]> de.git.xonotic.org Git - voretournament/voretournament.git/blobdiff - misc/mediasource/netradiant-src/libs/render.h
Move the netradiant and fteqcc sources
[voretournament/voretournament.git] / misc / mediasource / netradiant-src / libs / render.h
diff --git a/misc/mediasource/netradiant-src/libs/render.h b/misc/mediasource/netradiant-src/libs/render.h
new file mode 100644 (file)
index 0000000..fb24365
--- /dev/null
@@ -0,0 +1,1372 @@
+/*
+Copyright (C) 2001-2006, William Joseph.
+All Rights Reserved.
+
+This file is part of GtkRadiant.
+
+GtkRadiant is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+GtkRadiant is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GtkRadiant; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+*/
+
+#if !defined(INCLUDED_RENDER_H)
+#define INCLUDED_RENDER_H
+
+/// \file
+/// \brief High-level constructs for efficient OpenGL rendering.
+
+#include "irender.h"
+#include "igl.h"
+
+#include "container/array.h"
+#include "math/vector.h" 
+#include "math/pi.h"
+
+#include <vector>
+
+typedef unsigned int RenderIndex;
+const GLenum RenderIndexTypeID = GL_UNSIGNED_INT;
+
+/// \brief A resizable buffer of indices.
+class IndexBuffer
+{
+  typedef std::vector<RenderIndex> Indices;
+  Indices m_data;
+public:
+  typedef Indices::iterator iterator;
+  typedef Indices::const_iterator const_iterator;
+
+  iterator begin()
+  {
+    return m_data.begin();
+  }
+  const_iterator begin() const
+  {
+    return m_data.begin();
+  }
+  iterator end()
+  {
+    return m_data.end();
+  }
+  const_iterator end() const
+  {
+    return m_data.end();
+  }
+
+  bool empty() const
+  {
+    return m_data.empty();
+  }
+  std::size_t size() const
+  {
+    return m_data.size();
+  }
+  const RenderIndex* data() const
+  {
+    return &(*m_data.begin());
+  }
+  RenderIndex& operator[](std::size_t index)
+  {
+    return m_data[index];
+  }
+  const RenderIndex& operator[](std::size_t index) const
+  {
+    return m_data[index];
+  }
+  void clear()
+  {
+    m_data.clear();
+  }
+  void reserve(std::size_t max_indices)
+  {
+    m_data.reserve(max_indices);
+  }
+  void insert(RenderIndex index)
+  {
+    m_data.push_back(index);
+  }
+  void swap(IndexBuffer& other)
+  {
+    std::swap(m_data, m_data);
+  }
+};
+
+namespace std
+{
+  /// \brief Swaps the values of \p self and \p other.
+  /// Overloads std::swap.
+  inline void swap(IndexBuffer& self, IndexBuffer& other)
+  {
+    self.swap(other);
+  }
+}
+
+/// \brief A resizable buffer of vertices.
+/// \param Vertex The vertex data type.
+template<typename Vertex>
+class VertexBuffer
+{
+  typedef typename std::vector<Vertex> Vertices;
+  Vertices m_data;
+public:
+  typedef typename Vertices::iterator iterator;
+  typedef typename Vertices::const_iterator const_iterator;
+
+  iterator begin()
+  {
+    return m_data.begin();
+  }
+  iterator end()
+  {
+    return m_data.end();
+  }
+  const_iterator begin() const
+  {
+    return m_data.begin();
+  }
+  const_iterator end() const
+  {
+    return m_data.end();
+  }
+
+  bool empty() const
+  {
+    return m_data.empty();
+  }
+  RenderIndex size() const
+  {
+    return RenderIndex(m_data.size());
+  }
+  const Vertex* data() const
+  {
+    return &(*m_data.begin());
+  }
+  Vertex& operator[](std::size_t index)
+  {
+    return m_data[index];
+  }
+  const Vertex& operator[](std::size_t index) const
+  {
+    return m_data[index];
+  }
+
+  void clear()
+  {
+    m_data.clear();
+  }
+  void reserve(std::size_t max_vertices)
+  {
+    m_data.reserve(max_vertices);
+  }
+  void push_back(const Vertex& vertex)
+  {
+    m_data.push_back(vertex);
+  }
+};
+
+/// \brief A wrapper around a VertexBuffer which inserts only vertices which have not already been inserted.
+/// \param Vertex The vertex data type. Must support operator<, operator== and operator!=.
+/// For best performance, quantise vertices before inserting them.
+template<typename Vertex>
+class UniqueVertexBuffer
+{
+  typedef VertexBuffer<Vertex> Vertices;
+  Vertices& m_data;
+
+  struct bnode
+  {
+    bnode()
+      : m_left(0), m_right(0)
+    {
+    }
+    RenderIndex m_left;
+    RenderIndex m_right;
+  };
+
+  std::vector<bnode> m_btree;
+  RenderIndex m_prev0;
+  RenderIndex m_prev1;
+  RenderIndex m_prev2;
+
+  const RenderIndex find_or_insert(const Vertex& vertex)
+  {
+    RenderIndex index = 0;
+
+    while(1)
+    {
+      if(vertex < m_data[index])
+      {
+        bnode& node = m_btree[index];
+        if(node.m_left != 0)
+        {
+          index = node.m_left;
+          continue;
+        }
+        else
+        {
+          node.m_left = RenderIndex(m_btree.size());
+          m_btree.push_back(bnode());
+          m_data.push_back(vertex);
+          return RenderIndex(m_btree.size()-1);
+        }
+      }
+      if(m_data[index] < vertex)
+      {
+        bnode& node = m_btree[index];
+        if(node.m_right != 0)
+        {
+          index = node.m_right;
+          continue;
+        }
+        else
+        {
+          node.m_right = RenderIndex(m_btree.size());
+          m_btree.push_back(bnode());
+          m_data.push_back(vertex);
+          return RenderIndex(m_btree.size()-1);
+        }
+      }
+
+      return index;
+    }
+  }
+public:
+  UniqueVertexBuffer(Vertices& data)
+    : m_data(data), m_prev0(0), m_prev1(0), m_prev2(0)
+  {
+  }
+
+  typedef typename Vertices::const_iterator iterator;
+
+  iterator begin() const
+  {
+    return m_data.begin();
+  }
+  iterator end() const
+  {
+    return m_data.end();
+  }
+
+  std::size_t size() const
+  {
+    return m_data.size();
+  }
+  const Vertex* data() const
+  {
+    return &(*m_data.begin());
+  }
+  Vertex& operator[](std::size_t index)
+  {
+    return m_data[index];
+  }
+  const Vertex& operator[](std::size_t index) const
+  {
+    return m_data[index];
+  }
+
+  void clear()
+  {
+    m_prev0 = 0;
+    m_prev1 = 0;
+    m_prev2 = 0;
+    m_data.clear();
+    m_btree.clear();
+  }
+  void reserve(std::size_t max_vertices)
+  {
+    m_data.reserve(max_vertices);
+    m_btree.reserve(max_vertices);
+  }
+  /// \brief Returns the index of the element equal to \p vertex.
+  RenderIndex insert(const Vertex& vertex)
+  {
+    if(m_data.empty())
+    {
+      m_data.push_back(vertex);
+      m_btree.push_back(bnode());
+      return 0;
+    }
+
+    if(m_data[m_prev0] == vertex)
+      return m_prev0;
+    if(m_prev1 != m_prev0 && m_data[m_prev1] == vertex)
+      return m_prev1;
+    if(m_prev2 != m_prev0 && m_prev2 != m_prev1 && m_data[m_prev2] == vertex)
+      return m_prev2;
+
+    m_prev2 = m_prev1;
+    m_prev1 = m_prev0;
+    m_prev0 = find_or_insert(vertex);
+
+    return m_prev0;
+  }
+};
+
+
+/// \brief A 4-byte colour.
+struct Colour4b
+{
+  unsigned char r, g, b, a;
+
+  Colour4b()
+  {
+  }
+
+  Colour4b(unsigned char _r, unsigned char _g, unsigned char _b, unsigned char _a)
+    : r(_r), g(_g), b(_b), a(_a)
+  {
+  }
+};
+
+const Colour4b colour_vertex(0, 255, 0, 255);
+const Colour4b colour_selected(0, 0, 255, 255);
+
+inline bool operator<(const Colour4b& self, const Colour4b& other)
+{
+  if(self.r != other.r)
+  {
+    return self.r < other.r;
+  }
+  if(self.g != other.g)
+  {
+    return self.g < other.g;
+  }
+  if(self.b != other.b)
+  {
+    return self.b < other.b;
+  }
+  if(self.a != other.a)
+  {
+    return self.a < other.a;
+  }
+  return false;
+}
+
+inline bool operator==(const Colour4b& self, const Colour4b& other)
+{
+  return self.r == other.r && self.g == other.g && self.b == other.b && self.a == other.a;
+}
+
+inline bool operator!=(const Colour4b& self, const Colour4b& other)
+{
+  return !operator==(self, other);
+}
+
+/// \brief A 3-float vertex.
+struct Vertex3f : public Vector3
+{
+  Vertex3f()
+  {
+  }
+
+  Vertex3f(float _x, float _y, float _z)
+    : Vector3(_x, _y, _z)
+  {
+  }
+};
+
+inline bool operator<(const Vertex3f& self, const Vertex3f& other)
+{
+  if(self.x() != other.x())
+  {
+    return self.x() < other.x();
+  }
+  if(self.y() != other.y())
+  {
+    return self.y() < other.y();
+  }
+  if(self.z() != other.z())
+  {
+    return self.z() < other.z();
+  }
+  return false;
+}
+
+inline bool operator==(const Vertex3f& self, const Vertex3f& other)
+{
+  return self.x() == other.x() && self.y() == other.y() && self.z() == other.z();
+}
+
+inline bool operator!=(const Vertex3f& self, const Vertex3f& other)
+{
+  return !operator==(self, other);
+}
+
+
+inline Vertex3f vertex3f_from_array(const float* array)
+{
+  return Vertex3f(array[0], array[1], array[2]);
+}
+
+inline float* vertex3f_to_array(Vertex3f& vertex)
+{
+  return reinterpret_cast<float*>(&vertex);
+}
+
+inline const float* vertex3f_to_array(const Vertex3f& vertex)
+{
+  return reinterpret_cast<const float*>(&vertex);
+}
+
+const Vertex3f vertex3f_identity(0, 0, 0);
+
+inline Vertex3f vertex3f_for_vector3(const Vector3& vector3)
+{
+  return Vertex3f(vector3.x(), vector3.y(), vector3.z());
+}
+
+inline const Vector3& vertex3f_to_vector3(const Vertex3f& vertex)
+{
+  return vertex;
+}
+
+inline Vector3& vertex3f_to_vector3(Vertex3f& vertex)
+{
+  return vertex;
+}
+
+
+/// \brief A 3-float normal.
+struct Normal3f : public Vector3
+{
+  Normal3f()
+  {
+  }
+
+  Normal3f(float _x, float _y, float _z)
+    : Vector3(_x, _y, _z)
+  {
+  }
+};
+
+inline bool operator<(const Normal3f& self, const Normal3f& other)
+{
+  if(self.x() != other.x())
+  {
+    return self.x() < other.x();
+  }
+  if(self.y() != other.y())
+  {
+    return self.y() < other.y();
+  }
+  if(self.z() != other.z())
+  {
+    return self.z() < other.z();
+  }
+  return false;
+}
+
+inline bool operator==(const Normal3f& self, const Normal3f& other)
+{
+  return self.x() == other.x() && self.y() == other.y() && self.z() == other.z();
+}
+
+inline bool operator!=(const Normal3f& self, const Normal3f& other)
+{
+  return !operator==(self, other);
+}
+
+
+inline Normal3f normal3f_from_array(const float* array)
+{
+  return Normal3f(array[0], array[1], array[2]);
+}
+
+inline float* normal3f_to_array(Normal3f& normal)
+{
+  return reinterpret_cast<float*>(&normal);
+}
+
+inline const float* normal3f_to_array(const Normal3f& normal)
+{
+  return reinterpret_cast<const float*>(&normal);
+}
+
+inline Normal3f normal3f_for_vector3(const Vector3& vector3)
+{
+  return Normal3f(vector3.x(), vector3.y(), vector3.z());
+}
+
+inline const Vector3& normal3f_to_vector3(const Normal3f& normal)
+{
+  return normal;
+}
+
+inline Vector3& normal3f_to_vector3(Normal3f& normal)
+{
+  return normal;
+}
+
+
+/// \brief A 2-float texture-coordinate set.
+struct TexCoord2f : public Vector2
+{
+  TexCoord2f()
+  {
+  }
+
+  TexCoord2f(float _s, float _t)
+    : Vector2(_s, _t)
+  {
+  }
+
+  float& s()
+  {
+    return x();
+  }
+  const float& s() const
+  {
+    return x();
+  }
+  float& t()
+  {
+    return y();
+  }
+  const float& t() const
+  {
+    return y();
+  }
+};
+
+inline bool operator<(const TexCoord2f& self, const TexCoord2f& other)
+{
+  if(self.s() != other.s())
+  {
+    return self.s() < other.s();
+  }
+  if(self.t() != other.t())
+  {
+    return self.t() < other.t();
+  }
+  return false;
+}
+
+inline bool operator==(const TexCoord2f& self, const TexCoord2f& other)
+{
+  return self.s() == other.s() && self.t() == other.t();
+}
+
+inline bool operator!=(const TexCoord2f& self, const TexCoord2f& other)
+{
+  return !operator==(self, other);
+}
+
+
+inline float* texcoord2f_to_array(TexCoord2f& texcoord)
+{
+  return reinterpret_cast<float*>(&texcoord);
+}
+
+inline const float* texcoord2f_to_array(const TexCoord2f& texcoord)
+{
+  return reinterpret_cast<const float*>(&texcoord);
+}
+
+inline const TexCoord2f& texcoord2f_from_array(const float* array)
+{
+  return *reinterpret_cast<const TexCoord2f*>(array);
+}
+
+inline TexCoord2f texcoord2f_for_vector2(const Vector2& vector2)
+{
+  return TexCoord2f(vector2.x(), vector2.y());
+}
+
+inline const Vector2& texcoord2f_to_vector2(const TexCoord2f& vertex)
+{
+  return vertex;
+}
+
+inline Vector2& texcoord2f_to_vector2(TexCoord2f& vertex)
+{
+  return vertex;
+}
+
+/// \brief Returns \p normal rescaled to be unit-length. 
+inline Normal3f normal3f_normalised(const Normal3f& normal)
+{
+  return normal3f_for_vector3(vector3_normalised(normal3f_to_vector3(normal)));
+}
+
+enum UnitSphereOctant
+{
+  UNITSPHEREOCTANT_000 = 0 << 0 | 0 << 1 | 0 << 2,
+  UNITSPHEREOCTANT_001 = 0 << 0 | 0 << 1 | 1 << 2,
+  UNITSPHEREOCTANT_010 = 0 << 0 | 1 << 1 | 0 << 2,
+  UNITSPHEREOCTANT_011 = 0 << 0 | 1 << 1 | 1 << 2,
+  UNITSPHEREOCTANT_100 = 1 << 0 | 0 << 1 | 0 << 2,
+  UNITSPHEREOCTANT_101 = 1 << 0 | 0 << 1 | 1 << 2,
+  UNITSPHEREOCTANT_110 = 1 << 0 | 1 << 1 | 0 << 2,
+  UNITSPHEREOCTANT_111 = 1 << 0 | 1 << 1 | 1 << 2,
+};
+
+/// \brief Returns the octant for \p normal indicating the sign of the region of unit-sphere space it lies within.
+inline UnitSphereOctant normal3f_classify_octant(const Normal3f& normal)
+{
+  return static_cast<UnitSphereOctant>(
+    ((normal.x() > 0) << 0) | ((normal.y() > 0) << 1) | ((normal.z() > 0) << 2)
+  );
+}
+
+/// \brief Returns \p normal with its components signs made positive based on \p octant.
+inline Normal3f normal3f_fold_octant(const Normal3f& normal, UnitSphereOctant octant)
+{
+  switch(octant)
+  {
+  case UNITSPHEREOCTANT_000:
+    return Normal3f(-normal.x(), -normal.y(), -normal.z());
+  case UNITSPHEREOCTANT_001:
+    return Normal3f(normal.x(), -normal.y(), -normal.z());
+  case UNITSPHEREOCTANT_010:
+    return Normal3f(-normal.x(), normal.y(), -normal.z());
+  case UNITSPHEREOCTANT_011:
+    return Normal3f(normal.x(), normal.y(), -normal.z());
+  case UNITSPHEREOCTANT_100:
+    return Normal3f(-normal.x(), -normal.y(), normal.z());
+  case UNITSPHEREOCTANT_101:
+    return Normal3f(normal.x(), -normal.y(), normal.z());
+  case UNITSPHEREOCTANT_110:
+    return Normal3f(-normal.x(), normal.y(), normal.z());
+  case UNITSPHEREOCTANT_111:
+    return Normal3f(normal.x(), normal.y(), normal.z());
+  }
+  return Normal3f();
+}
+
+/// \brief Reverses the effect of normal3f_fold_octant() on \p normal with \p octant.
+/// \p normal must have been obtained with normal3f_fold_octant().
+/// \p octant must have been obtained with normal3f_classify_octant().
+inline Normal3f normal3f_unfold_octant(const Normal3f& normal, UnitSphereOctant octant)
+{
+  return normal3f_fold_octant(normal, octant);
+}
+
+enum UnitSphereSextant
+{
+  UNITSPHERESEXTANT_XYZ = 0,
+  UNITSPHERESEXTANT_XZY = 1,
+  UNITSPHERESEXTANT_YXZ = 2,
+  UNITSPHERESEXTANT_YZX = 3,
+  UNITSPHERESEXTANT_ZXY = 4,
+  UNITSPHERESEXTANT_ZYX = 5,
+};
+
+/// \brief Returns the sextant for \p normal indicating how to sort its components so that x > y > z.
+/// All components of \p normal must be positive.
+/// \p normal must be normalised.
+inline UnitSphereSextant normal3f_classify_sextant(const Normal3f& normal)
+{
+  return
+    normal.x() >= normal.y()
+    ? normal.x() >= normal.z()
+      ? normal.y() >= normal.z()
+        ? UNITSPHERESEXTANT_XYZ
+        : UNITSPHERESEXTANT_XZY
+        : UNITSPHERESEXTANT_ZXY
+        : normal.y() >= normal.z()
+        ? normal.x() >= normal.z()
+        ? UNITSPHERESEXTANT_YXZ
+        : UNITSPHERESEXTANT_YZX
+        : UNITSPHERESEXTANT_ZYX;
+}
+
+/// \brief Returns \p normal with its components sorted so that x > y > z based on \p sextant.
+/// All components of \p normal must be positive.
+/// \p normal must be normalised.
+inline Normal3f normal3f_fold_sextant(const Normal3f& normal, UnitSphereSextant sextant)
+{
+  switch(sextant)
+  {
+  case UNITSPHERESEXTANT_XYZ:
+    return Normal3f(normal.x(), normal.y(), normal.z());
+  case UNITSPHERESEXTANT_XZY:
+    return Normal3f(normal.x(), normal.z(), normal.y());
+  case UNITSPHERESEXTANT_YXZ:
+    return Normal3f(normal.y(), normal.x(), normal.z());
+  case UNITSPHERESEXTANT_YZX:
+    return Normal3f(normal.y(), normal.z(), normal.x());
+  case UNITSPHERESEXTANT_ZXY:
+    return Normal3f(normal.z(), normal.x(), normal.y());
+  case UNITSPHERESEXTANT_ZYX:
+    return Normal3f(normal.z(), normal.y(), normal.x());
+  }
+  return Normal3f();
+}
+
+/// \brief Reverses the effect of normal3f_fold_sextant() on \p normal with \p sextant.
+/// \p normal must have been obtained with normal3f_fold_sextant().
+/// \p sextant must have been obtained with normal3f_classify_sextant().
+inline Normal3f normal3f_unfold_sextant(const Normal3f& normal, UnitSphereSextant sextant)
+{
+       return normal3f_fold_sextant(normal, sextant);
+}
+
+const std::size_t c_quantise_normal = 1 << 6;
+
+/// \brief All the components of \p folded must be positive and sorted so that x > y > z.
+inline Normal3f normal3f_folded_quantised(const Normal3f& folded)
+{
+  // compress
+  double scale = static_cast<float>(c_quantise_normal) / (folded.x() + folded.y() + folded.z());
+  unsigned int zbits = static_cast<unsigned int>(folded.z() * scale);
+  unsigned int ybits = static_cast<unsigned int>(folded.y() * scale);
+
+  // decompress
+  return normal3f_normalised(Normal3f(
+    static_cast<float>(c_quantise_normal - zbits - ybits),
+    static_cast<float>(ybits),
+    static_cast<float>(zbits)
+  ));
+}
+
+/// \brief Returns \p normal quantised by compressing and then decompressing its representation.
+inline Normal3f normal3f_quantised_custom(const Normal3f& normal)
+{
+  UnitSphereOctant octant = normal3f_classify_octant(normal);
+  Normal3f folded = normal3f_fold_octant(normal, octant);
+  UnitSphereSextant sextant = normal3f_classify_sextant(folded);
+  folded = normal3f_fold_sextant(folded, sextant);
+  return normal3f_unfold_octant(normal3f_unfold_sextant(normal3f_folded_quantised(folded), sextant), octant);
+}
+
+
+
+struct spherical_t
+{
+  double longditude, latitude;
+
+  spherical_t(double _longditude, double _latitude)
+    : longditude(_longditude), latitude(_latitude)
+  {
+  }
+};
+
+/*
+{
+  theta = 2pi * U;
+  phi = acos((2 * V) - 1);
+
+  U = theta / 2pi;
+  V = (cos(phi) + 1) / 2;
+}
+
+longitude = atan(y / x);
+latitude = acos(z);
+*/
+struct uniformspherical_t
+{
+  double U, V;
+
+  uniformspherical_t(double U_, double V_)
+    : U(U_), V(V_)
+  {
+  }
+};
+
+
+inline spherical_t spherical_from_normal3f(const Normal3f& normal)
+{
+  return spherical_t(normal.x() == 0 ? c_pi / 2 : normal.x() > 0 ? atan(normal.y() / normal.x()) : atan(normal.y() / normal.x()) + c_pi, acos(normal.z()));
+}
+
+inline Normal3f normal3f_from_spherical(const spherical_t& spherical)
+{
+  return Normal3f(
+    static_cast<float>(cos(spherical.longditude) * sin(spherical.latitude)),
+    static_cast<float>(sin(spherical.longditude) * sin(spherical.latitude)),
+    static_cast<float>(cos(spherical.latitude))
+  );
+}
+
+inline uniformspherical_t uniformspherical_from_spherical(const spherical_t& spherical)
+{
+  return uniformspherical_t(spherical.longditude * c_inv_2pi, (cos(spherical.latitude) + 1) * 0.5);
+}
+
+inline spherical_t spherical_from_uniformspherical(const uniformspherical_t& uniformspherical)
+{
+  return spherical_t(c_2pi * uniformspherical.U, acos((2 * uniformspherical.V) - 1));
+}
+
+inline uniformspherical_t uniformspherical_from_normal3f(const Normal3f& normal)
+{
+  return uniformspherical_from_spherical(spherical_from_normal3f(normal));
+  //return uniformspherical_t(atan2(normal.y / normal.x) * c_inv_2pi, (normal.z + 1) * 0.5);
+}
+
+inline Normal3f normal3f_from_uniformspherical(const uniformspherical_t& uniformspherical)
+{
+  return normal3f_from_spherical(spherical_from_uniformspherical(uniformspherical));
+}
+
+/// \brief Returns a single-precision \p component quantised to \p precision.
+inline float float_quantise(float component, float precision)
+{
+  return float_snapped(component, precision);
+}
+
+/// \brief Returns a double-precision \p component quantised to \p precision.
+inline double double_quantise(double component, double precision)
+{
+  return float_snapped(component, precision);
+}
+
+inline spherical_t spherical_quantised(const spherical_t& spherical, float snap)
+{
+  return spherical_t(double_quantise(spherical.longditude, snap), double_quantise(spherical.latitude, snap));
+}
+
+inline uniformspherical_t uniformspherical_quantised(const uniformspherical_t& uniformspherical, float snap)
+{
+  return uniformspherical_t(double_quantise(uniformspherical.U, snap), double_quantise(uniformspherical.V, snap));
+}
+
+/// \brief Returns a \p vertex quantised to \p precision.
+inline Vertex3f vertex3f_quantised(const Vertex3f& vertex, float precision)
+{
+  return Vertex3f(float_quantise(vertex.x(), precision), float_quantise(vertex.y(), precision), float_quantise(vertex.z(), precision));
+}
+
+/// \brief Returns a \p normal quantised to a fixed precision.
+inline Normal3f normal3f_quantised(const Normal3f& normal)
+{
+       return normal3f_quantised_custom(normal);
+  //return normal3f_from_spherical(spherical_quantised(spherical_from_normal3f(normal), snap));
+  //return normal3f_from_uniformspherical(uniformspherical_quantised(uniformspherical_from_normal3f(normal), snap));
+  //  float_quantise(normal.x, snap), float_quantise(normal.y, snap), float_quantise(normal.y, snap));
+}
+
+/// \brief Returns a \p texcoord quantised to \p precision.
+inline TexCoord2f texcoord2f_quantised(const TexCoord2f& texcoord, float precision)
+{
+  return TexCoord2f(float_quantise(texcoord.s(), precision), float_quantise(texcoord.t(), precision));
+}
+
+/// \brief Standard vertex type for lines and points.
+struct PointVertex
+{
+  Colour4b colour;
+  Vertex3f vertex;
+
+  PointVertex()
+  {
+  }
+  PointVertex(Vertex3f _vertex)
+    : colour(Colour4b(255, 255, 255, 255)), vertex(_vertex)
+  {
+  }
+  PointVertex(Vertex3f _vertex, Colour4b _colour)
+    : colour(_colour), vertex(_vertex)
+  {
+  }
+};
+
+inline bool operator<(const PointVertex& self, const PointVertex& other)
+{
+  if(self.vertex != other.vertex)
+  {
+    return self.vertex < other.vertex;
+  }
+  if(self.colour != other.colour)
+  {
+    return self.colour < other.colour;
+  }
+  return false;
+}
+
+inline bool operator==(const PointVertex& self, const PointVertex& other)
+{
+  return self.colour == other.colour && self.vertex == other.vertex;
+}
+
+inline bool operator!=(const PointVertex& self, const PointVertex& other)
+{
+  return !operator==(self, other);
+}
+
+/// \brief Standard vertex type for lit/textured meshes.
+struct ArbitraryMeshVertex
+{
+  TexCoord2f texcoord;
+  Normal3f normal;
+  Vertex3f vertex;
+  Normal3f tangent;
+  Normal3f bitangent;
+
+  ArbitraryMeshVertex() : tangent(0, 0, 0), bitangent(0, 0, 0)
+  {
+  }
+  ArbitraryMeshVertex(Vertex3f _vertex, Normal3f _normal, TexCoord2f _texcoord)
+    : texcoord(_texcoord), normal(_normal), vertex(_vertex), tangent(0, 0, 0), bitangent(0, 0, 0)
+  {
+  }
+};
+
+inline bool operator<(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other)
+{
+  if(self.texcoord != other.texcoord)
+  {
+    return self.texcoord < other.texcoord;
+  }
+  if(self.normal != other.normal)
+  {
+    return self.normal < other.normal;
+  }
+  if(self.vertex != other.vertex)
+  {
+    return self.vertex < other.vertex;
+  }
+  return false;
+}
+
+inline bool operator==(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other)
+{
+  return self.texcoord == other.texcoord && self.normal == other.normal && self.vertex == other.vertex;
+}
+
+inline bool operator!=(const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other)
+{
+  return !operator==(self, other);
+}
+
+const float c_quantise_vertex = 1.f / static_cast<float>(1 << 3);
+
+/// \brief Returns \p v with vertex quantised to a fixed precision.
+inline PointVertex pointvertex_quantised(const PointVertex& v)
+{
+  return PointVertex(vertex3f_quantised(v.vertex, c_quantise_vertex), v.colour);
+}
+
+const float c_quantise_texcoord = 1.f / static_cast<float>(1 << 8);
+
+/// \brief Returns \p v with vertex, normal and texcoord quantised to a fixed precision.
+inline ArbitraryMeshVertex arbitrarymeshvertex_quantised(const ArbitraryMeshVertex& v)
+{
+  return ArbitraryMeshVertex(vertex3f_quantised(v.vertex, c_quantise_vertex), normal3f_quantised(v.normal), texcoord2f_quantised(v.texcoord, c_quantise_texcoord));
+}
+
+
+/// \brief Sets up the OpenGL colour and vertex arrays for \p array.
+inline void pointvertex_gl_array(const PointVertex* array)
+{
+  glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(PointVertex), &array->colour);
+  glVertexPointer(3, GL_FLOAT, sizeof(PointVertex), &array->vertex);
+}
+
+class RenderablePointArray : public OpenGLRenderable
+{
+  const Array<PointVertex>& m_array;
+  const GLenum m_mode;
+public:
+  RenderablePointArray(const Array<PointVertex>& array, GLenum mode)
+    : m_array(array), m_mode(mode)
+  {
+  }
+  void render(RenderStateFlags state) const
+  {
+#define NV_DRIVER_BUG 1
+#if NV_DRIVER_BUG
+    glColorPointer(4, GL_UNSIGNED_BYTE, 0, 0);
+    glVertexPointer(3, GL_FLOAT, 0, 0);
+    glDrawArrays(GL_TRIANGLE_FAN, 0, 0);
+#endif
+    pointvertex_gl_array(m_array.data());
+    glDrawArrays(m_mode, 0, GLsizei(m_array.size()));
+  }
+};
+
+class RenderablePointVector : public OpenGLRenderable
+{
+  std::vector<PointVertex> m_vector;
+  const GLenum m_mode;
+public:
+  RenderablePointVector(GLenum mode)
+    : m_mode(mode)
+  {
+  }
+
+  void render(RenderStateFlags state) const
+  {
+    pointvertex_gl_array(&m_vector.front());
+    glDrawArrays(m_mode, 0, GLsizei(m_vector.size()));
+  }
+
+  std::size_t size() const
+  {
+    return m_vector.size();
+  }
+  bool empty() const
+  {
+    return m_vector.empty();
+  }
+  void clear()
+  {
+    m_vector.clear();
+  }
+  void reserve(std::size_t size)
+  {
+    m_vector.reserve(size);
+  }
+  void push_back(const PointVertex& point)
+  {
+    m_vector.push_back(point);
+  }
+};
+
+
+class RenderableVertexBuffer : public OpenGLRenderable
+{
+  const GLenum m_mode;
+  const VertexBuffer<PointVertex>& m_vertices;
+public:
+  RenderableVertexBuffer(GLenum mode, const VertexBuffer<PointVertex>& vertices)
+    : m_mode(mode), m_vertices(vertices)
+  {
+  }
+
+  void render(RenderStateFlags state) const
+  {
+    pointvertex_gl_array(m_vertices.data());
+    glDrawArrays(m_mode, 0, m_vertices.size());
+  }
+};
+
+class RenderableIndexBuffer : public OpenGLRenderable
+{
+  const GLenum m_mode;
+  const IndexBuffer& m_indices;
+  const VertexBuffer<PointVertex>& m_vertices;
+public:
+  RenderableIndexBuffer(GLenum mode, const IndexBuffer& indices, const VertexBuffer<PointVertex>& vertices)
+    : m_mode(mode), m_indices(indices), m_vertices(vertices)
+  {
+  }
+
+  void render(RenderStateFlags state) const
+  {
+#if 1
+    pointvertex_gl_array(m_vertices.data());
+    glDrawElements(m_mode, GLsizei(m_indices.size()), RenderIndexTypeID, m_indices.data());
+#else
+    glBegin(m_mode);
+    if(state & RENDER_COLOURARRAY != 0)
+    {
+      for(std::size_t i = 0; i < m_indices.size(); ++i)
+      {
+        glColor4ubv(&m_vertices[m_indices[i]].colour.r);
+        glVertex3fv(&m_vertices[m_indices[i]].vertex.x);
+      }
+    }
+    else
+    {
+      for(std::size_t i = 0; i < m_indices.size(); ++i)
+      {
+        glVertex3fv(&m_vertices[m_indices[i]].vertex.x);
+      }
+    }
+    glEnd();
+#endif
+  }
+};
+
+
+class RemapXYZ
+{
+public:
+  static void set(Vertex3f& vertex, float x, float y, float z)
+  {
+    vertex.x() = x;
+    vertex.y() = y;
+    vertex.z() = z;
+  }
+};
+
+class RemapYZX
+{
+public:
+  static void set(Vertex3f& vertex, float x, float y, float z)
+  {
+    vertex.x() = z;
+    vertex.y() = x;
+    vertex.z() = y;
+  }
+};
+
+class RemapZXY
+{
+public:
+  static void set(Vertex3f& vertex, float x, float y, float z)
+  {
+    vertex.x() = y;
+    vertex.y() = z;
+    vertex.z() = x;
+  }
+};
+
+template<typename remap_policy>
+inline void draw_circle(const std::size_t segments, const float radius, PointVertex* vertices, remap_policy remap)
+{
+  const double increment = c_pi / double(segments << 2);
+
+  std::size_t count = 0;
+  float x = radius;
+  float y = 0;
+  while(count < segments)
+  {
+    PointVertex* i = vertices + count;
+    PointVertex* j = vertices + ((segments << 1) - (count + 1));
+
+    PointVertex* k = i + (segments << 1);
+    PointVertex* l = j + (segments << 1);
+
+    PointVertex* m = i + (segments << 2);
+    PointVertex* n = j + (segments << 2);
+    PointVertex* o = k + (segments << 2);
+    PointVertex* p = l + (segments << 2);
+
+    remap_policy::set(i->vertex, x,-y, 0);
+    remap_policy::set(k->vertex,-y,-x, 0);
+    remap_policy::set(m->vertex,-x, y, 0);
+    remap_policy::set(o->vertex, y, x, 0);
+
+    ++count;
+
+    {
+      const double theta = increment * count;
+      x = static_cast<float>(radius * cos(theta));
+      y = static_cast<float>(radius * sin(theta));
+    }
+
+    remap_policy::set(j->vertex, y,-x, 0);
+    remap_policy::set(l->vertex,-x,-y, 0);
+    remap_policy::set(n->vertex,-y, x, 0);
+    remap_policy::set(p->vertex, x, y, 0);
+  }
+}
+
+#if 0
+class PointVertexArrayIterator
+{
+  PointVertex* m_point;
+public:
+  PointVertexArrayIterator(PointVertex* point)
+    : m_point(point)
+  {
+  }
+  PointVertexArrayIterator& operator++()
+  {
+    ++m_point;
+    return *this;
+  }
+  PointVertexArrayIterator operator++(int)
+  {
+    PointVertexArrayIterator tmp(*this);
+    ++m_point;
+    return tmp;
+  }
+  Vertex3f& operator*()
+  {
+    return m_point.vertex;
+  }
+  Vertex3f* operator->()
+  {
+    return &(operator*());
+  }
+}
+
+template<typename remap_policy, typename iterator_type
+inline void draw_circle(const std::size_t segments, const float radius, iterator_type start, remap_policy remap)
+{
+  const float increment = c_pi / (double)(segments << 2);
+
+  std::size_t count = 0;
+  iterator_type pxpy(start);
+  iterator_type pypx(pxpy + (segments << 1));
+  iterator_type pynx(pxpy + (segments << 1));
+  iterator_type nxpy(pypx + (segments << 1));
+  iterator_type nxny(pypx + (segments << 1));
+  iterator_type nynx(nxpy + (segments << 1));
+  iterator_type nypx(nxpy + (segments << 1));
+  iterator_type pxny(start);
+  while(count < segments)
+  {
+    const float theta = increment * count;
+    const float x = radius * cos(theta);
+    const float y = radius * sin(theta);
+
+    remap_policy::set((*pxpy), x, y, 0);
+    remap_policy::set((*pxny), x,-y, 0);
+    remap_policy::set((*nxpy),-x, y, 0);
+    remap_policy::set((*nxny),-x,-y, 0);
+
+    remap_policy::set((*pypx), y, x, 0);
+    remap_policy::set((*pynx), y,-x, 0);
+    remap_policy::set((*nypx),-y, x, 0);
+    remap_policy::set((*nynx),-y,-x, 0);
+  }
+}
+
+template<typename remap_policy, typename iterator_type
+inline void draw_semicircle(const std::size_t segments, const float radius, iterator_type start, remap_policy remap)
+{
+  const float increment = c_pi / (double)(segments << 2);
+
+  std::size_t count = 0;
+  iterator_type pxpy(start);
+  iterator_type pypx(pxpy + (segments << 1));
+  iterator_type pynx(pxpy + (segments << 1));
+  iterator_type nxpy(pypx + (segments << 1));
+  iterator_type nxny(pypx + (segments << 1));
+  iterator_type nynx(nxpy + (segments << 1));
+  iterator_type nypx(nxpy + (segments << 1));
+  iterator_type pxny(start);
+  while(count < segments)
+  {
+    const float theta = increment * count;
+    const float x = radius * cos(theta);
+    const float y = radius * sin(theta);
+
+    remap_policy::set((*pxpy), x, y, 0);
+    remap_policy::set((*pxny), x,-y, 0);
+    remap_policy::set((*nxpy),-x, y, 0);
+    remap_policy::set((*nxny),-x,-y, 0);
+
+    //remap_policy::set((*pypx), y, x, 0);
+    //remap_policy::set((*pynx), y,-x, 0);
+    //remap_policy::set((*nypx),-y, x, 0);
+    //remap_policy::set((*nynx),-y,-x, 0);
+  }
+}
+
+
+#endif
+
+inline void draw_quad(const float radius, PointVertex* quad)
+{
+  (*quad++).vertex = Vertex3f(-radius, radius, 0);
+  (*quad++).vertex = Vertex3f(radius, radius, 0);
+  (*quad++).vertex = Vertex3f(radius, -radius, 0);
+  (*quad++).vertex = Vertex3f(-radius, -radius, 0);
+}
+
+inline void draw_cube(const float radius, PointVertex* cube)
+{
+  (*cube++).vertex = Vertex3f(-radius, -radius, -radius);
+  (*cube++).vertex = Vertex3f(radius, -radius, -radius);
+  (*cube++).vertex = Vertex3f(-radius, radius, -radius);
+  (*cube++).vertex = Vertex3f(radius, radius, -radius);
+  (*cube++).vertex = Vertex3f(-radius, -radius, radius);
+  (*cube++).vertex = Vertex3f(radius, -radius, radius);
+  (*cube++).vertex = Vertex3f(-radius, radius, radius);
+  (*cube++).vertex = Vertex3f(radius, radius, radius);
+}
+
+
+/// \brief Calculates the tangent vectors for a triangle \p a, \p b, \p c and stores the tangent in \p s and the bitangent in \p t.
+inline void ArbitraryMeshTriangle_calcTangents(const ArbitraryMeshVertex& a, const ArbitraryMeshVertex& b, const ArbitraryMeshVertex& c, Vector3& s, Vector3& t)
+{
+  s = Vector3(0, 0, 0);
+  t = Vector3(0, 0, 0);
+  {
+    Vector3 cross(
+      vector3_cross(
+        vector3_subtracted(
+          Vector3(b.vertex.x(), b.texcoord.s(), b.texcoord.t()),
+          Vector3(a.vertex.x(), a.texcoord.s(), a.texcoord.t())
+        ),
+        vector3_subtracted(
+          Vector3(c.vertex.x(), c.texcoord.s(), c.texcoord.t()),
+          Vector3(a.vertex.x(), a.texcoord.s(), a.texcoord.t())
+        )
+      )
+    );
+
+    if(fabs(cross.x()) > 0.000001f)
+    {
+      s.x() = -cross.y() / cross.x();
+    }
+
+    if(fabs(cross.x()) > 0.000001f)
+    {
+      t.x() = -cross.z() / cross.x();
+    }
+  }
+
+  {
+    Vector3 cross(
+      vector3_cross(
+        vector3_subtracted(
+          Vector3(b.vertex.y(), b.texcoord.s(), b.texcoord.t()),
+          Vector3(a.vertex.y(), a.texcoord.s(), a.texcoord.t())
+        ),
+        vector3_subtracted(
+          Vector3(c.vertex.y(), c.texcoord.s(), c.texcoord.t()),
+          Vector3(a.vertex.y(), a.texcoord.s(), a.texcoord.t())
+        )
+      )
+    );
+
+    if(fabs(cross.x()) > 0.000001f)
+    {
+      s.y() = -cross.y() / cross.x();
+    }
+
+    if(fabs(cross.x()) > 0.000001f)
+    {
+      t.y() = -cross.z() / cross.x();
+    }
+  }
+
+  {
+    Vector3 cross(
+      vector3_cross(
+        vector3_subtracted(
+          Vector3(b.vertex.z(), b.texcoord.s(), b.texcoord.t()),
+          Vector3(a.vertex.z(), a.texcoord.s(), a.texcoord.t())
+        ),
+        vector3_subtracted(
+          Vector3(c.vertex.z(), c.texcoord.s(), c.texcoord.t()),
+          Vector3(a.vertex.z(), a.texcoord.s(), a.texcoord.t())
+        )
+      )
+    );
+
+    if(fabs(cross.x()) > 0.000001f)
+    {
+      s.z() = -cross.y() / cross.x();
+    }
+
+    if(fabs(cross.x()) > 0.000001f)
+    {
+      t.z() = -cross.z() / cross.x();
+    }
+  }
+}
+
+inline void ArbitraryMeshTriangle_sumTangents(ArbitraryMeshVertex& a, ArbitraryMeshVertex& b, ArbitraryMeshVertex& c)
+{
+  Vector3 s, t;
+
+  ArbitraryMeshTriangle_calcTangents(a, b, c, s, t);
+
+  reinterpret_cast<Vector3&>(a.tangent) += s;
+  reinterpret_cast<Vector3&>(b.tangent) += s;
+  reinterpret_cast<Vector3&>(c.tangent) += s;
+
+  reinterpret_cast<Vector3&>(a.bitangent) += t;
+  reinterpret_cast<Vector3&>(b.bitangent) += t;
+  reinterpret_cast<Vector3&>(c.bitangent) += t;
+}
+
+
+#endif