale ); +/*! Return 2 if bbox is behind plane, else return 1 if bbox intersects plane, else return 0. */ +int bbox_intersect_plane( const bbox_t* bbox, const vec_t* plane ); /*! Generate a ray from an origin point and a direction unit-vector */ -void ray_construct_for_vec3(ray_t *ray, const vec3_t origin, const vec3_t direction); - -/*! Transform a ray */ -void ray_transform(ray_t *ray, const m4x4_t matrix); +void ray_construct_for_vec3( ray_t* ray, const vec3_t origin, const vec3_t direction ); -/*! return true if point intersects cone formed by ray, divergence and epsilon */ -vec_t ray_intersect_point(const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence); -/*! return true if triangle intersects ray... dist = dist from intersection point to ray-origin */ -vec_t ray_intersect_triangle(const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2); +/*! Transform a ray */ +void ray_transform( ray_t* ray, const m4x4_t matrix ); + +/*! distance from ray origin in ray direction to point. FLT_MAX if no intersection. */ +vec_t ray_intersect_point( const ray_t* ray, const vec3_t point, vec_t epsilon, vec_t divergence ); +/*! distance from ray origin in ray direction to triangle. FLT_MAX if no intersection. */ +vec_t ray_intersect_triangle( const ray_t* ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2 ); +/*! distance from ray origin in ray direction to plane. */ +vec_t ray_intersect_plane( const ray_t* ray, const vec3_t normal, vec_t dist ); + + +int plane_intersect_planes( const vec4_t plane1, const vec4_t plane2, const vec4_t plane3, vec3_t intersection ); + + + +//////////////////////////////////////////////////////////////////////////////// +// Below is double-precision math stuff. This was initially needed by the new +// "base winding" code in q3map2 brush processing in order to fix the famous +// "disappearing triangles" issue. These definitions can be used wherever extra +// precision is needed. +//////////////////////////////////////////////////////////////////////////////// + +typedef double vec_accu_t; +typedef vec_accu_t vec3_accu_t[3]; + +// Smallest positive value for vec_accu_t such that 1.0 + VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE != 1.0. +// In the case of 64 bit doubles (which is almost certainly the case), it's 0.00000000000000022204. +// Don't forget that your epsilons should depend on the possible range of values, +// because for example adding VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE to 1024.0 will have no effect. +#define VEC_ACCU_SMALLEST_EPSILON_AROUND_ONE DBL_EPSILON + +vec_accu_t VectorLengthAccu( const vec3_accu_t v ); + +// I have a feeling it may be safer to break these #define functions out into actual functions +// in order to avoid accidental loss of precision. For example, say you call +// VectorScaleAccu(vec3_t, vec_t, vec3_accu_t). The scale would take place in 32 bit land +// and the result would be cast to 64 bit, which would cause total loss of precision when +// scaling by a large factor. +//#define DotProductAccu(x, y) ((x)[0] * (y)[0] + (x)[1] * (y)[1] + (x)[2] * (y)[2]) +//#define VectorSubtractAccu(a, b, c) ((c)[0] = (a)[0] - (b)[0], (c)[1] = (a)[1] - (b)[1], (c)[2] = (a)[2] - (b)[2]) +//#define VectorAddAccu(a, b, c) ((c)[0] = (a)[0] + (b)[0], (c)[1] = (a)[1] + (b)[1], (c)[2] = (a)[2] + (b)[2]) +//#define VectorCopyAccu(a, b) ((b)[0] = (a)[0], (b)[1] = (a)[1], (b)[2] = (a)[2]) +//#define VectorScaleAccu(a, b, c) ((c)[0] = (b) * (a)[0], (c)[1] = (b) * (a)[1], (c)[2] = (b) * (a)[2]) +//#define CrossProductAccu(a, b, c) ((c)[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1], (c)[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2], (c)[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]) +//#define Q_rintAccu(in) ((vec_accu_t) floor(in + 0.5)) + +vec_accu_t DotProductAccu( const vec3_accu_t a, const vec3_accu_t b ); +void VectorSubtractAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); +void VectorAddAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); +void VectorCopyAccu( const vec3_accu_t in, vec3_accu_t out ); +void VectorScaleAccu( const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out ); +void CrossProductAccu( const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out ); +vec_accu_t Q_rintAccu( vec_accu_t val ); + +void VectorCopyAccuToRegular( const vec3_accu_t in, vec3_t out ); +void VectorCopyRegularToAccu( const vec3_t in, vec3_accu_t out ); +vec_accu_t VectorNormalizeAccu( const vec3_accu_t in, vec3_accu_t out ); #ifdef __cplusplus }