redesigned how the renderer handles much of it's state (R_Mesh_State turned into...
[xonotic/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 #define CL_RocketTrail2 R_RocketTrail2
44 void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width)
45 {
46         vec3_t right1, right2, diff, normal;
47
48         VectorSubtract (org2, org1, normal);
49         VectorNormalizeFast (normal);
50
51         // calculate 'right' vector for start
52         VectorSubtract (r_origin, org1, diff);
53         VectorNormalizeFast (diff);
54         CrossProduct (normal, diff, right1);
55
56         // calculate 'right' vector for end
57         VectorSubtract (r_origin, org2, diff);
58         VectorNormalizeFast (diff);
59         CrossProduct (normal, diff, right2);
60
61         vert[ 0] = org1[0] + width * right1[0];
62         vert[ 1] = org1[1] + width * right1[1];
63         vert[ 2] = org1[2] + width * right1[2];
64         vert[ 3] = org1[0] - width * right1[0];
65         vert[ 4] = org1[1] - width * right1[1];
66         vert[ 5] = org1[2] - width * right1[2];
67         vert[ 6] = org2[0] - width * right2[0];
68         vert[ 7] = org2[1] - width * right2[1];
69         vert[ 8] = org2[2] - width * right2[2];
70         vert[ 9] = org2[0] + width * right2[0];
71         vert[10] = org2[1] + width * right2[1];
72         vert[11] = org2[2] + width * right2[2];
73 }
74 void fractalnoise(qbyte *noise, int size, int startgrid)
75 {
76         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
77         int *noisebuf;
78 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
79
80         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
81         if (size != (1 << sizepower))
82                 Sys_Error("fractalnoise: size must be power of 2\n");
83
84         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
85         if (startgrid != (1 << gridpower))
86                 Sys_Error("fractalnoise: grid must be power of 2\n");
87
88         startgrid = bound(0, startgrid, size);
89
90         amplitude = 0xFFFF; // this gets halved before use
91         noisebuf = malloc(size*size*sizeof(int));
92         memset(noisebuf, 0, size*size*sizeof(int));
93
94         for (g2 = startgrid;g2;g2 >>= 1)
95         {
96                 // brownian motion (at every smaller level there is random behavior)
97                 amplitude >>= 1;
98                 for (y = 0;y < size;y += g2)
99                         for (x = 0;x < size;x += g2)
100                                 n(x,y) += (rand()&amplitude);
101
102                 g = g2 >> 1;
103                 if (g)
104                 {
105                         // subdivide, diamond-square algorithm (really this has little to do with squares)
106                         // diamond
107                         for (y = 0;y < size;y += g2)
108                                 for (x = 0;x < size;x += g2)
109                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
110                         // square
111                         for (y = 0;y < size;y += g2)
112                                 for (x = 0;x < size;x += g2)
113                                 {
114                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
115                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
116                                 }
117                 }
118         }
119         // find range of noise values
120         min = max = 0;
121         for (y = 0;y < size;y++)
122                 for (x = 0;x < size;x++)
123                 {
124                         if (n(x,y) < min) min = n(x,y);
125                         if (n(x,y) > max) max = n(x,y);
126                 }
127         max -= min;
128         max++;
129         // normalize noise and copy to output
130         for (y = 0;y < size;y++)
131                 for (x = 0;x < size;x++)
132                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
133         free(noisebuf);
134 #undef n
135 }
136 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
137 {
138         float d;
139
140         right[0] = forward[2];
141         right[1] = -forward[0];
142         right[2] = forward[1];
143
144         d = DotProduct(forward, right);
145         right[0] -= d * forward[0];
146         right[1] -= d * forward[1];
147         right[2] -= d * forward[2];
148         VectorNormalizeFast(right);
149         CrossProduct(right, forward, up);
150 }
151 #if QW
152 #include "pmove.h"
153 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
154 #endif
155 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int contents, int hitbmodels, void **hitent)
156 {
157 #if QW
158         pmtrace_t trace;
159 #else
160         trace_t trace;
161 #endif
162         memset (&trace, 0, sizeof(trace));
163         trace.fraction = 1;
164         VectorCopy (end, trace.endpos);
165 #if QW
166         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
167 #else
168         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
169 #endif
170         VectorCopy(trace.endpos, impact);
171         VectorCopy(trace.plane.normal, normal);
172         return trace.fraction;
173 }
174 #else
175 #include "cl_collision.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal
184 }
185 ptype_t;
186
187 #define PARTICLE_INVALID 0
188 #define PARTICLE_BILLBOARD 1
189 #define PARTICLE_SPARK 2
190 #define PARTICLE_ORIENTED_DOUBLESIDED 3
191 #define PARTICLE_BEAM 4
192
193 #define PBLEND_ALPHA 0
194 #define PBLEND_ADD 1
195 #define PBLEND_MOD 2
196
197 typedef struct particle_s
198 {
199         ptype_t         type;
200         int                     orientation;
201         int                     texnum;
202         int                     blendmode;
203         vec3_t          org;
204         vec3_t          vel;
205         float           die;
206         float           scalex;
207         float           scaley;
208         float           alpha; // 0-255
209         float           alphafade; // how much alpha reduces per second
210         float           time2; // used for various things (snow fluttering, for example)
211         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
212         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
213         vec3_t          oldorg;
214         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
215         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
216         float           pressure; // if non-zero, apply pressure to other particles
217         qbyte           color[4];
218 #ifndef WORKINGLQUAKE
219         entity_render_t *owner; // decal stuck to this entity
220         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
221         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
222         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
223 #endif
224 }
225 particle_t;
226
227 static int particlepalette[256] =
228 {
229         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
230         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
231         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
232         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
233         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
234         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
235         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
236         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
237         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
238         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
239         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
240         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
241         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
242         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
243         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
244         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
245         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
246         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
247         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
248         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
249         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
250         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
251         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
252         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
253         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
254         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
255         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
256         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
257         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
258         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
259         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
260         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
261 };
262
263 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
264
265 // texture numbers in particle font
266 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
267 static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23};
268 static const int tex_particle = 24;
269 static const int tex_raindrop = 25;
270 static const int tex_bubble = 26;
271 static const int tex_beam = 27;
272 static const int tex_blooddecal[8] = {32, 33, 34, 35, 36, 37, 38, 39};
273
274 static int                      cl_maxparticles;
275 static int                      cl_numparticles;
276 static particle_t       *particles;
277 static particle_t       **freeparticles; // list used only in compacting particles array
278
279 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
280 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
281 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
282 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
283 cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"};
284 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
285 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
286 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
287 cvar_t cl_particles_smoke_size = {CVAR_SAVE, "cl_particles_smoke_size", "7"};
288 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
289 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
290 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
291 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
292 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
293 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
294 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
295
296 #ifndef WORKINGLQUAKE
297 static mempool_t *cl_part_mempool;
298 #endif
299
300 void CL_Particles_Clear(void)
301 {
302         cl_numparticles = 0;
303 }
304
305 /*
306 ===============
307 CL_InitParticles
308 ===============
309 */
310 void CL_ReadPointFile_f (void);
311 void CL_Particles_Init (void)
312 {
313         int             i;
314
315         i = COM_CheckParm ("-particles");
316
317         if (i && i < com_argc - 1)
318         {
319                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
320                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
321                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
322         }
323         else
324                 cl_maxparticles = MAX_PARTICLES;
325
326         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
327
328         Cvar_RegisterVariable (&cl_particles);
329         Cvar_RegisterVariable (&cl_particles_size);
330         Cvar_RegisterVariable (&cl_particles_bloodshowers);
331         Cvar_RegisterVariable (&cl_particles_blood);
332         Cvar_RegisterVariable (&cl_particles_blood_size);
333         Cvar_RegisterVariable (&cl_particles_blood_alpha);
334         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
335         Cvar_RegisterVariable (&cl_particles_smoke);
336         Cvar_RegisterVariable (&cl_particles_smoke_size);
337         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
338         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
339         Cvar_RegisterVariable (&cl_particles_sparks);
340         Cvar_RegisterVariable (&cl_particles_bubbles);
341         Cvar_RegisterVariable (&cl_decals);
342         Cvar_RegisterVariable (&cl_decals_time);
343         Cvar_RegisterVariable (&cl_decals_fadetime);
344
345 #ifdef WORKINGLQUAKE
346         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
347         freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles");
348 #else
349         cl_part_mempool = Mem_AllocPool("CL_Part");
350         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
351         freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *));
352 #endif
353         cl_numparticles = 0;
354 }
355
356 #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, pblendmode, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\
357 {\
358         if (cl_numparticles < cl_maxparticles)\
359         {\
360                 particle_t      *part;\
361                 int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;\
362                 ptempcolor = (pcolor1);\
363                 ptempcolor2 = (pcolor2);\
364                 pcr2 = ((ptempcolor2) >> 16) & 0xFF;\
365                 pcg2 = ((ptempcolor2) >> 8) & 0xFF;\
366                 pcb2 = (ptempcolor2) & 0xFF;\
367                 if (ptempcolor != ptempcolor2)\
368                 {\
369                         pcr1 = ((ptempcolor) >> 16) & 0xFF;\
370                         pcg1 = ((ptempcolor) >> 8) & 0xFF;\
371                         pcb1 = (ptempcolor) & 0xFF;\
372                         ptempcolor = rand() & 0xFF;\
373                         pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;\
374                         pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;\
375                         pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;\
376                 }\
377                 part = &particles[cl_numparticles++];\
378                 memset(part, 0, sizeof(*part));\
379                 part->type = (ptype);\
380                 part->color[0] = pcr2;\
381                 part->color[1] = pcg2;\
382                 part->color[2] = pcb2;\
383                 part->color[3] = 0xFF;\
384                 part->orientation = porientation;\
385                 part->texnum = ptex;\
386                 part->blendmode = pblendmode;\
387                 part->scalex = (pscalex);\
388                 part->scaley = (pscaley);\
389                 part->alpha = (palpha);\
390                 part->alphafade = (palphafade);\
391                 part->die = cl.time + (ptime);\
392                 part->gravity = (pgravity);\
393                 part->bounce = (pbounce);\
394                 part->org[0] = (px);\
395                 part->org[1] = (py);\
396                 part->org[2] = (pz);\
397                 part->vel[0] = (pvx);\
398                 part->vel[1] = (pvy);\
399                 part->vel[2] = (pvz);\
400                 part->time2 = (ptime2);\
401                 part->vel2[0] = (pvx2);\
402                 part->vel2[1] = (pvy2);\
403                 part->vel2[2] = (pvz2);\
404                 part->friction = (pfriction);\
405                 part->pressure = (ppressure);\
406         }\
407 }
408
409 /*
410 ===============
411 CL_EntityParticles
412 ===============
413 */
414 void CL_EntityParticles (entity_t *ent)
415 {
416         int                     i;
417         float           angle;
418         float           sp, sy, cp, cy;
419         vec3_t          forward;
420         float           dist;
421         float           beamlength;
422         static vec3_t avelocities[NUMVERTEXNORMALS];
423         if (!cl_particles.integer) return;
424
425         dist = 64;
426         beamlength = 16;
427
428         if (!avelocities[0][0])
429                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
430                         avelocities[0][i] = (rand()&255) * 0.01;
431
432         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
433         {
434                 angle = cl.time * avelocities[i][0];
435                 sy = sin(angle);
436                 cy = cos(angle);
437                 angle = cl.time * avelocities[i][1];
438                 sp = sin(angle);
439                 cp = cos(angle);
440
441                 forward[0] = cp*cy;
442                 forward[1] = cp*sy;
443                 forward[2] = -sp;
444
445 #ifdef WORKINGLQUAKE
446                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
447 #else
448                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
449 #endif
450         }
451 }
452
453
454 void CL_ReadPointFile_f (void)
455 {
456         vec3_t org, leakorg;
457         int r, c, s;
458         char *pointfile = NULL, *pointfilepos, *t, tchar;
459         char name[MAX_OSPATH];
460
461         FS_StripExtension(cl.worldmodel->name, name);
462         strcat(name, ".pts");
463 #if WORKINGLQUAKE
464         pointfile = COM_LoadTempFile (name);
465 #else
466         pointfile = FS_LoadFile(name, true);
467 #endif
468         if (!pointfile)
469         {
470                 Con_Printf ("Could not open %s\n", name);
471                 return;
472         }
473
474         Con_Printf ("Reading %s...\n", name);
475         c = 0;
476         s = 0;
477         pointfilepos = pointfile;
478         while (*pointfilepos)
479         {
480                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
481                         pointfilepos++;
482                 if (!*pointfilepos)
483                         break;
484                 t = pointfilepos;
485                 while (*t && *t != '\n' && *t != '\r')
486                         t++;
487                 tchar = *t;
488                 *t = 0;
489                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
490                 *t = tchar;
491                 pointfilepos = t;
492                 if (r != 3)
493                         break;
494                 if (c == 0)
495                         VectorCopy(org, leakorg);
496                 c++;
497
498                 if (cl_numparticles < cl_maxparticles - 3)
499                 {
500                         s++;
501                         particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
502                 }
503         }
504 #ifndef WORKINGLQUAKE
505         Mem_Free(pointfile);
506 #endif
507         VectorCopy(leakorg, org);
508         Con_Printf ("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]);
509
510         particle(pt_static, PARTICLE_BEAM, 0xFF0000, 0xFF0000, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0] - 4096, org[1], org[2], 0, 0, 0, 0, org[0] + 4096, org[1], org[2], 0, 0);
511         particle(pt_static, PARTICLE_BEAM, 0x00FF00, 0x00FF00, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1] - 4096, org[2], 0, 0, 0, 0, org[0], org[1] + 4096, org[2], 0, 0);
512         particle(pt_static, PARTICLE_BEAM, 0x0000FF, 0x0000FF, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1], org[2] - 4096, 0, 0, 0, 0, org[0], org[1], org[2] + 4096, 0, 0);
513 }
514
515 /*
516 ===============
517 CL_ParseParticleEffect
518
519 Parse an effect out of the server message
520 ===============
521 */
522 void CL_ParseParticleEffect (void)
523 {
524         vec3_t org, dir;
525         int i, count, msgcount, color;
526
527         for (i=0 ; i<3 ; i++)
528                 org[i] = MSG_ReadCoord ();
529         for (i=0 ; i<3 ; i++)
530                 dir[i] = MSG_ReadChar () * (1.0/16);
531         msgcount = MSG_ReadByte ();
532         color = MSG_ReadByte ();
533
534         if (msgcount == 255)
535                 count = 1024;
536         else
537                 count = msgcount;
538
539         CL_RunParticleEffect (org, dir, color, count);
540 }
541
542 /*
543 ===============
544 CL_ParticleExplosion
545
546 ===============
547 */
548 void CL_ParticleExplosion (vec3_t org)
549 {
550         int i, k;
551         //vec3_t v;
552         //vec3_t v2;
553         if (cl_stainmaps.integer)
554                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
555
556         i = Mod_PointContents(org, cl.worldmodel);
557         if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer)
558         {
559                 for (i = 0;i < 128;i++)
560                 {
561                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
562                 }
563         }
564         else
565         {
566                 /*
567                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
568                 // smoke puff
569                 if (cl_particles.integer && cl_particles_smoke.integer)
570                 {
571                         for (i = 0;i < 64;i++)
572                         {
573 #ifdef WORKINGLQUAKE
574                                 v2[0] = lhrandom(-64, 64);
575                                 v2[1] = lhrandom(-64, 64);
576                                 v2[2] = lhrandom(-8, 24);
577 #else
578                                 for (k = 0;k < 16;k++)
579                                 {
580                                         v[0] = org[0] + lhrandom(-64, 64);
581                                         v[1] = org[1] + lhrandom(-64, 64);
582                                         v[2] = org[2] + lhrandom(-8, 24);
583                                         if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1)
584                                                 break;
585                                 }
586                                 VectorSubtract(v2, org, v2);
587 #endif
588                                 VectorScale(v2, 2.0f, v2);
589                                 particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
590                         }
591                 }
592                 */
593
594                 if (cl_particles.integer && cl_particles_sparks.integer)
595                 {
596                         // sparks
597                         for (i = 0;i < 256;i++)
598                         {
599                                 k = particlepalette[0x68 + (rand() & 7)];
600                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0);
601                         }
602                 }
603         }
604
605         if (cl_explosions.integer)
606                 R_NewExplosion(org);
607 }
608
609 /*
610 ===============
611 CL_ParticleExplosion2
612
613 ===============
614 */
615 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
616 {
617         int i, k;
618         if (!cl_particles.integer) return;
619
620         for (i = 0;i < 512;i++)
621         {
622                 k = particlepalette[colorStart + (i % colorLength)];
623                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0);
624         }
625 }
626
627 /*
628 ===============
629 CL_BlobExplosion
630
631 ===============
632 */
633 void CL_BlobExplosion (vec3_t org)
634 {
635         if (cl_stainmaps.integer)
636                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
637
638         if (cl_explosions.integer)
639                 R_NewExplosion(org);
640 }
641
642 /*
643 ===============
644 CL_RunParticleEffect
645
646 ===============
647 */
648 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
649 {
650         int k;
651
652         if (count == 1024)
653         {
654                 CL_ParticleExplosion(org);
655                 return;
656         }
657         if (!cl_particles.integer) return;
658         while (count--)
659         {
660                 k = particlepalette[color + (rand()&7)];
661                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
662         }
663 }
664
665 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
666 /*
667 ===============
668 CL_SparkShower
669 ===============
670 */
671 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
672 {
673         vec3_t org2, org3;
674         int k;
675
676         if (cl_stainmaps.integer)
677                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
678
679         if (!cl_particles.integer) return;
680
681         if (cl_particles_bulletimpacts.integer)
682         {
683                 // smoke puff
684                 if (cl_particles_smoke.integer)
685                 {
686                         k = count / 4;
687                         while(k--)
688                         {
689                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
690                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
691                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
692                                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
693                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, 255, 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0, 0);
694                         }
695                 }
696
697                 if (cl_particles_sparks.integer)
698                 {
699                         // sparks
700                         while(count--)
701                         {
702                                 k = particlepalette[0x68 + (rand() & 7)];
703                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0);
704                         }
705                 }
706         }
707 }
708
709 void CL_PlasmaBurn (vec3_t org)
710 {
711         if (cl_stainmaps.integer)
712                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
713 }
714
715 static float bloodcount = 0;
716 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
717 {
718         float s, r, a;
719         vec3_t org2, org3;
720         // bloodcount is used to accumulate counts too small to cause a blood particle
721         if (!cl_particles.integer) return;
722         if (!cl_particles_blood.integer) return;
723
724         s = count + 32.0f;
725         count *= 5.0f;
726         if (count > 1000)
727                 count = 1000;
728         bloodcount += count;
729         r = cl_particles_blood_size.value;
730         a = cl_particles_blood_alpha.value * 255;
731         while(bloodcount > 0)
732         {
733                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
734                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
735                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
736                 CL_TraceLine(org, org2, org3, NULL, 0, true, NULL);
737                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
738                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
739                 bloodcount -= r;
740         }
741 }
742
743 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
744 {
745         float r;
746         float a;
747         vec3_t diff, center, velscale;
748         if (!cl_particles.integer) return;
749         if (!cl_particles_bloodshowers.integer) return;
750         if (!cl_particles_blood.integer) return;
751
752         VectorSubtract(maxs, mins, diff);
753         center[0] = (mins[0] + maxs[0]) * 0.5;
754         center[1] = (mins[1] + maxs[1]) * 0.5;
755         center[2] = (mins[2] + maxs[2]) * 0.5;
756         // FIXME: change velspeed back to 2.0x after fixing mod
757         velscale[0] = velspeed * 2.0 / diff[0];
758         velscale[1] = velspeed * 2.0 / diff[1];
759         velscale[2] = velspeed * 2.0 / diff[2];
760
761         bloodcount += count * 5.0f;
762         r = cl_particles_blood_size.value;
763         a = cl_particles_blood_alpha.value * 255;
764         while (bloodcount > 0)
765         {
766                 vec3_t org, vel;
767                 org[0] = lhrandom(mins[0], maxs[0]);
768                 org[1] = lhrandom(mins[1], maxs[1]);
769                 org[2] = lhrandom(mins[2], maxs[2]);
770                 vel[0] = (org[0] - center[0]) * velscale[0];
771                 vel[1] = (org[1] - center[1]) * velscale[1];
772                 vel[2] = (org[2] - center[2]) * velscale[2];
773                 bloodcount -= r;
774                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, r, r, a * 3, a * 1.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
775                 //particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, PBLEND_ALPHA, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
776         }
777 }
778
779 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
780 {
781         int k;
782         float t;
783         if (!cl_particles.integer) return;
784         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
785         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
786         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
787
788         while (count--)
789         {
790                 k = particlepalette[colorbase + (rand()&3)];
791                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
792         }
793 }
794
795 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
796 {
797         int k;
798         float t, z, minz, maxz;
799         if (!cl_particles.integer) return;
800         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
801         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
802         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
803         if (dir[2] < 0) // falling
804         {
805                 t = (maxs[2] - mins[2]) / -dir[2];
806                 z = maxs[2];
807         }
808         else // rising??
809         {
810                 t = (maxs[2] - mins[2]) / dir[2];
811                 z = mins[2];
812         }
813         if (t < 0 || t > 2) // sanity check
814                 t = 2;
815
816         minz = z - fabs(dir[2]) * 0.1;
817         maxz = z + fabs(dir[2]) * 0.1;
818         minz = bound(mins[2], minz, maxs[2]);
819         maxz = bound(mins[2], maxz, maxs[2]);
820
821         switch(type)
822         {
823         case 0:
824                 count *= 4; // ick, this should be in the mod or maps?
825
826                 while(count--)
827                 {
828                         k = particlepalette[colorbase + (rand()&3)];
829                         particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
830                 }
831                 break;
832         case 1:
833                 while(count--)
834                 {
835                         k = particlepalette[colorbase + (rand()&3)];
836                         particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
837                 }
838                 break;
839         default:
840                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
841         }
842 }
843
844 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
845 {
846         int k;
847         float t;
848         vec3_t o, v, center;
849         if (!cl_particles.integer) return;
850
851         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
852         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
853         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
854
855         center[0] = (mins[0] + maxs[0]) * 0.5f;
856         center[1] = (mins[1] + maxs[1]) * 0.5f;
857         center[2] = (mins[2] + maxs[2]) * 0.5f;
858
859         while (count--)
860         {
861                 k = particlepalette[224 + (rand()&15)];
862                 o[0] = lhrandom(mins[0], maxs[0]);
863                 o[1] = lhrandom(mins[1], maxs[1]);
864                 o[2] = lhrandom(mins[2], maxs[2]);
865                 VectorSubtract(o, center, v);
866                 VectorNormalizeFast(v);
867                 VectorScale(v, 100, v);
868                 v[2] += sv_gravity.value * 0.15f;
869                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0);
870         }
871 }
872
873 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
874 {
875         int k;
876         float t;
877         if (!cl_particles.integer) return;
878         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
879         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
880         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
881
882         while (count--)
883         {
884                 k = particlepalette[224 + (rand()&15)];
885                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
886                 if (count & 1)
887                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
888         }
889 }
890
891 void CL_Flames (vec3_t org, vec3_t vel, int count)
892 {
893         int k;
894         if (!cl_particles.integer) return;
895
896         while (count--)
897         {
898                 k = particlepalette[224 + (rand()&15)];
899                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
900         }
901 }
902
903
904
905 /*
906 ===============
907 CL_LavaSplash
908
909 ===============
910 */
911 void CL_LavaSplash (vec3_t origin)
912 {
913         int                     i, j, k;
914         float           vel;
915         vec3_t          dir, org;
916         if (!cl_particles.integer) return;
917
918         for (i=-128 ; i<128 ; i+=16)
919         {
920                 for (j=-128 ; j<128 ; j+=16)
921                 {
922                         dir[0] = j + lhrandom(0, 8);
923                         dir[1] = i + lhrandom(0, 8);
924                         dir[2] = 256;
925                         org[0] = origin[0] + dir[0];
926                         org[1] = origin[1] + dir[1];
927                         org[2] = origin[2] + lhrandom(0, 64);
928                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
929                         k = particlepalette[224 + (rand()&7)];
930                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
931                 }
932         }
933 }
934
935 /*
936 ===============
937 CL_TeleportSplash
938
939 ===============
940 */
941 #if WORKINGLQUAKE
942 void R_TeleportSplash (vec3_t org)
943 {
944         int i, j, k;
945         if (!cl_particles.integer) return;
946
947         for (i=-16 ; i<16 ; i+=8)
948                 for (j=-16 ; j<16 ; j+=8)
949                         for (k=-24 ; k<32 ; k+=8)
950                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
951 }
952 #endif
953
954 #ifdef WORKINGLQUAKE
955 void R_RocketTrail (vec3_t start, vec3_t end, int type)
956 #else
957 void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
958 #endif
959 {
960         vec3_t vec, dir, vel, pos;
961         float len, dec, speed, r;
962         int contents, smoke, blood, bubbles;
963
964         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
965                 return;
966
967         VectorSubtract(end, start, dir);
968         VectorNormalize(dir);
969
970         VectorSubtract (end, start, vec);
971 #ifdef WORKINGLQUAKE
972         len = VectorNormalize (vec);
973         dec = 0;
974         speed = 1.0f / cl.frametime;
975         VectorSubtract(end, start, vel);
976 #else
977         len = VectorNormalizeLength (vec);
978         dec = -ent->persistent.trail_time;
979         ent->persistent.trail_time += len;
980         if (ent->persistent.trail_time < 0.01f)
981                 return;
982
983         // if we skip out, leave it reset
984         ent->persistent.trail_time = 0.0f;
985
986         speed = 1.0f / (ent->state_current.time - ent->state_previous.time);
987         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
988 #endif
989         VectorScale(vel, speed, vel);
990
991         // advance into this frame to reach the first puff location
992         VectorMA(start, dec, vec, pos);
993         len -= dec;
994
995         contents = Mod_PointContents(pos, cl.worldmodel);
996         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
997                 return;
998
999         smoke = cl_particles.integer && cl_particles_smoke.integer;
1000         blood = cl_particles.integer && cl_particles_blood.integer;
1001         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1002
1003         while (len >= 0)
1004         {
1005                 switch (type)
1006                 {
1007                         case 0: // rocket trail
1008                                 dec = 3;
1009                                 if (smoke)
1010                                 {
1011                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*125, cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1012                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1013                                 }
1014                                 if (bubbles)
1015                                 {
1016                                         r = lhrandom(1, 2);
1017                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1018                                 }
1019                                 break;
1020
1021                         case 1: // grenade trail
1022                                 // FIXME: make it gradually stop smoking
1023                                 dec = 3;
1024                                 if (smoke)
1025                                 {
1026                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, dec, dec, cl_particles_smoke_alpha.value*100, cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), cl_particles_smoke_size.value, 0, 0, 0, 0, 0);
1027                                 }
1028                                 break;
1029
1030
1031                         case 2: // blood
1032                         case 4: // slight blood
1033                                 dec = cl_particles_blood_size.value;
1034                                 if (blood)
1035                                 {
1036                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_blooddecal[rand()&7], true, PBLEND_MOD, dec, dec, cl_particles_blood_alpha.value * 255.0f * 3.0f, cl_particles_blood_alpha.value * 255.0f * 0.5f * 1.5f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1037                                         //particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1038                                 }
1039                                 break;
1040
1041                         case 3: // green tracer
1042                                 dec = 6;
1043                                 if (smoke)
1044                                 {
1045                                         particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1046                                 }
1047                                 break;
1048
1049                         case 5: // flame tracer
1050                                 dec = 6;
1051                                 if (smoke)
1052                                 {
1053                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1054                                 }
1055                                 break;
1056
1057                         case 6: // voor trail
1058                                 dec = 6;
1059                                 if (smoke)
1060                                 {
1061                                         particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1062                                 }
1063                                 break;
1064
1065                         case 7: // Nehahra smoke tracer
1066                                 dec = 7;
1067                                 if (smoke)
1068                                 {
1069                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1070                                 }
1071                                 break;
1072                         case 8: // Nexuiz plasma trail
1073                                 dec = 4;
1074                                 if (smoke)
1075                                 {
1076                                         //particle(pt_static, PARTICLE_BILLBOARD, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 3.0f, 3.0f, lhrandom(64, 255), 512, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-32, 32) + dir[0] * -64.0f, lhrandom(-32, 32) + dir[1] * -64.0f, lhrandom(-32, 32) + dir[2] * -64.0f, 0, 0, 0, 0, 0, 0);
1077                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, dec, dec, 255, 1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1078                                 }
1079                 }
1080
1081                 // advance to next time and position
1082                 len -= dec;
1083                 VectorMA (pos, dec, vec, pos);
1084         }
1085 #ifndef WORKINGLQUAKE
1086         ent->persistent.trail_time = len;
1087 #endif
1088 }
1089
1090 void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent)
1091 {
1092         vec3_t vec, pos;
1093         int len;
1094         if (!cl_particles.integer) return;
1095         if (!cl_particles_smoke.integer) return;
1096
1097         VectorCopy(start, pos);
1098         VectorSubtract (end, start, vec);
1099 #ifdef WORKINGLQUAKE
1100         len = (int) (VectorNormalize (vec) * (1.0f / 3.0f));
1101 #else
1102         len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f));
1103 #endif
1104         VectorScale(vec, 3, vec);
1105         color = particlepalette[color];
1106         while (len--)
1107         {
1108                 particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1109                 VectorAdd (pos, vec, pos);
1110         }
1111 }
1112
1113 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1114 {
1115         int tempcolor2, cr, cg, cb;
1116         cr = red * 255;
1117         cg = green * 255;
1118         cb = blue * 255;
1119         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1120         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1121 }
1122
1123 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1124 {
1125         int k;
1126         if (!cl_particles.integer) return;
1127
1128         // smoke puff
1129         if (cl_particles_smoke.integer)
1130         {
1131                 k = count / 4;
1132                 while(k--)
1133                 {
1134                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1135                 }
1136         }
1137 }
1138
1139 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1140 {
1141         int k;
1142         if (!cl_particles.integer) return;
1143
1144         if (cl_stainmaps.integer)
1145                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1146
1147         // smoke puff
1148         if (cl_particles_smoke.integer)
1149         {
1150                 k = count / 4;
1151                 while(k--)
1152                 {
1153                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255, 512, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1154                 }
1155         }
1156
1157         if (cl_particles_sparks.integer)
1158         {
1159                 // sparks
1160                 while(count--)
1161                 {
1162                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255), 512, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1163                 }
1164         }
1165 }
1166
1167 /*
1168 ===============
1169 CL_MoveParticles
1170 ===============
1171 */
1172 void CL_MoveParticles (void)
1173 {
1174         particle_t *p;
1175         int i, activeparticles, maxparticle, j, a, pressureused = false, content;
1176         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1177 #ifdef WORKINGLQUAKE
1178         void *hitent;
1179 #else
1180         entity_render_t *hitent;
1181 #endif
1182
1183         // LordHavoc: early out condition
1184         if (!cl_numparticles)
1185                 return;
1186
1187 #ifdef WORKINGLQUAKE
1188         frametime = cl.frametime;
1189 #else
1190         frametime = cl.time - cl.oldtime;
1191 #endif
1192         gravity = frametime * sv_gravity.value;
1193         dvel = 1+4*frametime;
1194         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1195
1196         activeparticles = 0;
1197         maxparticle = -1;
1198         j = 0;
1199         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1200         {
1201                 content = 0;
1202                 VectorCopy(p->org, p->oldorg);
1203                 VectorMA(p->org, frametime, p->vel, p->org);
1204                 VectorCopy(p->org, org);
1205                 if (p->bounce)
1206                 {
1207                         if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, &hitent) < 1)
1208                         {
1209                                 VectorCopy(v, p->org);
1210                                 if (p->bounce < 0)
1211                                 {
1212                                         // assume it's blood (lame, but...)
1213 #ifndef WORKINGLQUAKE
1214                                         if (cl_stainmaps.integer)
1215                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1216 #endif
1217                                         if (cl_decals.integer)
1218                                         {
1219                                                 p->type = pt_decal;
1220                                                 p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1221 #ifndef WORKINGLQUAKE
1222                                                 p->owner = hitent;
1223                                                 p->ownermodel = hitent->model;
1224                                                 Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1225                                                 Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1226                                                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1227 #endif
1228                                                 p->time2 = cl.time + cl_decals_time.value;
1229                                                 p->die = p->time2 + cl_decals_fadetime.value;
1230                                                 p->alphafade = 0;
1231                                                 VectorCopy(normal, p->vel2);
1232                                                 VectorClear(p->vel);
1233                                                 VectorAdd(p->org, normal, p->org);
1234                                                 p->bounce = 0;
1235                                                 p->friction = 0;
1236                                                 p->gravity = 0;
1237                                                 p->scalex *= 1.25f;
1238                                                 p->scaley *= 1.25f;
1239                                         }
1240                                         else
1241                                         {
1242                                                 p->die = -1;
1243                                                 freeparticles[j++] = p;
1244                                                 continue;
1245                                         }
1246                                 }
1247                                 else
1248                                 {
1249                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1250                                         VectorMA(p->vel, dist, normal, p->vel);
1251                                         if (DotProduct(p->vel, p->vel) < 0.03)
1252                                                 VectorClear(p->vel);
1253                                 }
1254                         }
1255                 }
1256                 p->vel[2] -= p->gravity * gravity;
1257                 p->alpha -= p->alphafade * frametime;
1258                 if (p->friction)
1259                 {
1260                         f = p->friction * frametime;
1261                         if (!content)
1262                                 content = Mod_PointContents(p->org, cl.worldmodel);
1263                         if (content != CONTENTS_EMPTY)
1264                                 f *= 4;
1265                         f = 1.0f - f;
1266                         VectorScale(p->vel, f, p->vel);
1267                 }
1268
1269                 if (p->type != pt_static)
1270                 {
1271                         switch (p->type)
1272                         {
1273                         case pt_blood:
1274                                 if (!content)
1275                                         content = Mod_PointContents(p->org, cl.worldmodel);
1276                                 a = content;
1277                                 if (a != CONTENTS_EMPTY)
1278                                 {
1279                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1280                                         {
1281                                                 p->scalex += frametime * cl_particles_blood_size.value;
1282                                                 p->scaley += frametime * cl_particles_blood_size.value;
1283                                                 //p->alpha -= bloodwaterfade;
1284                                         }
1285                                         else
1286                                                 p->die = -1;
1287                                 }
1288                                 else
1289                                         p->vel[2] -= gravity;
1290                                 break;
1291                         case pt_bubble:
1292                                 if (!content)
1293                                         content = Mod_PointContents(p->org, cl.worldmodel);
1294                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1295                                 {
1296                                         p->die = -1;
1297                                         break;
1298                                 }
1299                                 break;
1300                         case pt_rain:
1301                                 if (cl.time > p->time2)
1302                                 {
1303                                         // snow flutter
1304                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1305                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1306                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1307                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1308                                 }
1309                                 if (!content)
1310                                         content = Mod_PointContents(p->org, cl.worldmodel);
1311                                 a = content;
1312                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1313                                         p->die = -1;
1314                                 break;
1315                         case pt_grow:
1316                                 p->scalex += frametime * p->time2;
1317                                 p->scaley += frametime * p->time2;
1318                                 break;
1319                         case pt_decal:
1320 #ifndef WORKINGLQUAKE
1321                                 if (p->owner->model == p->ownermodel)
1322                                 {
1323                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1324                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1325                                 }
1326                                 else
1327                                         p->die = -1;
1328 #endif
1329                                 if (cl.time > p->time2)
1330                                 {
1331                                         p->alphafade = p->alpha / (p->die - cl.time);
1332                                         p->time2 += 10000;
1333                                 }
1334                                 break;
1335                         default:
1336                                 Con_Printf("unknown particle type %i\n", p->type);
1337                                 p->die = -1;
1338                                 break;
1339                         }
1340                 }
1341
1342                 // remove dead particles
1343                 if (p->alpha < 1 || p->die < cl.time)
1344                         freeparticles[j++] = p;
1345                 else
1346                 {
1347                         maxparticle = i;
1348                         activeparticles++;
1349                         if (p->pressure)
1350                                 pressureused = true;
1351                 }
1352         }
1353         // fill in gaps to compact the array
1354         i = 0;
1355         while (maxparticle >= activeparticles)
1356         {
1357                 *freeparticles[i++] = particles[maxparticle--];
1358                 while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
1359                         maxparticle--;
1360         }
1361         cl_numparticles = activeparticles;
1362
1363         if (pressureused)
1364         {
1365                 activeparticles = 0;
1366                 for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1367                         if (p->pressure)
1368                                 freeparticles[activeparticles++] = p;
1369
1370                 if (activeparticles)
1371                 {
1372                         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1373                         {
1374                                 for (j = 0;j < activeparticles;j++)
1375                                 {
1376                                         if (freeparticles[j] != p)
1377                                         {
1378                                                 float dist, diff[3];
1379                                                 VectorSubtract(p->org, freeparticles[j]->org, diff);
1380                                                 dist = DotProduct(diff, diff);
1381                                                 if (dist < 4096 && dist >= 1)
1382                                                 {
1383                                                         dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist);
1384                                                         VectorMA(p->vel, dist, diff, p->vel);
1385                                                 }
1386                                         }
1387                                 }
1388                         }
1389                 }
1390         }
1391 }
1392
1393 #define MAX_PARTICLETEXTURES 64
1394 // particletexture_t is a rectangle in the particlefonttexture
1395 typedef struct
1396 {
1397         rtexture_t *texture;
1398         float s1, t1, s2, t2;
1399 }
1400 particletexture_t;
1401
1402 #if WORKINGLQUAKE
1403 static int particlefonttexture;
1404 #else
1405 static rtexturepool_t *particletexturepool;
1406 static rtexture_t *particlefonttexture;
1407 #endif
1408 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1409
1410 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1411
1412 static qbyte shadebubble(float dx, float dy, vec3_t light)
1413 {
1414         float dz, f, dot;
1415         vec3_t normal;
1416         dz = 1 - (dx*dx+dy*dy);
1417         if (dz > 0) // it does hit the sphere
1418         {
1419                 f = 0;
1420                 // back side
1421                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1422                 VectorNormalize(normal);
1423                 dot = DotProduct(normal, light);
1424                 if (dot > 0.5) // interior reflection
1425                         f += ((dot *  2) - 1);
1426                 else if (dot < -0.5) // exterior reflection
1427                         f += ((dot * -2) - 1);
1428                 // front side
1429                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1430                 VectorNormalize(normal);
1431                 dot = DotProduct(normal, light);
1432                 if (dot > 0.5) // interior reflection
1433                         f += ((dot *  2) - 1);
1434                 else if (dot < -0.5) // exterior reflection
1435                         f += ((dot * -2) - 1);
1436                 f *= 128;
1437                 f += 16; // just to give it a haze so you can see the outline
1438                 f = bound(0, f, 255);
1439                 return (qbyte) f;
1440         }
1441         else
1442                 return 0;
1443 }
1444
1445 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1446 {
1447         int basex, basey, y;
1448         basex = ((texnum >> 0) & 7) * 32;
1449         basey = ((texnum >> 3) & 7) * 32;
1450         particletexture[texnum].s1 = (basex + 1) / 256.0f;
1451         particletexture[texnum].t1 = (basey + 1) / 256.0f;
1452         particletexture[texnum].s2 = (basex + 31) / 256.0f;
1453         particletexture[texnum].t2 = (basey + 31) / 256.0f;
1454         for (y = 0;y < 32;y++)
1455                 memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4);
1456 }
1457
1458 static void R_InitParticleTexture (void)
1459 {
1460         int x, y, d, i, j, k, m;
1461         float cx, cy, dx, dy, radius, f, f2;
1462         qbyte data[32][32][4], noise1[64][64], noise2[64][64], data2[64][16][4];
1463         vec3_t light;
1464         qbyte particletexturedata[256*256*4];
1465
1466         memset(particletexturedata, 255, sizeof(particletexturedata));
1467
1468         // smoke/blood
1469         for (i = 0;i < 8;i++)
1470         {
1471                 do
1472                 {
1473                         fractalnoise(&noise1[0][0], 64, 4);
1474                         fractalnoise(&noise2[0][0], 64, 8);
1475                         m = 0;
1476                         for (y = 0;y < 32;y++)
1477                         {
1478                                 dy = y - 16;
1479                                 for (x = 0;x < 32;x++)
1480                                 {
1481                                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1482                                         dx = x - 16;
1483                                         d = (noise2[y][x] - 128) * 3 + 192;
1484                                         if (d > 0)
1485                                                 d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8;
1486                                         d = (d * noise1[y][x]) >> 7;
1487                                         d = bound(0, d, 255);
1488                                         data[y][x][3] = (qbyte) d;
1489                                         if (m < d)
1490                                                 m = d;
1491                                 }
1492                         }
1493                 }
1494                 while (m < 224);
1495
1496                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1497         }
1498
1499         // rain splash
1500         for (i = 0;i < 16;i++)
1501         {
1502                 radius = i * 3.0f / 16.0f;
1503                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1504                 for (y = 0;y < 32;y++)
1505                 {
1506                         dy = (y - 16) * 0.25f;
1507                         for (x = 0;x < 32;x++)
1508                         {
1509                                 dx = (x - 16) * 0.25f;
1510                                 data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1511                                 f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2;
1512                                 f = bound(0.0f, f, 255.0f);
1513                                 data[y][x][3] = (int) f;
1514                         }
1515                 }
1516                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1517         }
1518
1519         // normal particle
1520         for (y = 0;y < 32;y++)
1521         {
1522                 dy = y - 16;
1523                 for (x = 0;x < 32;x++)
1524                 {
1525                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1526                         dx = x - 16;
1527                         d = (256 - (dx*dx+dy*dy));
1528                         d = bound(0, d, 255);
1529                         data[y][x][3] = (qbyte) d;
1530                 }
1531         }
1532         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1533
1534         // rain
1535         light[0] = 1;light[1] = 1;light[2] = 1;
1536         VectorNormalize(light);
1537         for (y = 0;y < 32;y++)
1538         {
1539                 for (x = 0;x < 32;x++)
1540                 {
1541                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1542                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light);
1543                 }
1544         }
1545         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1546
1547         // bubble
1548         light[0] = 1;light[1] = 1;light[2] = 1;
1549         VectorNormalize(light);
1550         for (y = 0;y < 32;y++)
1551         {
1552                 for (x = 0;x < 32;x++)
1553                 {
1554                         data[y][x][0] = data[y][x][1] = data[y][x][2] = 255;
1555                         data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light);
1556                 }
1557         }
1558         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1559
1560         // smoke/blood
1561         for (i = 0;i < 8;i++)
1562         {
1563                 memset(&data[0][0][0], 255, sizeof(data));
1564                 for (j = 1;j < 8;j++)
1565                 {
1566                         for (k = 0;k < 3;k++)
1567                         {
1568                                 cx = lhrandom(j + 1, 30 - j);
1569                                 cy = lhrandom(j + 1, 30 - j);
1570                                 for (y = 0;y < 32;y++)
1571                                 {
1572                                         for (x = 0;x < 32;x++)
1573                                         {
1574                                                 dx = (x - cx);
1575                                                 dy = (y - cy);
1576                                                 f = 1.0f - sqrt(dx * dx + dy * dy) / j;
1577                                                 if (f > 0)
1578                                                 {
1579                                                         data[y][x][0] = data[y][x][0] + f * 0.5 * ( 160 - data[y][x][0]);
1580                                                         data[y][x][1] = data[y][x][1] + f * 0.5 * ( 32 - data[y][x][1]);
1581                                                         data[y][x][2] = data[y][x][2] + f * 0.5 * ( 32 - data[y][x][2]);
1582                                                 }
1583                                         }
1584                                 }
1585                         }
1586                 }
1587                 // use inverted colors so we can scale them later using glColor and use an inverse blend
1588                 for (y = 0;y < 32;y++)
1589                 {
1590                         for (x = 0;x < 32;x++)
1591                         {
1592                                 data[y][x][0] = 255 - data[y][x][0];
1593                                 data[y][x][1] = 255 - data[y][x][1];
1594                                 data[y][x][2] = 255 - data[y][x][2];
1595                         }
1596                 }
1597                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1598         }
1599
1600 #if WORKINGLQUAKE
1601         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1602         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1603         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1604 #else
1605         particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1606         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1607                 particletexture[i].texture = particlefonttexture;
1608
1609         // beam
1610         fractalnoise(&noise1[0][0], 64, 4);
1611         m = 0;
1612         for (y = 0;y < 64;y++)
1613         {
1614                 for (x = 0;x < 16;x++)
1615                 {
1616                         if (x < 8)
1617                                 d = x;
1618                         else
1619                                 d = (15 - x);
1620                         d = d * d * noise1[y][x] / (7 * 7);
1621                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1622                         data2[y][x][3] = 255;
1623                 }
1624         }
1625
1626         particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "beam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1627         particletexture[tex_beam].s1 = 0;
1628         particletexture[tex_beam].t1 = 0;
1629         particletexture[tex_beam].s2 = 1;
1630         particletexture[tex_beam].t2 = 1;
1631 #endif
1632 }
1633
1634 static void r_part_start(void)
1635 {
1636         particletexturepool = R_AllocTexturePool();
1637         R_InitParticleTexture ();
1638 }
1639
1640 static void r_part_shutdown(void)
1641 {
1642         R_FreeTexturePool(&particletexturepool);
1643 }
1644
1645 static void r_part_newmap(void)
1646 {
1647         cl_numparticles = 0;
1648 }
1649
1650 void R_Particles_Init (void)
1651 {
1652         Cvar_RegisterVariable(&r_drawparticles);
1653 #ifdef WORKINGLQUAKE
1654         r_part_start();
1655 #else
1656         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1657 #endif
1658 }
1659
1660 #ifdef WORKINGLQUAKE
1661 void R_InitParticles(void)
1662 {
1663         CL_Particles_Init();
1664         R_Particles_Init();
1665 }
1666 #endif
1667
1668 float particle_vertex3f[12], particle_texcoord2f[8];
1669
1670 #ifdef WORKINGLQUAKE
1671 void R_DrawParticle(particle_t *p)
1672 {
1673 #else
1674 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1675 {
1676         const particle_t *p = calldata1;
1677         rmeshstate_t m;
1678 #endif
1679         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1680         particletexture_t *tex;
1681
1682         VectorCopy(p->org, org);
1683
1684         tex = &particletexture[p->texnum];
1685         cr = p->color[0] * (1.0f / 255.0f);
1686         cg = p->color[1] * (1.0f / 255.0f);
1687         cb = p->color[2] * (1.0f / 255.0f);
1688         ca = p->alpha * (1.0f / 255.0f);
1689         if (p->blendmode == PBLEND_MOD)
1690         {
1691                 cr *= ca;
1692                 cg *= ca;
1693                 cb *= ca;
1694                 cr = min(cr, 1);
1695                 cg = min(cg, 1);
1696                 cb = min(cb, 1);
1697                 ca = 1;
1698         }
1699
1700 #ifndef WORKINGLQUAKE
1701         if (fogenabled && p->blendmode != PBLEND_MOD)
1702         {
1703                 VectorSubtract(org, r_origin, fogvec);
1704                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1705                 ifog = 1 - fog;
1706                 cr = cr * ifog;
1707                 cg = cg * ifog;
1708                 cb = cb * ifog;
1709                 if (p->blendmode == 0)
1710                 {
1711                         cr += fogcolor[0] * fog;
1712                         cg += fogcolor[1] * fog;
1713                         cb += fogcolor[2] * fog;
1714                 }
1715         }
1716         cr *= r_colorscale;
1717         cg *= r_colorscale;
1718         cb *= r_colorscale;
1719
1720         GL_Color(cr, cg, cb, ca);
1721
1722         R_Mesh_Matrix(&r_identitymatrix);
1723
1724         memset(&m, 0, sizeof(m));
1725         m.tex[0] = R_GetTexture(tex->texture);
1726         m.pointer_texcoord[0] = particle_texcoord2f;
1727         R_Mesh_State_Texture(&m);
1728
1729         if (p->blendmode == 0)
1730                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1731         else if (p->blendmode == 1)
1732                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1733         else
1734                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1735         GL_DepthMask(false);
1736         GL_DepthTest(true);
1737         GL_VertexPointer(particle_vertex3f);
1738 #endif
1739         if (p->orientation == PARTICLE_BILLBOARD || p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1740         {
1741                 if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1742                 {
1743                         // double-sided
1744                         if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org))
1745                         {
1746                                 VectorNegate(p->vel2, v);
1747                                 VectorVectors(v, right, up);
1748                         }
1749                         else
1750                                 VectorVectors(p->vel2, right, up);
1751                         VectorScale(right, p->scalex, right);
1752                         VectorScale(up, p->scaley, up);
1753                 }
1754                 else
1755                 {
1756                         VectorScale(vright, p->scalex, right);
1757                         VectorScale(vup, p->scaley, up);
1758                 }
1759                 particle_vertex3f[ 0] = org[0] - right[0] - up[0];
1760                 particle_vertex3f[ 1] = org[1] - right[1] - up[1];
1761                 particle_vertex3f[ 2] = org[2] - right[2] - up[2];
1762                 particle_vertex3f[ 3] = org[0] - right[0] + up[0];
1763                 particle_vertex3f[ 4] = org[1] - right[1] + up[1];
1764                 particle_vertex3f[ 5] = org[2] - right[2] + up[2];
1765                 particle_vertex3f[ 6] = org[0] + right[0] + up[0];
1766                 particle_vertex3f[ 7] = org[1] + right[1] + up[1];
1767                 particle_vertex3f[ 8] = org[2] + right[2] + up[2];
1768                 particle_vertex3f[ 9] = org[0] + right[0] - up[0];
1769                 particle_vertex3f[10] = org[1] + right[1] - up[1];
1770                 particle_vertex3f[11] = org[2] + right[2] - up[2];
1771                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1772                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1773                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1774                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1775         }
1776         else if (p->orientation == PARTICLE_SPARK)
1777         {
1778                 VectorMA(p->org, -p->scaley, p->vel, v);
1779                 VectorMA(p->org, p->scaley, p->vel, up2);
1780                 R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, p->scalex);
1781                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1782                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1783                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1784                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1785         }
1786         else if (p->orientation == PARTICLE_BEAM)
1787         {
1788                 R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel2, p->scalex);
1789                 VectorSubtract(p->vel2, p->org, up);
1790                 VectorNormalizeFast(up);
1791                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1792                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1793                 particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0];
1794                 particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0];
1795                 particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1];
1796                 particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1];
1797         }
1798         else
1799                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1800
1801 #if WORKINGLQUAKE
1802         if (p->blendmode == 0)
1803                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1804         else if (p->blendmode == 1)
1805                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1806         else
1807                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1808         glColor4f(cr, cg, cb, ca);
1809         glBegin(GL_QUADS);
1810         glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]);
1811         glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]);
1812         glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]);
1813         glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]);
1814         glEnd();
1815 #else
1816         R_Mesh_Draw(4, 2, polygonelements);
1817 #endif
1818 }
1819
1820 void R_DrawParticles (void)
1821 {
1822         int i;
1823         float minparticledist;
1824         particle_t *p;
1825
1826 #ifdef WORKINGLQUAKE
1827         CL_MoveParticles();
1828 #endif
1829
1830         // LordHavoc: early out conditions
1831         if ((!cl_numparticles) || (!r_drawparticles.integer))
1832                 return;
1833
1834         minparticledist = DotProduct(r_origin, vpn) + 16.0f;
1835
1836 #ifdef WORKINGLQUAKE
1837         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1838         glEnable(GL_BLEND);
1839         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1840         glDepthMask(0);
1841         // LordHavoc: only render if not too close
1842         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1843                 if (DotProduct(p->org, vpn) >= minparticledist)
1844                         R_DrawParticle(p);
1845         glDepthMask(1);
1846         glDisable(GL_BLEND);
1847         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1848 #else
1849         // LordHavoc: only render if not too close
1850         c_particles += cl_numparticles;
1851         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1852                 if (DotProduct(p->org, vpn) >= minparticledist || p->orientation == PARTICLE_BEAM)
1853                         R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
1854 #endif
1855 }
1856