]> de.git.xonotic.org Git - xonotic/darkplaces.git/blob - cl_particles.c
added COMMANDLINEOPTION comments for every commandline option, these will be listed...
[xonotic/darkplaces.git] / cl_particles.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22
23 #ifdef WORKINGLQUAKE
24 #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
25 #define NUMVERTEXNORMALS        162
26 siextern float r_avertexnormals[NUMVERTEXNORMALS][3];
27 #define m_bytenormals r_avertexnormals
28 #define VectorNormalizeFast VectorNormalize
29 #define CL_PointQ1Contents(v) (Mod_PointInLeaf(v,cl.worldmodel)->contents)
30 typedef unsigned char qbyte;
31 #define cl_stainmaps.integer 0
32 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
33 {
34 }
35 #define CL_EntityParticles R_EntityParticles
36 #define CL_ReadPointFile_f R_ReadPointFile_f
37 #define CL_ParseParticleEffect R_ParseParticleEffect
38 #define CL_ParticleExplosion R_ParticleExplosion
39 #define CL_ParticleExplosion2 R_ParticleExplosion2
40 #define CL_BlobExplosion R_BlobExplosion
41 #define CL_RunParticleEffect R_RunParticleEffect
42 #define CL_LavaSplash R_LavaSplash
43 void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width)
44 {
45         vec3_t right1, right2, diff, normal;
46
47         VectorSubtract (org2, org1, normal);
48         VectorNormalizeFast (normal);
49
50         // calculate 'right' vector for start
51         VectorSubtract (r_vieworigin, org1, diff);
52         VectorNormalizeFast (diff);
53         CrossProduct (normal, diff, right1);
54
55         // calculate 'right' vector for end
56         VectorSubtract (r_vieworigin, org2, diff);
57         VectorNormalizeFast (diff);
58         CrossProduct (normal, diff, right2);
59
60         vert[ 0] = org1[0] + width * right1[0];
61         vert[ 1] = org1[1] + width * right1[1];
62         vert[ 2] = org1[2] + width * right1[2];
63         vert[ 3] = org1[0] - width * right1[0];
64         vert[ 4] = org1[1] - width * right1[1];
65         vert[ 5] = org1[2] - width * right1[2];
66         vert[ 6] = org2[0] - width * right2[0];
67         vert[ 7] = org2[1] - width * right2[1];
68         vert[ 8] = org2[2] - width * right2[2];
69         vert[ 9] = org2[0] + width * right2[0];
70         vert[10] = org2[1] + width * right2[1];
71         vert[11] = org2[2] + width * right2[2];
72 }
73 void fractalnoise(qbyte *noise, int size, int startgrid)
74 {
75         int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower;
76         int *noisebuf;
77 #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)]
78
79         for (sizepower = 0;(1 << sizepower) < size;sizepower++);
80         if (size != (1 << sizepower))
81                 Sys_Error("fractalnoise: size must be power of 2\n");
82
83         for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++);
84         if (startgrid != (1 << gridpower))
85                 Sys_Error("fractalnoise: grid must be power of 2\n");
86
87         startgrid = bound(0, startgrid, size);
88
89         amplitude = 0xFFFF; // this gets halved before use
90         noisebuf = malloc(size*size*sizeof(int));
91         memset(noisebuf, 0, size*size*sizeof(int));
92
93         for (g2 = startgrid;g2;g2 >>= 1)
94         {
95                 // brownian motion (at every smaller level there is random behavior)
96                 amplitude >>= 1;
97                 for (y = 0;y < size;y += g2)
98                         for (x = 0;x < size;x += g2)
99                                 n(x,y) += (rand()&amplitude);
100
101                 g = g2 >> 1;
102                 if (g)
103                 {
104                         // subdivide, diamond-square algorithm (really this has little to do with squares)
105                         // diamond
106                         for (y = 0;y < size;y += g2)
107                                 for (x = 0;x < size;x += g2)
108                                         n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2;
109                         // square
110                         for (y = 0;y < size;y += g2)
111                                 for (x = 0;x < size;x += g2)
112                                 {
113                                         n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2;
114                                         n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2;
115                                 }
116                 }
117         }
118         // find range of noise values
119         min = max = 0;
120         for (y = 0;y < size;y++)
121                 for (x = 0;x < size;x++)
122                 {
123                         if (n(x,y) < min) min = n(x,y);
124                         if (n(x,y) > max) max = n(x,y);
125                 }
126         max -= min;
127         max++;
128         // normalize noise and copy to output
129         for (y = 0;y < size;y++)
130                 for (x = 0;x < size;x++)
131                         *noise++ = (qbyte) (((n(x,y) - min) * 256) / max);
132         free(noisebuf);
133 #undef n
134 }
135 void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up)
136 {
137         float d;
138
139         right[0] = forward[2];
140         right[1] = -forward[0];
141         right[2] = forward[1];
142
143         d = DotProduct(forward, right);
144         right[0] -= d * forward[0];
145         right[1] -= d * forward[1];
146         right[2] -= d * forward[2];
147         VectorNormalizeFast(right);
148         CrossProduct(right, forward, up);
149 }
150 #if QW
151 #include "pmove.h"
152 extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace);
153 #endif
154 float CL_TraceLine (vec3_t start, vec3_t end, vec3_t impact, vec3_t normal, int hitbmodels, void **hitent, int hitsupercontentsmask)
155 {
156 #if QW
157         pmtrace_t trace;
158 #else
159         trace_t trace;
160 #endif
161         memset (&trace, 0, sizeof(trace));
162         trace.fraction = 1;
163         VectorCopy (end, trace.endpos);
164 #if QW
165         PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace);
166 #else
167         RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace);
168 #endif
169         VectorCopy(trace.endpos, impact);
170         VectorCopy(trace.plane.normal, normal);
171         return trace.fraction;
172 }
173 #else
174 #include "cl_collision.h"
175 #include "image.h"
176 #endif
177
178 #define MAX_PARTICLES                   32768   // default max # of particles at one time
179 #define ABSOLUTE_MIN_PARTICLES  512             // no fewer than this no matter what's on the command line
180
181 typedef enum
182 {
183         pt_dead, pt_static, pt_rain, pt_bubble, pt_blood, pt_grow, pt_decal, pt_decalfade, pt_ember
184 }
185 ptype_t;
186
187 typedef enum
188 {
189         PARTICLE_BILLBOARD = 0,
190         PARTICLE_SPARK = 1,
191         PARTICLE_ORIENTED_DOUBLESIDED = 2,
192         PARTICLE_BEAM = 3
193 }
194 porientation_t;
195
196 typedef enum
197 {
198         PBLEND_ALPHA = 0,
199         PBLEND_ADD = 1,
200         PBLEND_MOD = 2
201 }
202 pblend_t;
203
204 typedef struct particle_s
205 {
206         ptype_t         type;
207         int                     orientation;
208         int                     texnum;
209         int                     blendmode;
210         vec3_t          org;
211         vec3_t          vel;
212         float           die;
213         float           scalex;
214         float           scaley;
215         float           alpha; // 0-255
216         float           alphafade; // how much alpha reduces per second
217         float           time2; // used for various things (snow fluttering, for example)
218         float           bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical)
219         float           gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none)
220         vec3_t          oldorg;
221         vec3_t          vel2; // used for snow fluttering (base velocity, wind for instance)
222         float           friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction)
223         float           pressure; // if non-zero, apply pressure to other particles
224         qbyte           color[4];
225 #ifndef WORKINGLQUAKE
226         entity_render_t *owner; // decal stuck to this entity
227         model_t         *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive)
228         vec3_t          relativeorigin; // decal at this location in entity's coordinate space
229         vec3_t          relativedirection; // decal oriented this way relative to entity's coordinate space
230 #endif
231 }
232 particle_t;
233
234 static int particlepalette[256] =
235 {
236         0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b,
237         0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb,
238         0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b,
239         0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23,
240         0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767,
241         0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb,
242         0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07,
243         0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f,
244         0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000,
245         0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000,
246         0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307,
247         0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723,
248         0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b,
249         0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b,
250         0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733,
251         0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397,
252         0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b,
253         0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707,
254         0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b,
255         0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707,
256         0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353,
257         0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07,
258         0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f,
259         0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07,
260         0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307,
261         0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700,
262         0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f,
263         0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f,
264         0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b,
265         0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b,
266         0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000,
267         0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53
268 };
269
270 //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
271
272 // texture numbers in particle font
273 static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
274 static const int tex_bulletdecal[8] = {8, 9, 10, 11, 12, 13, 14, 15};
275 static const int tex_blooddecal[8] = {16, 17, 18, 19, 20, 21, 22, 23};
276 static const int tex_bloodparticle[8] = {24, 25, 26, 27, 28, 29, 30, 31};
277 static const int tex_rainsplash[16] = {32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47};
278 static const int tex_particle = 63;
279 static const int tex_bubble = 62;
280 static const int tex_raindrop = 61;
281 static const int tex_beam = 60;
282
283 static int                      cl_maxparticles;
284 static int                      cl_numparticles;
285 static int                      cl_freeparticle;
286 static particle_t       *particles;
287
288 cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"};
289 cvar_t cl_particles_quality = {CVAR_SAVE, "cl_particles_quality", "1"};
290 cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"};
291 cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"};
292 cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"};
293 cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"};
294 cvar_t cl_particles_blood_bloodhack = {CVAR_SAVE, "cl_particles_blood_bloodhack", "1"};
295 cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"};
296 cvar_t cl_particles_explosions_bubbles = {CVAR_SAVE, "cl_particles_explosions_bubbles", "1"};
297 cvar_t cl_particles_explosions_smoke = {CVAR_SAVE, "cl_particles_explosions_smokes", "0"};
298 cvar_t cl_particles_explosions_sparks = {CVAR_SAVE, "cl_particles_explosions_sparks", "1"};
299 cvar_t cl_particles_explosions_shell = {CVAR_SAVE, "cl_particles_explosions_shell", "0"};
300 cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"};
301 cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"};
302 cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"};
303 cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"};
304 cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"};
305 cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"};
306 cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"};
307 cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"};
308
309 #ifndef WORKINGLQUAKE
310 static mempool_t *cl_part_mempool;
311 #endif
312
313 void CL_Particles_Clear(void)
314 {
315         cl_numparticles = 0;
316         cl_freeparticle = 0;
317         memset(particles, 0, sizeof(particle_t) * cl_maxparticles);
318 }
319
320 /*
321 ===============
322 CL_InitParticles
323 ===============
324 */
325 void CL_ReadPointFile_f (void);
326 void CL_Particles_Init (void)
327 {
328         int             i;
329
330 // COMMANDLINEOPTION: -particles <number> changes maximum number of particles at once, default 32768
331         i = COM_CheckParm ("-particles");
332
333         if (i && i < com_argc - 1)
334         {
335                 cl_maxparticles = (int)(atoi(com_argv[i+1]));
336                 if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES)
337                         cl_maxparticles = ABSOLUTE_MIN_PARTICLES;
338         }
339         else
340                 cl_maxparticles = MAX_PARTICLES;
341
342         Cmd_AddCommand ("pointfile", CL_ReadPointFile_f);
343
344         Cvar_RegisterVariable (&cl_particles);
345         Cvar_RegisterVariable (&cl_particles_quality);
346         Cvar_RegisterVariable (&cl_particles_size);
347         Cvar_RegisterVariable (&cl_particles_bloodshowers);
348         Cvar_RegisterVariable (&cl_particles_blood);
349         Cvar_RegisterVariable (&cl_particles_blood_alpha);
350         Cvar_RegisterVariable (&cl_particles_blood_bloodhack);
351         Cvar_RegisterVariable (&cl_particles_explosions_bubbles);
352         Cvar_RegisterVariable (&cl_particles_explosions_smoke);
353         Cvar_RegisterVariable (&cl_particles_explosions_sparks);
354         Cvar_RegisterVariable (&cl_particles_explosions_shell);
355         Cvar_RegisterVariable (&cl_particles_bulletimpacts);
356         Cvar_RegisterVariable (&cl_particles_smoke);
357         Cvar_RegisterVariable (&cl_particles_smoke_alpha);
358         Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
359         Cvar_RegisterVariable (&cl_particles_sparks);
360         Cvar_RegisterVariable (&cl_particles_bubbles);
361         Cvar_RegisterVariable (&cl_decals);
362         Cvar_RegisterVariable (&cl_decals_time);
363         Cvar_RegisterVariable (&cl_decals_fadetime);
364
365 #ifdef WORKINGLQUAKE
366         particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles");
367 #else
368         cl_part_mempool = Mem_AllocPool("CL_Part", 0, NULL);
369         particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t));
370 #endif
371         CL_Particles_Clear();
372 }
373
374 // list of all 26 parameters:
375 // ptype - any of the pt_ enum values (pt_static, pt_blood, etc), see ptype_t near the top of this file
376 // porientation - PARTICLE_ enum values (PARTICLE_BILLBOARD, PARTICLE_SPARK, etc)
377 // pcolor1,pcolor2 - minimum and maximum ranges of color, randomly interpolated to decide particle color
378 // ptex - any of the tex_ values such as tex_smoke[rand()&7] or tex_particle
379 // plight - no longer used (this used to turn on particle lighting)
380 // pblendmode - PBLEND_ enum values (PBLEND_ALPHA, PBLEND_ADD, etc)
381 // pscalex,pscaley - width and height of particle (according to orientation), these are normally the same except when making sparks and beams
382 // palpha - opacity of particle as 0-255 (can be more than 255)
383 // palphafade - rate of fade per second (so 256 would mean a 256 alpha particle would fade to nothing in 1 second)
384 // ptime - how long the particle can live (note it is also removed if alpha drops to nothing)
385 // pgravity - how much effect gravity has on the particle (0-1)
386 // pbounce - how much bounce the particle has when it hits a surface (0-1), -1 makes a blood splat when it hits a surface, 0 does not even check for collisions
387 // px,py,pz - starting origin of particle
388 // pvx,pvy,pvz - starting velocity of particle
389 // ptime2 - extra time parameter for certain particle types (pt_decal delayed fades and pt_rain snowflutter use this)
390 // pvx2,pvy2,pvz2 - for PARTICLE_ORIENTED_DOUBLESIDED this is the surface normal of the orientation (forward vector), pt_rain uses this for snow fluttering
391 // pfriction - how much the particle slows down per second (0-1 typically, can slowdown faster than 1)
392 // ppressure - pushes other particles away if they are within 64 units distance, the force is based on scalex, this feature is supported but not currently used
393 particle_t *particle(ptype_t ptype, porientation_t porientation, int pcolor1, int pcolor2, int ptex, int plight, pblend_t pblendmode, float pscalex, float pscaley, float palpha, float palphafade, float ptime, float pgravity, float pbounce, float px, float py, float pz, float pvx, float pvy, float pvz, float ptime2, float pvx2, float pvy2, float pvz2, float pfriction, float ppressure)
394 {
395         particle_t *part;
396         int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2;
397         ptempcolor = (pcolor1);
398         ptempcolor2 = (pcolor2);
399         pcr2 = ((ptempcolor2) >> 16) & 0xFF;
400         pcg2 = ((ptempcolor2) >> 8) & 0xFF;
401         pcb2 = (ptempcolor2) & 0xFF;
402         if (ptempcolor != ptempcolor2)
403         {
404                 pcr1 = ((ptempcolor) >> 16) & 0xFF;
405                 pcg1 = ((ptempcolor) >> 8) & 0xFF;
406                 pcb1 = (ptempcolor) & 0xFF;
407                 ptempcolor = rand() & 0xFF;
408                 pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1;
409                 pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1;
410                 pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1;
411         }
412         for (;cl_freeparticle < cl_maxparticles && particles[cl_freeparticle].type;cl_freeparticle++);
413         if (cl_freeparticle >= cl_maxparticles)
414                 return NULL;
415         part = &particles[cl_freeparticle++];
416         if (cl_numparticles < cl_freeparticle)
417                 cl_numparticles = cl_freeparticle;
418         memset(part, 0, sizeof(*part));
419         part->type = (ptype);
420         part->color[0] = pcr2;
421         part->color[1] = pcg2;
422         part->color[2] = pcb2;
423         part->color[3] = 0xFF;
424         part->orientation = porientation;
425         part->texnum = ptex;
426         part->blendmode = pblendmode;
427         part->scalex = (pscalex);
428         part->scaley = (pscaley);
429         part->alpha = (palpha);
430         part->alphafade = (palphafade);
431         part->die = cl.time + (ptime);
432         part->gravity = (pgravity);
433         part->bounce = (pbounce);
434         part->org[0] = (px);
435         part->org[1] = (py);
436         part->org[2] = (pz);
437         part->vel[0] = (pvx);
438         part->vel[1] = (pvy);
439         part->vel[2] = (pvz);
440         part->time2 = (ptime2);
441         part->vel2[0] = (pvx2);
442         part->vel2[1] = (pvy2);
443         part->vel2[2] = (pvz2);
444         part->friction = (pfriction);
445         part->pressure = (ppressure);
446         return part;
447 }
448
449 void CL_SpawnDecalParticleForSurface(void *hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha)
450 {
451         particle_t *p;
452         if (!cl_decals.integer)
453                 return;
454         p = particle(pt_decal, PARTICLE_ORIENTED_DOUBLESIDED, color1, color2, texnum, false, PBLEND_MOD, size, size, alpha, 0, cl_decals_time.value + cl_decals_fadetime.value, 0, 0, org[0] + normal[0], org[1] + normal[1], org[2] + normal[2], 0, 0, 0, cl.time + cl_decals_time.value, normal[0], normal[1], normal[2], 0, 0);
455 #ifndef WORKINGLQUAKE
456         if (p)
457         {
458                 p->owner = hitent;
459                 p->ownermodel = p->owner->model;
460                 Matrix4x4_Transform(&p->owner->inversematrix, org, p->relativeorigin);
461                 Matrix4x4_Transform3x3(&p->owner->inversematrix, normal, p->relativedirection);
462                 VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
463         }
464 #endif
465 }
466
467 void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2)
468 {
469         int i;
470         float bestfrac, bestorg[3], bestnormal[3];
471         float frac, v[3], normal[3], org2[3];
472 #ifdef WORKINGLQUAKE
473         void *besthitent = NULL, *hitent;
474 #else
475         entity_render_t *besthitent = NULL, *hitent;
476 #endif
477         bestfrac = 10;
478         for (i = 0;i < 32;i++)
479         {
480                 VectorRandom(org2);
481                 VectorMA(org, maxdist, org2, org2);
482                 frac = CL_TraceLine(org, org2, v, normal, true, &hitent, SUPERCONTENTS_SOLID);
483                 if (bestfrac > frac)
484                 {
485                         bestfrac = frac;
486                         besthitent = hitent;
487                         VectorCopy(v, bestorg);
488                         VectorCopy(normal, bestnormal);
489                 }
490         }
491         if (bestfrac < 1)
492                 CL_SpawnDecalParticleForSurface(besthitent, bestorg, bestnormal, color1, color2, texnum, size, alpha);
493 }
494
495 /*
496 ===============
497 CL_EntityParticles
498 ===============
499 */
500 void CL_EntityParticles (entity_t *ent)
501 {
502         int                     i;
503         float           angle;
504         float           sp, sy, cp, cy;
505         vec3_t          forward;
506         float           dist;
507         float           beamlength;
508         static vec3_t avelocities[NUMVERTEXNORMALS];
509         if (!cl_particles.integer) return;
510
511         dist = 64;
512         beamlength = 16;
513
514         if (!avelocities[0][0])
515                 for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
516                         avelocities[0][i] = (rand()&255) * 0.01;
517
518         for (i=0 ; i<NUMVERTEXNORMALS ; i++)
519         {
520                 angle = cl.time * avelocities[i][0];
521                 sy = sin(angle);
522                 cy = cos(angle);
523                 angle = cl.time * avelocities[i][1];
524                 sp = sin(angle);
525                 cp = cos(angle);
526
527                 forward[0] = cp*cy;
528                 forward[1] = cp*sy;
529                 forward[2] = -sp;
530
531 #ifdef WORKINGLQUAKE
532                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
533 #else
534                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, PBLEND_ADD, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0);
535 #endif
536         }
537 }
538
539
540 void CL_ReadPointFile_f (void)
541 {
542         vec3_t org, leakorg;
543         int r, c, s;
544         char *pointfile = NULL, *pointfilepos, *t, tchar;
545         char name[MAX_OSPATH];
546
547         if (!cl.worldmodel)
548                 return;
549
550         FS_StripExtension (cl.worldmodel->name, name, sizeof (name));
551         strlcat (name, ".pts", sizeof (name));
552 #if WORKINGLQUAKE
553         pointfile = COM_LoadTempFile (name);
554 #else
555         pointfile = FS_LoadFile(name, tempmempool, true);
556 #endif
557         if (!pointfile)
558         {
559                 Con_Printf("Could not open %s\n", name);
560                 return;
561         }
562
563         Con_Printf("Reading %s...\n", name);
564         c = 0;
565         s = 0;
566         pointfilepos = pointfile;
567         while (*pointfilepos)
568         {
569                 while (*pointfilepos == '\n' || *pointfilepos == '\r')
570                         pointfilepos++;
571                 if (!*pointfilepos)
572                         break;
573                 t = pointfilepos;
574                 while (*t && *t != '\n' && *t != '\r')
575                         t++;
576                 tchar = *t;
577                 *t = 0;
578                 r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]);
579                 *t = tchar;
580                 pointfilepos = t;
581                 if (r != 3)
582                         break;
583                 if (c == 0)
584                         VectorCopy(org, leakorg);
585                 c++;
586
587                 if (cl_numparticles < cl_maxparticles - 3)
588                 {
589                         s++;
590                         particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, PBLEND_ALPHA, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
591                 }
592         }
593 #ifndef WORKINGLQUAKE
594         Mem_Free(pointfile);
595 #endif
596         VectorCopy(leakorg, org);
597         Con_Printf("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]);
598
599         particle(pt_static, PARTICLE_BEAM, 0xFF0000, 0xFF0000, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0] - 4096, org[1], org[2], 0, 0, 0, 0, org[0] + 4096, org[1], org[2], 0, 0);
600         particle(pt_static, PARTICLE_BEAM, 0x00FF00, 0x00FF00, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1] - 4096, org[2], 0, 0, 0, 0, org[0], org[1] + 4096, org[2], 0, 0);
601         particle(pt_static, PARTICLE_BEAM, 0x0000FF, 0x0000FF, tex_beam, false, PBLEND_ALPHA, 64, 64, 255, 0, 99999, 0, 0, org[0], org[1], org[2] - 4096, 0, 0, 0, 0, org[0], org[1], org[2] + 4096, 0, 0);
602 }
603
604 /*
605 ===============
606 CL_ParseParticleEffect
607
608 Parse an effect out of the server message
609 ===============
610 */
611 void CL_ParseParticleEffect (void)
612 {
613         vec3_t org, dir;
614         int i, count, msgcount, color;
615
616         MSG_ReadVector(org, cl.protocol);
617         for (i=0 ; i<3 ; i++)
618                 dir[i] = MSG_ReadChar () * (1.0/16);
619         msgcount = MSG_ReadByte ();
620         color = MSG_ReadByte ();
621
622         if (msgcount == 255)
623                 count = 1024;
624         else
625                 count = msgcount;
626
627         if (cl_particles_blood_bloodhack.integer)
628         {
629                 if (color == 73)
630                 {
631                         // regular blood
632                         CL_BloodPuff(org, dir, count / 2);
633                         return;
634                 }
635                 if (color == 225)
636                 {
637                         // lightning blood
638                         CL_BloodPuff(org, dir, count / 2);
639                         return;
640                 }
641         }
642         CL_RunParticleEffect (org, dir, color, count);
643 }
644
645 /*
646 ===============
647 CL_ParticleExplosion
648
649 ===============
650 */
651 void CL_ParticleExplosion (vec3_t org)
652 {
653         int i;
654         //vec3_t v;
655         //vec3_t v2;
656         if (cl_stainmaps.integer)
657                 R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64);
658         CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
659
660         i = CL_PointQ1Contents(org);
661         if (i == CONTENTS_SLIME || i == CONTENTS_WATER)
662         {
663                 if (cl_particles.integer && cl_particles_bubbles.integer && cl_particles_explosions_bubbles.integer)
664                         for (i = 0;i < 128 * cl_particles_quality.value;i++)
665                                 particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, (1.0f / cl_particles_quality.value) * lhrandom(128, 255), (1.0f / cl_particles_quality.value) * 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0);
666         }
667         else
668         {
669                 // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close
670                 // smoke puff
671                 if (cl_particles.integer && cl_particles_smoke.integer && cl_particles_explosions_smoke.integer)
672                 {
673                         for (i = 0;i < 32;i++)
674                         {
675                                 int k;
676                                 vec3_t v, v2;
677 #ifdef WORKINGLQUAKE
678                                 v2[0] = lhrandom(-48, 48);
679                                 v2[1] = lhrandom(-48, 48);
680                                 v2[2] = lhrandom(-48, 48);
681 #else
682                                 for (k = 0;k < 16;k++)
683                                 {
684                                         v[0] = org[0] + lhrandom(-48, 48);
685                                         v[1] = org[1] + lhrandom(-48, 48);
686                                         v[2] = org[2] + lhrandom(-48, 48);
687                                         if (CL_TraceLine(org, v, v2, NULL, true, NULL, SUPERCONTENTS_SOLID) >= 0.1)
688                                                 break;
689                                 }
690                                 VectorSubtract(v2, org, v2);
691 #endif
692                                 VectorScale(v2, 2.0f, v2);
693                                 particle(pt_static, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_smoke[rand()&7], true, PBLEND_ADD, 12, 12, 32, 64, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0);
694                         }
695                 }
696
697 #if 1
698                 if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer)
699                         for (i = 0;i < 128 * cl_particles_quality.value;i++)
700                                 particle(pt_static, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.0f, 0.02f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-256, 256), lhrandom(-256, 256), lhrandom(-256, 256) + 80, 0, 0, 0, 0, 0.2, 0);
701 #elif 1
702                 if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer)
703                         for (i = 0;i < 64 * cl_particles_quality.value;i++)
704                                 particle(pt_ember, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.0f, 0.01f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 256, 9999, 0.7, 0, org[0], org[1], org[2], lhrandom(-256, 256), lhrandom(-256, 256), lhrandom(-256, 256) + 80, cl.time, 0, 0, 0, 0, 0);
705 #else
706                 if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer)
707                         for (i = 0;i < 256 * cl_particles_quality.value;i++)
708                                 particle(pt_static, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5f, 0.05f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0.2, 0);
709 #endif
710         }
711
712         if (cl_particles_explosions_shell.integer)
713                 R_NewExplosion(org);
714 }
715
716 /*
717 ===============
718 CL_ParticleExplosion2
719
720 ===============
721 */
722 void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
723 {
724         vec3_t vel;
725         vec3_t offset;
726         int i, k;
727         float pscale;
728         if (!cl_particles.integer) return;
729
730         for (i = 0;i < 512 * cl_particles_quality.value;i++)
731         {
732                 VectorRandom (offset);
733                 VectorScale (offset, 192, vel);
734                 VectorScale (offset, 8, offset);
735                 k = particlepalette[colorStart + (i % colorLength)];
736                 pscale = lhrandom(0.5, 1.5);
737                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, pscale, pscale, (1.0f / cl_particles_quality.value) * 255, (1.0f/cl_particles_quality.value)*512, 9999, 0, 0, org[0] + offset[0], org[1] + offset[1], org[2] + offset[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, lhrandom(1.5, 3), 0);
738         }
739 }
740
741 /*
742 ===============
743 CL_BlobExplosion
744
745 ===============
746 */
747 void CL_BlobExplosion (vec3_t org)
748 {
749         CL_ParticleExplosion(org);
750 }
751
752 /*
753 ===============
754 CL_RunParticleEffect
755
756 ===============
757 */
758 void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
759 {
760         int k;
761
762         if (count == 1024)
763         {
764                 CL_ParticleExplosion(org);
765                 return;
766         }
767         if (!cl_particles.integer) return;
768         count *= cl_particles_quality.value;
769         while (count--)
770         {
771                 k = particlepalette[color + (rand()&7)];
772                 if (gamemode == GAME_GOODVSBAD2)
773                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 5, 5, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 300, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-10, 10), lhrandom(-10, 10), lhrandom(-10, 10), 0, 0, 0, 0, 0, 0);
774                 else
775                         particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 1, 1, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), dir[0] + lhrandom(-15, 15), dir[1] + lhrandom(-15, 15), dir[2] + lhrandom(-15, 15), 0, 0, 0, 0, 0, 0);
776         }
777 }
778
779 // LordHavoc: added this for spawning sparks/dust (which have strong gravity)
780 /*
781 ===============
782 CL_SparkShower
783 ===============
784 */
785 void CL_SparkShower (vec3_t org, vec3_t dir, int count)
786 {
787         vec3_t org2, org3;
788         int k;
789
790         if (cl_stainmaps.integer)
791                 R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24);
792         CL_SpawnDecalParticleForPoint(org, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
793
794         if (!cl_particles.integer) return;
795
796         if (cl_particles_bulletimpacts.integer)
797         {
798                 // smoke puff
799                 if (cl_particles_smoke.integer)
800                 {
801                         k = count * 0.25 * cl_particles_quality.value;
802                         while(k--)
803                         {
804                                 org2[0] = org[0] + 0.125f * lhrandom(-count, count);
805                                 org2[1] = org[1] + 0.125f * lhrandom(-count, count);
806                                 org2[2] = org[2] + 0.125f * lhrandom(-count, count);
807                                 CL_TraceLine(org, org2, org3, NULL, true, NULL, SUPERCONTENTS_SOLID);
808                                 particle(pt_grow, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, PBLEND_ADD, 3, 3, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 1024, 9999, -0.2, 0, org3[0], org3[1], org3[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 15, 0, 0, 0, 0.2, 0);
809                         }
810                 }
811
812                 if (cl_particles_sparks.integer)
813                 {
814                         // sparks
815                         count *= cl_particles_quality.value;
816                         while(count--)
817                         {
818                                 k = particlepalette[0x68 + (rand() & 7)];
819                                 particle(pt_static, PARTICLE_SPARK, k, k, tex_particle, false, PBLEND_ADD, 0.4f, 0.015f, (1.0f / cl_particles_quality.value) * lhrandom(64, 255), (1.0f / cl_particles_quality.value) * 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0.2, 0);
820                         }
821                 }
822         }
823 }
824
825 void CL_PlasmaBurn (vec3_t org)
826 {
827         if (cl_stainmaps.integer)
828                 R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32);
829         CL_SpawnDecalParticleForPoint(org, 6, 6, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
830 }
831
832 static float bloodcount = 0;
833 void CL_BloodPuff (vec3_t org, vec3_t vel, int count)
834 {
835         float s;
836         vec3_t org2, org3;
837         // bloodcount is used to accumulate counts too small to cause a blood particle
838         if (!cl_particles.integer) return;
839         if (!cl_particles_blood.integer) return;
840
841         s = count + 64.0f;
842         count *= 5.0f;
843         if (count > 1000)
844                 count = 1000;
845         bloodcount += count;
846         while(bloodcount > 0)
847         {
848                 org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount);
849                 org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount);
850                 org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount);
851                 CL_TraceLine(org, org2, org3, NULL, true, NULL, SUPERCONTENTS_SOLID);
852                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 9999, 0, -1, org3[0], org3[1], org3[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0);
853                 bloodcount -= 16 / cl_particles_quality.value;
854         }
855 }
856
857 void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count)
858 {
859         vec3_t org, vel, diff, center, velscale;
860         if (!cl_particles.integer) return;
861         if (!cl_particles_bloodshowers.integer) return;
862         if (!cl_particles_blood.integer) return;
863
864         VectorSubtract(maxs, mins, diff);
865         center[0] = (mins[0] + maxs[0]) * 0.5;
866         center[1] = (mins[1] + maxs[1]) * 0.5;
867         center[2] = (mins[2] + maxs[2]) * 0.5;
868         velscale[0] = velspeed * 2.0 / diff[0];
869         velscale[1] = velspeed * 2.0 / diff[1];
870         velscale[2] = velspeed * 2.0 / diff[2];
871
872         bloodcount += count * 5.0f;
873         while (bloodcount > 0)
874         {
875                 org[0] = lhrandom(mins[0], maxs[0]);
876                 org[1] = lhrandom(mins[1], maxs[1]);
877                 org[2] = lhrandom(mins[2], maxs[2]);
878                 vel[0] = (org[0] - center[0]) * velscale[0];
879                 vel[1] = (org[1] - center[1]) * velscale[1];
880                 vel[2] = (org[2] - center[2]) * velscale[2];
881                 bloodcount -= 16 / cl_particles_quality.value;
882                 particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0);
883         }
884 }
885
886 void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel)
887 {
888         int k;
889         float t;
890         if (!cl_particles.integer) return;
891         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
892         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
893         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
894
895         count *= cl_particles_quality.value;
896         while (count--)
897         {
898                 k = particlepalette[colorbase + (rand()&3)];
899                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ALPHA, 2, 2, 255 / cl_particles_quality.value, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0);
900         }
901 }
902
903 void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type)
904 {
905         int k;
906         float t, z, minz, maxz;
907         if (!cl_particles.integer) return;
908         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
909         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
910         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
911         if (dir[2] < 0) // falling
912         {
913                 t = (maxs[2] - mins[2]) / -dir[2];
914                 z = maxs[2];
915         }
916         else // rising??
917         {
918                 t = (maxs[2] - mins[2]) / dir[2];
919                 z = mins[2];
920         }
921         if (t < 0 || t > 2) // sanity check
922                 t = 2;
923
924         minz = z - fabs(dir[2]) * 0.1;
925         maxz = z + fabs(dir[2]) * 0.1;
926         minz = bound(mins[2], minz, maxs[2]);
927         maxz = bound(mins[2], maxz, maxs[2]);
928
929         count *= cl_particles_quality.value;
930
931         switch(type)
932         {
933         case 0:
934                 count *= 4; // ick, this should be in the mod or maps?
935
936                 while(count--)
937                 {
938                         k = particlepalette[colorbase + (rand()&3)];
939                         if (gamemode == GAME_GOODVSBAD2)
940                         {
941                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 20, 20, lhrandom(8, 16) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
942                         }
943                         else
944                         {
945                                 particle(pt_rain, PARTICLE_SPARK, k, k, tex_particle, true, PBLEND_ADD, 0.5, 0.02, lhrandom(8, 16) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0);
946                         }
947                 }
948                 break;
949         case 1:
950                 while(count--)
951                 {
952                         k = particlepalette[colorbase + (rand()&3)];
953                         if (gamemode == GAME_GOODVSBAD2)
954                         {
955                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 20, 20, lhrandom(64, 128) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
956                         }
957                         else
958                         {
959                                 particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 1, 1, lhrandom(64, 128) / cl_particles_quality.value, 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0);
960                         }
961                 }
962                 break;
963         default:
964                 Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
965         }
966 }
967
968 void CL_Stardust (vec3_t mins, vec3_t maxs, int count)
969 {
970         int k;
971         float t;
972         vec3_t o, v, center;
973         if (!cl_particles.integer) return;
974
975         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
976         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
977         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
978
979         center[0] = (mins[0] + maxs[0]) * 0.5f;
980         center[1] = (mins[1] + maxs[1]) * 0.5f;
981         center[2] = (mins[2] + maxs[2]) * 0.5f;
982
983         count *= cl_particles_quality.value;
984         while (count--)
985         {
986                 k = particlepalette[224 + (rand()&15)];
987                 o[0] = lhrandom(mins[0], maxs[0]);
988                 o[1] = lhrandom(mins[1], maxs[1]);
989                 o[2] = lhrandom(mins[2], maxs[2]);
990                 VectorSubtract(o, center, v);
991                 VectorNormalizeFast(v);
992                 VectorScale(v, 100, v);
993                 v[2] += sv_gravity.value * 0.15f;
994                 particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, 1.5, 1.5, lhrandom(64, 128) / cl_particles_quality.value, 128 / cl_particles_quality.value, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0.2, 0);
995         }
996 }
997
998 void CL_FlameCube (vec3_t mins, vec3_t maxs, int count)
999 {
1000         int k;
1001         float t;
1002         if (!cl_particles.integer) return;
1003         if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;}
1004         if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;}
1005         if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;}
1006
1007         count *= cl_particles_quality.value;
1008         while (count--)
1009         {
1010                 k = particlepalette[224 + (rand()&15)];
1011                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0);
1012                 if (count & 1)
1013                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 6, 6, lhrandom(48, 96) / cl_particles_quality.value, 64 / cl_particles_quality.value, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0);
1014         }
1015 }
1016
1017 void CL_Flames (vec3_t org, vec3_t vel, int count)
1018 {
1019         int k;
1020         if (!cl_particles.integer) return;
1021
1022         count *= cl_particles_quality.value;
1023         while (count--)
1024         {
1025                 k = particlepalette[224 + (rand()&15)];
1026                 particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, PBLEND_ADD, 4, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0);
1027         }
1028 }
1029
1030
1031
1032 /*
1033 ===============
1034 CL_LavaSplash
1035
1036 ===============
1037 */
1038 void CL_LavaSplash (vec3_t origin)
1039 {
1040         float i, j, inc, vel;
1041         int k, l;
1042         vec3_t          dir, org;
1043         if (!cl_particles.integer) return;
1044
1045         inc = 32 / cl_particles_quality.value;
1046         for (i = -128;i < 128;i += inc)
1047         {
1048                 for (j = -128;j < 128;j += inc)
1049                 {
1050                         dir[0] = j + lhrandom(0, 8);
1051                         dir[1] = i + lhrandom(0, 8);
1052                         dir[2] = 256;
1053                         org[0] = origin[0] + dir[0];
1054                         org[1] = origin[1] + dir[1];
1055                         org[2] = origin[2] + lhrandom(0, 64);
1056                         vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
1057                         if (gamemode == GAME_GOODVSBAD2)
1058                         {
1059                                 k = particlepalette[0 + (rand()&255)];
1060                                 l = particlepalette[0 + (rand()&255)];
1061                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, inc * 8, inc * 8, 9999, 0.05, 1, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
1062                         }
1063                         else
1064                         {
1065                                 k = l = particlepalette[224 + (rand()&7)];
1066                                 particle(pt_static, PARTICLE_BILLBOARD, k, l, tex_particle, false, PBLEND_ADD, 12, 12, inc * 8, inc * 8, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0);
1067                         }
1068                 }
1069         }
1070 }
1071
1072 /*
1073 ===============
1074 CL_TeleportSplash
1075
1076 ===============
1077 */
1078 #if WORKINGLQUAKE
1079 void R_TeleportSplash (vec3_t org)
1080 {
1081         float i, j, k, inc;
1082         if (!cl_particles.integer) return;
1083
1084         inc = 8 / cl_particles_quality.value;
1085         for (i = -16;i < 16;i += inc)
1086                 for (j = -16;j < 16;j += inc)
1087                         for (k = -24;k < 32;k += inc)
1088                                 particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, PBLEND_ADD, 10, 10, inc * 32, inc * lhrandom(8, 16), inc * 32, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0);
1089 }
1090 #endif
1091
1092 #ifdef WORKINGLQUAKE
1093 void R_RocketTrail (vec3_t start, vec3_t end, int type)
1094 #else
1095 void CL_RocketTrail (vec3_t start, vec3_t end, int type, int color, entity_t *ent)
1096 #endif
1097 {
1098         vec3_t vec, dir, vel, pos;
1099         float len, dec, speed, qd;
1100         int contents, smoke, blood, bubbles;
1101
1102         if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2])
1103                 return;
1104
1105         VectorSubtract(end, start, dir);
1106         VectorNormalize(dir);
1107
1108         VectorSubtract (end, start, vec);
1109 #ifdef WORKINGLQUAKE
1110         len = VectorNormalize (vec);
1111         dec = 0;
1112         speed = 1.0f / cl.frametime;
1113         VectorSubtract(end, start, vel);
1114 #else
1115         len = VectorNormalizeLength (vec);
1116         dec = -ent->persistent.trail_time;
1117         ent->persistent.trail_time += len;
1118         if (ent->persistent.trail_time < 0.01f)
1119                 return;
1120
1121         // if we skip out, leave it reset
1122         ent->persistent.trail_time = 0.0f;
1123
1124         speed = ent->state_current.time - ent->state_previous.time;
1125         if (speed)
1126                 speed = 1.0f / speed;
1127         VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel);
1128 #endif
1129         VectorScale(vel, speed, vel);
1130
1131         // advance into this frame to reach the first puff location
1132         VectorMA(start, dec, vec, pos);
1133         len -= dec;
1134
1135         contents = CL_PointQ1Contents(pos);
1136         if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA)
1137                 return;
1138
1139         smoke = cl_particles.integer && cl_particles_smoke.integer;
1140         blood = cl_particles.integer && cl_particles_blood.integer;
1141         bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME);
1142         qd = 1.0f / cl_particles_quality.value;
1143
1144         while (len >= 0)
1145         {
1146                 switch (type)
1147                 {
1148                         case 0: // rocket trail
1149                                 dec = qd*3;
1150                                 if (smoke)
1151                                 {
1152                                         particle(pt_grow,   PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*125, qd*cl_particles_smoke_alphafade.value*125, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 7, 0, 0, 0, 0, 0);
1153                                         particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*288, qd*cl_particles_smoke_alphafade.value*1400, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0);
1154                                 }
1155                                 if (bubbles)
1156                                         particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, PBLEND_ADD, 2, 2, qd*lhrandom(64, 255), qd*256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0);
1157                                 break;
1158
1159                         case 1: // grenade trail
1160                                 // FIXME: make it gradually stop smoking
1161                                 dec = qd*3;
1162                                 if (smoke)
1163                                         particle(pt_grow, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, PBLEND_ADD, 3, 3, qd*cl_particles_smoke_alpha.value*100, qd*cl_particles_smoke_alphafade.value*100, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 7, 0, 0, 0, 0, 0);
1164                                 break;
1165
1166
1167                         case 2: // blood
1168                         case 4: // slight blood
1169                                 dec = qd*16;
1170                                 if (blood)
1171                                         particle(pt_blood, PARTICLE_BILLBOARD, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], true, PBLEND_MOD, 8, 8, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0);
1172                                 break;
1173
1174                         case 3: // green tracer
1175                                 dec = qd*6;
1176                                 if (smoke)
1177                                 {
1178                                         if (gamemode == GAME_GOODVSBAD2)
1179                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x00002E, 0x000030, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1180                                         else
1181                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1182                                 }
1183                                 break;
1184
1185                         case 5: // flame tracer
1186                                 dec = qd*6;
1187                                 if (smoke)
1188                                         particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1189                                 break;
1190
1191                         case 6: // voor trail
1192                                 dec = qd*6;
1193                                 if (smoke)
1194                                 {
1195                                         if (gamemode == GAME_GOODVSBAD2)
1196                                                 particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, false, PBLEND_ALPHA, 6, 6, qd*255, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1197                                         else if (gamemode == GAME_PRYDON)
1198                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x103040, 0x204050, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1199                                         else
1200                                                 particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, PBLEND_ADD, 6, 6, qd*128, qd*384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0);
1201                                 }
1202                                 break;
1203 #ifndef WORKINGLQUAKE
1204                         case 7: // Nehahra smoke tracer
1205                                 dec = qd*7;
1206                                 if (smoke)
1207                                         particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, PBLEND_ALPHA, 7, 7, qd*64, qd*320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0);
1208                                 break;
1209                         case 8: // Nexuiz plasma trail
1210                                 dec = qd*4;
1211                                 if (smoke)
1212                                         particle(pt_static, PARTICLE_BILLBOARD, 0x283880, 0x283880, tex_particle, false, PBLEND_ADD, 4, 4, qd*255, qd*1024, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1213                                 break;
1214                         case 9: // glow trail
1215                                 dec = qd*3;
1216                                 if (smoke)
1217                                         particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, PBLEND_ALPHA, 5, 5, qd*128, qd*320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0);
1218                                 break;
1219 #endif
1220                 }
1221
1222                 // advance to next time and position
1223                 len -= dec;
1224                 VectorMA (pos, dec, vec, pos);
1225         }
1226 #ifndef WORKINGLQUAKE
1227         ent->persistent.trail_time = len;
1228 #endif
1229 }
1230
1231 void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime)
1232 {
1233         int tempcolor2, cr, cg, cb;
1234         cr = red * 255;
1235         cg = green * 255;
1236         cb = blue * 255;
1237         tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255);
1238         particle(pt_static, PARTICLE_BEAM, tempcolor2, tempcolor2, tex_beam, false, PBLEND_ADD, radius, radius, alpha * 255, alpha * 255 / lifetime, 9999, 0, 0, start[0], start[1], start[2], 0, 0, 0, 0, end[0], end[1], end[2], 0, 0);
1239 }
1240
1241 void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count)
1242 {
1243         float f;
1244         if (!cl_particles.integer) return;
1245
1246         // smoke puff
1247         if (cl_particles_smoke.integer)
1248                 for (f = 0;f < count;f += 4.0f / cl_particles_quality.value)
1249                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 15, 0, 0, 0, 0, 0);
1250 }
1251
1252 void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count)
1253 {
1254         float f;
1255         if (!cl_particles.integer) return;
1256
1257         if (cl_stainmaps.integer)
1258                 R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40);
1259         CL_SpawnDecalParticleForPoint(org, 6, 8, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
1260
1261         // smoke puff
1262         if (cl_particles_smoke.integer)
1263                 for (f = 0;f < count;f += 4.0f / cl_particles_quality.value)
1264                         particle(pt_grow, PARTICLE_BILLBOARD, 0x202020, 0x404040, tex_smoke[rand()&7], true, PBLEND_ADD, 5, 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 15, 0, 0, 0, 0, 0);
1265
1266         // sparks
1267         if (cl_particles_sparks.integer)
1268                 for (f = 0;f < count;f += 1.0f / cl_particles_quality.value)
1269                         particle(pt_static, PARTICLE_SPARK, 0x2030FF, 0x80C0FF, tex_particle, false, PBLEND_ADD, 2.0f, 0.1f, lhrandom(64, 255) / cl_particles_quality.value, 512 / cl_particles_quality.value, 9999, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0, 0, 0, 0, 0, 0);
1270 }
1271
1272 /*
1273 ===============
1274 CL_MoveParticles
1275 ===============
1276 */
1277 void CL_MoveParticles (void)
1278 {
1279         particle_t *p;
1280         int i, maxparticle, j, a, content;
1281         float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3];
1282 #ifdef WORKINGLQUAKE
1283         void *hitent;
1284 #else
1285         entity_render_t *hitent;
1286 #endif
1287
1288         // LordHavoc: early out condition
1289         if (!cl_numparticles)
1290         {
1291                 cl_freeparticle = 0;
1292                 return;
1293         }
1294
1295 #ifdef WORKINGLQUAKE
1296         frametime = cl.frametime;
1297 #else
1298         frametime = cl.time - cl.oldtime;
1299 #endif
1300         gravity = frametime * sv_gravity.value;
1301         dvel = 1+4*frametime;
1302         bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f;
1303
1304         maxparticle = -1;
1305         j = 0;
1306         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
1307         {
1308                 if (!p->type)
1309                         continue;
1310                 maxparticle = i;
1311                 content = 0;
1312                 VectorCopy(p->org, p->oldorg);
1313                 VectorMA(p->org, frametime, p->vel, p->org);
1314                 VectorCopy(p->org, org);
1315                 if (p->bounce)
1316                 {
1317                         if (CL_TraceLine(p->oldorg, p->org, v, normal, true, &hitent, SUPERCONTENTS_SOLID) < 1)
1318                         {
1319                                 VectorCopy(v, p->org);
1320                                 if (p->bounce < 0)
1321                                 {
1322                                         // assume it's blood (lame, but...)
1323 #ifndef WORKINGLQUAKE
1324                                         if (cl_stainmaps.integer)
1325                                                 R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f));
1326 #endif
1327                                         if (!cl_decals.integer)
1328                                         {
1329                                                 p->type = pt_dead;
1330                                                 continue;
1331                                         }
1332
1333                                         p->type = pt_decal;
1334                                         p->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
1335                                         // convert from a blood particle to a blood decal
1336                                         p->texnum = tex_blooddecal[rand()&7];
1337 #ifndef WORKINGLQUAKE
1338                                         p->owner = hitent;
1339                                         p->ownermodel = hitent->model;
1340                                         Matrix4x4_Transform(&hitent->inversematrix, v, p->relativeorigin);
1341                                         Matrix4x4_Transform3x3(&hitent->inversematrix, normal, p->relativedirection);
1342                                         VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin);
1343 #endif
1344                                         p->time2 = cl.time + cl_decals_time.value;
1345                                         p->die = p->time2 + cl_decals_fadetime.value;
1346                                         p->alphafade = 0;
1347                                         VectorCopy(normal, p->vel2);
1348                                         VectorClear(p->vel);
1349                                         VectorAdd(p->org, normal, p->org);
1350                                         p->bounce = 0;
1351                                         p->friction = 0;
1352                                         p->gravity = 0;
1353                                         p->scalex *= 2.0f;
1354                                         p->scaley *= 2.0f;
1355                                 }
1356                                 else
1357                                 {
1358                                         dist = DotProduct(p->vel, normal) * -p->bounce;
1359                                         VectorMA(p->vel, dist, normal, p->vel);
1360                                         if (DotProduct(p->vel, p->vel) < 0.03)
1361                                                 VectorClear(p->vel);
1362                                 }
1363                         }
1364                 }
1365
1366                 p->vel[2] -= p->gravity * gravity;
1367
1368                 p->alpha -= p->alphafade * frametime;
1369
1370                 if (p->alpha <= 0 || cl.time > p->die)
1371                 {
1372                         p->type = pt_dead;
1373                         continue;
1374                 }
1375
1376                 if (p->friction)
1377                 {
1378                         f = p->friction * frametime;
1379                         if (!content)
1380                                 content = CL_PointQ1Contents(p->org);
1381                         if (content != CONTENTS_EMPTY)
1382                                 f *= 4;
1383                         f = 1.0f - f;
1384                         VectorScale(p->vel, f, p->vel);
1385                 }
1386
1387                 if (p->type != pt_static)
1388                 {
1389                         switch (p->type)
1390                         {
1391                         case pt_blood:
1392                                 if (!content)
1393                                         content = CL_PointQ1Contents(p->org);
1394                                 a = content;
1395                                 if (a != CONTENTS_EMPTY)
1396                                 {
1397                                         if (a == CONTENTS_WATER || a == CONTENTS_SLIME)
1398                                         {
1399                                                 p->scalex += frametime * 8;
1400                                                 p->scaley += frametime * 8;
1401                                                 //p->alpha -= bloodwaterfade;
1402                                         }
1403                                         else
1404                                                 p->type = pt_dead;
1405                                 }
1406                                 else
1407                                         p->vel[2] -= gravity;
1408                                 break;
1409                         case pt_bubble:
1410                                 if (!content)
1411                                         content = CL_PointQ1Contents(p->org);
1412                                 if (content != CONTENTS_WATER && content != CONTENTS_SLIME)
1413                                 {
1414                                         p->type = pt_dead;
1415                                         break;
1416                                 }
1417                                 break;
1418                         case pt_rain:
1419                                 if (cl.time > p->time2)
1420                                 {
1421                                         // snow flutter
1422                                         p->time2 = cl.time + (rand() & 3) * 0.1;
1423                                         p->vel[0] = lhrandom(-32, 32) + p->vel2[0];
1424                                         p->vel[1] = lhrandom(-32, 32) + p->vel2[1];
1425                                         p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2];
1426                                 }
1427                                 if (!content)
1428                                         content = CL_PointQ1Contents(p->org);
1429                                 a = content;
1430                                 if (a != CONTENTS_EMPTY && a != CONTENTS_SKY)
1431                                         p->type = pt_dead;
1432                                 break;
1433                         case pt_grow:
1434                                 p->scalex += frametime * p->time2;
1435                                 p->scaley += frametime * p->time2;
1436                                 break;
1437                         case pt_decal:
1438 #ifndef WORKINGLQUAKE
1439                                 if (p->owner->model == p->ownermodel)
1440                                 {
1441                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1442                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1443                                         if (cl.time > p->time2)
1444                                         {
1445                                                 p->alphafade = p->alpha / (p->die - cl.time);
1446                                                 p->type = pt_decalfade;
1447                                         }
1448                                 }
1449                                 else
1450                                         p->type = pt_dead;
1451 #endif
1452                                 break;
1453                         case pt_decalfade:
1454 #ifndef WORKINGLQUAKE
1455                                 if (p->owner->model == p->ownermodel)
1456                                 {
1457                                         Matrix4x4_Transform(&p->owner->matrix, p->relativeorigin, p->org);
1458                                         Matrix4x4_Transform3x3(&p->owner->matrix, p->relativedirection, p->vel2);
1459                                 }
1460                                 else
1461                                         p->type = pt_dead;
1462 #endif
1463                                 break;
1464                         case pt_ember:
1465                                 while (cl.time > p->time2)
1466                                 {
1467                                         p->time2 += 0.025;
1468                                         particle(pt_static, PARTICLE_SPARK, 0x903010, 0xFFD030, tex_particle, false, PBLEND_ADD, p->scalex * 0.75, p->scaley * 0.75, p->alpha, p->alphafade, 9999, 0.5, 0, p->org[0], p->org[1], p->org[2], p->vel[0] * lhrandom(0.4, 0.6), p->vel[1] * lhrandom(0.4, 0.6), p->vel[2] * lhrandom(0.4, 0.6), 0, 0, 0, 0, 0, 0);
1469                                 }
1470                                 break;
1471                         default:
1472                                 Con_Printf("unknown particle type %i\n", p->type);
1473                                 p->type = pt_dead;
1474                                 break;
1475                         }
1476                 }
1477         }
1478         cl_numparticles = maxparticle + 1;
1479         cl_freeparticle = 0;
1480 }
1481
1482 #define MAX_PARTICLETEXTURES 64
1483 // particletexture_t is a rectangle in the particlefonttexture
1484 typedef struct
1485 {
1486         rtexture_t *texture;
1487         float s1, t1, s2, t2;
1488 }
1489 particletexture_t;
1490
1491 #if WORKINGLQUAKE
1492 static int particlefonttexture;
1493 #else
1494 static rtexturepool_t *particletexturepool;
1495 static rtexture_t *particlefonttexture;
1496 #endif
1497 static particletexture_t particletexture[MAX_PARTICLETEXTURES];
1498
1499 static cvar_t r_drawparticles = {0, "r_drawparticles", "1"};
1500
1501 #define PARTICLETEXTURESIZE 32
1502 #define PARTICLEFONTSIZE (PARTICLETEXTURESIZE*8)
1503
1504 static qbyte shadebubble(float dx, float dy, vec3_t light)
1505 {
1506         float dz, f, dot;
1507         vec3_t normal;
1508         dz = 1 - (dx*dx+dy*dy);
1509         if (dz > 0) // it does hit the sphere
1510         {
1511                 f = 0;
1512                 // back side
1513                 normal[0] = dx;normal[1] = dy;normal[2] = dz;
1514                 VectorNormalize(normal);
1515                 dot = DotProduct(normal, light);
1516                 if (dot > 0.5) // interior reflection
1517                         f += ((dot *  2) - 1);
1518                 else if (dot < -0.5) // exterior reflection
1519                         f += ((dot * -2) - 1);
1520                 // front side
1521                 normal[0] = dx;normal[1] = dy;normal[2] = -dz;
1522                 VectorNormalize(normal);
1523                 dot = DotProduct(normal, light);
1524                 if (dot > 0.5) // interior reflection
1525                         f += ((dot *  2) - 1);
1526                 else if (dot < -0.5) // exterior reflection
1527                         f += ((dot * -2) - 1);
1528                 f *= 128;
1529                 f += 16; // just to give it a haze so you can see the outline
1530                 f = bound(0, f, 255);
1531                 return (qbyte) f;
1532         }
1533         else
1534                 return 0;
1535 }
1536
1537 static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata)
1538 {
1539         int basex, basey, y;
1540         basex = ((texnum >> 0) & 7) * PARTICLETEXTURESIZE;
1541         basey = ((texnum >> 3) & 7) * PARTICLETEXTURESIZE;
1542         particletexture[texnum].s1 = (basex + 1) / (float)PARTICLEFONTSIZE;
1543         particletexture[texnum].t1 = (basey + 1) / (float)PARTICLEFONTSIZE;
1544         particletexture[texnum].s2 = (basex + PARTICLETEXTURESIZE - 1) / (float)PARTICLEFONTSIZE;
1545         particletexture[texnum].t2 = (basey + PARTICLETEXTURESIZE - 1) / (float)PARTICLEFONTSIZE;
1546         for (y = 0;y < PARTICLETEXTURESIZE;y++)
1547                 memcpy(particletexturedata + ((basey + y) * PARTICLEFONTSIZE + basex) * 4, data + y * PARTICLETEXTURESIZE * 4, PARTICLETEXTURESIZE * 4);
1548 }
1549
1550 void particletextureblotch(qbyte *data, float radius, float red, float green, float blue, float alpha)
1551 {
1552         int x, y;
1553         float cx, cy, dx, dy, f, iradius;
1554         qbyte *d;
1555         cx = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f;
1556         cy = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f;
1557         iradius = 1.0f / radius;
1558         alpha *= (1.0f / 255.0f);
1559         for (y = 0;y < PARTICLETEXTURESIZE;y++)
1560         {
1561                 for (x = 0;x < PARTICLETEXTURESIZE;x++)
1562                 {
1563                         dx = (x - cx);
1564                         dy = (y - cy);
1565                         f = (1.0f - sqrt(dx * dx + dy * dy) * iradius) * alpha;
1566                         if (f > 0)
1567                         {
1568                                 d = data + (y * PARTICLETEXTURESIZE + x) * 4;
1569                                 d[0] += f * (red   - d[0]);
1570                                 d[1] += f * (green - d[1]);
1571                                 d[2] += f * (blue  - d[2]);
1572                         }
1573                 }
1574         }
1575 }
1576
1577 void particletextureclamp(qbyte *data, int minr, int ming, int minb, int maxr, int maxg, int maxb)
1578 {
1579         int i;
1580         for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4)
1581         {
1582                 data[0] = bound(minr, data[0], maxr);
1583                 data[1] = bound(ming, data[1], maxg);
1584                 data[2] = bound(minb, data[2], maxb);
1585         }
1586 }
1587
1588 void particletextureinvert(qbyte *data)
1589 {
1590         int i;
1591         for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4)
1592         {
1593                 data[0] = 255 - data[0];
1594                 data[1] = 255 - data[1];
1595                 data[2] = 255 - data[2];
1596         }
1597 }
1598
1599 static void R_InitParticleTexture (void)
1600 {
1601         int x, y, d, i, j, k, m;
1602         float dx, dy, radius, f, f2;
1603         qbyte data[PARTICLETEXTURESIZE][PARTICLETEXTURESIZE][4], noise1[PARTICLETEXTURESIZE*2][PARTICLETEXTURESIZE*2], noise2[PARTICLETEXTURESIZE*2][PARTICLETEXTURESIZE*2], noise3[64][64], data2[64][16][4];
1604         vec3_t light;
1605         qbyte *particletexturedata;
1606
1607         // a note: decals need to modulate (multiply) the background color to
1608         // properly darken it (stain), and they need to be able to alpha fade,
1609         // this is a very difficult challenge because it means fading to white
1610         // (no change to background) rather than black (darkening everything
1611         // behind the whole decal polygon), and to accomplish this the texture is
1612         // inverted (dark red blood on white background becomes brilliant cyan
1613         // and white on black background) so we can alpha fade it to black, then
1614         // we invert it again during the blendfunc to make it work...
1615
1616         particletexturedata = Mem_Alloc(tempmempool, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4);
1617         memset(particletexturedata, 255, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4);
1618
1619         // smoke
1620         for (i = 0;i < 8;i++)
1621         {
1622                 memset(&data[0][0][0], 255, sizeof(data));
1623                 do
1624                 {
1625                         fractalnoise(&noise1[0][0], PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/8);
1626                         fractalnoise(&noise2[0][0], PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/4);
1627                         m = 0;
1628                         for (y = 0;y < PARTICLETEXTURESIZE;y++)
1629                         {
1630                                 dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1631                                 for (x = 0;x < PARTICLETEXTURESIZE;x++)
1632                                 {
1633                                         dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1634                                         d = (noise2[y][x] - 128) * 3 + 192;
1635                                         if (d > 0)
1636                                                 d = d * (1-(dx*dx+dy*dy));
1637                                         d = (d * noise1[y][x]) >> 7;
1638                                         d = bound(0, d, 255);
1639                                         data[y][x][3] = (qbyte) d;
1640                                         if (m < d)
1641                                                 m = d;
1642                                 }
1643                         }
1644                 }
1645                 while (m < 224);
1646                 setuptex(tex_smoke[i], &data[0][0][0], particletexturedata);
1647         }
1648
1649         // rain splash
1650         for (i = 0;i < 16;i++)
1651         {
1652                 memset(&data[0][0][0], 255, sizeof(data));
1653                 radius = i * 3.0f / 4.0f / 16.0f;
1654                 f2 = 255.0f * ((15.0f - i) / 15.0f);
1655                 for (y = 0;y < PARTICLETEXTURESIZE;y++)
1656                 {
1657                         dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1658                         for (x = 0;x < PARTICLETEXTURESIZE;x++)
1659                         {
1660                                 dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1661                                 f = f2 * (1.0 - 4.0f * fabs(radius - sqrt(dx*dx+dy*dy)));
1662                                 data[y][x][3] = (int) (bound(0.0f, f, 255.0f));
1663                         }
1664                 }
1665                 setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata);
1666         }
1667
1668         // normal particle
1669         memset(&data[0][0][0], 255, sizeof(data));
1670         for (y = 0;y < PARTICLETEXTURESIZE;y++)
1671         {
1672                 dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1673                 for (x = 0;x < PARTICLETEXTURESIZE;x++)
1674                 {
1675                         dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1676                         d = 256 * (1 - (dx*dx+dy*dy));
1677                         d = bound(0, d, 255);
1678                         data[y][x][3] = (qbyte) d;
1679                 }
1680         }
1681         setuptex(tex_particle, &data[0][0][0], particletexturedata);
1682
1683         // rain
1684         memset(&data[0][0][0], 255, sizeof(data));
1685         light[0] = 1;light[1] = 1;light[2] = 1;
1686         VectorNormalize(light);
1687         for (y = 0;y < PARTICLETEXTURESIZE;y++)
1688         {
1689                 dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1690                 // stretch upper half of bubble by +50% and shrink lower half by -50%
1691                 // (this gives an elongated teardrop shape)
1692                 if (dy > 0.5f)
1693                         dy = (dy - 0.5f) * 2.0f;
1694                 else
1695                         dy = (dy - 0.5f) / 1.5f;
1696                 for (x = 0;x < PARTICLETEXTURESIZE;x++)
1697                 {
1698                         dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1699                         // shrink bubble width to half
1700                         dx *= 2.0f;
1701                         data[y][x][3] = shadebubble(dx, dy, light);
1702                 }
1703         }
1704         setuptex(tex_raindrop, &data[0][0][0], particletexturedata);
1705
1706         // bubble
1707         memset(&data[0][0][0], 255, sizeof(data));
1708         light[0] = 1;light[1] = 1;light[2] = 1;
1709         VectorNormalize(light);
1710         for (y = 0;y < PARTICLETEXTURESIZE;y++)
1711         {
1712                 dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1713                 for (x = 0;x < PARTICLETEXTURESIZE;x++)
1714                 {
1715                         dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f+1);
1716                         data[y][x][3] = shadebubble(dx, dy, light);
1717                 }
1718         }
1719         setuptex(tex_bubble, &data[0][0][0], particletexturedata);
1720
1721         // blood particles
1722         for (i = 0;i < 8;i++)
1723         {
1724                 memset(&data[0][0][0], 255, sizeof(data));
1725                 for (k = 0;k < 24;k++)
1726                         particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/16, 96, 0, 0, 160);
1727                 //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255);
1728                 particletextureinvert(&data[0][0][0]);
1729                 setuptex(tex_bloodparticle[i], &data[0][0][0], particletexturedata);
1730         }
1731
1732         // blood decals
1733         for (i = 0;i < 8;i++)
1734         {
1735                 memset(&data[0][0][0], 255, sizeof(data));
1736                 m = 8;
1737                 for (j = 1;j < 10;j++)
1738                         for (k = min(j, m - 1);k < m;k++)
1739                                 particletextureblotch(&data[0][0][0], (float)j*PARTICLETEXTURESIZE/64.0f, 96, 0, 0, 192 - j * 8);
1740                 //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255);
1741                 particletextureinvert(&data[0][0][0]);
1742                 setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata);
1743         }
1744
1745         // bullet decals
1746         for (i = 0;i < 8;i++)
1747         {
1748                 memset(&data[0][0][0], 255, sizeof(data));
1749                 for (k = 0;k < 12;k++)
1750                         particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/16, 0, 0, 0, 128);
1751                 for (k = 0;k < 3;k++)
1752                         particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/2, 0, 0, 0, 160);
1753                 //particletextureclamp(&data[0][0][0], 64, 64, 64, 255, 255, 255);
1754                 particletextureinvert(&data[0][0][0]);
1755                 setuptex(tex_bulletdecal[i], &data[0][0][0], particletexturedata);
1756         }
1757
1758 #if WORKINGLQUAKE
1759         glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++));
1760         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1761         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1762 #else
1763         particlefonttexture = loadtextureimage(particletexturepool, "particles/particlefont.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE);
1764         if (!particlefonttexture)
1765                 particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", PARTICLEFONTSIZE, PARTICLEFONTSIZE, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1766         for (i = 0;i < MAX_PARTICLETEXTURES;i++)
1767                 particletexture[i].texture = particlefonttexture;
1768
1769         // nexbeam
1770         fractalnoise(&noise3[0][0], 64, 4);
1771         m = 0;
1772         for (y = 0;y < 64;y++)
1773         {
1774                 dy = (y - 0.5f*64) / (64*0.5f+1);
1775                 for (x = 0;x < 16;x++)
1776                 {
1777                         dx = (x - 0.5f*16) / (16*0.5f+1);
1778                         d = (1 - (dx*dx)) * noise3[y][x];
1779                         data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255);
1780                         data2[y][x][3] = 255;
1781                 }
1782         }
1783
1784         particletexture[tex_beam].texture = loadtextureimage(particletexturepool, "particles/nexbeam.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE);
1785         if (!particletexture[tex_beam].texture)
1786                 particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "nexbeam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1787         particletexture[tex_beam].s1 = 0;
1788         particletexture[tex_beam].t1 = 0;
1789         particletexture[tex_beam].s2 = 1;
1790         particletexture[tex_beam].t2 = 1;
1791 #endif
1792         Mem_Free(particletexturedata);
1793 }
1794
1795 static void r_part_start(void)
1796 {
1797         particletexturepool = R_AllocTexturePool();
1798         R_InitParticleTexture ();
1799 }
1800
1801 static void r_part_shutdown(void)
1802 {
1803         R_FreeTexturePool(&particletexturepool);
1804 }
1805
1806 static void r_part_newmap(void)
1807 {
1808         cl_numparticles = 0;
1809         cl_freeparticle = 0;
1810 }
1811
1812 void R_Particles_Init (void)
1813 {
1814         Cvar_RegisterVariable(&r_drawparticles);
1815 #ifdef WORKINGLQUAKE
1816         r_part_start();
1817 #else
1818         R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap);
1819 #endif
1820 }
1821
1822 #ifdef WORKINGLQUAKE
1823 void R_InitParticles(void)
1824 {
1825         CL_Particles_Init();
1826         R_Particles_Init();
1827 }
1828 #endif
1829
1830 float particle_vertex3f[12], particle_texcoord2f[8];
1831
1832 #ifdef WORKINGLQUAKE
1833 void R_DrawParticle(particle_t *p)
1834 {
1835 #else
1836 void R_DrawParticleCallback(const void *calldata1, int calldata2)
1837 {
1838         const particle_t *p = calldata1;
1839         rmeshstate_t m;
1840 #endif
1841         float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca;
1842         particletexture_t *tex;
1843
1844         VectorCopy(p->org, org);
1845
1846         tex = &particletexture[p->texnum];
1847         cr = p->color[0] * (1.0f / 255.0f);
1848         cg = p->color[1] * (1.0f / 255.0f);
1849         cb = p->color[2] * (1.0f / 255.0f);
1850         ca = p->alpha * (1.0f / 255.0f);
1851         if (p->blendmode == PBLEND_MOD)
1852         {
1853                 cr *= ca;
1854                 cg *= ca;
1855                 cb *= ca;
1856                 cr = min(cr, 1);
1857                 cg = min(cg, 1);
1858                 cb = min(cb, 1);
1859                 ca = 1;
1860         }
1861
1862 #ifndef WORKINGLQUAKE
1863         if (fogenabled && p->blendmode != PBLEND_MOD)
1864         {
1865                 VectorSubtract(org, r_vieworigin, fogvec);
1866                 fog = exp(fogdensity/DotProduct(fogvec,fogvec));
1867                 ifog = 1 - fog;
1868                 cr = cr * ifog;
1869                 cg = cg * ifog;
1870                 cb = cb * ifog;
1871                 if (p->blendmode == 0)
1872                 {
1873                         cr += fogcolor[0] * fog;
1874                         cg += fogcolor[1] * fog;
1875                         cb += fogcolor[2] * fog;
1876                 }
1877         }
1878
1879         R_Mesh_Matrix(&r_identitymatrix);
1880
1881         memset(&m, 0, sizeof(m));
1882         m.tex[0] = R_GetTexture(tex->texture);
1883         m.pointer_texcoord[0] = particle_texcoord2f;
1884         m.pointer_vertex = particle_vertex3f;
1885         R_Mesh_State(&m);
1886
1887         GL_Color(cr, cg, cb, ca);
1888
1889         if (p->blendmode == 0)
1890                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1891         else if (p->blendmode == 1)
1892                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1893         else
1894                 GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1895         GL_DepthMask(false);
1896         GL_DepthTest(true);
1897 #endif
1898         if (p->orientation == PARTICLE_BILLBOARD || p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1899         {
1900                 if (p->orientation == PARTICLE_ORIENTED_DOUBLESIDED)
1901                 {
1902                         // double-sided
1903                         if (DotProduct(p->vel2, r_vieworigin) > DotProduct(p->vel2, org))
1904                         {
1905                                 VectorNegate(p->vel2, v);
1906                                 VectorVectors(v, right, up);
1907                         }
1908                         else
1909                                 VectorVectors(p->vel2, right, up);
1910                         VectorScale(right, p->scalex, right);
1911                         VectorScale(up, p->scaley, up);
1912                 }
1913                 else
1914                 {
1915                         VectorScale(r_viewleft, -p->scalex, right);
1916                         VectorScale(r_viewup, p->scaley, up);
1917                 }
1918                 particle_vertex3f[ 0] = org[0] - right[0] - up[0];
1919                 particle_vertex3f[ 1] = org[1] - right[1] - up[1];
1920                 particle_vertex3f[ 2] = org[2] - right[2] - up[2];
1921                 particle_vertex3f[ 3] = org[0] - right[0] + up[0];
1922                 particle_vertex3f[ 4] = org[1] - right[1] + up[1];
1923                 particle_vertex3f[ 5] = org[2] - right[2] + up[2];
1924                 particle_vertex3f[ 6] = org[0] + right[0] + up[0];
1925                 particle_vertex3f[ 7] = org[1] + right[1] + up[1];
1926                 particle_vertex3f[ 8] = org[2] + right[2] + up[2];
1927                 particle_vertex3f[ 9] = org[0] + right[0] - up[0];
1928                 particle_vertex3f[10] = org[1] + right[1] - up[1];
1929                 particle_vertex3f[11] = org[2] + right[2] - up[2];
1930                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1931                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1932                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1933                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1934         }
1935         else if (p->orientation == PARTICLE_SPARK)
1936         {
1937                 VectorMA(p->org, -p->scaley, p->vel, v);
1938                 VectorMA(p->org, p->scaley, p->vel, up2);
1939                 R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, p->scalex);
1940                 particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2;
1941                 particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1;
1942                 particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1;
1943                 particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2;
1944         }
1945         else if (p->orientation == PARTICLE_BEAM)
1946         {
1947                 R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel2, p->scalex);
1948                 VectorSubtract(p->vel2, p->org, up);
1949                 VectorNormalizeFast(up);
1950                 v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) - cl.time * 0.25;
1951                 v[1] = DotProduct(p->vel2, up) * (1.0f / 64.0f) - cl.time * 0.25;
1952                 particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0];
1953                 particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0];
1954                 particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1];
1955                 particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1];
1956         }
1957         else
1958                 Host_Error("R_DrawParticles: unknown particle orientation %i\n", p->orientation);
1959
1960 #if WORKINGLQUAKE
1961         if (p->blendmode == 0)
1962                 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1963         else if (p->blendmode == 1)
1964                 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
1965         else
1966                 glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
1967         glColor4f(cr, cg, cb, ca);
1968         glBegin(GL_QUADS);
1969         glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]);
1970         glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]);
1971         glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]);
1972         glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]);
1973         glEnd();
1974 #else
1975         R_Mesh_Draw(4, 2, polygonelements);
1976 #endif
1977 }
1978
1979 void R_DrawParticles (void)
1980 {
1981         int i;
1982         float minparticledist;
1983         particle_t *p;
1984
1985 #ifdef WORKINGLQUAKE
1986         CL_MoveParticles();
1987 #endif
1988
1989         // LordHavoc: early out conditions
1990         if ((!cl_numparticles) || (!r_drawparticles.integer))
1991                 return;
1992
1993         minparticledist = DotProduct(r_vieworigin, r_viewforward) + 4.0f;
1994
1995 #ifdef WORKINGLQUAKE
1996         glBindTexture(GL_TEXTURE_2D, particlefonttexture);
1997         glEnable(GL_BLEND);
1998         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
1999         glDepthMask(0);
2000         // LordHavoc: only render if not too close
2001         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
2002                 if (p->type && DotProduct(p->org, r_viewforward) >= minparticledist)
2003                         R_DrawParticle(p);
2004         glDepthMask(1);
2005         glDisable(GL_BLEND);
2006         glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
2007 #else
2008         // LordHavoc: only render if not too close
2009         for (i = 0, p = particles;i < cl_numparticles;i++, p++)
2010         {
2011                 if (p->type)
2012                 {
2013                         c_particles++;
2014                         if (DotProduct(p->org, r_viewforward) >= minparticledist || p->orientation == PARTICLE_BEAM)
2015                                 R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0);
2016                 }
2017         }
2018 #endif
2019 }
2020