]> de.git.xonotic.org Git - xonotic/darkplaces.git/blob - collision.c
Added r_shadow_bouncegrid_lightpathsize which is an alternative to blur
[xonotic/darkplaces.git] / collision.c
1
2 #include "quakedef.h"
3 #include "polygon.h"
4
5 #define COLLISION_EDGEDIR_DOT_EPSILON (0.999f)
6 #define COLLISION_EDGECROSS_MINLENGTH2 (1.0f / 4194304.0f)
7 #define COLLISION_SNAPSCALE (32.0f)
8 #define COLLISION_SNAP (1.0f / COLLISION_SNAPSCALE)
9 #define COLLISION_SNAP2 (2.0f / COLLISION_SNAPSCALE)
10 #define COLLISION_PLANE_DIST_EPSILON (2.0f / COLLISION_SNAPSCALE)
11
12 cvar_t collision_impactnudge = {0, "collision_impactnudge", "0.03125", "how much to back off from the impact"};
13 cvar_t collision_extendmovelength = {0, "collision_extendmovelength", "16", "internal bias on trace length to ensure detection of collisions within the collision_impactnudge distance so that short moves do not degrade across frames (this does not alter the final trace length)"};
14 cvar_t collision_extendtraceboxlength = {0, "collision_extendtraceboxlength", "1", "internal bias for tracebox() qc builtin to account for collision_impactnudge (this does not alter the final trace length)"};
15 cvar_t collision_extendtracelinelength = {0, "collision_extendtracelinelength", "1", "internal bias for traceline() qc builtin to account for collision_impactnudge (this does not alter the final trace length)"};
16 cvar_t collision_debug_tracelineasbox = {0, "collision_debug_tracelineasbox", "0", "workaround for any bugs in Collision_TraceLineBrushFloat by using Collision_TraceBrushBrushFloat"};
17 cvar_t collision_cache = {0, "collision_cache", "1", "store results of collision traces for next frame to reuse if possible (optimization)"};
18 //cvar_t collision_triangle_neighborsides = {0, "collision_triangle_neighborsides", "1", "override automatic side generation if triangle has neighbors with face planes that form a convex edge (perfect solution, but can not work for all edges)"};
19 cvar_t collision_triangle_bevelsides = {0, "collision_triangle_bevelsides", "0", "generate sloped edge planes on triangles - if 0, see axialedgeplanes"};
20 cvar_t collision_triangle_axialsides = {0, "collision_triangle_axialsides", "1", "generate axially-aligned edge planes on triangles - otherwise use perpendicular edge planes"};
21
22 mempool_t *collision_mempool;
23
24 void Collision_Init (void)
25 {
26         Cvar_RegisterVariable(&collision_impactnudge);
27         Cvar_RegisterVariable(&collision_extendmovelength);
28         Cvar_RegisterVariable(&collision_extendtracelinelength);
29         Cvar_RegisterVariable(&collision_extendtraceboxlength);
30         Cvar_RegisterVariable(&collision_debug_tracelineasbox);
31         Cvar_RegisterVariable(&collision_cache);
32 //      Cvar_RegisterVariable(&collision_triangle_neighborsides);
33         Cvar_RegisterVariable(&collision_triangle_bevelsides);
34         Cvar_RegisterVariable(&collision_triangle_axialsides);
35         collision_mempool = Mem_AllocPool("collision cache", 0, NULL);
36         Collision_Cache_Init(collision_mempool);
37 }
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 static void Collision_PrintBrushAsQHull(colbrushf_t *brush, const char *name)
53 {
54         int i;
55         Con_Printf("3 %s\n%i\n", name, brush->numpoints);
56         for (i = 0;i < brush->numpoints;i++)
57                 Con_Printf("%f %f %f\n", brush->points[i].v[0], brush->points[i].v[1], brush->points[i].v[2]);
58         // FIXME: optimize!
59         Con_Printf("4\n%i\n", brush->numplanes);
60         for (i = 0;i < brush->numplanes;i++)
61                 Con_Printf("%f %f %f %f\n", brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist);
62 }
63
64 static void Collision_ValidateBrush(colbrushf_t *brush)
65 {
66         int j, k, pointsoffplanes, pointonplanes, pointswithinsufficientplanes, printbrush;
67         float d;
68         printbrush = false;
69         if (!brush->numpoints)
70         {
71                 Con_Print("Collision_ValidateBrush: brush with no points!\n");
72                 printbrush = true;
73         }
74 #if 0
75         // it's ok for a brush to have one point and no planes...
76         if (brush->numplanes == 0 && brush->numpoints != 1)
77         {
78                 Con_Print("Collision_ValidateBrush: brush with no planes and more than one point!\n");
79                 printbrush = true;
80         }
81 #endif
82         if (brush->numplanes)
83         {
84                 pointsoffplanes = 0;
85                 pointswithinsufficientplanes = 0;
86                 for (k = 0;k < brush->numplanes;k++)
87                         if (DotProduct(brush->planes[k].normal, brush->planes[k].normal) < 0.0001f)
88                                 Con_Printf("Collision_ValidateBrush: plane #%i (%f %f %f %f) is degenerate\n", k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist);
89                 for (j = 0;j < brush->numpoints;j++)
90                 {
91                         pointonplanes = 0;
92                         for (k = 0;k < brush->numplanes;k++)
93                         {
94                                 d = DotProduct(brush->points[j].v, brush->planes[k].normal) - brush->planes[k].dist;
95                                 if (d > COLLISION_PLANE_DIST_EPSILON)
96                                 {
97                                         Con_Printf("Collision_ValidateBrush: point #%i (%f %f %f) infront of plane #%i (%f %f %f %f)\n", j, brush->points[j].v[0], brush->points[j].v[1], brush->points[j].v[2], k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist);
98                                         printbrush = true;
99                                 }
100                                 if (fabs(d) > COLLISION_PLANE_DIST_EPSILON)
101                                         pointsoffplanes++;
102                                 else
103                                         pointonplanes++;
104                         }
105                         if (pointonplanes < 3)
106                                 pointswithinsufficientplanes++;
107                 }
108                 if (pointswithinsufficientplanes)
109                 {
110                         Con_Print("Collision_ValidateBrush: some points have insufficient planes, every point must be on at least 3 planes to form a corner.\n");
111                         printbrush = true;
112                 }
113                 if (pointsoffplanes == 0) // all points are on all planes
114                 {
115                         Con_Print("Collision_ValidateBrush: all points lie on all planes (degenerate, no brush volume!)\n");
116                         printbrush = true;
117                 }
118         }
119         if (printbrush)
120                 Collision_PrintBrushAsQHull(brush, "unnamed");
121 }
122
123 static float nearestplanedist_float(const float *normal, const colpointf_t *points, int numpoints)
124 {
125         float dist, bestdist;
126         if (!numpoints)
127                 return 0;
128         bestdist = DotProduct(points->v, normal);
129         points++;
130         while(--numpoints)
131         {
132                 dist = DotProduct(points->v, normal);
133                 bestdist = min(bestdist, dist);
134                 points++;
135         }
136         return bestdist;
137 }
138
139 static float furthestplanedist_float(const float *normal, const colpointf_t *points, int numpoints)
140 {
141         float dist, bestdist;
142         if (!numpoints)
143                 return 0;
144         bestdist = DotProduct(points->v, normal);
145         points++;
146         while(--numpoints)
147         {
148                 dist = DotProduct(points->v, normal);
149                 bestdist = max(bestdist, dist);
150                 points++;
151         }
152         return bestdist;
153 }
154
155 static void Collision_CalcEdgeDirsForPolygonBrushFloat(colbrushf_t *brush)
156 {
157         int i, j;
158         for (i = 0, j = brush->numpoints - 1;i < brush->numpoints;j = i, i++)
159                 VectorSubtract(brush->points[i].v, brush->points[j].v, brush->edgedirs[j].v);
160 }
161
162 colbrushf_t *Collision_NewBrushFromPlanes(mempool_t *mempool, int numoriginalplanes, const colplanef_t *originalplanes, int supercontents, int q3surfaceflags, const texture_t *texture, int hasaabbplanes)
163 {
164         // TODO: planesbuf could be replaced by a remapping table
165         int j, k, l, m, w, xyzflags;
166         int numpointsbuf = 0, maxpointsbuf = 256, numedgedirsbuf = 0, maxedgedirsbuf = 256, numplanesbuf = 0, maxplanesbuf = 256, numelementsbuf = 0, maxelementsbuf = 256;
167         int isaabb = true;
168         double maxdist;
169         colbrushf_t *brush;
170         colpointf_t pointsbuf[256];
171         colpointf_t edgedirsbuf[256];
172         colplanef_t planesbuf[256];
173         int elementsbuf[1024];
174         int polypointbuf[256];
175         int pmaxpoints = 64;
176         int pnumpoints;
177         double p[2][3*64];
178 #if 0
179         // enable these if debugging to avoid seeing garbage in unused data-
180         memset(pointsbuf, 0, sizeof(pointsbuf));
181         memset(edgedirsbuf, 0, sizeof(edgedirsbuf));
182         memset(planesbuf, 0, sizeof(planesbuf));
183         memset(elementsbuf, 0, sizeof(elementsbuf));
184         memset(polypointbuf, 0, sizeof(polypointbuf));
185         memset(p, 0, sizeof(p));
186 #endif
187
188         // check if there are too many planes and skip the brush
189         if (numoriginalplanes >= maxplanesbuf)
190         {
191                 Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many planes for buffer\n");
192                 return NULL;
193         }
194
195         // figure out how large a bounding box we need to properly compute this brush
196         maxdist = 0;
197         for (j = 0;j < numoriginalplanes;j++)
198                 maxdist = max(maxdist, fabs(originalplanes[j].dist));
199         // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
200         maxdist = floor(maxdist * (4.0 / 1024.0) + 2) * 1024.0;
201         // construct a collision brush (points, planes, and renderable mesh) from
202         // a set of planes, this also optimizes out any unnecessary planes (ones
203         // whose polygon is clipped away by the other planes)
204         for (j = 0;j < numoriginalplanes;j++)
205         {
206                 // add the new plane
207                 VectorCopy(originalplanes[j].normal, planesbuf[numplanesbuf].normal);
208                 planesbuf[numplanesbuf].dist = originalplanes[j].dist;
209                 planesbuf[numplanesbuf].q3surfaceflags = originalplanes[j].q3surfaceflags;
210                 planesbuf[numplanesbuf].texture = originalplanes[j].texture;
211                 numplanesbuf++;
212
213                 // create a large polygon from the plane
214                 w = 0;
215                 PolygonD_QuadForPlane(p[w], originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist, maxdist);
216                 pnumpoints = 4;
217                 // clip it by all other planes
218                 for (k = 0;k < numoriginalplanes && pnumpoints >= 3 && pnumpoints <= pmaxpoints;k++)
219                 {
220                         // skip the plane this polygon
221                         // (nothing happens if it is processed, this is just an optimization)
222                         if (k != j)
223                         {
224                                 // we want to keep the inside of the brush plane so we flip
225                                 // the cutting plane
226                                 PolygonD_Divide(pnumpoints, p[w], -originalplanes[k].normal[0], -originalplanes[k].normal[1], -originalplanes[k].normal[2], -originalplanes[k].dist, COLLISION_PLANE_DIST_EPSILON, pmaxpoints, p[!w], &pnumpoints, 0, NULL, NULL, NULL);
227                                 w = !w;
228                         }
229                 }
230
231                 // if nothing is left, skip it
232                 if (pnumpoints < 3)
233                 {
234                         //Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon for plane %f %f %f %f clipped away\n", originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist);
235                         continue;
236                 }
237
238                 for (k = 0;k < pnumpoints;k++)
239                 {
240                         int l, m;
241                         m = 0;
242                         for (l = 0;l < numoriginalplanes;l++)
243                                 if (fabs(DotProduct(&p[w][k*3], originalplanes[l].normal) - originalplanes[l].dist) < COLLISION_PLANE_DIST_EPSILON)
244                                         m++;
245                         if (m < 3)
246                                 break;
247                 }
248                 if (k < pnumpoints)
249                 {
250                         Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon point does not lie on at least 3 planes\n");
251                         //return NULL;
252                 }
253
254                 // check if there are too many polygon vertices for buffer
255                 if (pnumpoints > pmaxpoints)
256                 {
257                         Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n");
258                         return NULL;
259                 }
260
261                 // check if there are too many triangle elements for buffer
262                 if (numelementsbuf + (pnumpoints - 2) * 3 > maxelementsbuf)
263                 {
264                         Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many triangle elements for buffer\n");
265                         return NULL;
266                 }
267
268                 // add the unique points for this polygon
269                 for (k = 0;k < pnumpoints;k++)
270                 {
271                         float v[3];
272                         // downgrade to float precision before comparing
273                         VectorCopy(&p[w][k*3], v);
274
275                         // check if there is already a matching point (no duplicates)
276                         for (m = 0;m < numpointsbuf;m++)
277                                 if (VectorDistance2(v, pointsbuf[m].v) < COLLISION_SNAP2)
278                                         break;
279
280                         // if there is no match, add a new one
281                         if (m == numpointsbuf)
282                         {
283                                 // check if there are too many and skip the brush
284                                 if (numpointsbuf >= maxpointsbuf)
285                                 {
286                                         Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n");
287                                         return NULL;
288                                 }
289                                 // add the new one
290                                 VectorCopy(&p[w][k*3], pointsbuf[numpointsbuf].v);
291                                 numpointsbuf++;
292                         }
293
294                         // store the index into a buffer
295                         polypointbuf[k] = m;
296                 }
297
298                 // add the triangles for the polygon
299                 // (this particular code makes a triangle fan)
300                 for (k = 0;k < pnumpoints - 2;k++)
301                 {
302                         elementsbuf[numelementsbuf++] = polypointbuf[0];
303                         elementsbuf[numelementsbuf++] = polypointbuf[k + 1];
304                         elementsbuf[numelementsbuf++] = polypointbuf[k + 2];
305                 }
306
307                 // add the unique edgedirs for this polygon
308                 for (k = 0, l = pnumpoints-1;k < pnumpoints;l = k, k++)
309                 {
310                         float dir[3];
311                         // downgrade to float precision before comparing
312                         VectorSubtract(&p[w][k*3], &p[w][l*3], dir);
313                         VectorNormalize(dir);
314
315                         // check if there is already a matching edgedir (no duplicates)
316                         for (m = 0;m < numedgedirsbuf;m++)
317                                 if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON)
318                                         break;
319                         // skip this if there is
320                         if (m < numedgedirsbuf)
321                                 continue;
322
323                         // try again with negated edgedir
324                         VectorNegate(dir, dir);
325                         // check if there is already a matching edgedir (no duplicates)
326                         for (m = 0;m < numedgedirsbuf;m++)
327                                 if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON)
328                                         break;
329                         // if there is no match, add a new one
330                         if (m == numedgedirsbuf)
331                         {
332                                 // check if there are too many and skip the brush
333                                 if (numedgedirsbuf >= maxedgedirsbuf)
334                                 {
335                                         Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many edgedirs for buffer\n");
336                                         return NULL;
337                                 }
338                                 // add the new one
339                                 VectorCopy(dir, edgedirsbuf[numedgedirsbuf].v);
340                                 numedgedirsbuf++;
341                         }
342                 }
343
344                 // if any normal is not purely axial, it's not an axis-aligned box
345                 if (isaabb && (originalplanes[j].normal[0] == 0) + (originalplanes[j].normal[1] == 0) + (originalplanes[j].normal[2] == 0) < 2)
346                         isaabb = false;
347         }
348
349         // if nothing is left, there's nothing to allocate
350         if (numplanesbuf < 4)
351         {
352                 Con_DPrintf("Collision_NewBrushFromPlanes: failed to build collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf);
353                 return NULL;
354         }
355
356         // if no triangles or points could be constructed, then this routine failed but the brush is not discarded
357         if (numelementsbuf < 12 || numpointsbuf < 4)
358                 Con_DPrintf("Collision_NewBrushFromPlanes: unable to rebuild triangles/points for collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf);
359
360         // validate plane distances
361         for (j = 0;j < numplanesbuf;j++)
362         {
363                 float d = furthestplanedist_float(planesbuf[j].normal, pointsbuf, numpointsbuf);
364                 if (fabs(planesbuf[j].dist - d) > COLLISION_PLANE_DIST_EPSILON)
365                         Con_DPrintf("plane %f %f %f %f mismatches dist %f\n", planesbuf[j].normal[0], planesbuf[j].normal[1], planesbuf[j].normal[2], planesbuf[j].dist, d);
366         }
367
368         // allocate the brush and copy to it
369         brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colpointf_t) * numpointsbuf + sizeof(colpointf_t) * numedgedirsbuf + sizeof(colplanef_t) * numplanesbuf + sizeof(int) * numelementsbuf);
370         brush->isaabb = isaabb;
371         brush->hasaabbplanes = hasaabbplanes;
372         brush->supercontents = supercontents;
373         brush->numplanes = numplanesbuf;
374         brush->numedgedirs = numedgedirsbuf;
375         brush->numpoints = numpointsbuf;
376         brush->numtriangles = numelementsbuf / 3;
377         brush->planes = (colplanef_t *)(brush + 1);
378         brush->points = (colpointf_t *)(brush->planes + brush->numplanes);
379         brush->edgedirs = (colpointf_t *)(brush->points + brush->numpoints);
380         brush->elements = (int *)(brush->points + brush->numpoints);
381         brush->q3surfaceflags = q3surfaceflags;
382         brush->texture = texture;
383         for (j = 0;j < brush->numpoints;j++)
384         {
385                 brush->points[j].v[0] = pointsbuf[j].v[0];
386                 brush->points[j].v[1] = pointsbuf[j].v[1];
387                 brush->points[j].v[2] = pointsbuf[j].v[2];
388         }
389         for (j = 0;j < brush->numedgedirs;j++)
390         {
391                 brush->edgedirs[j].v[0] = edgedirsbuf[j].v[0];
392                 brush->edgedirs[j].v[1] = edgedirsbuf[j].v[1];
393                 brush->edgedirs[j].v[2] = edgedirsbuf[j].v[2];
394         }
395         for (j = 0;j < brush->numplanes;j++)
396         {
397                 brush->planes[j].normal[0] = planesbuf[j].normal[0];
398                 brush->planes[j].normal[1] = planesbuf[j].normal[1];
399                 brush->planes[j].normal[2] = planesbuf[j].normal[2];
400                 brush->planes[j].dist = planesbuf[j].dist;
401                 brush->planes[j].q3surfaceflags = planesbuf[j].q3surfaceflags;
402                 brush->planes[j].texture = planesbuf[j].texture;
403         }
404         for (j = 0;j < brush->numtriangles * 3;j++)
405                 brush->elements[j] = elementsbuf[j];
406
407         xyzflags = 0;
408         VectorClear(brush->mins);
409         VectorClear(brush->maxs);
410         for (j = 0;j < min(6, numoriginalplanes);j++)
411         {
412                      if (originalplanes[j].normal[0] ==  1) {xyzflags |=  1;brush->maxs[0] =  originalplanes[j].dist;}
413                 else if (originalplanes[j].normal[0] == -1) {xyzflags |=  2;brush->mins[0] = -originalplanes[j].dist;}
414                 else if (originalplanes[j].normal[1] ==  1) {xyzflags |=  4;brush->maxs[1] =  originalplanes[j].dist;}
415                 else if (originalplanes[j].normal[1] == -1) {xyzflags |=  8;brush->mins[1] = -originalplanes[j].dist;}
416                 else if (originalplanes[j].normal[2] ==  1) {xyzflags |= 16;brush->maxs[2] =  originalplanes[j].dist;}
417                 else if (originalplanes[j].normal[2] == -1) {xyzflags |= 32;brush->mins[2] = -originalplanes[j].dist;}
418         }
419         // if not all xyzflags were set, then this is not a brush from q3map/q3map2, and needs reconstruction of the bounding box
420         // (this case works for any brush with valid points, but sometimes brushes are not reconstructed properly and hence the points are not valid, so this is reserved as a fallback case)
421         if (xyzflags != 63)
422         {
423                 VectorCopy(brush->points[0].v, brush->mins);
424                 VectorCopy(brush->points[0].v, brush->maxs);
425                 for (j = 1;j < brush->numpoints;j++)
426                 {
427                         brush->mins[0] = min(brush->mins[0], brush->points[j].v[0]);
428                         brush->mins[1] = min(brush->mins[1], brush->points[j].v[1]);
429                         brush->mins[2] = min(brush->mins[2], brush->points[j].v[2]);
430                         brush->maxs[0] = max(brush->maxs[0], brush->points[j].v[0]);
431                         brush->maxs[1] = max(brush->maxs[1], brush->points[j].v[1]);
432                         brush->maxs[2] = max(brush->maxs[2], brush->points[j].v[2]);
433                 }
434         }
435         brush->mins[0] -= 1;
436         brush->mins[1] -= 1;
437         brush->mins[2] -= 1;
438         brush->maxs[0] += 1;
439         brush->maxs[1] += 1;
440         brush->maxs[2] += 1;
441         Collision_ValidateBrush(brush);
442         return brush;
443 }
444
445
446
447 void Collision_CalcPlanesForTriangleBrushFloat(colbrushf_t *brush)
448 {
449         int i;
450         float edge0[3], edge1[3], edge2[3];
451         colpointf_t *p;
452
453         TriangleNormal(brush->points[0].v, brush->points[1].v, brush->points[2].v, brush->planes[0].normal);
454         if (DotProduct(brush->planes[0].normal, brush->planes[0].normal) < 0.0001f)
455         {
456                 // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
457                 // note that some of these exist in q3bsp bspline patches
458                 brush->numplanes = 0;
459                 return;
460         }
461
462         // there are 5 planes (front, back, sides) and 3 edges
463         brush->numplanes = 5;
464         brush->numedgedirs = 3;
465         VectorNormalize(brush->planes[0].normal);
466         brush->planes[0].dist = DotProduct(brush->points->v, brush->planes[0].normal);
467         VectorNegate(brush->planes[0].normal, brush->planes[1].normal);
468         brush->planes[1].dist = -brush->planes[0].dist;
469         // edge directions are easy to calculate
470         VectorSubtract(brush->points[2].v, brush->points[0].v, edge0);
471         VectorSubtract(brush->points[0].v, brush->points[1].v, edge1);
472         VectorSubtract(brush->points[1].v, brush->points[2].v, edge2);
473         VectorCopy(edge0, brush->edgedirs[0].v);
474         VectorCopy(edge1, brush->edgedirs[1].v);
475         VectorCopy(edge2, brush->edgedirs[2].v);
476         // now select an algorithm to generate the side planes
477         if (collision_triangle_bevelsides.integer)
478         {
479                 // use 45 degree slopes at the edges of the triangle to make a sinking trace error turn into "riding up" the slope rather than getting stuck
480                 CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal);
481                 CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal);
482                 CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal);
483                 VectorNormalize(brush->planes[2].normal);
484                 VectorNormalize(brush->planes[3].normal);
485                 VectorNormalize(brush->planes[4].normal);
486                 VectorAdd(brush->planes[2].normal, brush->planes[0].normal, brush->planes[2].normal);
487                 VectorAdd(brush->planes[3].normal, brush->planes[0].normal, brush->planes[3].normal);
488                 VectorAdd(brush->planes[4].normal, brush->planes[0].normal, brush->planes[4].normal);
489                 VectorNormalize(brush->planes[2].normal);
490                 VectorNormalize(brush->planes[3].normal);
491                 VectorNormalize(brush->planes[4].normal);
492         }
493         else if (collision_triangle_axialsides.integer)
494         {
495                 float projectionnormal[3], projectionedge0[3], projectionedge1[3], projectionedge2[3];
496                 int i, best;
497                 float dist, bestdist;
498                 bestdist = fabs(brush->planes[0].normal[0]);
499                 best = 0;
500                 for (i = 1;i < 3;i++)
501                 {
502                         dist = fabs(brush->planes[0].normal[i]);
503                         if (bestdist < dist)
504                         {
505                                 bestdist = dist;
506                                 best = i;
507                         }
508                 }
509                 VectorClear(projectionnormal);
510                 if (brush->planes[0].normal[best] < 0)
511                         projectionnormal[best] = -1;
512                 else
513                         projectionnormal[best] = 1;
514                 VectorCopy(edge0, projectionedge0);
515                 VectorCopy(edge1, projectionedge1);
516                 VectorCopy(edge2, projectionedge2);
517                 projectionedge0[best] = 0;
518                 projectionedge1[best] = 0;
519                 projectionedge2[best] = 0;
520                 CrossProduct(projectionedge0, projectionnormal, brush->planes[2].normal);
521                 CrossProduct(projectionedge1, projectionnormal, brush->planes[3].normal);
522                 CrossProduct(projectionedge2, projectionnormal, brush->planes[4].normal);
523                 VectorNormalize(brush->planes[2].normal);
524                 VectorNormalize(brush->planes[3].normal);
525                 VectorNormalize(brush->planes[4].normal);
526         }
527         else
528         {
529                 CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal);
530                 CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal);
531                 CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal);
532                 VectorNormalize(brush->planes[2].normal);
533                 VectorNormalize(brush->planes[3].normal);
534                 VectorNormalize(brush->planes[4].normal);
535         }
536         brush->planes[2].dist = DotProduct(brush->points[2].v, brush->planes[2].normal);
537         brush->planes[3].dist = DotProduct(brush->points[0].v, brush->planes[3].normal);
538         brush->planes[4].dist = DotProduct(brush->points[1].v, brush->planes[4].normal);
539
540         if (developer_extra.integer)
541         {
542                 // validity check - will be disabled later
543                 Collision_ValidateBrush(brush);
544                 for (i = 0;i < brush->numplanes;i++)
545                 {
546                         int j;
547                         for (j = 0, p = brush->points;j < brush->numpoints;j++, p++)
548                                 if (DotProduct(p->v, brush->planes[i].normal) > brush->planes[i].dist + COLLISION_PLANE_DIST_EPSILON)
549                                         Con_DPrintf("Error in brush plane generation, plane %i\n", i);
550                 }
551         }
552 }
553
554 colbrushf_t *Collision_AllocBrushFromPermanentPolygonFloat(mempool_t *mempool, int numpoints, float *points, int supercontents, int q3surfaceflags, const texture_t *texture)
555 {
556         colbrushf_t *brush;
557         brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colplanef_t) * (numpoints + 2) + sizeof(colpointf_t) * numpoints);
558         brush->isaabb = false;
559         brush->hasaabbplanes = false;
560         brush->supercontents = supercontents;
561         brush->numpoints = numpoints;
562         brush->numedgedirs = numpoints;
563         brush->numplanes = numpoints + 2;
564         brush->planes = (colplanef_t *)(brush + 1);
565         brush->points = (colpointf_t *)points;
566         brush->edgedirs = (colpointf_t *)(brush->planes + brush->numplanes);
567         brush->q3surfaceflags = q3surfaceflags;
568         brush->texture = texture;
569         Sys_Error("Collision_AllocBrushFromPermanentPolygonFloat: FIXME: this code needs to be updated to generate a mesh...");
570         return brush;
571 }
572
573 // NOTE: start and end of each brush pair must have same numplanes/numpoints
574 void Collision_TraceBrushBrushFloat(trace_t *trace, const colbrushf_t *trace_start, const colbrushf_t *trace_end, const colbrushf_t *other_start, const colbrushf_t *other_end)
575 {
576         int nplane, nplane2, nedge1, nedge2, hitq3surfaceflags = 0;
577         int tracenumedgedirs = trace_start->numedgedirs;
578         //int othernumedgedirs = other_start->numedgedirs;
579         int tracenumpoints = trace_start->numpoints;
580         int othernumpoints = other_start->numpoints;
581         int numplanes1 = other_start->numplanes;
582         int numplanes2 = numplanes1 + trace_start->numplanes;
583         int numplanes3 = numplanes2 + trace_start->numedgedirs * other_start->numedgedirs * 2;
584         vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1;
585         vec4_t startplane;
586         vec4_t endplane;
587         vec4_t newimpactplane;
588         const texture_t *hittexture = NULL;
589         vec_t startdepth = 1;
590         vec3_t startdepthnormal;
591
592         VectorClear(startdepthnormal);
593         Vector4Clear(newimpactplane);
594
595         // fast case for AABB vs compiled brushes (which begin with AABB planes and also have precomputed bevels for AABB collisions)
596         if (trace_start->isaabb && other_start->hasaabbplanes)
597                 numplanes3 = numplanes2 = numplanes1;
598
599         // Separating Axis Theorem:
600         // if a supporting vector (plane normal) can be found that separates two
601         // objects, they are not colliding.
602         //
603         // Minkowski Sum:
604         // reduce the size of one object to a point while enlarging the other to
605         // represent the space that point can not occupy.
606         //
607         // try every plane we can construct between the two brushes and measure
608         // the distance between them.
609         for (nplane = 0;nplane < numplanes3;nplane++)
610         {
611                 if (nplane < numplanes1)
612                 {
613                         nplane2 = nplane;
614                         VectorCopy(other_start->planes[nplane2].normal, startplane);
615                         VectorCopy(other_end->planes[nplane2].normal, endplane);
616                 }
617                 else if (nplane < numplanes2)
618                 {
619                         nplane2 = nplane - numplanes1;
620                         VectorCopy(trace_start->planes[nplane2].normal, startplane);
621                         VectorCopy(trace_end->planes[nplane2].normal, endplane);
622                 }
623                 else
624                 {
625                         // pick an edgedir from each brush and cross them
626                         nplane2 = nplane - numplanes2;
627                         nedge1 = nplane2 >> 1;
628                         nedge2 = nedge1 / tracenumedgedirs;
629                         nedge1 -= nedge2 * tracenumedgedirs;
630                         if (nplane2 & 1)
631                         {
632                                 CrossProduct(trace_start->edgedirs[nedge1].v, other_start->edgedirs[nedge2].v, startplane);
633                                 CrossProduct(trace_end->edgedirs[nedge1].v, other_end->edgedirs[nedge2].v, endplane);
634                         }
635                         else
636                         {
637                                 CrossProduct(other_start->edgedirs[nedge2].v, trace_start->edgedirs[nedge1].v, startplane);
638                                 CrossProduct(other_end->edgedirs[nedge2].v, trace_end->edgedirs[nedge1].v, endplane);
639                         }
640                         if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2 || VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2)
641                                 continue; // degenerate crossproducts
642                         VectorNormalize(startplane);
643                         VectorNormalize(endplane);
644                 }
645                 startplane[3] = furthestplanedist_float(startplane, other_start->points, othernumpoints);
646                 endplane[3] = furthestplanedist_float(startplane, other_end->points, othernumpoints);
647                 startdist = nearestplanedist_float(startplane, trace_start->points, tracenumpoints) - startplane[3];
648                 enddist = nearestplanedist_float(endplane, trace_end->points, tracenumpoints) - endplane[3];
649                 //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist));
650
651                 // aside from collisions, this is also used for error correction
652                 if (startdist <= 0.0f && nplane < numplanes1 && (startdepth < startdist || startdepth == 1))
653                 {
654                         startdepth = startdist;
655                         VectorCopy(startplane, startdepthnormal);
656                 }
657
658                 if (startdist > enddist)
659                 {
660                         // moving into brush
661                         if (enddist > 0.0f)
662                                 return;
663                         if (startdist >= 0)
664                         {
665                                 // enter
666                                 imove = 1 / (startdist - enddist);
667                                 f = startdist * imove;
668                                 // check if this will reduce the collision time range
669                                 if (enterfrac < f)
670                                 {
671                                         // reduced collision time range
672                                         enterfrac = f;
673                                         // if the collision time range is now empty, no collision
674                                         if (enterfrac > leavefrac)
675                                                 return;
676                                         // calculate the nudged fraction and impact normal we'll
677                                         // need if we accept this collision later
678                                         enterfrac2 = (startdist - collision_impactnudge.value) * imove;
679                                         // if the collision would be further away than the trace's
680                                         // existing collision data, we don't care about this
681                                         // collision
682                                         if (enterfrac2 >= trace->fraction)
683                                                 return;
684                                         ie = 1.0f - enterfrac;
685                                         newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac;
686                                         newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac;
687                                         newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac;
688                                         newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac;
689                                         if (nplane < numplanes1)
690                                         {
691                                                 // use the plane from other
692                                                 nplane2 = nplane;
693                                                 hitq3surfaceflags = other_start->planes[nplane2].q3surfaceflags;
694                                                 hittexture = other_start->planes[nplane2].texture;
695                                         }
696                                         else if (nplane < numplanes2)
697                                         {
698                                                 // use the plane from trace
699                                                 nplane2 = nplane - numplanes1;
700                                                 hitq3surfaceflags = trace_start->planes[nplane2].q3surfaceflags;
701                                                 hittexture = trace_start->planes[nplane2].texture;
702                                         }
703                                         else
704                                         {
705                                                 hitq3surfaceflags = other_start->q3surfaceflags;
706                                                 hittexture = other_start->texture;
707                                         }
708                                 }
709                         }
710                 }
711                 else
712                 {
713                         // moving out of brush
714                         if (startdist >= 0)
715                                 return;
716                         if (enddist > 0)
717                         {
718                                 // leave
719                                 f = startdist / (startdist - enddist);
720                                 // check if this will reduce the collision time range
721                                 if (leavefrac > f)
722                                 {
723                                         // reduced collision time range
724                                         leavefrac = f;
725                                         // if the collision time range is now empty, no collision
726                                         if (enterfrac > leavefrac)
727                                                 return;
728                                 }
729                         }
730                 }
731         }
732
733         // at this point we know the trace overlaps the brush because it was not
734         // rejected at any point in the loop above
735
736         // see if the trace started outside the brush or not
737         if (enterfrac > -1)
738         {
739                 // started outside, and overlaps, therefore there is a collision here
740                 // store out the impact information
741                 if (trace->hitsupercontentsmask & other_start->supercontents)
742                 {
743                         trace->hitsupercontents = other_start->supercontents;
744                         trace->hitq3surfaceflags = hitq3surfaceflags;
745                         trace->hittexture = hittexture;
746                         trace->fraction = bound(0, enterfrac2, 1);
747                         VectorCopy(newimpactplane, trace->plane.normal);
748                         trace->plane.dist = newimpactplane[3];
749                 }
750         }
751         else
752         {
753                 // started inside, update startsolid and friends
754                 trace->startsupercontents |= other_start->supercontents;
755                 if (trace->hitsupercontentsmask & other_start->supercontents)
756                 {
757                         trace->startsolid = true;
758                         if (leavefrac < 1)
759                                 trace->allsolid = true;
760                         VectorCopy(newimpactplane, trace->plane.normal);
761                         trace->plane.dist = newimpactplane[3];
762                         if (trace->startdepth > startdepth)
763                         {
764                                 trace->startdepth = startdepth;
765                                 VectorCopy(startdepthnormal, trace->startdepthnormal);
766                         }
767                 }
768         }
769 }
770
771 // NOTE: start and end of each brush pair must have same numplanes/numpoints
772 void Collision_TraceLineBrushFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const colbrushf_t *other_start, const colbrushf_t *other_end)
773 {
774         int nplane, hitq3surfaceflags = 0;
775         int numplanes = other_start->numplanes;
776         vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1;
777         vec4_t startplane;
778         vec4_t endplane;
779         vec4_t newimpactplane;
780         const texture_t *hittexture = NULL;
781         vec_t startdepth = 1;
782         vec3_t startdepthnormal;
783
784         if (collision_debug_tracelineasbox.integer)
785         {
786                 colboxbrushf_t thisbrush_start, thisbrush_end;
787                 Collision_BrushForBox(&thisbrush_start, linestart, linestart, 0, 0, NULL);
788                 Collision_BrushForBox(&thisbrush_end, lineend, lineend, 0, 0, NULL);
789                 Collision_TraceBrushBrushFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, other_start, other_end);
790                 return;
791         }
792
793         VectorClear(startdepthnormal);
794         Vector4Clear(newimpactplane);
795
796         // Separating Axis Theorem:
797         // if a supporting vector (plane normal) can be found that separates two
798         // objects, they are not colliding.
799         //
800         // Minkowski Sum:
801         // reduce the size of one object to a point while enlarging the other to
802         // represent the space that point can not occupy.
803         //
804         // try every plane we can construct between the two brushes and measure
805         // the distance between them.
806         for (nplane = 0;nplane < numplanes;nplane++)
807         {
808                 VectorCopy(other_start->planes[nplane].normal, startplane);
809                 startplane[3] = other_start->planes[nplane].dist;
810                 VectorCopy(other_end->planes[nplane].normal, endplane);
811                 endplane[3] = other_end->planes[nplane].dist;
812                 startdist = DotProduct(linestart, startplane) - startplane[3];
813                 enddist = DotProduct(lineend, endplane) - endplane[3];
814                 //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist));
815
816                 // aside from collisions, this is also used for error correction
817                 if (startdist <= 0.0f && (startdepth < startdist || startdepth == 1))
818                 {
819                         startdepth = startdist;
820                         VectorCopy(startplane, startdepthnormal);
821                 }
822
823                 if (startdist > enddist)
824                 {
825                         // moving into brush
826                         if (enddist > 0.0f)
827                                 return;
828                         if (startdist > 0)
829                         {
830                                 // enter
831                                 imove = 1 / (startdist - enddist);
832                                 f = startdist * imove;
833                                 // check if this will reduce the collision time range
834                                 if (enterfrac < f)
835                                 {
836                                         // reduced collision time range
837                                         enterfrac = f;
838                                         // if the collision time range is now empty, no collision
839                                         if (enterfrac > leavefrac)
840                                                 return;
841                                         // calculate the nudged fraction and impact normal we'll
842                                         // need if we accept this collision later
843                                         enterfrac2 = (startdist - collision_impactnudge.value) * imove;
844                                         // if the collision would be further away than the trace's
845                                         // existing collision data, we don't care about this
846                                         // collision
847                                         if (enterfrac2 >= trace->fraction)
848                                                 return;
849                                         ie = 1.0f - enterfrac;
850                                         newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac;
851                                         newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac;
852                                         newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac;
853                                         newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac;
854                                         hitq3surfaceflags = other_start->planes[nplane].q3surfaceflags;
855                                         hittexture = other_start->planes[nplane].texture;
856                                 }
857                         }
858                 }
859                 else
860                 {
861                         // moving out of brush
862                         if (startdist > 0)
863                                 return;
864                         if (enddist > 0)
865                         {
866                                 // leave
867                                 f = startdist / (startdist - enddist);
868                                 // check if this will reduce the collision time range
869                                 if (leavefrac > f)
870                                 {
871                                         // reduced collision time range
872                                         leavefrac = f;
873                                         // if the collision time range is now empty, no collision
874                                         if (enterfrac > leavefrac)
875                                                 return;
876                                 }
877                         }
878                 }
879         }
880
881         // at this point we know the trace overlaps the brush because it was not
882         // rejected at any point in the loop above
883
884         // see if the trace started outside the brush or not
885         if (enterfrac > -1)
886         {
887                 // started outside, and overlaps, therefore there is a collision here
888                 // store out the impact information
889                 if (trace->hitsupercontentsmask & other_start->supercontents)
890                 {
891                         trace->hitsupercontents = other_start->supercontents;
892                         trace->hitq3surfaceflags = hitq3surfaceflags;
893                         trace->hittexture = hittexture;
894                         trace->fraction = bound(0, enterfrac2, 1);
895                         VectorCopy(newimpactplane, trace->plane.normal);
896                         trace->plane.dist = newimpactplane[3];
897                 }
898         }
899         else
900         {
901                 // started inside, update startsolid and friends
902                 trace->startsupercontents |= other_start->supercontents;
903                 if (trace->hitsupercontentsmask & other_start->supercontents)
904                 {
905                         trace->startsolid = true;
906                         if (leavefrac < 1)
907                                 trace->allsolid = true;
908                         VectorCopy(newimpactplane, trace->plane.normal);
909                         trace->plane.dist = newimpactplane[3];
910                         if (trace->startdepth > startdepth)
911                         {
912                                 trace->startdepth = startdepth;
913                                 VectorCopy(startdepthnormal, trace->startdepthnormal);
914                         }
915                 }
916         }
917 }
918
919 qboolean Collision_PointInsideBrushFloat(const vec3_t point, const colbrushf_t *brush)
920 {
921         int nplane;
922         const colplanef_t *plane;
923
924         if (!BoxesOverlap(point, point, brush->mins, brush->maxs))
925                 return false;
926         for (nplane = 0, plane = brush->planes;nplane < brush->numplanes;nplane++, plane++)
927                 if (DotProduct(plane->normal, point) > plane->dist)
928                         return false;
929         return true;
930 }
931
932 void Collision_TracePointBrushFloat(trace_t *trace, const vec3_t point, const colbrushf_t *thatbrush)
933 {
934         if (!Collision_PointInsideBrushFloat(point, thatbrush))
935                 return;
936
937         trace->startsupercontents |= thatbrush->supercontents;
938         if (trace->hitsupercontentsmask & thatbrush->supercontents)
939         {
940                 trace->startsolid = true;
941                 trace->allsolid = true;
942         }
943 }
944
945 static void Collision_SnapCopyPoints(int numpoints, const colpointf_t *in, colpointf_t *out, float fractionprecision, float invfractionprecision)
946 {
947         int i;
948         for (i = 0;i < numpoints;i++)
949         {
950                 out[i].v[0] = floor(in[i].v[0] * fractionprecision + 0.5f) * invfractionprecision;
951                 out[i].v[1] = floor(in[i].v[1] * fractionprecision + 0.5f) * invfractionprecision;
952                 out[i].v[2] = floor(in[i].v[2] * fractionprecision + 0.5f) * invfractionprecision;
953         }
954 }
955
956 void Collision_TraceBrushTriangleMeshFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs)
957 {
958         int i;
959         colpointf_t points[3];
960         colpointf_t edgedirs[3];
961         colplanef_t planes[5];
962         colbrushf_t brush;
963         memset(&brush, 0, sizeof(brush));
964         brush.isaabb = false;
965         brush.hasaabbplanes = false;
966         brush.numpoints = 3;
967         brush.numedgedirs = 3;
968         brush.numplanes = 5;
969         brush.points = points;
970         brush.edgedirs = edgedirs;
971         brush.planes = planes;
972         brush.supercontents = supercontents;
973         brush.q3surfaceflags = q3surfaceflags;
974         brush.texture = texture;
975         for (i = 0;i < brush.numplanes;i++)
976         {
977                 brush.planes[i].q3surfaceflags = q3surfaceflags;
978                 brush.planes[i].texture = texture;
979         }
980         if(stride > 0)
981         {
982                 int k, cnt, tri;
983                 cnt = (numtriangles + stride - 1) / stride;
984                 for(i = 0; i < cnt; ++i)
985                 {
986                         if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs))
987                         {
988                                 for(k = 0; k < stride; ++k)
989                                 {
990                                         tri = i * stride + k;
991                                         if(tri >= numtriangles)
992                                                 break;
993                                         VectorCopy(vertex3f + element3i[tri * 3 + 0] * 3, points[0].v);
994                                         VectorCopy(vertex3f + element3i[tri * 3 + 1] * 3, points[1].v);
995                                         VectorCopy(vertex3f + element3i[tri * 3 + 2] * 3, points[2].v);
996                                         Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
997                                         Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
998                                         Collision_CalcPlanesForTriangleBrushFloat(&brush);
999                                         //Collision_PrintBrushAsQHull(&brush, "brush");
1000                                         Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
1001                                 }
1002                         }
1003                 }
1004         }
1005         else if(stride == 0)
1006         {
1007                 for (i = 0;i < numtriangles;i++, element3i += 3)
1008                 {
1009                         if (TriangleBBoxOverlapsBox(vertex3f + element3i[0]*3, vertex3f + element3i[1]*3, vertex3f + element3i[2]*3, segmentmins, segmentmaxs))
1010                         {
1011                                 VectorCopy(vertex3f + element3i[0] * 3, points[0].v);
1012                                 VectorCopy(vertex3f + element3i[1] * 3, points[1].v);
1013                                 VectorCopy(vertex3f + element3i[2] * 3, points[2].v);
1014                                 Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
1015                                 Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
1016                                 Collision_CalcPlanesForTriangleBrushFloat(&brush);
1017                                 //Collision_PrintBrushAsQHull(&brush, "brush");
1018                                 Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
1019                         }
1020                 }
1021         }
1022         else
1023         {
1024                 for (i = 0;i < numtriangles;i++, element3i += 3)
1025                 {
1026                         VectorCopy(vertex3f + element3i[0] * 3, points[0].v);
1027                         VectorCopy(vertex3f + element3i[1] * 3, points[1].v);
1028                         VectorCopy(vertex3f + element3i[2] * 3, points[2].v);
1029                         Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
1030                         Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
1031                         Collision_CalcPlanesForTriangleBrushFloat(&brush);
1032                         //Collision_PrintBrushAsQHull(&brush, "brush");
1033                         Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
1034                 }
1035         }
1036 }
1037
1038 void Collision_TraceLineTriangleMeshFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs)
1039 {
1040         int i;
1041         // FIXME: snap vertices?
1042         if(stride > 0)
1043         {
1044                 int k, cnt, tri;
1045                 cnt = (numtriangles + stride - 1) / stride;
1046                 for(i = 0; i < cnt; ++i)
1047                 {
1048                         if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs))
1049                         {
1050                                 for(k = 0; k < stride; ++k)
1051                                 {
1052                                         tri = i * stride + k;
1053                                         if(tri >= numtriangles)
1054                                                 break;
1055                                         Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[tri * 3 + 0] * 3, vertex3f + element3i[tri * 3 + 1] * 3, vertex3f + element3i[tri * 3 + 2] * 3, supercontents, q3surfaceflags, texture);
1056                                 }
1057                         }
1058                 }
1059         }
1060         else
1061         {
1062                 for (i = 0;i < numtriangles;i++, element3i += 3)
1063                         Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[0] * 3, vertex3f + element3i[1] * 3, vertex3f + element3i[2] * 3, supercontents, q3surfaceflags, texture);
1064         }
1065 }
1066
1067 void Collision_TraceBrushTriangleFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, const float *v0, const float *v1, const float *v2, int supercontents, int q3surfaceflags, const texture_t *texture)
1068 {
1069         int i;
1070         colpointf_t points[3];
1071         colpointf_t edgedirs[3];
1072         colplanef_t planes[5];
1073         colbrushf_t brush;
1074         memset(&brush, 0, sizeof(brush));
1075         brush.isaabb = false;
1076         brush.hasaabbplanes = false;
1077         brush.numpoints = 3;
1078         brush.numedgedirs = 3;
1079         brush.numplanes = 5;
1080         brush.points = points;
1081         brush.edgedirs = edgedirs;
1082         brush.planes = planes;
1083         brush.supercontents = supercontents;
1084         brush.q3surfaceflags = q3surfaceflags;
1085         brush.texture = texture;
1086         for (i = 0;i < brush.numplanes;i++)
1087         {
1088                 brush.planes[i].q3surfaceflags = q3surfaceflags;
1089                 brush.planes[i].texture = texture;
1090         }
1091         VectorCopy(v0, points[0].v);
1092         VectorCopy(v1, points[1].v);
1093         VectorCopy(v2, points[2].v);
1094         Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
1095         Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
1096         Collision_CalcPlanesForTriangleBrushFloat(&brush);
1097         //Collision_PrintBrushAsQHull(&brush, "brush");
1098         Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
1099 }
1100
1101 void Collision_BrushForBox(colboxbrushf_t *boxbrush, const vec3_t mins, const vec3_t maxs, int supercontents, int q3surfaceflags, const texture_t *texture)
1102 {
1103         int i;
1104         memset(boxbrush, 0, sizeof(*boxbrush));
1105         boxbrush->brush.isaabb = true;
1106         boxbrush->brush.hasaabbplanes = true;
1107         boxbrush->brush.points = boxbrush->points;
1108         boxbrush->brush.edgedirs = boxbrush->edgedirs;
1109         boxbrush->brush.planes = boxbrush->planes;
1110         boxbrush->brush.supercontents = supercontents;
1111         boxbrush->brush.q3surfaceflags = q3surfaceflags;
1112         boxbrush->brush.texture = texture;
1113         if (VectorCompare(mins, maxs))
1114         {
1115                 // point brush
1116                 boxbrush->brush.numpoints = 1;
1117                 boxbrush->brush.numedgedirs = 0;
1118                 boxbrush->brush.numplanes = 0;
1119                 VectorCopy(mins, boxbrush->brush.points[0].v);
1120         }
1121         else
1122         {
1123                 boxbrush->brush.numpoints = 8;
1124                 boxbrush->brush.numedgedirs = 3;
1125                 boxbrush->brush.numplanes = 6;
1126                 // there are 8 points on a box
1127                 // there are 3 edgedirs on a box (both signs are tested in collision)
1128                 // there are 6 planes on a box
1129                 VectorSet(boxbrush->brush.points[0].v, mins[0], mins[1], mins[2]);
1130                 VectorSet(boxbrush->brush.points[1].v, maxs[0], mins[1], mins[2]);
1131                 VectorSet(boxbrush->brush.points[2].v, mins[0], maxs[1], mins[2]);
1132                 VectorSet(boxbrush->brush.points[3].v, maxs[0], maxs[1], mins[2]);
1133                 VectorSet(boxbrush->brush.points[4].v, mins[0], mins[1], maxs[2]);
1134                 VectorSet(boxbrush->brush.points[5].v, maxs[0], mins[1], maxs[2]);
1135                 VectorSet(boxbrush->brush.points[6].v, mins[0], maxs[1], maxs[2]);
1136                 VectorSet(boxbrush->brush.points[7].v, maxs[0], maxs[1], maxs[2]);
1137                 VectorSet(boxbrush->brush.edgedirs[0].v, 1, 0, 0);
1138                 VectorSet(boxbrush->brush.edgedirs[1].v, 0, 1, 0);
1139                 VectorSet(boxbrush->brush.edgedirs[2].v, 0, 0, 1);
1140                 VectorSet(boxbrush->brush.planes[0].normal, -1,  0,  0);boxbrush->brush.planes[0].dist = -mins[0];
1141                 VectorSet(boxbrush->brush.planes[1].normal,  1,  0,  0);boxbrush->brush.planes[1].dist =  maxs[0];
1142                 VectorSet(boxbrush->brush.planes[2].normal,  0, -1,  0);boxbrush->brush.planes[2].dist = -mins[1];
1143                 VectorSet(boxbrush->brush.planes[3].normal,  0,  1,  0);boxbrush->brush.planes[3].dist =  maxs[1];
1144                 VectorSet(boxbrush->brush.planes[4].normal,  0,  0, -1);boxbrush->brush.planes[4].dist = -mins[2];
1145                 VectorSet(boxbrush->brush.planes[5].normal,  0,  0,  1);boxbrush->brush.planes[5].dist =  maxs[2];
1146                 for (i = 0;i < 6;i++)
1147                 {
1148                         boxbrush->brush.planes[i].q3surfaceflags = q3surfaceflags;
1149                         boxbrush->brush.planes[i].texture = texture;
1150                 }
1151         }
1152         boxbrush->brush.supercontents = supercontents;
1153         boxbrush->brush.q3surfaceflags = q3surfaceflags;
1154         boxbrush->brush.texture = texture;
1155         VectorSet(boxbrush->brush.mins, mins[0] - 1, mins[1] - 1, mins[2] - 1);
1156         VectorSet(boxbrush->brush.maxs, maxs[0] + 1, maxs[1] + 1, maxs[2] + 1);
1157         //Collision_ValidateBrush(&boxbrush->brush);
1158 }
1159
1160 //pseudocode for detecting line/sphere overlap without calculating an impact point
1161 //linesphereorigin = sphereorigin - linestart;linediff = lineend - linestart;linespherefrac = DotProduct(linesphereorigin, linediff) / DotProduct(linediff, linediff);return VectorLength2(linesphereorigin - bound(0, linespherefrac, 1) * linediff) >= sphereradius*sphereradius;
1162
1163 // LordHavoc: currently unused, but tested
1164 // note: this can be used for tracing a moving sphere vs a stationary sphere,
1165 // by simply adding the moving sphere's radius to the sphereradius parameter,
1166 // all the results are correct (impactpoint, impactnormal, and fraction)
1167 float Collision_ClipTrace_Line_Sphere(double *linestart, double *lineend, double *sphereorigin, double sphereradius, double *impactpoint, double *impactnormal)
1168 {
1169         double dir[3], scale, v[3], deviationdist2, impactdist, linelength;
1170         // make sure the impactpoint and impactnormal are valid even if there is
1171         // no collision
1172         VectorCopy(lineend, impactpoint);
1173         VectorClear(impactnormal);
1174         // calculate line direction
1175         VectorSubtract(lineend, linestart, dir);
1176         // normalize direction
1177         linelength = VectorLength(dir);
1178         if (linelength)
1179         {
1180                 scale = 1.0 / linelength;
1181                 VectorScale(dir, scale, dir);
1182         }
1183         // this dotproduct calculates the distance along the line at which the
1184         // sphere origin is (nearest point to the sphere origin on the line)
1185         impactdist = DotProduct(sphereorigin, dir) - DotProduct(linestart, dir);
1186         // calculate point on line at that distance, and subtract the
1187         // sphereorigin from it, so we have a vector to measure for the distance
1188         // of the line from the sphereorigin (deviation, how off-center it is)
1189         VectorMA(linestart, impactdist, dir, v);
1190         VectorSubtract(v, sphereorigin, v);
1191         deviationdist2 = sphereradius * sphereradius - VectorLength2(v);
1192         // if squared offset length is outside the squared sphere radius, miss
1193         if (deviationdist2 < 0)
1194                 return 1; // miss (off to the side)
1195         // nudge back to find the correct impact distance
1196         impactdist -= sqrt(deviationdist2);
1197         if (impactdist >= linelength)
1198                 return 1; // miss (not close enough)
1199         if (impactdist < 0)
1200                 return 1; // miss (linestart is past or inside sphere)
1201         // calculate new impactpoint
1202         VectorMA(linestart, impactdist, dir, impactpoint);
1203         // calculate impactnormal (surface normal at point of impact)
1204         VectorSubtract(impactpoint, sphereorigin, impactnormal);
1205         // normalize impactnormal
1206         VectorNormalize(impactnormal);
1207         // return fraction of movement distance
1208         return impactdist / linelength;
1209 }
1210
1211 void Collision_TraceLineTriangleFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const float *point0, const float *point1, const float *point2, int supercontents, int q3surfaceflags, const texture_t *texture)
1212 {
1213         float d1, d2, d, f, f2, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, faceplanenormallength2, edge01[3], edge21[3], edge02[3];
1214
1215         // this function executes:
1216         // 32 ops when line starts behind triangle
1217         // 38 ops when line ends infront of triangle
1218         // 43 ops when line fraction is already closer than this triangle
1219         // 72 ops when line is outside edge 01
1220         // 92 ops when line is outside edge 21
1221         // 115 ops when line is outside edge 02
1222         // 123 ops when line impacts triangle and updates trace results
1223
1224         // this code is designed for clockwise triangles, conversion to
1225         // counterclockwise would require swapping some things around...
1226         // it is easier to simply swap the point0 and point2 parameters to this
1227         // function when calling it than it is to rewire the internals.
1228
1229         // calculate the faceplanenormal of the triangle, this represents the front side
1230         // 15 ops
1231         VectorSubtract(point0, point1, edge01);
1232         VectorSubtract(point2, point1, edge21);
1233         CrossProduct(edge01, edge21, faceplanenormal);
1234         // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
1235         // 6 ops
1236         faceplanenormallength2 = DotProduct(faceplanenormal, faceplanenormal);
1237         if (faceplanenormallength2 < 0.0001f)
1238                 return;
1239         // calculate the distance
1240         // 5 ops
1241         faceplanedist = DotProduct(point0, faceplanenormal);
1242
1243         // if start point is on the back side there is no collision
1244         // (we don't care about traces going through the triangle the wrong way)
1245
1246         // calculate the start distance
1247         // 6 ops
1248         d1 = DotProduct(faceplanenormal, linestart);
1249         if (d1 <= faceplanedist)
1250                 return;
1251
1252         // calculate the end distance
1253         // 6 ops
1254         d2 = DotProduct(faceplanenormal, lineend);
1255         // if both are in front, there is no collision
1256         if (d2 >= faceplanedist)
1257                 return;
1258
1259         // from here on we know d1 is >= 0 and d2 is < 0
1260         // this means the line starts infront and ends behind, passing through it
1261
1262         // calculate the recipricol of the distance delta,
1263         // so we can use it multiple times cheaply (instead of division)
1264         // 2 ops
1265         d = 1.0f / (d1 - d2);
1266         // calculate the impact fraction by taking the start distance (> 0)
1267         // and subtracting the face plane distance (this is the distance of the
1268         // triangle along that same normal)
1269         // then multiply by the recipricol distance delta
1270         // 4 ops
1271         f = (d1 - faceplanedist) * d;
1272         f2  = f - collision_impactnudge.value * d;
1273         // skip out if this impact is further away than previous ones
1274         // 1 ops
1275         if (f2 >= trace->fraction)
1276                 return;
1277         // calculate the perfect impact point for classification of insidedness
1278         // 9 ops
1279         impact[0] = linestart[0] + f * (lineend[0] - linestart[0]);
1280         impact[1] = linestart[1] + f * (lineend[1] - linestart[1]);
1281         impact[2] = linestart[2] + f * (lineend[2] - linestart[2]);
1282
1283         // calculate the edge normal and reject if impact is outside triangle
1284         // (an edge normal faces away from the triangle, to get the desired normal
1285         //  a crossproduct with the faceplanenormal is used, and because of the way
1286         // the insidedness comparison is written it does not need to be normalized)
1287
1288         // first use the two edges from the triangle plane math
1289         // the other edge only gets calculated if the point survives that long
1290
1291         // 20 ops
1292         CrossProduct(edge01, faceplanenormal, edgenormal);
1293         if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal))
1294                 return;
1295
1296         // 20 ops
1297         CrossProduct(faceplanenormal, edge21, edgenormal);
1298         if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal))
1299                 return;
1300
1301         // 23 ops
1302         VectorSubtract(point0, point2, edge02);
1303         CrossProduct(faceplanenormal, edge02, edgenormal);
1304         if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal))
1305                 return;
1306
1307         // 8 ops (rare)
1308
1309         // store the new trace fraction
1310         trace->fraction = f2;
1311
1312         // store the new trace plane (because collisions only happen from
1313         // the front this is always simply the triangle normal, never flipped)
1314         d = 1.0 / sqrt(faceplanenormallength2);
1315         VectorScale(faceplanenormal, d, trace->plane.normal);
1316         trace->plane.dist = faceplanedist * d;
1317
1318         trace->hitsupercontents = supercontents;
1319         trace->hitq3surfaceflags = q3surfaceflags;
1320         trace->hittexture = texture;
1321 }
1322
1323 void Collision_BoundingBoxOfBrushTraceSegment(const colbrushf_t *start, const colbrushf_t *end, vec3_t mins, vec3_t maxs, float startfrac, float endfrac)
1324 {
1325         int i;
1326         colpointf_t *ps, *pe;
1327         float tempstart[3], tempend[3];
1328         VectorLerp(start->points[0].v, startfrac, end->points[0].v, mins);
1329         VectorCopy(mins, maxs);
1330         for (i = 0, ps = start->points, pe = end->points;i < start->numpoints;i++, ps++, pe++)
1331         {
1332                 VectorLerp(ps->v, startfrac, pe->v, tempstart);
1333                 VectorLerp(ps->v, endfrac, pe->v, tempend);
1334                 mins[0] = min(mins[0], min(tempstart[0], tempend[0]));
1335                 mins[1] = min(mins[1], min(tempstart[1], tempend[1]));
1336                 mins[2] = min(mins[2], min(tempstart[2], tempend[2]));
1337                 maxs[0] = min(maxs[0], min(tempstart[0], tempend[0]));
1338                 maxs[1] = min(maxs[1], min(tempstart[1], tempend[1]));
1339                 maxs[2] = min(maxs[2], min(tempstart[2], tempend[2]));
1340         }
1341         mins[0] -= 1;
1342         mins[1] -= 1;
1343         mins[2] -= 1;
1344         maxs[0] += 1;
1345         maxs[1] += 1;
1346         maxs[2] += 1;
1347 }
1348
1349 //===========================================
1350
1351 static void Collision_TranslateBrush(const vec3_t shift, colbrushf_t *brush)
1352 {
1353         int i;
1354         // now we can transform the data
1355         for(i = 0; i < brush->numplanes; ++i)
1356         {
1357                 brush->planes[i].dist += DotProduct(shift, brush->planes[i].normal);
1358         }
1359         for(i = 0; i < brush->numpoints; ++i)
1360         {
1361                 VectorAdd(brush->points[i].v, shift, brush->points[i].v);
1362         }
1363         VectorAdd(brush->mins, shift, brush->mins);
1364         VectorAdd(brush->maxs, shift, brush->maxs);
1365 }
1366
1367 static void Collision_TransformBrush(const matrix4x4_t *matrix, colbrushf_t *brush)
1368 {
1369         int i;
1370         vec3_t v;
1371         // we're breaking any AABB properties here...
1372         brush->isaabb = false;
1373         brush->hasaabbplanes = false;
1374         // now we can transform the data
1375         for(i = 0; i < brush->numplanes; ++i)
1376         {
1377                 Matrix4x4_TransformPositivePlane(matrix, brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist, brush->planes[i].normal_and_dist);
1378         }
1379         for(i = 0; i < brush->numedgedirs; ++i)
1380         {
1381                 Matrix4x4_Transform(matrix, brush->edgedirs[i].v, v);
1382                 VectorCopy(v, brush->edgedirs[i].v);
1383         }
1384         for(i = 0; i < brush->numpoints; ++i)
1385         {
1386                 Matrix4x4_Transform(matrix, brush->points[i].v, v);
1387                 VectorCopy(v, brush->points[i].v);
1388         }
1389         VectorCopy(brush->points[0].v, brush->mins);
1390         VectorCopy(brush->points[0].v, brush->maxs);
1391         for(i = 1; i < brush->numpoints; ++i)
1392         {
1393                 if(brush->points[i].v[0] < brush->mins[0]) brush->mins[0] = brush->points[i].v[0];
1394                 if(brush->points[i].v[1] < brush->mins[1]) brush->mins[1] = brush->points[i].v[1];
1395                 if(brush->points[i].v[2] < brush->mins[2]) brush->mins[2] = brush->points[i].v[2];
1396                 if(brush->points[i].v[0] > brush->maxs[0]) brush->maxs[0] = brush->points[i].v[0];
1397                 if(brush->points[i].v[1] > brush->maxs[1]) brush->maxs[1] = brush->points[i].v[1];
1398                 if(brush->points[i].v[2] > brush->maxs[2]) brush->maxs[2] = brush->points[i].v[2];
1399         }
1400 }
1401
1402 typedef struct collision_cachedtrace_parameters_s
1403 {
1404         dp_model_t *model;
1405         vec3_t end;
1406         vec3_t start;
1407         int hitsupercontentsmask;
1408         matrix4x4_t matrix;
1409 }
1410 collision_cachedtrace_parameters_t;
1411
1412 typedef struct collision_cachedtrace_s
1413 {
1414         qboolean valid;
1415         collision_cachedtrace_parameters_t p;
1416         trace_t result;
1417 }
1418 collision_cachedtrace_t;
1419
1420 static mempool_t *collision_cachedtrace_mempool;
1421 static collision_cachedtrace_t *collision_cachedtrace_array;
1422 static int collision_cachedtrace_firstfree;
1423 static int collision_cachedtrace_lastused;
1424 static int collision_cachedtrace_max;
1425 static unsigned char collision_cachedtrace_sequence;
1426 static int collision_cachedtrace_hashsize;
1427 static int *collision_cachedtrace_hash;
1428 static unsigned int *collision_cachedtrace_arrayfullhashindex;
1429 static unsigned int *collision_cachedtrace_arrayhashindex;
1430 static unsigned int *collision_cachedtrace_arraynext;
1431 static unsigned char *collision_cachedtrace_arrayused;
1432 static qboolean collision_cachedtrace_rebuildhash;
1433
1434 void Collision_Cache_Reset(qboolean resetlimits)
1435 {
1436         if (collision_cachedtrace_hash)
1437                 Mem_Free(collision_cachedtrace_hash);
1438         if (collision_cachedtrace_array)
1439                 Mem_Free(collision_cachedtrace_array);
1440         if (collision_cachedtrace_arrayfullhashindex)
1441                 Mem_Free(collision_cachedtrace_arrayfullhashindex);
1442         if (collision_cachedtrace_arrayhashindex)
1443                 Mem_Free(collision_cachedtrace_arrayhashindex);
1444         if (collision_cachedtrace_arraynext)
1445                 Mem_Free(collision_cachedtrace_arraynext);
1446         if (collision_cachedtrace_arrayused)
1447                 Mem_Free(collision_cachedtrace_arrayused);
1448         if (resetlimits || !collision_cachedtrace_max)
1449                 collision_cachedtrace_max = collision_cache.integer ? 128 : 1;
1450         collision_cachedtrace_firstfree = 1;
1451         collision_cachedtrace_lastused = 0;
1452         collision_cachedtrace_hashsize = collision_cachedtrace_max;
1453         collision_cachedtrace_array = (collision_cachedtrace_t *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(collision_cachedtrace_t));
1454         collision_cachedtrace_hash = (int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_hashsize * sizeof(int));
1455         collision_cachedtrace_arrayfullhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
1456         collision_cachedtrace_arrayhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
1457         collision_cachedtrace_arraynext = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
1458         collision_cachedtrace_arrayused = (unsigned char *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned char));
1459         collision_cachedtrace_sequence = 1;
1460         collision_cachedtrace_rebuildhash = false;
1461 }
1462
1463 void Collision_Cache_Init(mempool_t *mempool)
1464 {
1465         collision_cachedtrace_mempool = mempool;
1466         Collision_Cache_Reset(true);
1467 }
1468
1469 static void Collision_Cache_RebuildHash(void)
1470 {
1471         int index;
1472         int range = collision_cachedtrace_lastused + 1;
1473         unsigned char sequence = collision_cachedtrace_sequence;
1474         int firstfree = collision_cachedtrace_max;
1475         int lastused = 0;
1476         int *hash = collision_cachedtrace_hash;
1477         unsigned int hashindex;
1478         unsigned int *arrayhashindex = collision_cachedtrace_arrayhashindex;
1479         unsigned int *arraynext = collision_cachedtrace_arraynext;
1480         collision_cachedtrace_rebuildhash = false;
1481         memset(collision_cachedtrace_hash, 0, collision_cachedtrace_hashsize * sizeof(int));
1482         for (index = 1;index < range;index++)
1483         {
1484                 if (collision_cachedtrace_arrayused[index] == sequence)
1485                 {
1486                         hashindex = arrayhashindex[index];
1487                         arraynext[index] = hash[hashindex];
1488                         hash[hashindex] = index;
1489                         lastused = index;
1490                 }
1491                 else
1492                 {
1493                         if (firstfree > index)
1494                                 firstfree = index;
1495                         collision_cachedtrace_arrayused[index] = 0;
1496                 }
1497         }
1498         collision_cachedtrace_firstfree = firstfree;
1499         collision_cachedtrace_lastused = lastused;
1500 }
1501
1502 void Collision_Cache_NewFrame(void)
1503 {
1504         if (collision_cache.integer)
1505         {
1506                 if (collision_cachedtrace_max < 128)
1507                         Collision_Cache_Reset(true);
1508         }
1509         else
1510         {
1511                 if (collision_cachedtrace_max > 1)
1512                         Collision_Cache_Reset(true);
1513         }
1514         // rebuild hash if sequence would overflow byte, otherwise increment
1515         if (collision_cachedtrace_sequence == 255)
1516         {
1517                 Collision_Cache_RebuildHash();
1518                 collision_cachedtrace_sequence = 1;
1519         }
1520         else
1521         {
1522                 collision_cachedtrace_rebuildhash = true;
1523                 collision_cachedtrace_sequence++;
1524         }
1525 }
1526
1527 static unsigned int Collision_Cache_HashIndexForArray(unsigned int *array, unsigned int size)
1528 {
1529         unsigned int i;
1530         unsigned int hashindex = 0;
1531         // this is a super-cheesy checksum, designed only for speed
1532         for (i = 0;i < size;i++)
1533                 hashindex += array[i] * (1 + i);
1534         return hashindex;
1535 }
1536
1537 static collision_cachedtrace_t *Collision_Cache_Lookup(dp_model_t *model, const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
1538 {
1539         int hashindex = 0;
1540         unsigned int fullhashindex;
1541         int index = 0;
1542         int range;
1543         unsigned char sequence = collision_cachedtrace_sequence;
1544         int *hash = collision_cachedtrace_hash;
1545         unsigned int *arrayfullhashindex = collision_cachedtrace_arrayfullhashindex;
1546         unsigned int *arraynext = collision_cachedtrace_arraynext;
1547         collision_cachedtrace_t *cached = collision_cachedtrace_array + index;
1548         collision_cachedtrace_parameters_t params;
1549         // all non-cached traces use the same index
1550         if (!collision_cache.integer)
1551                 r_refdef.stats[r_stat_photoncache_traced]++;
1552         else
1553         {
1554                 // cached trace lookup
1555                 memset(&params, 0, sizeof(params));
1556                 params.model = model;
1557                 VectorCopy(start, params.start);
1558                 VectorCopy(end,   params.end);
1559                 params.hitsupercontentsmask = hitsupercontentsmask;
1560                 params.matrix = *matrix;
1561                 fullhashindex = Collision_Cache_HashIndexForArray((unsigned int *)&params, sizeof(params) / sizeof(unsigned int));
1562                 hashindex = (int)(fullhashindex % (unsigned int)collision_cachedtrace_hashsize);
1563                 for (index = hash[hashindex];index;index = arraynext[index])
1564                 {
1565                         if (arrayfullhashindex[index] != fullhashindex)
1566                                 continue;
1567                         cached = collision_cachedtrace_array + index;
1568                         //if (memcmp(&cached->p, &params, sizeof(params)))
1569                         if (cached->p.model != params.model
1570                          || cached->p.end[0] != params.end[0]
1571                          || cached->p.end[1] != params.end[1]
1572                          || cached->p.end[2] != params.end[2]
1573                          || cached->p.start[0] != params.start[0]
1574                          || cached->p.start[1] != params.start[1]
1575                          || cached->p.start[2] != params.start[2]
1576                          || cached->p.hitsupercontentsmask != params.hitsupercontentsmask
1577                          || cached->p.matrix.m[0][0] != params.matrix.m[0][0]
1578                          || cached->p.matrix.m[0][1] != params.matrix.m[0][1]
1579                          || cached->p.matrix.m[0][2] != params.matrix.m[0][2]
1580                          || cached->p.matrix.m[0][3] != params.matrix.m[0][3]
1581                          || cached->p.matrix.m[1][0] != params.matrix.m[1][0]
1582                          || cached->p.matrix.m[1][1] != params.matrix.m[1][1]
1583                          || cached->p.matrix.m[1][2] != params.matrix.m[1][2]
1584                          || cached->p.matrix.m[1][3] != params.matrix.m[1][3]
1585                          || cached->p.matrix.m[2][0] != params.matrix.m[2][0]
1586                          || cached->p.matrix.m[2][1] != params.matrix.m[2][1]
1587                          || cached->p.matrix.m[2][2] != params.matrix.m[2][2]
1588                          || cached->p.matrix.m[2][3] != params.matrix.m[2][3]
1589                          || cached->p.matrix.m[3][0] != params.matrix.m[3][0]
1590                          || cached->p.matrix.m[3][1] != params.matrix.m[3][1]
1591                          || cached->p.matrix.m[3][2] != params.matrix.m[3][2]
1592                          || cached->p.matrix.m[3][3] != params.matrix.m[3][3]
1593                         )
1594                                 continue;
1595                         // found a matching trace in the cache
1596                         r_refdef.stats[r_stat_photoncache_cached]++;
1597                         cached->valid = true;
1598                         collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence;
1599                         return cached;
1600                 }
1601                 r_refdef.stats[r_stat_photoncache_traced]++;
1602                 // find an unused cache entry
1603                 for (index = collision_cachedtrace_firstfree, range = collision_cachedtrace_max;index < range;index++)
1604                         if (collision_cachedtrace_arrayused[index] == 0)
1605                                 break;
1606                 if (index == range)
1607                 {
1608                         // all claimed, but probably some are stale...
1609                         for (index = 1, range = collision_cachedtrace_max;index < range;index++)
1610                                 if (collision_cachedtrace_arrayused[index] != sequence)
1611                                         break;
1612                         if (index < range)
1613                         {
1614                                 // found a stale one, rebuild the hash
1615                                 Collision_Cache_RebuildHash();
1616                         }
1617                         else
1618                         {
1619                                 // we need to grow the cache
1620                                 collision_cachedtrace_max *= 2;
1621                                 Collision_Cache_Reset(false);
1622                                 index = 1;
1623                         }
1624                 }
1625                 // link the new cache entry into the hash bucket
1626                 collision_cachedtrace_firstfree = index + 1;
1627                 if (collision_cachedtrace_lastused < index)
1628                         collision_cachedtrace_lastused = index;
1629                 cached = collision_cachedtrace_array + index;
1630                 collision_cachedtrace_arraynext[index] = collision_cachedtrace_hash[hashindex];
1631                 collision_cachedtrace_hash[hashindex] = index;
1632                 collision_cachedtrace_arrayhashindex[index] = hashindex;
1633                 cached->valid = false;
1634                 cached->p = params;
1635                 collision_cachedtrace_arrayfullhashindex[index] = fullhashindex;
1636                 collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence;
1637         }
1638         return cached;
1639 }
1640
1641 void Collision_Cache_ClipLineToGenericEntitySurfaces(trace_t *trace, dp_model_t *model, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
1642 {
1643         collision_cachedtrace_t *cached = Collision_Cache_Lookup(model, matrix, inversematrix, start, end, hitsupercontentsmask);
1644         if (cached->valid)
1645         {
1646                 *trace = cached->result;
1647                 return;
1648         }
1649
1650         Collision_ClipLineToGenericEntity(trace, model, NULL, NULL, vec3_origin, vec3_origin, 0, matrix, inversematrix, start, end, hitsupercontentsmask, collision_extendmovelength.value, true);
1651
1652         cached->result = *trace;
1653 }
1654
1655 void Collision_Cache_ClipLineToWorldSurfaces(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t end, int hitsupercontents)
1656 {
1657         collision_cachedtrace_t *cached = Collision_Cache_Lookup(model, &identitymatrix, &identitymatrix, start, end, hitsupercontents);
1658         if (cached->valid)
1659         {
1660                 *trace = cached->result;
1661                 return;
1662         }
1663
1664         Collision_ClipLineToWorld(trace, model, start, end, hitsupercontents, collision_extendmovelength.value, true);
1665
1666         cached->result = *trace;
1667 }
1668
1669 typedef struct extendtraceinfo_s
1670 {
1671         trace_t *trace;
1672         float realstart[3];
1673         float realend[3];
1674         float realdelta[3];
1675         float extendstart[3];
1676         float extendend[3];
1677         float extenddelta[3];
1678         float reallength;
1679         float extendlength;
1680         float scaletoextend;
1681         float extend;
1682 }
1683 extendtraceinfo_t;
1684
1685 static void Collision_ClipExtendPrepare(extendtraceinfo_t *extendtraceinfo, trace_t *trace, const vec3_t tstart, const vec3_t tend, float textend)
1686 {
1687         memset(trace, 0, sizeof(*trace));
1688         trace->fraction = 1;
1689
1690         extendtraceinfo->trace = trace;
1691         VectorCopy(tstart, extendtraceinfo->realstart);
1692         VectorCopy(tend, extendtraceinfo->realend);
1693         VectorSubtract(extendtraceinfo->realend, extendtraceinfo->realstart, extendtraceinfo->realdelta);
1694         VectorCopy(extendtraceinfo->realstart, extendtraceinfo->extendstart);
1695         VectorCopy(extendtraceinfo->realend, extendtraceinfo->extendend);
1696         VectorCopy(extendtraceinfo->realdelta, extendtraceinfo->extenddelta);
1697         extendtraceinfo->reallength = VectorLength(extendtraceinfo->realdelta);
1698         extendtraceinfo->extendlength = extendtraceinfo->reallength;
1699         extendtraceinfo->scaletoextend = 1.0f;
1700         extendtraceinfo->extend = textend;
1701
1702         // make the trace longer according to the extend parameter
1703         if (extendtraceinfo->reallength && extendtraceinfo->extend)
1704         {
1705                 extendtraceinfo->extendlength = extendtraceinfo->reallength + extendtraceinfo->extend;
1706                 extendtraceinfo->scaletoextend = extendtraceinfo->extendlength / extendtraceinfo->reallength;
1707                 VectorMA(extendtraceinfo->realstart, extendtraceinfo->scaletoextend, extendtraceinfo->realdelta, extendtraceinfo->extendend);
1708                 VectorSubtract(extendtraceinfo->extendend, extendtraceinfo->extendstart, extendtraceinfo->extenddelta);
1709         }
1710 }
1711
1712 static void Collision_ClipExtendFinish(extendtraceinfo_t *extendtraceinfo)
1713 {
1714         trace_t *trace = extendtraceinfo->trace;
1715
1716         if (trace->fraction != 1.0f)
1717         {
1718                 // undo the extended trace length
1719                 trace->fraction *= extendtraceinfo->scaletoextend;
1720
1721                 // if the extended trace hit something that the unextended trace did not hit (even considering the collision_impactnudge), then we have to clear the hit information
1722                 if (trace->fraction > 1.0f)
1723                 {
1724                         // note that ent may refer to either startsolid or fraction<1, we can't restore the startsolid ent unfortunately
1725                         trace->ent = NULL;
1726                         trace->hitq3surfaceflags = 0;
1727                         trace->hitsupercontents = 0;
1728                         trace->hittexture = NULL;
1729                         VectorClear(trace->plane.normal);
1730                         trace->plane.dist = 0.0f;
1731                 }
1732         }
1733
1734         // clamp things
1735         trace->fraction = bound(0, trace->fraction, 1);
1736
1737         // calculate the end position
1738         VectorMA(extendtraceinfo->realstart, trace->fraction, extendtraceinfo->realdelta, trace->endpos);
1739 }
1740
1741 void Collision_ClipToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t tstart, const vec3_t mins, const vec3_t maxs, const vec3_t tend, int hitsupercontentsmask, float extend)
1742 {
1743         vec3_t starttransformed, endtransformed;
1744         extendtraceinfo_t extendtraceinfo;
1745         Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend);
1746
1747         Matrix4x4_Transform(inversematrix, extendtraceinfo.extendstart, starttransformed);
1748         Matrix4x4_Transform(inversematrix, extendtraceinfo.extendend, endtransformed);
1749 #if COLLISIONPARANOID >= 3
1750         Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", extendtraceinfo.extendstart[0], extendtraceinfo.extendstart[1], extendtraceinfo.extendstart[2], starttransformed[0], starttransformed[1], starttransformed[2], extendtraceinfo.extendend[0], extendtraceinfo.extendend[1], extendtraceinfo.extendend[2], endtransformed[0], endtransformed[1], endtransformed[2]);
1751 #endif
1752
1753         if (model && model->TraceBox)
1754         {
1755                 if(model->TraceBrush && (inversematrix->m[0][1] || inversematrix->m[0][2] || inversematrix->m[1][0] || inversematrix->m[1][2] || inversematrix->m[2][0] || inversematrix->m[2][1]))
1756                 {
1757                         // we get here if TraceBrush exists, AND we have a rotation component (SOLID_BSP case)
1758                         // using starttransformed, endtransformed is WRONG in this case!
1759                         // should rather build a brush and trace using it
1760                         colboxbrushf_t thisbrush_start, thisbrush_end;
1761                         Collision_BrushForBox(&thisbrush_start, mins, maxs, 0, 0, NULL);
1762                         Collision_BrushForBox(&thisbrush_end, mins, maxs, 0, 0, NULL);
1763                         Collision_TranslateBrush(extendtraceinfo.extendstart, &thisbrush_start.brush);
1764                         Collision_TranslateBrush(extendtraceinfo.extendend, &thisbrush_end.brush);
1765                         Collision_TransformBrush(inversematrix, &thisbrush_start.brush);
1766                         Collision_TransformBrush(inversematrix, &thisbrush_end.brush);
1767                         //Collision_TranslateBrush(starttransformed, &thisbrush_start.brush);
1768                         //Collision_TranslateBrush(endtransformed, &thisbrush_end.brush);
1769                         model->TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask);
1770                 }
1771                 else // this is only approximate if rotated, quite useless
1772                         model->TraceBox(model, frameblend, skeleton, trace, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask);
1773         }
1774         else // and this requires that the transformation matrix doesn't have angles components, like SV_TraceBox ensures; FIXME may get called if a model is SOLID_BSP but has no TraceBox function
1775                 Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
1776
1777         Collision_ClipExtendFinish(&extendtraceinfo);
1778
1779         // transform plane
1780         // NOTE: this relies on plane.dist being directly after plane.normal
1781         Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal_and_dist);
1782 }
1783
1784 void Collision_ClipToWorld(trace_t *trace, dp_model_t *model, const vec3_t tstart, const vec3_t mins, const vec3_t maxs, const vec3_t tend, int hitsupercontents, float extend)
1785 {
1786         extendtraceinfo_t extendtraceinfo;
1787         Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend);
1788         // ->TraceBox: TraceBrush not needed here, as worldmodel is never rotated
1789         if (model && model->TraceBox)
1790                 model->TraceBox(model, NULL, NULL, trace, extendtraceinfo.extendstart, mins, maxs, extendtraceinfo.extendend, hitsupercontents);
1791         Collision_ClipExtendFinish(&extendtraceinfo);
1792 }
1793
1794 void Collision_ClipLineToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t tstart, const vec3_t tend, int hitsupercontentsmask, float extend, qboolean hitsurfaces)
1795 {
1796         vec3_t starttransformed, endtransformed;
1797         extendtraceinfo_t extendtraceinfo;
1798         Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend);
1799
1800         Matrix4x4_Transform(inversematrix, extendtraceinfo.extendstart, starttransformed);
1801         Matrix4x4_Transform(inversematrix, extendtraceinfo.extendend, endtransformed);
1802 #if COLLISIONPARANOID >= 3
1803         Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", extendtraceinfo.extendstart[0], extendtraceinfo.extendstart[1], extendtraceinfo.extendstart[2], starttransformed[0], starttransformed[1], starttransformed[2], extendtraceinfo.extendend[0], extendtraceinfo.extendend[1], extendtraceinfo.extendend[2], endtransformed[0], endtransformed[1], endtransformed[2]);
1804 #endif
1805
1806         if (model && model->TraceLineAgainstSurfaces && hitsurfaces)
1807                 model->TraceLineAgainstSurfaces(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask);
1808         else if (model && model->TraceLine)
1809                 model->TraceLine(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask);
1810         else
1811                 Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, vec3_origin, vec3_origin, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
1812
1813         Collision_ClipExtendFinish(&extendtraceinfo);
1814
1815         // transform plane
1816         // NOTE: this relies on plane.dist being directly after plane.normal
1817         Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal_and_dist);
1818 }
1819
1820 void Collision_ClipLineToWorld(trace_t *trace, dp_model_t *model, const vec3_t tstart, const vec3_t tend, int hitsupercontents, float extend, qboolean hitsurfaces)
1821 {
1822         extendtraceinfo_t extendtraceinfo;
1823         Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend);
1824
1825         if (model && model->TraceLineAgainstSurfaces && hitsurfaces)
1826                 model->TraceLineAgainstSurfaces(model, NULL, NULL, trace, extendtraceinfo.extendstart, extendtraceinfo.extendend, hitsupercontents);
1827         else if (model && model->TraceLine)
1828                 model->TraceLine(model, NULL, NULL, trace, extendtraceinfo.extendstart, extendtraceinfo.extendend, hitsupercontents);
1829
1830         Collision_ClipExtendFinish(&extendtraceinfo);
1831 }
1832
1833 void Collision_ClipPointToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, int hitsupercontentsmask)
1834 {
1835         float starttransformed[3];
1836         memset(trace, 0, sizeof(*trace));
1837         trace->fraction = 1;
1838
1839         Matrix4x4_Transform(inversematrix, start, starttransformed);
1840 #if COLLISIONPARANOID >= 3
1841         Con_Printf("trans(%f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2]);
1842 #endif
1843
1844         if (model && model->TracePoint)
1845                 model->TracePoint(model, NULL, NULL, trace, starttransformed, hitsupercontentsmask);
1846         else
1847                 Collision_ClipTrace_Point(trace, bodymins, bodymaxs, starttransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
1848
1849         VectorCopy(start, trace->endpos);
1850         // transform plane
1851         // NOTE: this relies on plane.dist being directly after plane.normal
1852         Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal_and_dist);
1853 }
1854
1855 void Collision_ClipPointToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, int hitsupercontents)
1856 {
1857         memset(trace, 0, sizeof(*trace));
1858         trace->fraction = 1;
1859         if (model && model->TracePoint)
1860                 model->TracePoint(model, NULL, NULL, trace, start, hitsupercontents);
1861         VectorCopy(start, trace->endpos);
1862 }
1863
1864 void Collision_CombineTraces(trace_t *cliptrace, const trace_t *trace, void *touch, qboolean isbmodel)
1865 {
1866         // take the 'best' answers from the new trace and combine with existing data
1867         if (trace->allsolid)
1868                 cliptrace->allsolid = true;
1869         if (trace->startsolid)
1870         {
1871                 if (isbmodel)
1872                         cliptrace->bmodelstartsolid = true;
1873                 cliptrace->startsolid = true;
1874                 if (cliptrace->fraction == 1)
1875                         cliptrace->ent = touch;
1876                 if (cliptrace->startdepth > trace->startdepth)
1877                 {
1878                         cliptrace->startdepth = trace->startdepth;
1879                         VectorCopy(trace->startdepthnormal, cliptrace->startdepthnormal);
1880                 }
1881         }
1882         // don't set this except on the world, because it can easily confuse
1883         // monsters underwater if there's a bmodel involved in the trace
1884         // (inopen && inwater is how they check water visibility)
1885         //if (trace->inopen)
1886         //      cliptrace->inopen = true;
1887         if (trace->inwater)
1888                 cliptrace->inwater = true;
1889         if ((trace->fraction < cliptrace->fraction) && (VectorLength2(trace->plane.normal) > 0))
1890         {
1891                 cliptrace->fraction = trace->fraction;
1892                 VectorCopy(trace->endpos, cliptrace->endpos);
1893                 cliptrace->plane = trace->plane;
1894                 cliptrace->ent = touch;
1895                 cliptrace->hitsupercontents = trace->hitsupercontents;
1896                 cliptrace->hitq3surfaceflags = trace->hitq3surfaceflags;
1897                 cliptrace->hittexture = trace->hittexture;
1898         }
1899         cliptrace->startsupercontents |= trace->startsupercontents;
1900 }