X-Git-Url: http://de.git.xonotic.org/?a=blobdiff_plain;f=radiant%2Fwinding.cpp;h=9651af2c2c027dc665fbda6d9f91dfa7ddb721ec;hb=28c05532c94e82b85bf7324d5c7e0d1f49c8832d;hp=bba895013c7da78c00069c69a7c9a29d4a77f305;hpb=231225d6f97d0b926b2e896e5783cccfbc7c5619;p=xonotic%2Fnetradiant.git diff --git a/radiant/winding.cpp b/radiant/winding.cpp index bba89501..9651af2c 100644 --- a/radiant/winding.cpp +++ b/radiant/winding.cpp @@ -1,23 +1,23 @@ /* -Copyright (C) 1999-2006 Id Software, Inc. and contributors. -For a list of contributors, see the accompanying CONTRIBUTORS file. + Copyright (C) 1999-2006 Id Software, Inc. and contributors. + For a list of contributors, see the accompanying CONTRIBUTORS file. -This file is part of GtkRadiant. + This file is part of GtkRadiant. -GtkRadiant is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + GtkRadiant is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. -GtkRadiant is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + GtkRadiant is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with GtkRadiant; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -*/ + You should have received a copy of the GNU General Public License + along with GtkRadiant; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ #include "winding.h" @@ -26,177 +26,161 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA #include "math/line.h" -inline double plane3_distance_to_point(const Plane3& plane, const DoubleVector3& point) -{ - return vector3_dot(point, plane.normal()) - plane.dist(); +inline double plane3_distance_to_point( const Plane3& plane, const DoubleVector3& point ){ + return vector3_dot( point, plane.normal() ) - plane.dist(); } -inline double plane3_distance_to_point(const Plane3& plane, const Vector3& point) -{ - return vector3_dot(point, plane.normal()) - plane.dist(); +inline double plane3_distance_to_point( const Plane3& plane, const Vector3& point ){ + return vector3_dot( point, plane.normal() ) - plane.dist(); } /// \brief Returns the point at which \p line intersects \p plane, or an undefined value if there is no intersection. -inline DoubleVector3 line_intersect_plane(const DoubleLine& line, const Plane3& plane) -{ - return line.origin + vector3_scaled( - line.direction, - -plane3_distance_to_point(plane, line.origin) - / vector3_dot(line.direction, plane.normal()) - ); +inline DoubleVector3 line_intersect_plane( const DoubleLine& line, const Plane3& plane ){ + return line.origin + vector3_scaled( + line.direction, + -plane3_distance_to_point( plane, line.origin ) + / vector3_dot( line.direction, plane.normal() ) + ); } -inline bool float_is_largest_absolute(double axis, double other) -{ - return fabs(axis) > fabs(other); +inline bool float_is_largest_absolute( double axis, double other ){ + return fabs( axis ) > fabs( other ); } /// \brief Returns the index of the component of \p v that has the largest absolute value. -inline int vector3_largest_absolute_component_index(const DoubleVector3& v) -{ - return (float_is_largest_absolute(v[1], v[0])) - ? (float_is_largest_absolute(v[1], v[2])) - ? 1 - : 2 - : (float_is_largest_absolute(v[0], v[2])) - ? 0 - : 2; +inline int vector3_largest_absolute_component_index( const DoubleVector3& v ){ + return ( float_is_largest_absolute( v[1], v[0] ) ) + ? ( float_is_largest_absolute( v[1], v[2] ) ) + ? 1 + : 2 + : ( float_is_largest_absolute( v[0], v[2] ) ) + ? 0 + : 2; } /// \brief Returns the infinite line that is the intersection of \p plane and \p other. -inline DoubleLine plane3_intersect_plane3(const Plane3& plane, const Plane3& other) -{ - DoubleLine line; - line.direction = vector3_cross(plane.normal(), other.normal()); - switch(vector3_largest_absolute_component_index(line.direction)) - { - case 0: - line.origin.x() = 0; - line.origin.y() = (-other.dist() * plane.normal().z() - -plane.dist() * other.normal().z()) / line.direction.x(); - line.origin.z() = (-plane.dist() * other.normal().y() - -other.dist() * plane.normal().y()) / line.direction.x(); - break; - case 1: - line.origin.x() = (-plane.dist() * other.normal().z() - -other.dist() * plane.normal().z()) / line.direction.y(); - line.origin.y() = 0; - line.origin.z() = (-other.dist() * plane.normal().x() - -plane.dist() * other.normal().x()) / line.direction.y(); - break; - case 2: - line.origin.x() = (-other.dist() * plane.normal().y() - -plane.dist() * other.normal().y()) / line.direction.z(); - line.origin.y() = (-plane.dist() * other.normal().x() - -other.dist() * plane.normal().x()) / line.direction.z(); - line.origin.z() = 0; - break; - default: - break; - } - - return line; +inline DoubleLine plane3_intersect_plane3( const Plane3& plane, const Plane3& other ){ + DoubleLine line; + line.direction = vector3_cross( plane.normal(), other.normal() ); + switch ( vector3_largest_absolute_component_index( line.direction ) ) + { + case 0: + line.origin.x() = 0; + line.origin.y() = ( -other.dist() * plane.normal().z() - -plane.dist() * other.normal().z() ) / line.direction.x(); + line.origin.z() = ( -plane.dist() * other.normal().y() - -other.dist() * plane.normal().y() ) / line.direction.x(); + break; + case 1: + line.origin.x() = ( -plane.dist() * other.normal().z() - -other.dist() * plane.normal().z() ) / line.direction.y(); + line.origin.y() = 0; + line.origin.z() = ( -other.dist() * plane.normal().x() - -plane.dist() * other.normal().x() ) / line.direction.y(); + break; + case 2: + line.origin.x() = ( -other.dist() * plane.normal().y() - -plane.dist() * other.normal().y() ) / line.direction.z(); + line.origin.y() = ( -plane.dist() * other.normal().x() - -other.dist() * plane.normal().x() ) / line.direction.z(); + line.origin.z() = 0; + break; + default: + break; + } + + return line; } /// \brief Keep the value of \p infinity as small as possible to improve precision in Winding_Clip. -void Winding_createInfinite(FixedWinding& winding, const Plane3& plane, double infinity) -{ - double max = -infinity; - int x = -1; - for (int i=0 ; i<3; i++) - { - double d = fabs(plane.normal()[i]); - if (d > max) - { - x = i; - max = d; - } - } - if(x == -1) - { - globalErrorStream() << "invalid plane\n"; - return; - } - - DoubleVector3 vup = g_vector3_identity; - switch (x) - { - case 0: - case 1: - vup[2] = 1; - break; - case 2: - vup[0] = 1; - break; - } - - - vector3_add(vup, vector3_scaled(plane.normal(), -vector3_dot(vup, plane.normal()))); - vector3_normalise(vup); - - DoubleVector3 org = vector3_scaled(plane.normal(), plane.dist()); - - DoubleVector3 vright = vector3_cross(vup, plane.normal()); - - vector3_scale(vup, infinity); - vector3_scale(vright, infinity); - - // project a really big axis aligned box onto the plane - - DoubleLine r1, r2, r3, r4; - r1.origin = vector3_added(vector3_subtracted(org, vright), vup); - r1.direction = vector3_normalised(vright); - winding.push_back(FixedWindingVertex(r1.origin, r1, c_brush_maxFaces)); - r2.origin = vector3_added(vector3_added(org, vright), vup); - r2.direction = vector3_normalised(vector3_negated(vup)); - winding.push_back(FixedWindingVertex(r2.origin, r2, c_brush_maxFaces)); - r3.origin = vector3_subtracted(vector3_added(org, vright), vup); - r3.direction = vector3_normalised(vector3_negated(vright)); - winding.push_back(FixedWindingVertex(r3.origin, r3, c_brush_maxFaces)); - r4.origin = vector3_subtracted(vector3_subtracted(org, vright), vup); - r4.direction = vector3_normalised(vup); - winding.push_back(FixedWindingVertex(r4.origin, r4, c_brush_maxFaces)); +void Winding_createInfinite( FixedWinding& winding, const Plane3& plane, double infinity ){ + double max = -infinity; + int x = -1; + for ( int i = 0 ; i < 3; i++ ) + { + double d = fabs( plane.normal()[i] ); + if ( d > max ) { + x = i; + max = d; + } + } + if ( x == -1 ) { + globalErrorStream() << "invalid plane\n"; + return; + } + + DoubleVector3 vup = g_vector3_identity; + switch ( x ) + { + case 0: + case 1: + vup[2] = 1; + break; + case 2: + vup[0] = 1; + break; + } + + + vector3_add( vup, vector3_scaled( plane.normal(), -vector3_dot( vup, plane.normal() ) ) ); + vector3_normalise( vup ); + + DoubleVector3 org = vector3_scaled( plane.normal(), plane.dist() ); + + DoubleVector3 vright = vector3_cross( vup, plane.normal() ); + + vector3_scale( vup, infinity ); + vector3_scale( vright, infinity ); + + // project a really big axis aligned box onto the plane + + DoubleLine r1, r2, r3, r4; + r1.origin = vector3_added( vector3_subtracted( org, vright ), vup ); + r1.direction = vector3_normalised( vright ); + winding.push_back( FixedWindingVertex( r1.origin, r1, c_brush_maxFaces ) ); + r2.origin = vector3_added( vector3_added( org, vright ), vup ); + r2.direction = vector3_normalised( vector3_negated( vup ) ); + winding.push_back( FixedWindingVertex( r2.origin, r2, c_brush_maxFaces ) ); + r3.origin = vector3_subtracted( vector3_added( org, vright ), vup ); + r3.direction = vector3_normalised( vector3_negated( vright ) ); + winding.push_back( FixedWindingVertex( r3.origin, r3, c_brush_maxFaces ) ); + r4.origin = vector3_subtracted( vector3_subtracted( org, vright ), vup ); + r4.direction = vector3_normalised( vup ); + winding.push_back( FixedWindingVertex( r4.origin, r4, c_brush_maxFaces ) ); } -inline PlaneClassification Winding_ClassifyDistance(const double distance, const double epsilon) -{ - if(distance > epsilon) - { - return ePlaneFront; - } - if(distance < -epsilon) - { - return ePlaneBack; - } - return ePlaneOn; +inline PlaneClassification Winding_ClassifyDistance( const double distance, const double epsilon ){ + if ( distance > epsilon ) { + return ePlaneFront; + } + if ( distance < -epsilon ) { + return ePlaneBack; + } + return ePlaneOn; } /// \brief Returns true if /// !flipped && winding is completely BACK or ON /// or flipped && winding is completely FRONT or ON -bool Winding_TestPlane(const Winding& winding, const Plane3& plane, bool flipped) -{ - const int test = (flipped) ? ePlaneBack : ePlaneFront; - for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) - { - if(test == Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)) - { - return false; - } - } - return true; +bool Winding_TestPlane( const Winding& winding, const Plane3& plane, bool flipped ){ + const int test = ( flipped ) ? ePlaneBack : ePlaneFront; + for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i ) + { + if ( test == Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON ) ) { + return false; + } + } + return true; } /// \brief Returns true if any point in \p w1 is in front of plane2, or any point in \p w2 is in front of plane1 -bool Winding_PlanesConcave(const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2) -{ - return !Winding_TestPlane(w1, plane2, false) || !Winding_TestPlane(w2, plane1, false); +bool Winding_PlanesConcave( const Winding& w1, const Winding& w2, const Plane3& plane1, const Plane3& plane2 ){ + return !Winding_TestPlane( w1, plane2, false ) || !Winding_TestPlane( w2, plane1, false ); } -brushsplit_t Winding_ClassifyPlane(const Winding& winding, const Plane3& plane) -{ - brushsplit_t split; - for(Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) - { - ++split.counts[Winding_ClassifyDistance(plane3_distance_to_point(plane, (*i).vertex), ON_EPSILON)]; - } - return split; +brushsplit_t Winding_ClassifyPlane( const Winding& winding, const Plane3& plane ){ + brushsplit_t split; + for ( Winding::const_iterator i = winding.begin(); i != winding.end(); ++i ) + { + ++split.counts[Winding_ClassifyDistance( plane3_distance_to_point( plane, ( *i ).vertex ), ON_EPSILON )]; + } + return split; } @@ -206,141 +190,126 @@ const double DEBUG_EPSILON_SQUARED = DEBUG_EPSILON * DEBUG_EPSILON; #define WINDING_DEBUG 0 /// \brief Clip \p winding which lies on \p plane by \p clipPlane, resulting in \p clipped. -/// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding. -/// If \p winding is completely in back of the plane, \p clipped will be empty. +/// If \p winding is completely in front of the plane, \p clipped will be identical to \p winding. +/// If \p winding is completely in back of the plane, \p clipped will be empty. /// If \p winding intersects the plane, the edge of \p clipped which lies on \p clipPlane will store the value of \p adjacent. -void Winding_Clip(const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped) -{ - PlaneClassification classification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding.back().vertex), ON_EPSILON); - PlaneClassification nextClassification; - // for each edge - for(std::size_t next = 0, i = winding.size()-1; next != winding.size(); i = next, ++next, classification = nextClassification) - { - nextClassification = Winding_ClassifyDistance(plane3_distance_to_point(clipPlane, winding[next].vertex), ON_EPSILON); - const FixedWindingVertex& vertex = winding[i]; - - // if first vertex of edge is ON - if(classification == ePlaneOn) - { - // append first vertex to output winding - if(nextClassification == ePlaneBack) - { - // this edge lies on the clip plane - clipped.push_back(FixedWindingVertex(vertex.vertex, plane3_intersect_plane3(plane, clipPlane), adjacent)); - } - else - { - clipped.push_back(vertex); - } - continue; - } - - // if first vertex of edge is FRONT - if(classification == ePlaneFront) - { - // add first vertex to output winding - clipped.push_back(vertex); - } - // if second vertex of edge is ON - if(nextClassification == ePlaneOn) - { - continue; - } - // else if second vertex of edge is same as first - else if(nextClassification == classification) - { - continue; - } - // else if first vertex of edge is FRONT and there are only two edges - else if(classification == ePlaneFront && winding.size() == 2) - { - continue; - } - // else first vertex is FRONT and second is BACK or vice versa - else - { - // append intersection point of line and plane to output winding - DoubleVector3 mid(line_intersect_plane(vertex.edge, clipPlane)); - - if(classification == ePlaneFront) - { - // this edge lies on the clip plane - clipped.push_back(FixedWindingVertex(mid, plane3_intersect_plane3(plane, clipPlane), adjacent)); - } - else - { - clipped.push_back(FixedWindingVertex(mid, vertex.edge, vertex.adjacent)); - } - } - } +void Winding_Clip( const FixedWinding& winding, const Plane3& plane, const Plane3& clipPlane, std::size_t adjacent, FixedWinding& clipped ){ + PlaneClassification classification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding.back().vertex ), ON_EPSILON ); + PlaneClassification nextClassification; + // for each edge + for ( std::size_t next = 0, i = winding.size() - 1; next != winding.size(); i = next, ++next, classification = nextClassification ) + { + nextClassification = Winding_ClassifyDistance( plane3_distance_to_point( clipPlane, winding[next].vertex ), ON_EPSILON ); + const FixedWindingVertex& vertex = winding[i]; + + // if first vertex of edge is ON + if ( classification == ePlaneOn ) { + // append first vertex to output winding + if ( nextClassification == ePlaneBack ) { + // this edge lies on the clip plane + clipped.push_back( FixedWindingVertex( vertex.vertex, plane3_intersect_plane3( plane, clipPlane ), adjacent ) ); + } + else + { + clipped.push_back( vertex ); + } + continue; + } + + // if first vertex of edge is FRONT + if ( classification == ePlaneFront ) { + // add first vertex to output winding + clipped.push_back( vertex ); + } + // if second vertex of edge is ON + if ( nextClassification == ePlaneOn ) { + continue; + } + // else if second vertex of edge is same as first + else if ( nextClassification == classification ) { + continue; + } + // else if first vertex of edge is FRONT and there are only two edges + else if ( classification == ePlaneFront && winding.size() == 2 ) { + continue; + } + // else first vertex is FRONT and second is BACK or vice versa + else + { + // append intersection point of line and plane to output winding + DoubleVector3 mid( line_intersect_plane( vertex.edge, clipPlane ) ); + + if ( classification == ePlaneFront ) { + // this edge lies on the clip plane + clipped.push_back( FixedWindingVertex( mid, plane3_intersect_plane3( plane, clipPlane ), adjacent ) ); + } + else + { + clipped.push_back( FixedWindingVertex( mid, vertex.edge, vertex.adjacent ) ); + } + } + } } -std::size_t Winding_FindAdjacent(const Winding& winding, std::size_t face) -{ - for(std::size_t i=0; i dist_best) - { - dist_best = dist_squared; - index_best = i; - } - } - return index_best; + if ( dist_squared > dist_best ) { + dist_best = dist_squared; + index_best = i; + } + } + return index_best; } -std::size_t Winding_Opposite(const Winding& winding, const std::size_t index) -{ - return Winding_Opposite(winding, index, Winding_next(winding, index)); +std::size_t Winding_Opposite( const Winding& winding, const std::size_t index ){ + return Winding_Opposite( winding, index, Winding_next( winding, index ) ); } /// \brief Calculate the \p centroid of the polygon defined by \p winding which lies on plane \p plane. -void Winding_Centroid(const Winding& winding, const Plane3& plane, Vector3& centroid) -{ - double area2 = 0, x_sum = 0, y_sum = 0; - const ProjectionAxis axis = projectionaxis_for_normal(plane.normal()); - const indexremap_t remap = indexremap_for_projectionaxis(axis); - for(std::size_t i = winding.numpoints-1, j = 0; j < winding.numpoints; i = j, ++j) - { - const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y]; - area2 += ai; - x_sum += (winding[j].vertex[remap.x] + winding[i].vertex[remap.x]) * ai; - y_sum += (winding[j].vertex[remap.y] + winding[i].vertex[remap.y]) * ai; - } - - centroid[remap.x] = static_cast(x_sum / (3 * area2)); - centroid[remap.y] = static_cast(y_sum / (3 * area2)); - { - Ray ray(Vector3(0, 0, 0), Vector3(0, 0, 0)); - ray.origin[remap.x] = centroid[remap.x]; - ray.origin[remap.y] = centroid[remap.y]; - ray.direction[remap.z] = 1; - centroid[remap.z] = static_cast(ray_distance_to_plane(ray, plane)); - } +void Winding_Centroid( const Winding& winding, const Plane3& plane, Vector3& centroid ){ + double area2 = 0, x_sum = 0, y_sum = 0; + const ProjectionAxis axis = projectionaxis_for_normal( plane.normal() ); + const indexremap_t remap = indexremap_for_projectionaxis( axis ); + for ( std::size_t i = winding.numpoints - 1, j = 0; j < winding.numpoints; i = j, ++j ) + { + const double ai = winding[i].vertex[remap.x] * winding[j].vertex[remap.y] - winding[j].vertex[remap.x] * winding[i].vertex[remap.y]; + area2 += ai; + x_sum += ( winding[j].vertex[remap.x] + winding[i].vertex[remap.x] ) * ai; + y_sum += ( winding[j].vertex[remap.y] + winding[i].vertex[remap.y] ) * ai; + } + + centroid[remap.x] = static_cast( x_sum / ( 3 * area2 ) ); + centroid[remap.y] = static_cast( y_sum / ( 3 * area2 ) ); + { + Ray ray( Vector3( 0, 0, 0 ), Vector3( 0, 0, 0 ) ); + ray.origin[remap.x] = centroid[remap.x]; + ray.origin[remap.y] = centroid[remap.y]; + ray.direction[remap.z] = 1; + centroid[remap.z] = static_cast( ray_distance_to_plane( ray, plane ) ); + } }