X-Git-Url: http://de.git.xonotic.org/?a=blobdiff_plain;f=radiant%2Fbrush_primit.cpp;h=322c3b27cda00be4ebc98cb022ef206cdd7841eb;hb=f3eedecd09f6e1cd849bdeb8fe9c5e9762d30fcb;hp=22fca0ad1adf9d011529a9aa766be7b0991cf10a;hpb=80378101101ca1762bbf5638a9e3566893096d8a;p=xonotic%2Fnetradiant.git diff --git a/radiant/brush_primit.cpp b/radiant/brush_primit.cpp index 22fca0ad..322c3b27 100644 --- a/radiant/brush_primit.cpp +++ b/radiant/brush_primit.cpp @@ -1,600 +1,612 @@ -/* -Copyright (C) 1999-2007 id Software, Inc. and contributors. -For a list of contributors, see the accompanying CONTRIBUTORS file. - -This file is part of GtkRadiant. - -GtkRadiant is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. - -GtkRadiant is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GtkRadiant; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ - -#include "stdafx.h" - -// compute a determinant using Sarrus rule -//++timo "inline" this with a macro -// NOTE : the three vec3_t are understood as columns of the matrix -vec_t SarrusDet(vec3_t a, vec3_t b, vec3_t c) -{ - return a[0]*b[1]*c[2]+b[0]*c[1]*a[2]+c[0]*a[1]*b[2] - -c[0]*b[1]*a[2]-a[1]*b[0]*c[2]-a[0]*b[2]*c[1]; -} - -// in many case we know three points A,B,C in two axis base B1 and B2 -// and we want the matrix M so that A(B1) = T * A(B2) -// NOTE: 2D homogeneous space stuff -// NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling -// NOTE: the third coord of the A,B,C point is ignored -// NOTE: see the commented out section to fill M and D -//++timo TODO: update the other members to use this when possible -void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ) -{ -// vec3_t M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) - vec_t det; -// vec3_t D[2]; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; -#if 0 - // fill the data vectors - M[0][0]=A2[0]; M[0][1]=B2[0]; M[0][2]=C2[0]; - M[1][0]=A2[1]; M[1][1]=B2[1]; M[1][2]=C2[1]; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; - D[0][0]=A1[0]; - D[0][1]=B1[0]; - D[0][2]=C1[0]; - D[1][0]=A1[1]; - D[1][1]=B1[1]; - D[1][2]=C1[1]; -#endif - // solve - det = SarrusDet( M[0], M[1], M[2] ); - T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; - T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; - T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; - T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; - T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; - T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; -} - -//++timo replace everywhere texX by texS etc. ( ----> and in q3map !) -// NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! -// WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 -// rotation by (0,RotY,RotZ) assigns X to normal -void ComputeAxisBase(vec3_t normal,vec3_t texS,vec3_t texT ) -{ - vec_t RotY,RotZ; - // do some cleaning - if (fabs(normal[0])<1e-6) - normal[0]=0.0f; - if (fabs(normal[1])<1e-6) - normal[1]=0.0f; - if (fabs(normal[2])<1e-6) - normal[2]=0.0f; - RotY=-atan2(normal[2],sqrt(normal[1]*normal[1]+normal[0]*normal[0])); - RotZ=atan2(normal[1],normal[0]); - // rotate (0,1,0) and (0,0,1) to compute texS and texT - texS[0]=-sin(RotZ); - texS[1]=cos(RotZ); - texS[2]=0; - // the texT vector is along -Z ( T texture coorinates axis ) - texT[0]=-sin(RotY)*cos(RotZ); - texT[1]=-sin(RotY)*sin(RotZ); - texT[2]=-cos(RotY); -} - -void FaceToBrushPrimitFace(face_t *f) -{ - vec3_t texX,texY; - vec3_t proj; - // ST of (0,0) (1,0) (0,1) - vec_t ST[3][5]; // [ point index ] [ xyz ST ] - //++timo not used as long as brushprimit_texdef and texdef are static -/* f->brushprimit_texdef.contents=f->texdef.contents; - f->brushprimit_texdef.flags=f->texdef.flags; - f->brushprimit_texdef.value=f->texdef.value; - strcpy(f->brushprimit_texdef.name,f->texdef.name); */ -#ifdef DBG_BP - if ( f->plane.normal[0]==0.0f && f->plane.normal[1]==0.0f && f->plane.normal[2]==0.0f ) - { - Sys_Printf("Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n"); - } - // check d_texture - if (!f->d_texture) - { - Sys_Printf("Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n"); - return; - } -#endif - // compute axis base - ComputeAxisBase(f->plane.normal,texX,texY); - // compute projection vector - VectorCopy(f->plane.normal,proj); - VectorScale(proj,f->plane.dist,proj); - // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane - // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane - // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane - // use old texture code to compute the ST coords of these points - VectorCopy(proj,ST[0]); - EmitTextureCoordinates(ST[0], f->d_texture, f); - VectorCopy(texX,ST[1]); - VectorAdd(ST[1],proj,ST[1]); - EmitTextureCoordinates(ST[1], f->d_texture, f); - VectorCopy(texY,ST[2]); - VectorAdd(ST[2],proj,ST[2]); - EmitTextureCoordinates(ST[2], f->d_texture, f); - // compute texture matrix - f->brushprimit_texdef.coords[0][2]=ST[0][3]; - f->brushprimit_texdef.coords[1][2]=ST[0][4]; - f->brushprimit_texdef.coords[0][0]=ST[1][3]-f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][0]=ST[1][4]-f->brushprimit_texdef.coords[1][2]; - f->brushprimit_texdef.coords[0][1]=ST[2][3]-f->brushprimit_texdef.coords[0][2]; - f->brushprimit_texdef.coords[1][1]=ST[2][4]-f->brushprimit_texdef.coords[1][2]; -} - -// compute texture coordinates for the winding points -void EmitBrushPrimitTextureCoordinates(face_t * f, winding_t * w) -{ - vec3_t texX,texY; - vec_t x,y; - // compute axis base - ComputeAxisBase(f->plane.normal,texX,texY); - // in case the texcoords matrix is empty, build a default one - // same behaviour as if scale[0]==0 && scale[1]==0 in old code - if (f->brushprimit_texdef.coords[0][0]==0 && f->brushprimit_texdef.coords[1][0]==0 && f->brushprimit_texdef.coords[0][1]==0 && f->brushprimit_texdef.coords[1][1]==0) - { - f->brushprimit_texdef.coords[0][0] = 1.0f; - f->brushprimit_texdef.coords[1][1] = 1.0f; - ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); - } - int i; - for (i=0 ; inumpoints ; i++) - { - x=DotProduct(w->points[i],texX); - y=DotProduct(w->points[i],texY); -#ifdef DBG_BP - if (g_qeglobals.bNeedConvert) - { - // check we compute the same ST as the traditional texture computation used before - vec_t S=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; - vec_t T=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; - if ( fabs(S-w->points[i][3])>1e-2 || fabs(T-w->points[i][4])>1e-2 ) - { - if ( fabs(S-w->points[i][3])>1e-4 || fabs(T-w->points[i][4])>1e-4 ) - Sys_Printf("Warning : precision loss in brush -> brush primitive texture computation\n"); - else - Sys_Printf("Warning : brush -> brush primitive texture computation bug detected\n"); - } - } -#endif - w->points[i][3]=f->brushprimit_texdef.coords[0][0]*x+f->brushprimit_texdef.coords[0][1]*y+f->brushprimit_texdef.coords[0][2]; - w->points[i][4]=f->brushprimit_texdef.coords[1][0]*x+f->brushprimit_texdef.coords[1][1]*y+f->brushprimit_texdef.coords[1][2]; - } -} - -// compute a fake shift scale rot representation from the texture matrix -// these shift scale rot values are to be understood in the local axis base -void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] ) -{ -#ifdef DBG_BP - // check this matrix is orthogonal - if (fabs(texMat[0][0]*texMat[0][1]+texMat[1][0]*texMat[1][1])>ZERO_EPSILON) - Sys_Printf("Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n"); -#endif - scale[0]=sqrt(texMat[0][0]*texMat[0][0]+texMat[1][0]*texMat[1][0]); - scale[1]=sqrt(texMat[0][1]*texMat[0][1]+texMat[1][1]*texMat[1][1]); -#ifdef DBG_BP - if (scale[0]0) - *rot=90.0f; - else - *rot=-90.0f; - } - else - *rot = RAD2DEG( atan2( texMat[1][0], texMat[0][0] ) ); - shift[0] = -texMat[0][2]; - shift[1] = texMat[1][2]; -} - -// compute back the texture matrix from fake shift scale rot -// the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one ) -void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] ) -{ - texMat[0][0] = scale[0] * cos( DEG2RAD( rot ) ); - texMat[1][0] = scale[0] * sin( DEG2RAD( rot ) ); - texMat[0][1] = -1.0f * scale[1] * sin( DEG2RAD( rot ) ); - texMat[1][1] = scale[1] * cos( DEG2RAD( rot ) ); - texMat[0][2] = -shift[0]; - texMat[1][2] = shift[1]; -} - -// convert a texture matrix between two qtexture_t -// if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) -void ConvertTexMatWithQTexture( vec_t texMat1[2][3], qtexture_t *qtex1, vec_t texMat2[2][3], qtexture_t *qtex2 ) -{ - float s1,s2; - s1 = ( qtex1 ? static_cast( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->width ) : 2.0f ); - s2 = ( qtex1 ? static_cast( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->height ) : 2.0f ); - texMat2[0][0]=s1*texMat1[0][0]; - texMat2[0][1]=s1*texMat1[0][1]; - texMat2[0][2]=s1*texMat1[0][2]; - texMat2[1][0]=s2*texMat1[1][0]; - texMat2[1][1]=s2*texMat1[1][1]; - texMat2[1][2]=s2*texMat1[1][2]; -} - -void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 ) -{ - ConvertTexMatWithQTexture(texMat1->coords, qtex1, texMat2->coords, qtex2); -} - -// used for texture locking -// will move the texture according to a geometric vector -void ShiftTextureGeometric_BrushPrimit(face_t *f, vec3_t delta) -{ - vec3_t texS,texT; - vec_t tx,ty; - vec3_t M[3]; // columns of the matrix .. easier that way - vec_t det; - vec3_t D[2]; - // compute plane axis base ( doesn't change with translation ) - ComputeAxisBase( f->plane.normal, texS, texT ); - // compute translation vector in plane axis base - tx = DotProduct( delta, texS ); - ty = DotProduct( delta, texT ); - // fill the data vectors - M[0][0]=tx; M[0][1]=1.0f+tx; M[0][2]=tx; - M[1][0]=ty; M[1][1]=ty; M[1][2]=1.0f+ty; - M[2][0]=1.0f; M[2][1]=1.0f; M[2][2]=1.0f; - D[0][0]=f->brushprimit_texdef.coords[0][2]; - D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; - D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; - D[1][0]=f->brushprimit_texdef.coords[1][2]; - D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; - D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; - // solve - det = SarrusDet( M[0], M[1], M[2] ); - f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; - f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; - f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; -} - -// shift a texture (texture adjustments) along it's current texture axes -// x and y are geometric values, which we must compute as ST increments -// this depends on the texture size and the pixel/texel ratio -void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y) -{ - float s,t; - // as a ratio against texture size - // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) - s = (x * 2.0) / (float)f->d_texture->width; - t = (y * 2.0) / (float)f->d_texture->height; - f->brushprimit_texdef.coords[0][2] -= s; - f->brushprimit_texdef.coords[1][2] -= t; -} - -// TTimo: FIXME: I don't like that, it feels broken -// (and it's likely that it's not used anymore) -// best fitted 2D vector is x.X+y.Y -void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ) -{ - double sx,sy; - sx = DotProduct( v, X ); - sy = DotProduct( v, Y ); - if ( fabs(sy) > fabs(sx) ) - { - x = 0; - if ( sy > 0.0 ) - y = 1; - else - y = -1; - } - else - { - y = 0; - if ( sx > 0.0 ) - x = 1; - else - x = -1; - } -} - -//++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle) -// can be improved .. bug #107311 -// mins and maxs are the face bounding box -//++timo fixme: we use the face info, mins and maxs are irrelevant -void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeight, int nWidth ) -{ - vec3_t BBoxSTMin, BBoxSTMax; - winding_t *w; - int i,j; - vec_t val; - vec3_t M[3],D[2]; -// vec3_t N[2],Mf[2]; - brushprimit_texdef_t N; - vec3_t Mf[2]; - - - // we'll be working on a standardized texture size -// ConvertTexMatWithQTexture( &f->brushprimit_texdef, f->d_texture, &f->brushprimit_texdef, NULL ); - // compute the BBox in ST coords - EmitBrushPrimitTextureCoordinates( f, f->face_winding ); - ClearBounds( BBoxSTMin, BBoxSTMax ); - w = f->face_winding; - for (i=0 ; inumpoints ; i++) - { - // AddPointToBounds in 2D on (S,T) coordinates - for (j=0 ; j<2 ; j++) - { - val = w->points[i][j+3]; - if (val < BBoxSTMin[j]) - BBoxSTMin[j] = val; - if (val > BBoxSTMax[j]) - BBoxSTMax[j] = val; - } - } - // we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space - // the BP matrix we are looking for gives (0,0) (nwidth,0) (0,nHeight) coordinates in (Sfit,Tfit) space to these three points - // we have A(Sfit,Tfit) = (0,0) = Mf * A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T) - // so we solve the system for N and then Mf = N * M - M[0][0] = BBoxSTMin[0]; M[0][1] = BBoxSTMax[0]; M[0][2] = BBoxSTMin[0]; - M[1][0] = BBoxSTMin[1]; M[1][1] = BBoxSTMin[1]; M[1][2] = BBoxSTMax[1]; - D[0][0] = 0.0f; D[0][1] = nWidth; D[0][2] = 0.0f; - D[1][0] = 0.0f; D[1][1] = 0.0f; D[1][2] = nHeight; - MatrixForPoints( M, D, &N ); - -#if 0 - // FIT operation gives coordinates of three points of the bounding box in (S',T'), our target axis base - // A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight) - // and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1]) - // we compute the N transformation so that: A(S',T') = N * A(S,T) - VectorSet( N[0], (BBoxSTMax[0]-BBoxSTMin[0])/(float)nWidth, 0.0f, BBoxSTMin[0] ); - VectorSet( N[1], 0.0f, (BBoxSTMax[1]-BBoxSTMin[1])/(float)nHeight, BBoxSTMin[1] ); -#endif - - // the final matrix is the product (Mf stands for Mfit) - Mf[0][0] = N.coords[0][0] * f->brushprimit_texdef.coords[0][0] + N.coords[0][1] * f->brushprimit_texdef.coords[1][0]; - Mf[0][1] = N.coords[0][0] * f->brushprimit_texdef.coords[0][1] + N.coords[0][1] * f->brushprimit_texdef.coords[1][1]; - Mf[0][2] = N.coords[0][0] * f->brushprimit_texdef.coords[0][2] + N.coords[0][1] * f->brushprimit_texdef.coords[1][2] + N.coords[0][2]; - Mf[1][0] = N.coords[1][0] * f->brushprimit_texdef.coords[0][0] + N.coords[1][1] * f->brushprimit_texdef.coords[1][0]; - Mf[1][1] = N.coords[1][0] * f->brushprimit_texdef.coords[0][1] + N.coords[1][1] * f->brushprimit_texdef.coords[1][1]; - Mf[1][2] = N.coords[1][0] * f->brushprimit_texdef.coords[0][2] + N.coords[1][1] * f->brushprimit_texdef.coords[1][2] + N.coords[1][2]; - // copy back - VectorCopy( Mf[0], f->brushprimit_texdef.coords[0] ); - VectorCopy( Mf[1], f->brushprimit_texdef.coords[1] ); - // handle the texture size -// ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); -} - -void BrushPrimitFaceToFace(face_t *face) -{ - // we have parsed brush primitives and need conversion back to standard format - // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it - // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling - // I tried various tweaks, no luck .. seems shifting is lost - brushprimit_texdef_t aux; - ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->d_texture, &aux, NULL ); - TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); - face->texdef.scale[0]/=2.0; - face->texdef.scale[1]/=2.0; -} - -// TEXTURE LOCKING ----------------------------------------------------------------------------------------------------- -// (Relevant to the editor only?) - -// internally used for texture locking on rotation and flipping -// the general algorithm is the same for both lockings, it's only the geometric transformation part that changes -// so I wanted to keep it in a single function -// if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best -// (but right now I want to keep brush_primit.cpp striclty C) - -qboolean txlock_bRotation; - -// rotation locking params -int txl_nAxis; -float txl_fDeg; -vec3_t txl_vOrigin; - -// flip locking params -vec3_t txl_matrix[3]; -vec3_t txl_origin; - -void TextureLockTransformation_BrushPrimit(face_t *f) -{ - vec3_t Orig,texS,texT; // axis base of initial plane - // used by transformation algo - vec3_t temp; int j; - vec3_t vRotate; // rotation vector - - vec3_t rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } - vec3_t rNormal,rtexS,rtexT; // axis base for the transformed plane - vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) - vec3_t M[3]; - vec_t det; - vec3_t D[2]; - - // compute plane axis base - ComputeAxisBase( f->plane.normal, texS, texT ); - VectorSet(Orig, 0.0f, 0.0f, 0.0f); - - // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation - // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) - // input: Orig, texS, texT (and the global locking params) - // ouput: rOrig, rvecS, rvecT, rNormal - if (txlock_bRotation) { - // rotation vector - VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); - vRotate[txl_nAxis]=txl_fDeg; - VectorRotateOrigin ( Orig, vRotate, txl_vOrigin, rOrig ); - VectorRotateOrigin ( texS, vRotate, txl_vOrigin, rvecS ); - VectorRotateOrigin ( texT, vRotate, txl_vOrigin, rvecT ); - // compute normal of plane after rotation - VectorRotate ( f->plane.normal, vRotate, rNormal ); - } - else - { - VectorSubtract (Orig, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rOrig[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; - VectorSubtract (texS, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rvecS[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; - VectorSubtract (texT, txl_origin, temp); - for (j=0 ; j<3 ; j++) - rvecT[j] = DotProduct(temp, txl_matrix[j]) + txl_origin[j]; - // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. - for (j=0 ; j<3 ; j++) - rNormal[j] = DotProduct(f->plane.normal, txl_matrix[j]); - } - - // compute rotated plane axis base - ComputeAxisBase( rNormal, rtexS, rtexT ); - // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) - lOrig[0] = DotProduct( rOrig, rtexS ); - lOrig[1] = DotProduct( rOrig, rtexT ); - lvecS[0] = DotProduct( rvecS, rtexS ); - lvecS[1] = DotProduct( rvecS, rtexT ); - lvecT[0] = DotProduct( rvecT, rtexS ); - lvecT[1] = DotProduct( rvecT, rtexT ); - M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; - M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; - M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; - // fill data vector - D[0][0]=f->brushprimit_texdef.coords[0][2]; - D[0][1]=f->brushprimit_texdef.coords[0][0]+f->brushprimit_texdef.coords[0][2]; - D[0][2]=f->brushprimit_texdef.coords[0][1]+f->brushprimit_texdef.coords[0][2]; - D[1][0]=f->brushprimit_texdef.coords[1][2]; - D[1][1]=f->brushprimit_texdef.coords[1][0]+f->brushprimit_texdef.coords[1][2]; - D[1][2]=f->brushprimit_texdef.coords[1][1]+f->brushprimit_texdef.coords[1][2]; - // solve - det = SarrusDet( M[0], M[1], M[2] ); - f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; - f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; - f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; - f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; -} - -// texture locking -// called before the points on the face are actually rotated -void RotateFaceTexture_BrushPrimit(face_t *f, int nAxis, float fDeg, vec3_t vOrigin ) -{ - // this is a placeholder to call the general texture locking algorithm - txlock_bRotation = true; - txl_nAxis = nAxis; - txl_fDeg = fDeg; - VectorCopy(vOrigin, txl_vOrigin); - TextureLockTransformation_BrushPrimit(f); -} - -// compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) -// this matches the select_matrix algo used in select.cpp -// this needs to be called on the face BEFORE any geometric transformation -// it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done -void ApplyMatrix_BrushPrimit(face_t *f, vec3_t matrix[3], vec3_t origin) -{ - // this is a placeholder to call the general texture locking algorithm - txlock_bRotation = false; - VectorCopy(matrix[0], txl_matrix[0]); - VectorCopy(matrix[1], txl_matrix[1]); - VectorCopy(matrix[2], txl_matrix[2]); - VectorCopy(origin, txl_origin); - TextureLockTransformation_BrushPrimit(f); -} - -// don't do C==A! -void BPMatMul(vec_t A[2][3], vec_t B[2][3], vec_t C[2][3]) -{ - C[0][0] = A[0][0]*B[0][0]+A[0][1]*B[1][0]; - C[1][0] = A[1][0]*B[0][0]+A[1][1]*B[1][0]; - C[0][1] = A[0][0]*B[0][1]+A[0][1]*B[1][1]; - C[1][1] = A[1][0]*B[0][1]+A[1][1]*B[1][1]; - C[0][2] = A[0][0]*B[0][2]+A[0][1]*B[1][2]+A[0][2]; - C[1][2] = A[1][0]*B[0][2]+A[1][1]*B[1][2]+A[1][2]; -} - -void BPMatDump(vec_t A[2][3]) -{ - Sys_Printf("%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2]); -} - -void BPMatRotate(vec_t A[2][3], float theta) -{ - vec_t m[2][3]; - vec_t aux[2][3]; - memset(&m, 0, sizeof(vec_t)*6); - m[0][0] = cos(theta*Q_PI/180.0); - m[0][1] = -sin(theta*Q_PI/180.0); - m[1][0] = -m[0][1]; - m[1][1] = m[0][0]; - BPMatMul(A, m, aux); - BPMatCopy(aux,A); -} - -// get the relative axes of the current texturing -void BrushPrimit_GetRelativeAxes(face_t *f, vec3_t vecS, vec3_t vecT) -{ - vec_t vS[2],vT[2]; - // first we compute them as expressed in plane axis base - // BP matrix has coordinates of plane axis base expressed in geometric axis base - // so we use the line vectors - vS[0] = f->brushprimit_texdef.coords[0][0]; - vS[1] = f->brushprimit_texdef.coords[0][1]; - vT[0] = f->brushprimit_texdef.coords[1][0]; - vT[1] = f->brushprimit_texdef.coords[1][1]; - // now compute those vectors in geometric space - vec3_t texS, texT; // axis base of the plane (geometric) - ComputeAxisBase(f->plane.normal, texS, texT); - // vecS[] = vS[0].texS[] + vS[1].texT[] - // vecT[] = vT[0].texS[] + vT[1].texT[] - vecS[0] = vS[0]*texS[0] + vS[1]*texT[0]; - vecS[1] = vS[0]*texS[1] + vS[1]*texT[1]; - vecS[2] = vS[0]*texS[2] + vS[1]*texT[2]; - vecT[0] = vT[0]*texS[0] + vT[1]*texT[0]; - vecT[1] = vT[0]*texS[1] + vT[1]*texT[1]; - vecT[2] = vT[0]*texS[2] + vT[1]*texT[2]; -} - -// GL matrix 4x4 product (3D homogeneous matrix) -// NOTE: the crappy thing is that GL doesn't follow the standard convention [line][column] -// otherwise it's all good -void GLMatMul(vec_t M[4][4], vec_t A[4], vec_t B[4]) -{ - unsigned short i,j; - for (i=0;i<4;i++) - { - B[i] = 0.0; - for (j=0;j<4;j++) - { - B[i] += M[j][i]*A[j]; - } - } -} - -qboolean IsBrushPrimitMode() -{ - return(g_qeglobals.m_bBrushPrimitMode); -} +/* + Copyright (C) 1999-2007 id Software, Inc. and contributors. + For a list of contributors, see the accompanying CONTRIBUTORS file. + + This file is part of GtkRadiant. + + GtkRadiant is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + GtkRadiant is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with GtkRadiant; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ + +#include "stdafx.h" + +// compute a determinant using Sarrus rule +//++timo "inline" this with a macro +// NOTE : the three vec3_t are understood as columns of the matrix +vec_t SarrusDet( vec3_t a, vec3_t b, vec3_t c ){ + return a[0] * b[1] * c[2] + b[0] * c[1] * a[2] + c[0] * a[1] * b[2] + - c[0] * b[1] * a[2] - a[1] * b[0] * c[2] - a[0] * b[2] * c[1]; +} + +// in many case we know three points A,B,C in two axis base B1 and B2 +// and we want the matrix M so that A(B1) = T * A(B2) +// NOTE: 2D homogeneous space stuff +// NOTE: we don't do any check to see if there's a solution or we have a particular case .. need to make sure before calling +// NOTE: the third coord of the A,B,C point is ignored +// NOTE: see the commented out section to fill M and D +//++timo TODO: update the other members to use this when possible +void MatrixForPoints( vec3_t M[3], vec3_t D[2], brushprimit_texdef_t *T ){ +// vec3_t M[3]; // columns of the matrix .. easier that way (the indexing is not standard! it's column-line .. later computations are easier that way) + vec_t det; +// vec3_t D[2]; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; +#if 0 + // fill the data vectors + M[0][0] = A2[0]; M[0][1] = B2[0]; M[0][2] = C2[0]; + M[1][0] = A2[1]; M[1][1] = B2[1]; M[1][2] = C2[1]; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = A1[0]; + D[0][1] = B1[0]; + D[0][2] = C1[0]; + D[1][0] = A1[1]; + D[1][1] = B1[1]; + D[1][2] = C1[1]; +#endif + // solve + det = SarrusDet( M[0], M[1], M[2] ); + T->coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; + T->coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; + T->coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; + T->coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; + T->coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; + T->coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; +} + +//++timo replace everywhere texX by texS etc. ( ----> and in q3map !) +// NOTE : ComputeAxisBase here and in q3map code must always BE THE SAME ! +// WARNING : special case behaviour of atan2(y,x) <-> atan(y/x) might not be the same everywhere when x == 0 +// rotation by (0,RotY,RotZ) assigns X to normal +void ComputeAxisBase( vec3_t normal,vec3_t texS,vec3_t texT ){ + vec_t RotY,RotZ; + // do some cleaning + if ( fabs( normal[0] ) < 1e-6 ) { + normal[0] = 0.0f; + } + if ( fabs( normal[1] ) < 1e-6 ) { + normal[1] = 0.0f; + } + if ( fabs( normal[2] ) < 1e-6 ) { + normal[2] = 0.0f; + } + RotY = -atan2( normal[2],sqrt( normal[1] * normal[1] + normal[0] * normal[0] ) ); + RotZ = atan2( normal[1],normal[0] ); + // rotate (0,1,0) and (0,0,1) to compute texS and texT + texS[0] = -sin( RotZ ); + texS[1] = cos( RotZ ); + texS[2] = 0; + // the texT vector is along -Z ( T texture coorinates axis ) + texT[0] = -sin( RotY ) * cos( RotZ ); + texT[1] = -sin( RotY ) * sin( RotZ ); + texT[2] = -cos( RotY ); +} + +void FaceToBrushPrimitFace( face_t *f ){ + vec3_t texX,texY; + vec3_t proj; + // ST of (0,0) (1,0) (0,1) + vec_t ST[3][5]; // [ point index ] [ xyz ST ] + //++timo not used as long as brushprimit_texdef and texdef are static +/* f->brushprimit_texdef.contents=f->texdef.contents; + f->brushprimit_texdef.flags=f->texdef.flags; + f->brushprimit_texdef.value=f->texdef.value; + strcpy(f->brushprimit_texdef.name,f->texdef.name); */ +#ifdef DBG_BP + if ( f->plane.normal[0] == 0.0f && f->plane.normal[1] == 0.0f && f->plane.normal[2] == 0.0f ) { + Sys_Printf( "Warning : f->plane.normal is (0,0,0) in FaceToBrushPrimitFace\n" ); + } + // check d_texture + if ( !f->d_texture ) { + Sys_Printf( "Warning : f.d_texture is NULL in FaceToBrushPrimitFace\n" ); + return; + } +#endif + // compute axis base + ComputeAxisBase( f->plane.normal,texX,texY ); + // compute projection vector + VectorCopy( f->plane.normal,proj ); + VectorScale( proj,f->plane.dist,proj ); + // (0,0) in plane axis base is (0,0,0) in world coordinates + projection on the affine plane + // (1,0) in plane axis base is texX in world coordinates + projection on the affine plane + // (0,1) in plane axis base is texY in world coordinates + projection on the affine plane + // use old texture code to compute the ST coords of these points + VectorCopy( proj,ST[0] ); + EmitTextureCoordinates( ST[0], f->d_texture, f ); + VectorCopy( texX,ST[1] ); + VectorAdd( ST[1],proj,ST[1] ); + EmitTextureCoordinates( ST[1], f->d_texture, f ); + VectorCopy( texY,ST[2] ); + VectorAdd( ST[2],proj,ST[2] ); + EmitTextureCoordinates( ST[2], f->d_texture, f ); + // compute texture matrix + f->brushprimit_texdef.coords[0][2] = ST[0][3]; + f->brushprimit_texdef.coords[1][2] = ST[0][4]; + f->brushprimit_texdef.coords[0][0] = ST[1][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][0] = ST[1][4] - f->brushprimit_texdef.coords[1][2]; + f->brushprimit_texdef.coords[0][1] = ST[2][3] - f->brushprimit_texdef.coords[0][2]; + f->brushprimit_texdef.coords[1][1] = ST[2][4] - f->brushprimit_texdef.coords[1][2]; +} + +// compute texture coordinates for the winding points +void EmitBrushPrimitTextureCoordinates( face_t * f, winding_t * w ){ + vec3_t texX,texY; + vec_t x,y; + // compute axis base + ComputeAxisBase( f->plane.normal,texX,texY ); + // in case the texcoords matrix is empty, build a default one + // same behaviour as if scale[0]==0 && scale[1]==0 in old code + if ( f->brushprimit_texdef.coords[0][0] == 0 && f->brushprimit_texdef.coords[1][0] == 0 && f->brushprimit_texdef.coords[0][1] == 0 && f->brushprimit_texdef.coords[1][1] == 0 ) { + f->brushprimit_texdef.coords[0][0] = 1.0f; + f->brushprimit_texdef.coords[1][1] = 1.0f; + ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); + } + int i; + for ( i = 0 ; i < w->numpoints ; i++ ) + { + x = DotProduct( w->points[i],texX ); + y = DotProduct( w->points[i],texY ); +#ifdef DBG_BP + if ( g_qeglobals.bNeedConvert ) { + // check we compute the same ST as the traditional texture computation used before + vec_t S = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + vec_t T = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; + if ( fabs( S - w->points[i][3] ) > 1e-2 || fabs( T - w->points[i][4] ) > 1e-2 ) { + if ( fabs( S - w->points[i][3] ) > 1e-4 || fabs( T - w->points[i][4] ) > 1e-4 ) { + Sys_Printf( "Warning : precision loss in brush -> brush primitive texture computation\n" ); + } + else{ + Sys_Printf( "Warning : brush -> brush primitive texture computation bug detected\n" ); + } + } + } +#endif + w->points[i][3] = f->brushprimit_texdef.coords[0][0] * x + f->brushprimit_texdef.coords[0][1] * y + f->brushprimit_texdef.coords[0][2]; + w->points[i][4] = f->brushprimit_texdef.coords[1][0] * x + f->brushprimit_texdef.coords[1][1] * y + f->brushprimit_texdef.coords[1][2]; + } +} + +// compute a fake shift scale rot representation from the texture matrix +// these shift scale rot values are to be understood in the local axis base +void TexMatToFakeTexCoords( vec_t texMat[2][3], float shift[2], float *rot, float scale[2] ){ +#ifdef DBG_BP + // check this matrix is orthogonal + if ( fabs( texMat[0][0] * 1.0L * texMat[0][1] + texMat[1][0] * 1.0L * texMat[1][1] ) > ZERO_EPSILON ) { + Sys_Printf( "Warning : non orthogonal texture matrix in TexMatToFakeTexCoords\n" ); + } +#endif + scale[0] = sqrt( texMat[0][0] * 1.0L * texMat[0][0] + texMat[1][0] * 1.0L * texMat[1][0] ); + scale[1] = sqrt( texMat[0][1] * 1.0L * texMat[0][1] + texMat[1][1] * 1.0L * texMat[1][1] ); +#ifdef DBG_BP + if ( scale[0] < ZERO_EPSILON || scale[1] < ZERO_EPSILON ) { + Sys_Printf( "Warning : unexpected scale==0 in TexMatToFakeTexCoords\n" ); + } +#endif + // compute rotate value + if ( fabs( texMat[0][0] ) < ZERO_EPSILON ) { +#ifdef DBG_BP + // check brushprimit_texdef[1][0] is not zero + if ( fabs( texMat[1][0] ) < ZERO_EPSILON ) { + Sys_Printf( "Warning : unexpected texdef[1][0]==0 in TexMatToFakeTexCoords\n" ); + } +#endif + // rotate is +-90 + if ( texMat[1][0] > 0 ) { + *rot = 90.0f; + } + else{ + *rot = -90.0f; + } + } + else{ + *rot = RAD2DEG( atan2( texMat[1][0] * 1.0L, texMat[0][0] * 1.0L ) ); + } + shift[0] = -texMat[0][2]; + shift[1] = texMat[1][2]; +} + +// compute back the texture matrix from fake shift scale rot +// the matrix returned must be understood as a qtexture_t with width=2 height=2 ( the default one ) +void FakeTexCoordsToTexMat( float shift[2], float rot, float scale[2], vec_t texMat[2][3] ){ + texMat[0][0] = scale[0] * 1.0L * cos( DEG2RAD( 1.0L * rot ) ); + texMat[1][0] = scale[0] * 1.0L * sin( DEG2RAD( 1.0L * rot ) ); + texMat[0][1] = -scale[1] * 1.0L * sin( DEG2RAD( 1.0L * rot ) ); + texMat[1][1] = scale[1] * 1.0L * cos( DEG2RAD( 1.0L * rot ) ); + texMat[0][2] = -shift[0]; + texMat[1][2] = shift[1]; +} + +// convert a texture matrix between two qtexture_t +// if NULL for qtexture_t, basic 2x2 texture is assumed ( straight mapping between s/t coordinates and geometric coordinates ) +void ConvertTexMatWithQTexture( vec_t texMat1[2][3], qtexture_t *qtex1, vec_t texMat2[2][3], qtexture_t *qtex2 ){ + float s1,s2; + s1 = ( qtex1 ? static_cast( qtex1->width ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->width ) : 2.0f ); + s2 = ( qtex1 ? static_cast( qtex1->height ) : 2.0f ) / ( qtex2 ? static_cast( qtex2->height ) : 2.0f ); + texMat2[0][0] = s1 * texMat1[0][0]; + texMat2[0][1] = s1 * texMat1[0][1]; + texMat2[0][2] = s1 * texMat1[0][2]; + texMat2[1][0] = s2 * texMat1[1][0]; + texMat2[1][1] = s2 * texMat1[1][1]; + texMat2[1][2] = s2 * texMat1[1][2]; +} + +void ConvertTexMatWithQTexture( brushprimit_texdef_t *texMat1, qtexture_t *qtex1, brushprimit_texdef_t *texMat2, qtexture_t *qtex2 ){ + ConvertTexMatWithQTexture( texMat1->coords, qtex1, texMat2->coords, qtex2 ); +} + +// used for texture locking +// will move the texture according to a geometric vector +void ShiftTextureGeometric_BrushPrimit( face_t *f, vec3_t delta ){ + vec3_t texS,texT; + vec_t tx,ty; + vec3_t M[3]; // columns of the matrix .. easier that way + vec_t det; + vec3_t D[2]; + // compute plane axis base ( doesn't change with translation ) + ComputeAxisBase( f->plane.normal, texS, texT ); + // compute translation vector in plane axis base + tx = DotProduct( delta, texS ); + ty = DotProduct( delta, texT ); + // fill the data vectors + M[0][0] = tx; M[0][1] = 1.0f + tx; M[0][2] = tx; + M[1][0] = ty; M[1][1] = ty; M[1][2] = 1.0f + ty; + M[2][0] = 1.0f; M[2][1] = 1.0f; M[2][2] = 1.0f; + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; + // solve + det = SarrusDet( M[0], M[1], M[2] ); + f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; + f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; + f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; +} + +// shift a texture (texture adjustments) along it's current texture axes +// x and y are geometric values, which we must compute as ST increments +// this depends on the texture size and the pixel/texel ratio +void ShiftTextureRelative_BrushPrimit( face_t *f, float x, float y ){ + float s,t; + // as a ratio against texture size + // the scale of the texture is not relevant here (we work directly on a transformation from the base vectors) + s = ( x * 2.0 ) / (float)f->d_texture->width; + t = ( y * 2.0 ) / (float)f->d_texture->height; + f->brushprimit_texdef.coords[0][2] -= s; + f->brushprimit_texdef.coords[1][2] -= t; +} + +// TTimo: FIXME: I don't like that, it feels broken +// (and it's likely that it's not used anymore) +// best fitted 2D vector is x.X+y.Y +void ComputeBest2DVector( vec3_t v, vec3_t X, vec3_t Y, int &x, int &y ){ + double sx,sy; + sx = DotProduct( v, X ); + sy = DotProduct( v, Y ); + if ( fabs( sy ) > fabs( sx ) ) { + x = 0; + if ( sy > 0.0 ) { + y = 1; + } + else{ + y = -1; + } + } + else + { + y = 0; + if ( sx > 0.0 ) { + x = 1; + } + else{ + x = -1; + } + } +} + +//++timo FIXME quick'n dirty hack, doesn't care about current texture settings (angle) +// can be improved .. bug #107311 +// mins and maxs are the face bounding box +//++timo fixme: we use the face info, mins and maxs are irrelevant +void Face_FitTexture_BrushPrimit( face_t *f, vec3_t mins, vec3_t maxs, int nHeight, int nWidth ){ + vec3_t BBoxSTMin, BBoxSTMax; + winding_t *w; + int i,j; + vec_t val; + vec3_t M[3],D[2]; +// vec3_t N[2],Mf[2]; + brushprimit_texdef_t N; + vec3_t Mf[2]; + + + // we'll be working on a standardized texture size +// ConvertTexMatWithQTexture( &f->brushprimit_texdef, f->d_texture, &f->brushprimit_texdef, NULL ); + // compute the BBox in ST coords + EmitBrushPrimitTextureCoordinates( f, f->face_winding ); + ClearBounds( BBoxSTMin, BBoxSTMax ); + w = f->face_winding; + for ( i = 0 ; i < w->numpoints ; i++ ) + { + // AddPointToBounds in 2D on (S,T) coordinates + for ( j = 0 ; j < 2 ; j++ ) + { + val = w->points[i][j + 3]; + if ( val < BBoxSTMin[j] ) { + BBoxSTMin[j] = val; + } + if ( val > BBoxSTMax[j] ) { + BBoxSTMax[j] = val; + } + } + } + // we have the three points of the BBox (BBoxSTMin[0].BBoxSTMin[1]) (BBoxSTMax[0],BBoxSTMin[1]) (BBoxSTMin[0],BBoxSTMax[1]) in ST space + // the BP matrix we are looking for gives (0,0) (nwidth,0) (0,nHeight) coordinates in (Sfit,Tfit) space to these three points + // we have A(Sfit,Tfit) = (0,0) = Mf * A(TexS,TexT) = N * M * A(TexS,TexT) = N * A(S,T) + // so we solve the system for N and then Mf = N * M + M[0][0] = BBoxSTMin[0]; M[0][1] = BBoxSTMax[0]; M[0][2] = BBoxSTMin[0]; + M[1][0] = BBoxSTMin[1]; M[1][1] = BBoxSTMin[1]; M[1][2] = BBoxSTMax[1]; + D[0][0] = 0.0f; D[0][1] = nWidth; D[0][2] = 0.0f; + D[1][0] = 0.0f; D[1][1] = 0.0f; D[1][2] = nHeight; + MatrixForPoints( M, D, &N ); + +#if 0 + // FIT operation gives coordinates of three points of the bounding box in (S',T'), our target axis base + // A(S',T')=(0,0) B(S',T')=(nWidth,0) C(S',T')=(0,nHeight) + // and we have them in (S,T) axis base: A(S,T)=(BBoxSTMin[0],BBoxSTMin[1]) B(S,T)=(BBoxSTMax[0],BBoxSTMin[1]) C(S,T)=(BBoxSTMin[0],BBoxSTMax[1]) + // we compute the N transformation so that: A(S',T') = N * A(S,T) + VectorSet( N[0], ( BBoxSTMax[0] - BBoxSTMin[0] ) / (float)nWidth, 0.0f, BBoxSTMin[0] ); + VectorSet( N[1], 0.0f, ( BBoxSTMax[1] - BBoxSTMin[1] ) / (float)nHeight, BBoxSTMin[1] ); +#endif + + // the final matrix is the product (Mf stands for Mfit) + Mf[0][0] = N.coords[0][0] * f->brushprimit_texdef.coords[0][0] + N.coords[0][1] * f->brushprimit_texdef.coords[1][0]; + Mf[0][1] = N.coords[0][0] * f->brushprimit_texdef.coords[0][1] + N.coords[0][1] * f->brushprimit_texdef.coords[1][1]; + Mf[0][2] = N.coords[0][0] * f->brushprimit_texdef.coords[0][2] + N.coords[0][1] * f->brushprimit_texdef.coords[1][2] + N.coords[0][2]; + Mf[1][0] = N.coords[1][0] * f->brushprimit_texdef.coords[0][0] + N.coords[1][1] * f->brushprimit_texdef.coords[1][0]; + Mf[1][1] = N.coords[1][0] * f->brushprimit_texdef.coords[0][1] + N.coords[1][1] * f->brushprimit_texdef.coords[1][1]; + Mf[1][2] = N.coords[1][0] * f->brushprimit_texdef.coords[0][2] + N.coords[1][1] * f->brushprimit_texdef.coords[1][2] + N.coords[1][2]; + // copy back + VectorCopy( Mf[0], f->brushprimit_texdef.coords[0] ); + VectorCopy( Mf[1], f->brushprimit_texdef.coords[1] ); + // handle the texture size +// ConvertTexMatWithQTexture( &f->brushprimit_texdef, NULL, &f->brushprimit_texdef, f->d_texture ); +} + +void BrushPrimitFaceToFace( face_t *f ){ +#if 0 + // we have parsed brush primitives and need conversion back to standard format + // NOTE: converting back is a quick hack, there's some information lost and we can't do anything about it + // FIXME: if we normalize the texture matrix to a standard 2x2 size, we end up with wrong scaling + // I tried various tweaks, no luck .. seems shifting is lost + brushprimit_texdef_t aux; + ConvertTexMatWithQTexture( &face->brushprimit_texdef, face->d_texture, &aux, NULL ); + TexMatToFakeTexCoords( aux.coords, face->texdef.shift, &face->texdef.rotate, face->texdef.scale ); + face->texdef.scale[0] /= 2.0; + face->texdef.scale[1] /= 2.0; +#else + // new method by divVerent@alientrap.org: Shift and scale no longer get lost when opening a BP map in texdef mode. + vec3_t texX,texY; + vec3_t proj; + vec_t ST[3][5]; + + ComputeAxisBase( f->plane.normal,texX,texY ); + VectorCopy( f->plane.normal,proj ); + VectorScale( proj,f->plane.dist,proj ); + VectorCopy( proj,ST[0] ); + VectorCopy( texX,ST[1] ); + VectorAdd( ST[1],proj,ST[1] ); + VectorCopy( texY,ST[2] ); + VectorAdd( ST[2],proj,ST[2] ); + + ST[0][3] = f->brushprimit_texdef.coords[0][2]; + ST[0][4] = f->brushprimit_texdef.coords[1][2]; + ST[1][3] = f->brushprimit_texdef.coords[0][0] + ST[0][3]; + ST[1][4] = f->brushprimit_texdef.coords[1][0] + ST[0][4]; + ST[2][3] = f->brushprimit_texdef.coords[0][1] + ST[0][3]; + ST[2][4] = f->brushprimit_texdef.coords[1][1] + ST[0][4]; + + Face_TexdefFromTextureCoordinates( ST[0], ST[1], ST[2], f->d_texture, f ); +#endif +} + +// TEXTURE LOCKING ----------------------------------------------------------------------------------------------------- +// (Relevant to the editor only?) + +// internally used for texture locking on rotation and flipping +// the general algorithm is the same for both lockings, it's only the geometric transformation part that changes +// so I wanted to keep it in a single function +// if there are more linear transformations that need the locking, going to a C++ or code pointer solution would be best +// (but right now I want to keep brush_primit.cpp striclty C) + +qboolean txlock_bRotation; + +// rotation locking params +int txl_nAxis; +float txl_fDeg; +vec3_t txl_vOrigin; + +// flip locking params +vec3_t txl_matrix[3]; +vec3_t txl_origin; + +void TextureLockTransformation_BrushPrimit( face_t *f ){ + vec3_t Orig,texS,texT; // axis base of initial plane + // used by transformation algo + vec3_t temp; int j; + vec3_t vRotate; // rotation vector + + vec3_t rOrig,rvecS,rvecT; // geometric transformation of (0,0) (1,0) (0,1) { initial plane axis base } + vec3_t rNormal,rtexS,rtexT; // axis base for the transformed plane + vec3_t lOrig,lvecS,lvecT; // [2] are not used ( but usefull for debugging ) + vec3_t M[3]; + vec_t det; + vec3_t D[2]; + + // compute plane axis base + ComputeAxisBase( f->plane.normal, texS, texT ); + VectorSet( Orig, 0.0f, 0.0f, 0.0f ); + + // compute coordinates of (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) after transformation + // (0,0) (1,0) (0,1) ( expressed in initial plane axis base ) <-> (0,0,0) texS texT ( expressed world axis base ) + // input: Orig, texS, texT (and the global locking params) + // ouput: rOrig, rvecS, rvecT, rNormal + if ( txlock_bRotation ) { + // rotation vector + VectorSet( vRotate, 0.0f, 0.0f, 0.0f ); + vRotate[txl_nAxis] = txl_fDeg; + VectorRotateOrigin( Orig, vRotate, txl_vOrigin, rOrig ); + VectorRotateOrigin( texS, vRotate, txl_vOrigin, rvecS ); + VectorRotateOrigin( texT, vRotate, txl_vOrigin, rvecT ); + // compute normal of plane after rotation + VectorRotate( f->plane.normal, vRotate, rNormal ); + } + else + { + VectorSubtract( Orig, txl_origin, temp ); + for ( j = 0 ; j < 3 ; j++ ) + rOrig[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; + VectorSubtract( texS, txl_origin, temp ); + for ( j = 0 ; j < 3 ; j++ ) + rvecS[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; + VectorSubtract( texT, txl_origin, temp ); + for ( j = 0 ; j < 3 ; j++ ) + rvecT[j] = DotProduct( temp, txl_matrix[j] ) + txl_origin[j]; + // we also need the axis base of the target plane, apply the transformation matrix to the normal too.. + for ( j = 0 ; j < 3 ; j++ ) + rNormal[j] = DotProduct( f->plane.normal, txl_matrix[j] ); + } + + // compute rotated plane axis base + ComputeAxisBase( rNormal, rtexS, rtexT ); + // compute S/T coordinates of the three points in rotated axis base ( in M matrix ) + lOrig[0] = DotProduct( rOrig, rtexS ); + lOrig[1] = DotProduct( rOrig, rtexT ); + lvecS[0] = DotProduct( rvecS, rtexS ); + lvecS[1] = DotProduct( rvecS, rtexT ); + lvecT[0] = DotProduct( rvecT, rtexS ); + lvecT[1] = DotProduct( rvecT, rtexT ); + M[0][0] = lOrig[0]; M[1][0] = lOrig[1]; M[2][0] = 1.0f; + M[0][1] = lvecS[0]; M[1][1] = lvecS[1]; M[2][1] = 1.0f; + M[0][2] = lvecT[0]; M[1][2] = lvecT[1]; M[2][2] = 1.0f; + // fill data vector + D[0][0] = f->brushprimit_texdef.coords[0][2]; + D[0][1] = f->brushprimit_texdef.coords[0][0] + f->brushprimit_texdef.coords[0][2]; + D[0][2] = f->brushprimit_texdef.coords[0][1] + f->brushprimit_texdef.coords[0][2]; + D[1][0] = f->brushprimit_texdef.coords[1][2]; + D[1][1] = f->brushprimit_texdef.coords[1][0] + f->brushprimit_texdef.coords[1][2]; + D[1][2] = f->brushprimit_texdef.coords[1][1] + f->brushprimit_texdef.coords[1][2]; + // solve + det = SarrusDet( M[0], M[1], M[2] ); + f->brushprimit_texdef.coords[0][0] = SarrusDet( D[0], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[0][1] = SarrusDet( M[0], D[0], M[2] ) / det; + f->brushprimit_texdef.coords[0][2] = SarrusDet( M[0], M[1], D[0] ) / det; + f->brushprimit_texdef.coords[1][0] = SarrusDet( D[1], M[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][1] = SarrusDet( M[0], D[1], M[2] ) / det; + f->brushprimit_texdef.coords[1][2] = SarrusDet( M[0], M[1], D[1] ) / det; +} + +// texture locking +// called before the points on the face are actually rotated +void RotateFaceTexture_BrushPrimit( face_t *f, int nAxis, float fDeg, vec3_t vOrigin ){ + // this is a placeholder to call the general texture locking algorithm + txlock_bRotation = true; + txl_nAxis = nAxis; + txl_fDeg = fDeg; + VectorCopy( vOrigin, txl_vOrigin ); + TextureLockTransformation_BrushPrimit( f ); +} + +// compute the new brush primit texture matrix for a transformation matrix and a flip order flag (change plane orientation) +// this matches the select_matrix algo used in select.cpp +// this needs to be called on the face BEFORE any geometric transformation +// it will compute the texture matrix that will represent the same texture on the face after the geometric transformation is done +void ApplyMatrix_BrushPrimit( face_t *f, vec3_t matrix[3], vec3_t origin ){ + // this is a placeholder to call the general texture locking algorithm + txlock_bRotation = false; + VectorCopy( matrix[0], txl_matrix[0] ); + VectorCopy( matrix[1], txl_matrix[1] ); + VectorCopy( matrix[2], txl_matrix[2] ); + VectorCopy( origin, txl_origin ); + TextureLockTransformation_BrushPrimit( f ); +} + +// don't do C==A! +void BPMatMul( vec_t A[2][3], vec_t B[2][3], vec_t C[2][3] ){ + C[0][0] = A[0][0] * B[0][0] + A[0][1] * B[1][0]; + C[1][0] = A[1][0] * B[0][0] + A[1][1] * B[1][0]; + C[0][1] = A[0][0] * B[0][1] + A[0][1] * B[1][1]; + C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1]; + C[0][2] = A[0][0] * B[0][2] + A[0][1] * B[1][2] + A[0][2]; + C[1][2] = A[1][0] * B[0][2] + A[1][1] * B[1][2] + A[1][2]; +} + +void BPMatDump( vec_t A[2][3] ){ + Sys_Printf( "%g %g %g\n%g %g %g\n0 0 1\n", A[0][0], A[0][1], A[0][2], A[1][0], A[1][1], A[1][2] ); +} + +void BPMatRotate( vec_t A[2][3], float theta ){ + vec_t m[2][3]; + vec_t aux[2][3]; + memset( &m, 0, sizeof( vec_t ) * 6 ); + m[0][0] = cos( theta * Q_PI / 180.0 ); + m[0][1] = -sin( theta * Q_PI / 180.0 ); + m[1][0] = -m[0][1]; + m[1][1] = m[0][0]; + BPMatMul( A, m, aux ); + BPMatCopy( aux,A ); +} + +// get the relative axes of the current texturing +void BrushPrimit_GetRelativeAxes( face_t *f, vec3_t vecS, vec3_t vecT ){ + vec_t vS[2],vT[2]; + // first we compute them as expressed in plane axis base + // BP matrix has coordinates of plane axis base expressed in geometric axis base + // so we use the line vectors + vS[0] = f->brushprimit_texdef.coords[0][0]; + vS[1] = f->brushprimit_texdef.coords[0][1]; + vT[0] = f->brushprimit_texdef.coords[1][0]; + vT[1] = f->brushprimit_texdef.coords[1][1]; + // now compute those vectors in geometric space + vec3_t texS, texT; // axis base of the plane (geometric) + ComputeAxisBase( f->plane.normal, texS, texT ); + // vecS[] = vS[0].texS[] + vS[1].texT[] + // vecT[] = vT[0].texS[] + vT[1].texT[] + vecS[0] = vS[0] * texS[0] + vS[1] * texT[0]; + vecS[1] = vS[0] * texS[1] + vS[1] * texT[1]; + vecS[2] = vS[0] * texS[2] + vS[1] * texT[2]; + vecT[0] = vT[0] * texS[0] + vT[1] * texT[0]; + vecT[1] = vT[0] * texS[1] + vT[1] * texT[1]; + vecT[2] = vT[0] * texS[2] + vT[1] * texT[2]; +} + +// GL matrix 4x4 product (3D homogeneous matrix) +// NOTE: the crappy thing is that GL doesn't follow the standard convention [line][column] +// otherwise it's all good +void GLMatMul( vec_t M[4][4], vec_t A[4], vec_t B[4] ){ + unsigned short i,j; + for ( i = 0; i < 4; i++ ) + { + B[i] = 0.0; + for ( j = 0; j < 4; j++ ) + { + B[i] += M[j][i] * A[j]; + } + } +} + +qboolean IsBrushPrimitMode(){ + return( g_qeglobals.m_bBrushPrimitMode ); +}