]> de.git.xonotic.org Git - xonotic/darkplaces.git/blob - cl_particles.c
works with NULL worldmodel
[xonotic/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeamVerts (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 4] = org1[0] - width * right1[0];
65         vert[ 5] = org1[1] - width * right1[1];
66         vert[ 6] = org1[2] - width * right1[2];
67         vert[ 8] = org2[0] - width * right2[0];
68         vert[ 9] = org2[1] - width * right2[1];
69         vert[10] = org2[2] - width * right2[2];
70         vert[12] = org2[0] + width * right2[0];
71         vert[13] = org2[1] + width * right2[1];
72         vert[14] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
184 }
185 ptype_t;
186
187 #define PARTICLE_INVALID 0
188 #define PARTICLE_BILLBOARD 1
189 #define PARTICLE_SPARK 2
190 #define PARTICLE_ORIENTED_DOUBLESIDED 3
191 #define PARTICLE_BEAM 4
192
193 #define PBLEND_ALPHA 0
194 #define PBLEND_ADD 1
195 #define PBLEND_MOD 2
196
197 typedef struct particle_s
198 {
199         ptype_t         type;
200         int                     orientation;
201         int                     texnum;
202         int                     blendmode;
203         vec3_t          org;
204         vec3_t          vel;
205         float           die;
206         float           scalex;
207         float           scaley;
208         float           alpha; // 0-255
209         float           alphafade; // how much alpha reduces per second
210         float           time2; // used for various things (snow fluttering, for example)
211         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
212         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
213         vec3_t          oldorg;
214         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
215         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
216         float           pressure; // if non-zero, apply pressure to other particles
217         qbyte           color[4];
218 #ifndef WORKINGLQUAKE
219         entity_render_t *owner; // decal stuck to this entity
220         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
221         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
222         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
223 #endif
224 }
225 particle_t;
226
227 static int particlepalette[256] =
228 {
229         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
230         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
231         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
232         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
233         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
234         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
235         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
236         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
237         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
238         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
239         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
240         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
241         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
242         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
243         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
244         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
245         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
246         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
247         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
248         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
249         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
250         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
251         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
252         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
253         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
254         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
255         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
256         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
257         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
258         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
259         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
260         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
261 };
262
263 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
264
265 // texture numbers in particle font
266 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
267 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
268 static const int tex_particle = 24;
269 static const int tex_raindrop = 25;
270 static const int tex_bubble = 26;
271 static const int tex_beam = 27;
272 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
273
274 static int                      cl_maxparticles;
275 static int                      cl_numparticles;
276 static particle_t       *particles;
277 static particle_t       **freeparticles; // list used only in compacting particles array
278
279 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
280 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
281 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
282 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
283 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
284 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
285 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
286 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
287 cvar_t cl_particles_smoke_size = {CVAR_SAVE, "cl_particles_smoke_size", "7"};
288 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
289 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
290 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
291 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
292 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
293 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
294 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
295
296 #ifndef WORKINGLQUAKE
297 static mempool_t *cl_part_mempool;
298 #endif
299
300 void CL_Particles_Clear(void)
301 {
302         cl_numparticles = 0;
303 }
304
305 /*
306 ===============
307 CL_InitParticles
308 ===============
309 */
310 void CL_ReadPointFile_f (void);
311 void CL_Particles_Init (void)
312 {
313         int             i;
314
315         i = COM_CheckParm ("-particles");
316
317         if (i && i < com_argc - 1)
318         {
319                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
320                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
321                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
322         }
323         else
324                 cl_maxparticles = MAX_PARTICLES;
325
326         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
327
328         Cvar_RegisterVariable (&cl_particles);
329         Cvar_RegisterVariable (&cl_particles_size);
330         Cvar_RegisterVariable (&cl_particles_bloodshowers);
331         Cvar_RegisterVariable (&cl_particles_blood);
332         Cvar_RegisterVariable (&cl_particles_blood_size);
333         Cvar_RegisterVariable (&cl_particles_blood_alpha);
334         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
335         Cvar_RegisterVariable (&cl_particles_smoke);
336         Cvar_RegisterVariable (&cl_particles_smoke_size);
337         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
338         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
339         Cvar_RegisterVariable (&cl_particles_sparks);
340         Cvar_RegisterVariable (&cl_particles_bubbles);
341         Cvar_RegisterVariable (&cl_decals);
342         Cvar_RegisterVariable (&cl_decals_time);
343         Cvar_RegisterVariable (&cl_decals_fadetime);
344
345 #ifdef WORKINGLQUAKE
346         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
347         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
348 #else
349         cl_part_mempool = Mem_AllocPool("CL_Part");
350         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
351         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
352 #endif
353         cl_numparticles = 0;
354 }
355
356 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
357 {\
358         if (cl_numparticles < cl_maxparticles)\
359         {\
360                 particle_t      *part;\
361                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
362                 ptempcolor = (pcolor1);\
363                 ptempcolor2 = (pcolor2);\
364                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
365                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
366                 pcb2 = (ptempcolor2) & 0xFF;\
367                 if (ptempcolor != ptempcolor2)\
368                 {\
369                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
370                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
371                         pcb1 = (ptempcolor) & 0xFF;\
372                         ptempcolor = rand() & 0xFF;\
373                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
374                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
375                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
376                 }\
377                 part = &particles[cl_numparticles++];\
378                 memset(part, 0, sizeof(*part));\
379                 part->type = (ptype);\
380                 part->color[0] = pcr2;\
381                 part->color[1] = pcg2;\
382                 part->color[2] = pcb2;\
383                 part->color[3] = 0xFF;\
384                 part->orientation = porientation;\
385                 part->texnum = ptex;\
386                 part->blendmode = pblendmode;\
387                 part->scalex = (pscalex);\
388                 part->scaley = (pscaley);\
389                 part->alpha = (palpha);\
390                 part->alphafade = (palphafade);\
391                 part->die = cl.time + (ptime);\
392                 part->gravity = (pgravity);\
393                 part->bounce = (pbounce);\
394                 part->org[0] = (px);\
395                 part->org[1] = (py);\
396                 part->org[2] = (pz);\
397                 part->vel[0] = (pvx);\
398                 part->vel[1] = (pvy);\
399                 part->vel[2] = (pvz);\
400                 part->time2 = (ptime2);\
401                 part->vel2[0] = (pvx2);\
402                 part->vel2[1] = (pvy2);\
403                 part->vel2[2] = (pvz2);\
404                 part->friction = (pfriction);\
405                 part->pressure = (ppressure);\
406         }\
407 }
408
409 /*
410 ===============
411 CL_EntityParticles
412 ===============
413 */
414 void CL_EntityParticles (entity_t *ent)
415 {
416         int                     i;
417         float           angle;
418         float           sp, sy, cp, cy;
419         vec3_t          forward;
420         float           dist;
421         float           beamlength;
422         static vec3_t avelocities[NUMVERTEXNORMALS];
423         if (!cl_particles.integer) return;
424
425         dist = 64;
426         beamlength = 16;
427
428         if (!avelocities[0][0])
429                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
430                         avelocities[0][i] = (rand()&255) * 0.01;
431
432         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
433         {
434                 angle = cl.time * avelocities[i][0];
435                 sy = sin(angle);
436                 cy = cos(angle);
437                 angle = cl.time * avelocities[i][1];
438                 sp = sin(angle);
439                 cp = cos(angle);
440
441                 forward[0] = cp*cy;
442                 forward[1] = cp*sy;
443                 forward[2] = -sp;
444
445 #ifdef WORKINGLQUAKE
446                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
447 #else
448                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
449 #endif
450         }
451 }
452
453
454 void CL_ReadPointFile_f (void)
455 {
456         vec3_t  org;
457         int             r, c;
458         char    *pointfile = NULL, *pointfilepos, *t, tchar;
459 #if WORKINGLQUAKE
460         char    name[MAX_OSPATH];
461         
462         sprintf (name,"maps/%s.pts", cl.worldmodel->name);
463         COM_FOpenFile (name, &f);
464         if (f)
465         {
466                 int pointfilelength;
467                 fseek(f, 0, SEEK_END);
468                 pointfilelength = ftell(f);
469                 fseek(f, 0, SEEK_SET);
470                 pointfile = malloc(pointfilelength + 1);
471                 fread(pointfile, 1, pointfilelength, f);
472                 pointfile[pointfilelength] = 0;
473                 fclose(f);
474         }
475 #else
476         pointfile = COM_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true);
477 #endif
478         if (!pointfile)
479         {
480                 Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name);
481                 return;
482         }
483
484         Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name);
485         c = 0;
486         pointfilepos = pointfile;
487         while (*pointfilepos)
488         {
489                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
490                         pointfilepos++;
491                 if (!*pointfilepos)
492                         break;
493                 t = pointfilepos;
494                 while (*t && *t != '\n' && *t != '\r')
495                         t++;
496                 tchar = *t;
497                 *t = 0;
498                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
499                 *t = tchar;
500                 pointfilepos = t;
501                 if (r != 3)
502                         break;
503                 c++;
504
505                 if (cl_numparticles >= cl_maxparticles)
506                 {
507                         Con_Printf ("Not enough free particles\n");
508                         break;
509                 }
510                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
511         }
512
513 #ifdef WORKINGLQUAKE
514         free(pointfile);
515 #else
516         Mem_Free(pointfile);
517 #endif
518         Con_Printf ("%i points read\n", c);
519 }
520
521 /*
522 ===============
523 CL_ParseParticleEffect
524
525 Parse an effect out of the server message
526 ===============
527 */
528 void CL_ParseParticleEffect (void)
529 {
530         vec3_t org, dir;
531         int i, count, msgcount, color;
532
533         for (i=0 ; i<3 ; i++)
534                 org[i] = MSG_ReadCoord ();
535         for (i=0 ; i<3 ; i++)
536                 dir[i] = MSG_ReadChar () * (1.0/16);
537         msgcount = MSG_ReadByte ();
538         color = MSG_ReadByte ();
539
540         if (msgcount == 255)
541                 count = 1024;
542         else
543                 count = msgcount;
544
545         CL_RunParticleEffect (org, dir, color, count);
546 }
547
548 /*
549 ===============
550 CL_ParticleExplosion
551
552 ===============
553 */
554 void CL_ParticleExplosion (vec3_t org)
555 {
556         int i, k;
557         //vec3_t v;
558         //vec3_t v2;
559         if (cl_stainmaps.integer)
560                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
561
562         i = Mod_PointContents(org, cl.worldmodel);
563         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
564         {
565                 for (i = 0;i < 128;i++)
566                 {
567                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
568                 }
569         }
570         else
571         {
572                 /*
573                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
574                 // smoke puff
575                 if (cl_particles_smoke.integer)
576                 {
577                         for (i = 0;i < 64;i++)
578                         {
579 #ifdef WORKINGLQUAKE
580                                 v2[0] = lhrandom(-64, 64);
581                                 v2[1] = lhrandom(-64, 64);
582                                 v2[2] = lhrandom(-8, 24);
583 #else
584                                 for (k = 0;k < 16;k++)
585                                 {
586                                         v[0] = org[0] + lhrandom(-64, 64);
587                                         v[1] = org[1] + lhrandom(-64, 64);
588                                         v[2] = org[2] + lhrandom(-8, 24);
589                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
590                                                 break;
591                                 }
592                                 VectorSubtract(v2, org, v2);
593 #endif
594                                 VectorScale(v2, 2.0f, v2);
595                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
596                         }
597                 }
598                 */
599
600                 if (cl_particles_sparks.integer)
601                 {
602                         // sparks
603                         for (i = 0;i < 256;i++)
604                         {
605                                 k = particlepalette[0x68 + (rand() & 7)];
606                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
607                         }
608                 }
609         }
610
611         if (cl_explosions.integer)
612                 R_NewExplosion(org);
613 }
614
615 /*
616 ===============
617 CL_ParticleExplosion2
618
619 ===============
620 */
621 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
622 {
623         int i, k;
624         if (!cl_particles.integer) return;
625
626         for (i = 0;i < 512;i++)
627         {
628                 k = particlepalette[colorStart + (i % colorLength)];
629                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
630         }
631 }
632
633 /*
634 ===============
635 CL_BlobExplosion
636
637 ===============
638 */
639 void CL_BlobExplosion (vec3_t org)
640 {
641         if (cl_stainmaps.integer)
642                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
643
644         if (cl_explosions.integer)
645                 R_NewExplosion(org);
646 }
647
648 /*
649 ===============
650 CL_RunParticleEffect
651
652 ===============
653 */
654 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
655 {
656         int k;
657
658         if (count == 1024)
659         {
660                 CL_ParticleExplosion(org);
661                 return;
662         }
663         if (!cl_particles.integer) return;
664         while (count--)
665         {
666                 k = particlepalette[color + (rand()&7)];
667                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
668         }
669 }
670
671 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
672 /*
673 ===============
674 CL_SparkShower
675 ===============
676 */
677 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
678 {
679         int k;
680         if (!cl_particles.integer) return;
681
682         if (cl_stainmaps.integer)
683                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
684
685         if (cl_particles_bulletimpacts.integer)
686         {
687                 // smoke puff
688                 if (cl_particles_smoke.integer)
689                 {
690                         k = count / 4;
691                         while(k--)
692                         {
693                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
694                         }
695                 }
696
697                 if (cl_particles_sparks.integer)
698                 {
699                         // sparks
700                         while(count--)
701                         {
702                                 k = particlepalette[0x68 + (rand() & 7)];
703                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
704                         }
705                 }
706         }
707 }
708
709 void CL_PlasmaBurn (vec3_t org)
710 {
711         if (cl_stainmaps.integer)
712                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
713 }
714
715 static float bloodcount = 0;
716 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
717 {
718         float s, r, a;
719         // bloodcount is used to accumulate counts too small to cause a blood particle
720         if (!cl_particles.integer) return;
721         if (!cl_particles_blood.integer) return;
722
723         s = count + 32.0f;
724         count *= 5.0f;
725         if (count > 1000)
726                 count = 1000;
727         bloodcount += count;
728         r = cl_particles_blood_size.value;
729         a = cl_particles_blood_alpha.value * 255;
730         while(bloodcount > 0)
731         {
732                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
733                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
734                 bloodcount -= r;
735         }
736 }
737
738 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
739 {
740         float r;
741         float a;
742         vec3_t diff, center, velscale;
743         if (!cl_particles.integer) return;
744         if (!cl_particles_bloodshowers.integer) return;
745         if (!cl_particles_blood.integer) return;
746
747         VectorSubtract(maxs, mins, diff);
748         center[0] = (mins[0] + maxs[0]) * 0.5;
749         center[1] = (mins[1] + maxs[1]) * 0.5;
750         center[2] = (mins[2] + maxs[2]) * 0.5;
751         // FIXME: change velspeed back to 2.0x after fixing mod
752         velscale[0] = velspeed * 2.0 / diff[0];
753         velscale[1] = velspeed * 2.0 / diff[1];
754         velscale[2] = velspeed * 2.0 / diff[2];
755
756         bloodcount += count * 5.0f;
757         r = cl_particles_blood_size.value;
758         a = cl_particles_blood_alpha.value * 255;
759         while (bloodcount > 0)
760         {
761                 vec3_t org, vel;
762                 org[0] = lhrandom(mins[0], maxs[0]);
763                 org[1] = lhrandom(mins[1], maxs[1]);
764                 org[2] = lhrandom(mins[2], maxs[2]);
765                 vel[0] = (org[0] - center[0]) * velscale[0];
766                 vel[1] = (org[1] - center[1]) * velscale[1];
767                 vel[2] = (org[2] - center[2]) * velscale[2];
768                 bloodcount -= r;
769                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
770                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
771         }
772 }
773
774 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
775 {
776         int k;
777         float t;
778         if (!cl_particles.integer) return;
779         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
780         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
781         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
782
783         while (count--)
784         {
785                 k = particlepalette[colorbase + (rand()&3)];
786                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
787         }
788 }
789
790 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
791 {
792         int k;
793         float t, z, minz, maxz;
794         if (!cl_particles.integer) return;
795         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
796         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
797         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
798         if (dir[2] < 0) // falling
799         {
800                 t = (maxs[2] - mins[2]) / -dir[2];
801                 z = maxs[2];
802         }
803         else // rising??
804         {
805                 t = (maxs[2] - mins[2]) / dir[2];
806                 z = mins[2];
807         }
808         if (t < 0 || t > 2) // sanity check
809                 t = 2;
810
811         minz = z - fabs(dir[2]) * 0.1;
812         maxz = z + fabs(dir[2]) * 0.1;
813         minz = bound(mins[2], minz, maxs[2]);
814         maxz = bound(mins[2], maxz, maxs[2]);
815
816         switch(type)
817         {
818         case 0:
819                 count *= 4; // ick, this should be in the mod or maps?
820
821                 while(count--)
822                 {
823                         k = particlepalette[colorbase + (rand()&3)];
824                         particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
825                 }
826                 break;
827         case 1:
828                 while(count--)
829                 {
830                         k = particlepalette[colorbase + (rand()&3)];
831                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
832                 }
833                 break;
834         default:
835                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
836         }
837 }
838
839 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
840 {
841         int k;
842         float t;
843         vec3_t o, v, center;
844         if (!cl_particles.integer) return;
845
846         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
847         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
848         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
849
850         center[0] = (mins[0] + maxs[0]) * 0.5f;
851         center[1] = (mins[1] + maxs[1]) * 0.5f;
852         center[2] = (mins[2] + maxs[2]) * 0.5f;
853
854         while (count--)
855         {
856                 k = particlepalette[224 + (rand()&15)];
857                 o[0] = lhrandom(mins[0], maxs[0]);
858                 o[1] = lhrandom(mins[1], maxs[1]);
859                 o[2] = lhrandom(mins[2], maxs[2]);
860                 VectorSubtract(o, center, v);
861                 VectorNormalizeFast(v);
862                 VectorScale(v, 100, v);
863                 v[2] += sv_gravity.value * 0.15f;
864                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
865         }
866 }
867
868 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
869 {
870         int k;
871         float t;
872         if (!cl_particles.integer) return;
873         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
874         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
875         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
876
877         while (count--)
878         {
879                 k = particlepalette[224 + (rand()&15)];
880                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
881                 if (count & 1)
882                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
883         }
884 }
885
886 void CL_Flames (vec3_t org, vec3_t vel, int count)
887 {
888         int k;
889         if (!cl_particles.integer) return;
890
891         while (count--)
892         {
893                 k = particlepalette[224 + (rand()&15)];
894                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
895         }
896 }
897
898
899
900 /*
901 ===============
902 CL_LavaSplash
903
904 ===============
905 */
906 void CL_LavaSplash (vec3_t origin)
907 {
908         int                     i, j, k;
909         float           vel;
910         vec3_t          dir, org;
911         if (!cl_particles.integer) return;
912
913         for (i=-128 ; i<128 ; i+=16)
914         {
915                 for (j=-128 ; j<128 ; j+=16)
916                 {
917                         dir[0] = j + lhrandom(0, 8);
918                         dir[1] = i + lhrandom(0, 8);
919                         dir[2] = 256;
920                         org[0] = origin[0] + dir[0];
921                         org[1] = origin[1] + dir[1];
922                         org[2] = origin[2] + lhrandom(0, 64);
923                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
924                         k = particlepalette[224 + (rand()&7)];
925                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
926                 }
927         }
928 }
929
930 /*
931 ===============
932 CL_TeleportSplash
933
934 ===============
935 */
936 #if WORKINGLQUAKE
937 void R_TeleportSplash (vec3_t org)
938 {
939         int i, j, k;
940         if (!cl_particles.integer) return;
941
942         for (i=-16 ; i<16 ; i+=8)
943                 for (j=-16 ; j<16 ; j+=8)
944                         for (k=-24 ; k<32 ; k+=8)
945                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
946 }
947 #endif
948
949 #ifdef WORKINGLQUAKE
950 void R_RocketTrail (vec3_t start, vec3_t end, int type)
951 #else
952 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
953 #endif
954 {
955         vec3_t vec, dir, vel, pos;
956         float len, dec, speed, r;
957         int contents, smoke, blood, bubbles;
958
959         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
960                 return;
961
962         VectorSubtract(end, start, dir);
963         VectorNormalize(dir);
964
965         VectorSubtract (end, start, vec);
966 #ifdef WORKINGLQUAKE
967         len = VectorNormalize (vec);
968         dec = 0;
969         speed = 1.0f / cl.frametime;
970         VectorSubtract(end, start, vel);
971 #else
972         len = VectorNormalizeLength (vec);
973         dec = -ent->persistent.trail_time;
974         ent->persistent.trail_time += len;
975         if (ent->persistent.trail_time < 0.01f)
976                 return;
977
978         // if we skip out, leave it reset
979         ent->persistent.trail_time = 0.0f;
980
981         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
982         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
983 #endif
984         VectorScale(vel, speed, vel);
985
986         // advance into this frame to reach the first puff location
987         VectorMA(start, dec, vec, pos);
988         len -= dec;
989
990         contents = Mod_PointContents(pos, cl.worldmodel);
991         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
992                 return;
993
994         smoke = cl_particles.integer && cl_particles_smoke.integer;
995         blood = cl_particles.integer && cl_particles_blood.integer;
996         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
997
998         while (len >= 0)
999         {
1000                 switch (type)
1001                 {
1002                         case 0: // rocket trail
1003                                 dec = 3;
1004                                 if (smoke)
1005                                 {
1006                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*125, cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1007                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1008                                 }
1009                                 if (bubbles)
1010                                 {
1011                                         r = lhrandom(1, 2);
1012                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1013                                 }
1014                                 break;
1015
1016                         case 1: // grenade trail
1017                                 // FIXME: make it gradually stop smoking
1018                                 dec = 3;
1019                                 if (cl_particles.integer && cl_particles_smoke.integer)
1020                                 {
1021                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*100, cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1022                                 }
1023                                 break;
1024
1025
1026                         case 2: // blood
1027                         case 4: // slight blood
1028                                 dec = cl_particles_blood_size.value;
1029                                 if (blood)
1030                                 {
1031                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1032                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1033                                 }
1034                                 break;
1035
1036                         case 3: // green tracer
1037                                 dec = 6;
1038                                 if (smoke)
1039                                 {
1040                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1041                                 }
1042                                 break;
1043
1044                         case 5: // flame tracer
1045                                 dec = 6;
1046                                 if (smoke)
1047                                 {
1048                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1049                                 }
1050                                 break;
1051
1052                         case 6: // voor trail
1053                                 dec = 6;
1054                                 if (smoke)
1055                                 {
1056                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1057                                 }
1058                                 break;
1059
1060                         case 7: // Nehahra smoke tracer
1061                                 dec = 7;
1062                                 if (smoke)
1063                                 {
1064                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1065                                 }
1066                                 break;
1067                         case 8: // Nexiuz plasma trail
1068                                 dec = 4;
1069                                 if (smoke)
1070                                 {
1071                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1072                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1073                                 }
1074                 }
1075
1076                 // advance to next time and position
1077                 len -= dec;
1078                 VectorMA (pos, dec, vec, pos);
1079         }
1080 #ifndef WORKINGLQUAKE
1081         ent->persistent.trail_time = len;
1082 #endif
1083 }
1084
1085 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1086 {
1087         vec3_t vec, pos;
1088         int len;
1089         if (!cl_particles.integer) return;
1090         if (!cl_particles_smoke.integer) return;
1091
1092         VectorCopy(start, pos);
1093         VectorSubtract (end, start, vec);
1094 #ifdef WORKINGLQUAKE
1095         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1096 #else
1097         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1098 #endif
1099         VectorScale(vec, 3, vec);
1100         color = particlepalette[color];
1101         while (len--)
1102         {
1103                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1104                 VectorAdd (pos, vec, pos);
1105         }
1106 }
1107
1108 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1109 {
1110         int tempcolor2, cr, cg, cb;
1111         cr = red * 255;
1112         cg = green * 255;
1113         cb = blue * 255;
1114         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1115         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1116 }
1117
1118 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1119 {
1120         int k;
1121         if (!cl_particles.integer) return;
1122
1123         // smoke puff
1124         if (cl_particles_smoke.integer)
1125         {
1126                 k = count / 4;
1127                 while(k--)
1128                 {
1129                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1130                 }
1131         }
1132 }
1133
1134 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1135 {
1136         int k;
1137         if (!cl_particles.integer) return;
1138
1139         if (cl_stainmaps.integer)
1140                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1141
1142         // smoke puff
1143         if (cl_particles_smoke.integer)
1144         {
1145                 k = count / 4;
1146                 while(k--)
1147                 {
1148                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1149                 }
1150         }
1151
1152         if (cl_particles_sparks.integer)
1153         {
1154                 // sparks
1155                 while(count--)
1156                 {
1157                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1158                 }
1159         }
1160 }
1161
1162 /*
1163 ===============
1164 CL_MoveParticles
1165 ===============
1166 */
1167 void CL_MoveParticles (void)
1168 {
1169         particle_t *p;
1170         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1171         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1172 #ifdef WORKINGLQUAKE
1173         void *hitent;
1174 #else
1175         entity_render_t *hitent;
1176 #endif
1177
1178         // LordHavoc: early out condition
1179         if (!cl_numparticles)
1180                 return;
1181
1182 #ifdef WORKINGLQUAKE
1183         frametime = cl.frametime;
1184 #else
1185         frametime = cl.time - cl.oldtime;
1186 #endif
1187         gravity = frametime * sv_gravity.value;
1188         dvel = 1+4*frametime;
1189         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1190
1191         activeparticles = 0;
1192         maxparticle = -1;
1193         j = 0;
1194         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1195         {
1196                 content = 0;
1197                 VectorCopy(p->org, p->oldorg);
1198                 VectorMA(p->org, frametime, p->vel, p->org);
1199                 VectorCopy(p->org, org);
1200                 if (p->bounce)
1201                 {
1202                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, &hitent) < 1)
1203                         {
1204                                 VectorCopy(v, p->org);
1205                                 if (p->bounce < 0)
1206                                 {
1207                                         // assume it's blood (lame, but...)
1208 #ifndef WORKINGLQUAKE
1209                                         if (cl_stainmaps.integer)
1210                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1211 #endif
1212                                         if (cl_decals.integer)
1213                                         {
1214                                                 p->type = pt_decal;
1215                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1216 #ifndef WORKINGLQUAKE
1217                                                 p->owner = hitent;
1218                                                 p->ownermodel = hitent->model;
1219                                                 Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1220                                                 Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1221                                                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1222 #endif
1223                                                 p->time2 = cl.time + cl_decals_time.value;
1224                                                 p->die = p->time2 + cl_decals_fadetime.value;
1225                                                 p->alphafade = 0;
1226                                                 VectorCopy(normal, p->vel2);
1227                                                 VectorClear(p->vel);
1228                                                 VectorAdd(p->org, normal, p->org);
1229                                                 p->bounce = 0;
1230                                                 p->friction = 0;
1231                                                 p->gravity = 0;
1232                                                 p->scalex *= 1.25f;
1233                                                 p->scaley *= 1.25f;
1234                                         }
1235                                         else
1236                                         {
1237                                                 p->die = -1;
1238                                                 freeparticles[j++] = p;
1239                                                 continue;
1240                                         }
1241                                 }
1242                                 else
1243                                 {
1244                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1245                                         VectorMA(p->vel, dist, normal, p->vel);
1246                                         if (DotProduct(p->vel, p->vel) < 0.03)
1247                                                 VectorClear(p->vel);
1248                                 }
1249                         }
1250                 }
1251                 p->vel[2] -= p->gravity * gravity;
1252                 p->alpha -= p->alphafade * frametime;
1253                 if (p->friction)
1254                 {
1255                         f = p->friction * frametime;
1256                         if (!content)
1257                                 content = Mod_PointContents(p->org, cl.worldmodel);
1258                         if (content != CONTENTS_EMPTY)
1259                                 f *= 4;
1260                         f = 1.0f - f;
1261                         VectorScale(p->vel, f, p->vel);
1262                 }
1263
1264                 if (p->type != pt_static)
1265                 {
1266                         switch (p->type)
1267                         {
1268                         case pt_blood:
1269                                 if (!content)
1270                                         content = Mod_PointContents(p->org, cl.worldmodel);
1271                                 a = content;
1272                                 if (a != CONTENTS_EMPTY)
1273                                 {
1274                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1275                                         {
1276                                                 p->scalex += frametime * cl_particles_blood_size.value;
1277                                                 p->scaley += frametime * cl_particles_blood_size.value;
1278                                                 //p->alpha -= bloodwaterfade;
1279                                         }
1280                                         else
1281                                                 p->die = -1;
1282                                 }
1283                                 else
1284                                         p->vel[2] -= gravity;
1285                                 break;
1286                         case pt_bubble:
1287                                 if (!content)
1288                                         content = Mod_PointContents(p->org, cl.worldmodel);
1289                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1290                                 {
1291                                         p->die = -1;
1292                                         break;
1293                                 }
1294                                 break;
1295                         case pt_rain:
1296                                 if (cl.time > p->time2)
1297                                 {
1298                                         // snow flutter
1299                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1300                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1301                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1302                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1303                                 }
1304                                 if (!content)
1305                                         content = Mod_PointContents(p->org, cl.worldmodel);
1306                                 a = content;
1307                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1308                                         p->die = -1;
1309                                 break;
1310                         case pt_grow:
1311                                 p->scalex += frametime * p->time2;
1312                                 p->scaley += frametime * p->time2;
1313                                 break;
1314                         case pt_decal:
1315 #ifndef WORKINGLQUAKE
1316                                 if (p->owner->model == p->ownermodel)
1317                                 {
1318                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1319                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1320                                 }
1321                                 else
1322                                         p->die = -1;
1323 #endif
1324                                 if (cl.time > p->time2)
1325                                 {
1326                                         p->alphafade = p->alpha / (p->die - cl.time);
1327                                         p->time2 += 10000;
1328                                 }
1329                                 break;
1330                         default:
1331                                 printf("unknown particle type %i\n", p->type);
1332                                 p->die = -1;
1333                                 break;
1334                         }
1335                 }
1336
1337                 // remove dead particles
1338                 if (p->alpha < 1 || p->die < cl.time)
1339                         freeparticles[j++] = p;
1340                 else
1341                 {
1342                         maxparticle = i;
1343                         activeparticles++;
1344                         if (p->pressure)
1345                                 pressureused = true;
1346                 }
1347         }
1348         // fill in gaps to compact the array
1349         i = 0;
1350         while (maxparticle >= activeparticles)
1351         {
1352                 *freeparticles[i++] = particles[maxparticle--];
1353                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1354                         maxparticle--;
1355         }
1356         cl_numparticles = activeparticles;
1357
1358         if (pressureused)
1359         {
1360                 activeparticles = 0;
1361                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1362                         if (p->pressure)
1363                                 freeparticles[activeparticles++] = p;
1364
1365                 if (activeparticles)
1366                 {
1367                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1368                         {
1369                                 for (j = 0;j < activeparticles;j++)
1370                                 {
1371                                         if (freeparticles[j] != p)
1372                                         {
1373                                                 float dist, diff[3];
1374                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1375                                                 dist = DotProduct(diff, diff);
1376                                                 if (dist < 4096 && dist >= 1)
1377                                                 {
1378                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1379                                                         VectorMA(p->vel, dist, diff, p->vel);
1380                                                 }
1381                                         }
1382                                 }
1383                         }
1384                 }
1385         }
1386 }
1387
1388 #define MAX_PARTICLETEXTURES 64
1389 // particletexture_t is a rectangle in the particlefonttexture
1390 typedef struct
1391 {
1392         rtexture_t *texture;
1393         float s1, t1, s2, t2;
1394 }
1395 particletexture_t;
1396
1397 #if WORKINGLQUAKE
1398 static int particlefonttexture;
1399 #else
1400 static rtexturepool_t *particletexturepool;
1401 static rtexture_t *particlefonttexture;
1402 #endif
1403 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1404
1405 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1406
1407 static qbyte shadebubble(float dx, float dy, vec3_t light)
1408 {
1409         float dz, f, dot;
1410         vec3_t normal;
1411         dz = 1 - (dx*dx+dy*dy);
1412         if (dz > 0) // it does hit the sphere
1413         {
1414                 f = 0;
1415                 // back side
1416                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1417                 VectorNormalize(normal);
1418                 dot = DotProduct(normal, light);
1419                 if (dot > 0.5) // interior reflection
1420                         f += ((dot *  2) - 1);
1421                 else if (dot < -0.5) // exterior reflection
1422                         f += ((dot * -2) - 1);
1423                 // front side
1424                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1425                 VectorNormalize(normal);
1426                 dot = DotProduct(normal, light);
1427                 if (dot > 0.5) // interior reflection
1428                         f += ((dot *  2) - 1);
1429                 else if (dot < -0.5) // exterior reflection
1430                         f += ((dot * -2) - 1);
1431                 f *= 128;
1432                 f += 16; // just to give it a haze so you can see the outline
1433                 f = bound(0, f, 255);
1434                 return (qbyte) f;
1435         }
1436         else
1437                 return 0;
1438 }
1439
1440 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1441 {
1442         int basex, basey, y;
1443         basex = ((texnum >> 0) & 7) * 32;
1444         basey = ((texnum >> 3) & 7) * 32;
1445         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1446         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1447         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1448         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1449         for (y = 0;y < 32;y++)
1450                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1451 }
1452
1453 static void R_InitParticleTexture (void)
1454 {
1455         int x, y, d, i, j, k, m;
1456         float cx, cy, dx, dy, radius, f, f2;
1457         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1458         vec3_t light;
1459         qbyte particletexturedata[256*256*4];
1460
1461         memset(particletexturedata, 255, sizeof(particletexturedata));
1462
1463         // smoke/blood
1464         for (i = 0;i < 8;i++)
1465         {
1466                 do
1467                 {
1468                         fractalnoise(&noise1[0][0], 64, 4);
1469                         fractalnoise(&noise2[0][0], 64, 8);
1470                         m = 0;
1471                         for (y = 0;y < 32;y++)
1472                         {
1473                                 dy = y - 16;
1474                                 for (x = 0;x < 32;x++)
1475                                 {
1476                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1477                                         dx = x - 16;
1478                                         d = (noise2[y][x] - 128) * 3 + 192;
1479                                         if (d > 0)
1480                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1481                                         d = (d * noise1[y][x]) >> 7;
1482                                         d = bound(0, d, 255);
1483                                         data[y][x][3] = (qbyte) d;
1484                                         if (m < d)
1485                                                 m = d;
1486                                 }
1487                         }
1488                 }
1489                 while (m < 224);
1490
1491                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1492         }
1493
1494         // rain splash
1495         for (i = 0;i < 16;i++)
1496         {
1497                 radius = i * 3.0f / 16.0f;
1498                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1499                 for (y = 0;y < 32;y++)
1500                 {
1501                         dy = (y - 16) * 0.25f;
1502                         for (x = 0;x < 32;x++)
1503                         {
1504                                 dx = (x - 16) * 0.25f;
1505                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1506                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1507                                 f = bound(0.0f, f, 255.0f);
1508                                 data[y][x][3] = (int) f;
1509                         }
1510                 }
1511                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1512         }
1513
1514         // normal particle
1515         for (y = 0;y < 32;y++)
1516         {
1517                 dy = y - 16;
1518                 for (x = 0;x < 32;x++)
1519                 {
1520                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1521                         dx = x - 16;
1522                         d = (256 - (dx*dx+dy*dy));
1523                         d = bound(0, d, 255);
1524                         data[y][x][3] = (qbyte) d;
1525                 }
1526         }
1527         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1528
1529         // rain
1530         light[0] = 1;light[1] = 1;light[2] = 1;
1531         VectorNormalize(light);
1532         for (y = 0;y < 32;y++)
1533         {
1534                 for (x = 0;x < 32;x++)
1535                 {
1536                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1537                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1538                 }
1539         }
1540         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1541
1542         // bubble
1543         light[0] = 1;light[1] = 1;light[2] = 1;
1544         VectorNormalize(light);
1545         for (y = 0;y < 32;y++)
1546         {
1547                 for (x = 0;x < 32;x++)
1548                 {
1549                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1550                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1551                 }
1552         }
1553         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1554
1555         // smoke/blood
1556         for (i = 0;i < 8;i++)
1557         {
1558                 memset(&data[0][0][0], 255, sizeof(data));
1559                 for (j = 1;j < 8;j++)
1560                 {
1561                         for (k = 0;k < 3;k++)
1562                         {
1563                                 cx = lhrandom(j + 1, 30 - j);
1564                                 cy = lhrandom(j + 1, 30 - j);
1565                                 for (y = 0;y < 32;y++)
1566                                 {
1567                                         for (x = 0;x < 32;x++)
1568                                         {
1569                                                 dx = (x - cx);
1570                                                 dy = (y - cy);
1571                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1572                                                 if (f > 0)
1573                                                 {
1574                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1575                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1576                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1577                                                 }
1578                                         }
1579                                 }
1580                         }
1581                 }
1582                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1583                 for (y = 0;y < 32;y++)
1584                 {
1585                         for (x = 0;x < 32;x++)
1586                         {
1587                                 data[y][x][0] = 255 - data[y][x][0];
1588                                 data[y][x][1] = 255 - data[y][x][1];
1589                                 data[y][x][2] = 255 - data[y][x][2];
1590                         }
1591                 }
1592                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1593         }
1594
1595 #if WORKINGLQUAKE
1596         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1597         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1598         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1599 #else
1600         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1601         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1602                 particletexture[i].texture = particlefonttexture;
1603
1604         // beam
1605         fractalnoise(&noise1[0][0], 64, 4);
1606         m = 0;
1607         for (y = 0;y < 64;y++)
1608         {
1609                 for (x = 0;x < 16;x++)
1610                 {
1611                         if (x < 8)
1612                                 d = x;
1613                         else
1614                                 d = (15 - x);
1615                         d = d * d * noise1[y][x] / (7 * 7);
1616                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1617                         data2[y][x][3] = 255;
1618                 }
1619         }
1620
1621         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1622         particletexture[tex_beam].s1 = 0;
1623         particletexture[tex_beam].t1 = 0;
1624         particletexture[tex_beam].s2 = 1;
1625         particletexture[tex_beam].t2 = 1;
1626 #endif
1627 }
1628
1629 static void r_part_start(void)
1630 {
1631         particletexturepool = R_AllocTexturePool();
1632         R_InitParticleTexture ();
1633 }
1634
1635 static void r_part_shutdown(void)
1636 {
1637         R_FreeTexturePool(&particletexturepool);
1638 }
1639
1640 static void r_part_newmap(void)
1641 {
1642         cl_numparticles = 0;
1643 }
1644
1645 void R_Particles_Init (void)
1646 {
1647         Cvar_RegisterVariable(&r_drawparticles);
1648 #ifdef WORKINGLQUAKE
1649         r_part_start();
1650 #else
1651         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1652 #endif
1653 }
1654
1655 #ifdef WORKINGLQUAKE
1656 void R_InitParticles(void)
1657 {
1658         CL_Particles_Init();
1659         R_Particles_Init();
1660 }
1661
1662 float varray_vertex[16];
1663 #endif
1664
1665 #ifdef WORKINGLQUAKE
1666 void R_DrawParticle(particle_t *p)
1667 {
1668 #else
1669 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1670 {
1671         const particle_t *p = calldata1;
1672         rmeshstate_t m;
1673 #endif
1674         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1675         particletexture_t *tex;
1676
1677         VectorCopy(p->org, org);
1678
1679         if (p->orientation == PARTICLE_BILLBOARD)
1680         {
1681                 VectorScale(vright, p->scalex, right);
1682                 VectorScale(vup, p->scaley, up);
1683                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1684                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1685                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1686                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1687                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1688                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1689                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1690                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1691                 varray_vertex[10] = org[2] - right[2] + up[2];
1692                 varray_vertex[12] = org[0] + right[0] + up[0];
1693                 varray_vertex[13] = org[1] + right[1] + up[1];
1694                 varray_vertex[14] = org[2] + right[2] + up[2];
1695         }
1696         else if (p->orientation == PARTICLE_SPARK)
1697         {
1698                 VectorMA(p->org, -p->scaley, p->vel, v);
1699                 VectorMA(p->org, p->scaley, p->vel, up2);
1700                 R_CalcBeamVerts(varray_vertex, v, up2, p->scalex);
1701         }
1702         else if (p->orientation == PARTICLE_BEAM)
1703                 R_CalcBeamVerts(varray_vertex, p->org, p->vel2, p->scalex);
1704         else if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1705         {
1706                 // double-sided
1707                 if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1708                 {
1709                         VectorNegate(p->vel2, v);
1710                         VectorVectors(v, right, up);
1711                 }
1712                 else
1713                         VectorVectors(p->vel2, right, up);
1714                 VectorScale(right, p->scalex, right);
1715                 VectorScale(up, p->scaley, up);
1716                 varray_vertex[ 0] = org[0] + right[0] - up[0];
1717                 varray_vertex[ 1] = org[1] + right[1] - up[1];
1718                 varray_vertex[ 2] = org[2] + right[2] - up[2];
1719                 varray_vertex[ 4] = org[0] - right[0] - up[0];
1720                 varray_vertex[ 5] = org[1] - right[1] - up[1];
1721                 varray_vertex[ 6] = org[2] - right[2] - up[2];
1722                 varray_vertex[ 8] = org[0] - right[0] + up[0];
1723                 varray_vertex[ 9] = org[1] - right[1] + up[1];
1724                 varray_vertex[10] = org[2] - right[2] + up[2];
1725                 varray_vertex[12] = org[0] + right[0] + up[0];
1726                 varray_vertex[13] = org[1] + right[1] + up[1];
1727                 varray_vertex[14] = org[2] + right[2] + up[2];
1728         }
1729         else
1730                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1731
1732         tex = &particletexture[p->texnum];
1733         cr = p->color[0] * (1.0f / 255.0f);
1734         cg = p->color[1] * (1.0f / 255.0f);
1735         cb = p->color[2] * (1.0f / 255.0f);
1736         ca = p->alpha * (1.0f / 255.0f);
1737         if (p->blendmode == PBLEND_MOD)
1738         {
1739                 cr *= ca;
1740                 cg *= ca;
1741                 cb *= ca;
1742                 cr = min(cr, 1);
1743                 cg = min(cg, 1);
1744                 cb = min(cb, 1);
1745                 ca = 1;
1746         }
1747
1748 #if WORKINGLQUAKE
1749         if (p->blendmode == 0)
1750                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1751         else if (p->blendmode == 1)
1752                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1753         else
1754                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1755         glBegin(GL_QUADS);
1756         glColor4f(cr, cg, cb, ca);
1757         glTexCoord2f(tex->s2, tex->t1);glVertex3f(varray_vertex[ 0], varray_vertex[ 1], varray_vertex[ 2]);
1758         glTexCoord2f(tex->s1, tex->t1);glVertex3f(varray_vertex[ 4], varray_vertex[ 5], varray_vertex[ 6]);
1759         glTexCoord2f(tex->s1, tex->t2);glVertex3f(varray_vertex[ 8], varray_vertex[ 9], varray_vertex[10]);
1760         glTexCoord2f(tex->s2, tex->t2);glVertex3f(varray_vertex[12], varray_vertex[13], varray_vertex[14]);
1761         glEnd();
1762 #else
1763         memset(&m, 0, sizeof(m));
1764         if (p->blendmode == 0)
1765         {
1766                 m.blendfunc1 = GL_SRC_ALPHA;
1767                 m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA;
1768         }
1769         else if (p->blendmode == 1)
1770         {
1771                 m.blendfunc1 = GL_SRC_ALPHA;
1772                 m.blendfunc2 = GL_ONE;
1773         }
1774         else
1775         {
1776                 m.blendfunc1 = GL_ZERO;
1777                 m.blendfunc2 = GL_ONE_MINUS_SRC_COLOR;
1778         }
1779         m.tex[0] = R_GetTexture(tex->texture);
1780         R_Mesh_Matrix(&r_identitymatrix);
1781         R_Mesh_State(&m);
1782
1783         if (fogenabled && p->blendmode != PBLEND_MOD)
1784         {
1785                 VectorSubtract(org, r_origin, fogvec);
1786                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1787                 ifog = 1 - fog;
1788                 cr = cr * ifog;
1789                 cg = cg * ifog;
1790                 cb = cb * ifog;
1791                 if (p->blendmode == 0)
1792                 {
1793                         cr += fogcolor[0] * fog;
1794                         cg += fogcolor[1] * fog;
1795                         cb += fogcolor[2] * fog;
1796                 }
1797         }
1798         cr *= r_colorscale;
1799         cg *= r_colorscale;
1800         cb *= r_colorscale;
1801
1802         if (p->orientation == PARTICLE_BEAM)
1803         {
1804                 VectorSubtract(p->vel2, p->org, up);
1805                 VectorNormalizeFast(up);
1806                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1807                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1808                 varray_texcoord[0][0] = 1;varray_texcoord[0][1] = v[0];
1809                 varray_texcoord[0][4] = 0;varray_texcoord[0][5] = v[0];
1810                 varray_texcoord[0][8] = 0;varray_texcoord[0][9] = v[1];
1811                 varray_texcoord[0][12] = 1;varray_texcoord[0][13] = v[1];
1812         }
1813         else
1814         {
1815                 varray_texcoord[0][0] = tex->s2;varray_texcoord[0][1] = tex->t1;
1816                 varray_texcoord[0][4] = tex->s1;varray_texcoord[0][5] = tex->t1;
1817                 varray_texcoord[0][8] = tex->s1;varray_texcoord[0][9] = tex->t2;
1818                 varray_texcoord[0][12] = tex->s2;varray_texcoord[0][13] = tex->t2;
1819         }
1820
1821         GL_Color(cr, cg, cb, ca);
1822         R_Mesh_Draw(4, 2, polygonelements);
1823 #endif
1824 }
1825
1826 void R_DrawParticles (void)
1827 {
1828         int i;
1829         float minparticledist;
1830         particle_t *p;
1831
1832 #ifdef WORKINGLQUAKE
1833         CL_MoveParticles();
1834 #endif
1835
1836         // LordHavoc: early out conditions
1837         if ((!cl_numparticles) || (!r_drawparticles.integer))
1838                 return;
1839
1840         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1841
1842 #ifdef WORKINGLQUAKE
1843         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1844         glEnable(GL_BLEND);
1845         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1846         glDepthMask(0);
1847         // LordHavoc: only render if not too close
1848         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1849                 if (DotProduct(p->org, vpn) >= minparticledist)
1850                         R_DrawParticle(p);
1851         glDepthMask(1);
1852         glDisable(GL_BLEND);
1853         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1854 #else
1855         // LordHavoc: only render if not too close
1856         c_particles += cl_numparticles;
1857         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1858                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1859                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1860 #endif
1861 }
1862