]> de.git.xonotic.org Git - voretournament/voretournament.git/blobdiff - misc/mediasource/netradiant-src/libs/mathlib/mathlib.c
Rename mediasource to source
[voretournament/voretournament.git] / misc / mediasource / netradiant-src / libs / mathlib / mathlib.c
diff --git a/misc/mediasource/netradiant-src/libs/mathlib/mathlib.c b/misc/mediasource/netradiant-src/libs/mathlib/mathlib.c
deleted file mode 100644 (file)
index 98fb972..0000000
+++ /dev/null
@@ -1,818 +0,0 @@
-/*
-Copyright (C) 1999-2006 Id Software, Inc. and contributors.
-For a list of contributors, see the accompanying CONTRIBUTORS file.
-
-This file is part of GtkRadiant.
-
-GtkRadiant is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
-
-GtkRadiant is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GtkRadiant; if not, write to the Free Software
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
-*/
-
-// mathlib.c -- math primitives
-#include "mathlib.h"
-// we use memcpy and memset
-#include <memory.h>
-
-const vec3_t vec3_origin = {0.0f,0.0f,0.0f};
-
-const vec3_t g_vec3_axis_x = { 1, 0, 0, };
-const vec3_t g_vec3_axis_y = { 0, 1, 0, };
-const vec3_t g_vec3_axis_z = { 0, 0, 1, };
-
-/*
-================
-VectorIsOnAxis
-================
-*/
-qboolean VectorIsOnAxis(vec3_t v)
-{
-       int     i, zeroComponentCount;
-
-       zeroComponentCount = 0;
-       for (i = 0; i < 3; i++)
-       {
-               if (v[i] == 0.0)
-               {
-                       zeroComponentCount++;
-               }
-       }
-
-       if (zeroComponentCount > 1)
-       {
-               // The zero vector will be on axis.
-               return qtrue;
-       }
-
-       return qfalse;
-}
-
-/*
-================
-VectorIsOnAxialPlane
-================
-*/
-qboolean VectorIsOnAxialPlane(vec3_t v)
-{
-       int     i;
-
-       for (i = 0; i < 3; i++)
-       {
-               if (v[i] == 0.0)
-               {
-                       // The zero vector will be on axial plane.
-                       return qtrue;
-               }
-       }
-
-       return qfalse;
-}
-
-/*
-================
-MakeNormalVectors
-
-Given a normalized forward vector, create two
-other perpendicular vectors
-================
-*/
-void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
-{
-       float           d;
-
-       // this rotate and negate guarantees a vector
-       // not colinear with the original
-       right[1] = -forward[0];
-       right[2] = forward[1];
-       right[0] = forward[2];
-
-       d = DotProduct (right, forward);
-       VectorMA (right, -d, forward, right);
-       VectorNormalize (right, right);
-       CrossProduct (right, forward, up);
-}
-
-vec_t VectorLength(const vec3_t v)
-{
-       int             i;
-       float   length;
-       
-       length = 0.0f;
-       for (i=0 ; i< 3 ; i++)
-               length += v[i]*v[i];
-       length = (float)sqrt (length);
-
-       return length;
-}
-
-qboolean VectorCompare (const vec3_t v1, const vec3_t v2)
-{
-       int             i;
-       
-       for (i=0 ; i<3 ; i++)
-               if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
-                       return qfalse;
-                       
-       return qtrue;
-}
-
-void VectorMA( const vec3_t va, vec_t scale, const vec3_t vb, vec3_t vc )
-{
-       vc[0] = va[0] + scale*vb[0];
-       vc[1] = va[1] + scale*vb[1];
-       vc[2] = va[2] + scale*vb[2];
-}
-
-void _CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross)
-{
-       cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
-       cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
-       cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
-}
-
-vec_t _DotProduct (vec3_t v1, vec3_t v2)
-{
-       return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
-}
-
-void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
-{
-       out[0] = va[0]-vb[0];
-       out[1] = va[1]-vb[1];
-       out[2] = va[2]-vb[2];
-}
-
-void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
-{
-       out[0] = va[0]+vb[0];
-       out[1] = va[1]+vb[1];
-       out[2] = va[2]+vb[2];
-}
-
-void _VectorCopy (vec3_t in, vec3_t out)
-{
-       out[0] = in[0];
-       out[1] = in[1];
-       out[2] = in[2];
-}
-
-vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
-
-#if MATHLIB_VECTOR_NORMALIZE_PRECISION_FIX
-
-       // The sqrt() function takes double as an input and returns double as an
-       // output according the the man pages on Debian and on FreeBSD.  Therefore,
-       // I don't see a reason why using a double outright (instead of using the
-       // vec_accu_t alias for example) could possibly be frowned upon.
-
-       double  x, y, z, length;
-
-       x = (double) in[0];
-       y = (double) in[1];
-       z = (double) in[2];
-
-       length = sqrt((x * x) + (y * y) + (z * z));
-       if (length == 0)
-       {
-               VectorClear (out);
-               return 0;
-       }
-
-       out[0] = (vec_t) (x / length);
-       out[1] = (vec_t) (y / length);
-       out[2] = (vec_t) (z / length);
-
-       return (vec_t) length;
-
-#else
-
-       vec_t   length, ilength;
-
-       length = (vec_t)sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
-       if (length == 0)
-       {
-               VectorClear (out);
-               return 0;
-       }
-
-       ilength = 1.0f/length;
-       out[0] = in[0]*ilength;
-       out[1] = in[1]*ilength;
-       out[2] = in[2]*ilength;
-
-       return length;
-
-#endif
-
-}
-
-vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
-       float   max, scale;
-
-       max = in[0];
-       if (in[1] > max)
-               max = in[1];
-       if (in[2] > max)
-               max = in[2];
-
-       if (max == 0) {
-               out[0] = out[1] = out[2] = 1.0;
-               return 0;
-       }
-
-       scale = 1.0f / max;
-
-       VectorScale (in, scale, out);
-
-       return max;
-}
-
-void VectorInverse (vec3_t v)
-{
-       v[0] = -v[0];
-       v[1] = -v[1];
-       v[2] = -v[2];
-}
-
-/*
-void VectorScale (vec3_t v, vec_t scale, vec3_t out)
-{
-       out[0] = v[0] * scale;
-       out[1] = v[1] * scale;
-       out[2] = v[2] * scale;
-}
-*/
-
-void VectorRotate (vec3_t vIn, vec3_t vRotation, vec3_t out)
-{
-  vec3_t vWork, va;
-  int nIndex[3][2];
-  int i;
-
-  VectorCopy(vIn, va);
-  VectorCopy(va, vWork);
-  nIndex[0][0] = 1; nIndex[0][1] = 2;
-  nIndex[1][0] = 2; nIndex[1][1] = 0;
-  nIndex[2][0] = 0; nIndex[2][1] = 1;
-
-  for (i = 0; i < 3; i++)
-  {
-    if (vRotation[i] != 0)
-    {
-      float dAngle = vRotation[i] * Q_PI / 180.0f;
-           float c = (vec_t)cos(dAngle);
-      float s = (vec_t)sin(dAngle);
-      vWork[nIndex[i][0]] = va[nIndex[i][0]] * c - va[nIndex[i][1]] * s;
-      vWork[nIndex[i][1]] = va[nIndex[i][0]] * s + va[nIndex[i][1]] * c;
-    }
-    VectorCopy(vWork, va);
-  }
-  VectorCopy(vWork, out);
-}
-
-void VectorRotateOrigin (vec3_t vIn, vec3_t vRotation, vec3_t vOrigin, vec3_t out)
-{
-  vec3_t vTemp, vTemp2;
-
-  VectorSubtract(vIn, vOrigin, vTemp);
-  VectorRotate(vTemp, vRotation, vTemp2);
-  VectorAdd(vTemp2, vOrigin, out);
-}
-
-void VectorPolar(vec3_t v, float radius, float theta, float phi)
-{
-       v[0]=(float)(radius * cos(theta) * cos(phi));
-       v[1]=(float)(radius * sin(theta) * cos(phi));
-       v[2]=(float)(radius * sin(phi));
-}
-
-void VectorSnap(vec3_t v)
-{
-  int i;
-  for (i = 0; i < 3; i++)
-  {
-    v[i] = (vec_t)FLOAT_TO_INTEGER(v[i]);
-  }
-}
-
-void VectorISnap(vec3_t point, int snap)
-{
-  int i;
-       for (i = 0 ;i < 3 ; i++)
-       {
-               point[i] = (vec_t)FLOAT_SNAP(point[i], snap);
-       }
-}
-
-void VectorFSnap(vec3_t point, float snap)
-{
-  int i;
-       for (i = 0 ;i < 3 ; i++)
-       {
-               point[i] = (vec_t)FLOAT_SNAP(point[i], snap);
-       }
-}
-
-void _Vector5Add (vec5_t va, vec5_t vb, vec5_t out)
-{
-       out[0] = va[0]+vb[0];
-       out[1] = va[1]+vb[1];
-       out[2] = va[2]+vb[2];
-       out[3] = va[3]+vb[3];
-       out[4] = va[4]+vb[4];
-}
-
-void _Vector5Scale (vec5_t v, vec_t scale, vec5_t out)
-{
-       out[0] = v[0] * scale;
-       out[1] = v[1] * scale;
-       out[2] = v[2] * scale;
-       out[3] = v[3] * scale;
-       out[4] = v[4] * scale;
-}
-
-void _Vector53Copy (vec5_t in, vec3_t out)
-{
-       out[0] = in[0];
-       out[1] = in[1];
-       out[2] = in[2];
-}
-
-// NOTE: added these from Ritual's Q3Radiant
-#define INVALID_BOUNDS 99999
-void ClearBounds (vec3_t mins, vec3_t maxs)
-{
-       mins[0] = mins[1] = mins[2] = +INVALID_BOUNDS;
-       maxs[0] = maxs[1] = maxs[2] = -INVALID_BOUNDS;
-}
-
-void AddPointToBounds (vec3_t v, vec3_t mins, vec3_t maxs)
-{
-       int             i;
-       vec_t   val;
-
-       if(mins[0] == +INVALID_BOUNDS)
-       if(maxs[0] == -INVALID_BOUNDS)
-       {
-               VectorCopy(v, mins);
-               VectorCopy(v, maxs);
-       }
-
-       for (i=0 ; i<3 ; i++)
-       {
-               val = v[i];
-               if (val < mins[i])
-                       mins[i] = val;
-               if (val > maxs[i])
-                       maxs[i] = val;
-       }
-}
-
-void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
-{
-       float           angle;
-       static float            sr, sp, sy, cr, cp, cy;
-       // static to help MS compiler fp bugs
-       
-       angle = angles[YAW] * (Q_PI*2.0f / 360.0f);
-       sy = (vec_t)sin(angle);
-       cy = (vec_t)cos(angle);
-       angle = angles[PITCH] * (Q_PI*2.0f / 360.0f);
-       sp = (vec_t)sin(angle);
-       cp = (vec_t)cos(angle);
-       angle = angles[ROLL] * (Q_PI*2.0f / 360.0f);
-       sr = (vec_t)sin(angle);
-       cr = (vec_t)cos(angle);
-       
-       if (forward)
-       {
-               forward[0] = cp*cy;
-               forward[1] = cp*sy;
-               forward[2] = -sp;
-       }
-       if (right)
-       {
-               right[0] = -sr*sp*cy+cr*sy;
-               right[1] = -sr*sp*sy-cr*cy;
-               right[2] = -sr*cp;
-       }
-       if (up)
-       {
-               up[0] = cr*sp*cy+sr*sy;
-               up[1] = cr*sp*sy-sr*cy;
-               up[2] = cr*cp;
-       }
-}
-
-void VectorToAngles( vec3_t vec, vec3_t angles )
-{
-       float forward;
-       float yaw, pitch;
-       
-       if ( ( vec[ 0 ] == 0 ) && ( vec[ 1 ] == 0 ) )
-       {
-               yaw = 0;
-               if ( vec[ 2 ] > 0 )
-               {
-                       pitch = 90;
-               }
-               else
-               {
-                       pitch = 270;
-               }
-       }
-       else
-       {
-               yaw = (vec_t)atan2( vec[ 1 ], vec[ 0 ] ) * 180 / Q_PI;
-               if ( yaw < 0 )
-               {
-                       yaw += 360;
-               }
-               
-               forward = ( float )sqrt( vec[ 0 ] * vec[ 0 ] + vec[ 1 ] * vec[ 1 ] );
-               pitch = (vec_t)atan2( vec[ 2 ], forward ) * 180 / Q_PI;
-               if ( pitch < 0 )
-               {
-                       pitch += 360;
-               }
-       }
-       
-       angles[ 0 ] = pitch;
-       angles[ 1 ] = yaw;
-       angles[ 2 ] = 0;
-}
-
-/*
-=====================
-PlaneFromPoints
-
-Returns false if the triangle is degenrate.
-The normal will point out of the clock for clockwise ordered points
-=====================
-*/
-qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
-       vec3_t  d1, d2;
-
-       VectorSubtract( b, a, d1 );
-       VectorSubtract( c, a, d2 );
-       CrossProduct( d2, d1, plane );
-       if ( VectorNormalize( plane, plane ) == 0 ) {
-               return qfalse;
-       }
-
-       plane[3] = DotProduct( a, plane );
-       return qtrue;
-}
-
-/*
-** NormalToLatLong
-**
-** We use two byte encoded normals in some space critical applications.
-** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
-** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
-**
-*/
-void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
-       // check for singularities
-       if ( normal[0] == 0 && normal[1] == 0 ) {
-               if ( normal[2] > 0 ) {
-                       bytes[0] = 0;
-                       bytes[1] = 0;           // lat = 0, long = 0
-               } else {
-                       bytes[0] = 128;
-                       bytes[1] = 0;           // lat = 0, long = 128
-               }
-       } else {
-               int     a, b;
-
-               a = (int)( RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ) );
-               a &= 0xff;
-
-               b = (int)( RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ) );
-               b &= 0xff;
-
-               bytes[0] = b;   // longitude
-               bytes[1] = a;   // lattitude
-       }
-}
-
-/*
-=================
-PlaneTypeForNormal
-=================
-*/
-int    PlaneTypeForNormal (vec3_t normal) {
-       if (normal[0] == 1.0 || normal[0] == -1.0)
-               return PLANE_X;
-       if (normal[1] == 1.0 || normal[1] == -1.0)
-               return PLANE_Y;
-       if (normal[2] == 1.0 || normal[2] == -1.0)
-               return PLANE_Z;
-       
-       return PLANE_NON_AXIAL;
-}
-
-/*
-================
-MatrixMultiply
-================
-*/
-void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
-       out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
-                               in1[0][2] * in2[2][0];
-       out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
-                               in1[0][2] * in2[2][1];
-       out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
-                               in1[0][2] * in2[2][2];
-       out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
-                               in1[1][2] * in2[2][0];
-       out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
-                               in1[1][2] * in2[2][1];
-       out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
-                               in1[1][2] * in2[2][2];
-       out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
-                               in1[2][2] * in2[2][0];
-       out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
-                               in1[2][2] * in2[2][1];
-       out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
-                               in1[2][2] * in2[2][2];
-}
-
-void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
-{
-       float d;
-       vec3_t n;
-       float inv_denom;
-
-       inv_denom = 1.0F / DotProduct( normal, normal );
-
-       d = DotProduct( normal, p ) * inv_denom;
-
-       n[0] = normal[0] * inv_denom;
-       n[1] = normal[1] * inv_denom;
-       n[2] = normal[2] * inv_denom;
-
-       dst[0] = p[0] - d * n[0];
-       dst[1] = p[1] - d * n[1];
-       dst[2] = p[2] - d * n[2];
-}
-
-/*
-** assumes "src" is normalized
-*/
-void PerpendicularVector( vec3_t dst, const vec3_t src )
-{
-       int     pos;
-       int i;
-       vec_t minelem = 1.0F;
-       vec3_t tempvec;
-
-       /*
-       ** find the smallest magnitude axially aligned vector
-       */
-       for ( pos = 0, i = 0; i < 3; i++ )
-       {
-               if ( fabs( src[i] ) < minelem )
-               {
-                       pos = i;
-                       minelem = (vec_t)fabs( src[i] );
-               }
-       }
-       tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
-       tempvec[pos] = 1.0F;
-
-       /*
-       ** project the point onto the plane defined by src
-       */
-       ProjectPointOnPlane( dst, tempvec, src );
-
-       /*
-       ** normalize the result
-       */
-       VectorNormalize( dst, dst );
-}
-
-/*
-===============
-RotatePointAroundVector
-
-This is not implemented very well...
-===============
-*/
-void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
-                                                        float degrees ) {
-       float   m[3][3];
-       float   im[3][3];
-       float   zrot[3][3];
-       float   tmpmat[3][3];
-       float   rot[3][3];
-       int     i;
-       vec3_t vr, vup, vf;
-       float   rad;
-
-       vf[0] = dir[0];
-       vf[1] = dir[1];
-       vf[2] = dir[2];
-
-       PerpendicularVector( vr, dir );
-       CrossProduct( vr, vf, vup );
-
-       m[0][0] = vr[0];
-       m[1][0] = vr[1];
-       m[2][0] = vr[2];
-
-       m[0][1] = vup[0];
-       m[1][1] = vup[1];
-       m[2][1] = vup[2];
-
-       m[0][2] = vf[0];
-       m[1][2] = vf[1];
-       m[2][2] = vf[2];
-
-       memcpy( im, m, sizeof( im ) );
-
-       im[0][1] = m[1][0];
-       im[0][2] = m[2][0];
-       im[1][0] = m[0][1];
-       im[1][2] = m[2][1];
-       im[2][0] = m[0][2];
-       im[2][1] = m[1][2];
-
-       memset( zrot, 0, sizeof( zrot ) );
-       zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
-
-       rad = (float)DEG2RAD( degrees );
-       zrot[0][0] = (vec_t)cos( rad );
-       zrot[0][1] = (vec_t)sin( rad );
-       zrot[1][0] = (vec_t)-sin( rad );
-       zrot[1][1] = (vec_t)cos( rad );
-
-       MatrixMultiply( m, zrot, tmpmat );
-       MatrixMultiply( tmpmat, im, rot );
-
-       for ( i = 0; i < 3; i++ ) {
-               dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
-       }
-}
-
-
-////////////////////////////////////////////////////////////////////////////////
-// Below is double-precision math stuff.  This was initially needed by the new
-// "base winding" code in q3map2 brush processing in order to fix the famous
-// "disappearing triangles" issue.  These definitions can be used wherever extra
-// precision is needed.
-////////////////////////////////////////////////////////////////////////////////
-
-/*
-=================
-VectorLengthAccu
-=================
-*/
-vec_accu_t VectorLengthAccu(const vec3_accu_t v)
-{
-       return (vec_accu_t) sqrt((v[0] * v[0]) + (v[1] * v[1]) + (v[2] * v[2]));
-}
-
-/*
-=================
-DotProductAccu
-=================
-*/
-vec_accu_t DotProductAccu(const vec3_accu_t a, const vec3_accu_t b)
-{
-       return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
-}
-
-/*
-=================
-VectorSubtractAccu
-=================
-*/
-void VectorSubtractAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
-{
-       out[0] = a[0] - b[0];
-       out[1] = a[1] - b[1];
-       out[2] = a[2] - b[2];
-}
-
-/*
-=================
-VectorAddAccu
-=================
-*/
-void VectorAddAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
-{
-       out[0] = a[0] + b[0];
-       out[1] = a[1] + b[1];
-       out[2] = a[2] + b[2];
-}
-
-/*
-=================
-VectorCopyAccu
-=================
-*/
-void VectorCopyAccu(const vec3_accu_t in, vec3_accu_t out)
-{
-       out[0] = in[0];
-       out[1] = in[1];
-       out[2] = in[2];
-}
-
-/*
-=================
-VectorScaleAccu
-=================
-*/
-void VectorScaleAccu(const vec3_accu_t in, vec_accu_t scaleFactor, vec3_accu_t out)
-{
-       out[0] = in[0] * scaleFactor;
-       out[1] = in[1] * scaleFactor;
-       out[2] = in[2] * scaleFactor;
-}
-
-/*
-=================
-CrossProductAccu
-=================
-*/
-void CrossProductAccu(const vec3_accu_t a, const vec3_accu_t b, vec3_accu_t out)
-{
-       out[0] = (a[1] * b[2]) - (a[2] * b[1]);
-       out[1] = (a[2] * b[0]) - (a[0] * b[2]);
-       out[2] = (a[0] * b[1]) - (a[1] * b[0]);
-}
-
-/*
-=================
-Q_rintAccu
-=================
-*/
-vec_accu_t Q_rintAccu(vec_accu_t val)
-{
-       return (vec_accu_t) floor(val + 0.5);
-}
-
-/*
-=================
-VectorCopyAccuToRegular
-=================
-*/
-void VectorCopyAccuToRegular(const vec3_accu_t in, vec3_t out)
-{
-       out[0] = (vec_t) in[0];
-       out[1] = (vec_t) in[1];
-       out[2] = (vec_t) in[2];
-}
-
-/*
-=================
-VectorCopyRegularToAccu
-=================
-*/
-void VectorCopyRegularToAccu(const vec3_t in, vec3_accu_t out)
-{
-       out[0] = (vec_accu_t) in[0];
-       out[1] = (vec_accu_t) in[1];
-       out[2] = (vec_accu_t) in[2];
-}
-
-/*
-=================
-VectorNormalizeAccu
-=================
-*/
-vec_accu_t VectorNormalizeAccu(const vec3_accu_t in, vec3_accu_t out)
-{
-       // The sqrt() function takes double as an input and returns double as an
-       // output according the the man pages on Debian and on FreeBSD.  Therefore,
-       // I don't see a reason why using a double outright (instead of using the
-       // vec_accu_t alias for example) could possibly be frowned upon.
-
-       vec_accu_t      length;
-
-       length = (vec_accu_t) sqrt((in[0] * in[0]) + (in[1] * in[1]) + (in[2] * in[2]));
-       if (length == 0)
-       {
-               VectorClear(out);
-               return 0;
-       }
-
-       out[0] = in[0] / length;
-       out[1] = in[1] / length;
-       out[2] = in[2] / length;
-
-       return length;
-}
-
-