06f94247868e656abaf228003fff5c051e397e87
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "cl_dyntexture.h"
24 #include "r_shadow.h"
25 #include "polygon.h"
26 #include "image.h"
27
28 mempool_t *r_main_mempool;
29 rtexturepool_t *r_main_texturepool;
30
31 //
32 // screen size info
33 //
34 r_refdef_t r_refdef;
35 r_view_t r_view;
36 r_viewcache_t r_viewcache;
37
38 cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "1", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
39 cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" };
40 cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
41 cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
42 cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
43 cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
44 cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
45 cvar_t r_showshadowvolumes = {0, "r_showshadowvolumes", "0", "shows areas shadowed by lights, useful for finding out why some areas of a map render slowly (bright blue = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
46 cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
47 cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
48 cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
49 cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
50 cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
51 cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
52 cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"};
53 cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
54 cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling"};
55 cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
56 cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
57 cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
58 cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"};
59 cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"};
60 cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
61 cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
62 cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this)"};
63 cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
64 cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
65 cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
66 cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "2", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
67
68 cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
69 cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
70 cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
71 cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
72 cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
73 cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
74 cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
75
76 cvar_t r_textureunits = {0, "r_textureunits", "32", "number of hardware texture units reported by driver (note: setting this to 1 turns off gl_combine)"};
77
78 cvar_t r_glsl = {CVAR_SAVE, "r_glsl", "1", "enables use of OpenGL 2.0 pixel shaders for lighting"};
79 cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
80 cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
81 cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
82 cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
83 cvar_t r_glsl_contrastboost = {CVAR_SAVE, "r_glsl_contrastboost", "1", "by how much to multiply the contrast in dark areas (1 is no change)"};
84
85 cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
86 cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
87 cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
88 cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
89 cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
90
91 cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "1", "enables animation smoothing on sprites (requires r_lerpmodels 1)"};
92 cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
93 cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
94 cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
95
96 cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
97 cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"};
98 cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"};
99 cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"};
100 cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
101 cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exagerated the glow is"};
102 cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"};
103
104 cvar_t r_hdr = {CVAR_SAVE, "r_hdr", "0", "enables High Dynamic Range bloom effect (higher quality version of r_bloom)"};
105 cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
106 cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
107 cvar_t r_hdr_range = {CVAR_SAVE, "r_hdr_range", "4", "how much dynamic range to render bloom with (equivilant to multiplying r_bloom_brighten by this value and dividing r_bloom_colorscale by this value)"};
108
109 cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
110
111 cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
112
113 cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers)"};
114
115 cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
116 cvar_t r_batchmode = {0, "r_batchmode", "1", "selects method of rendering multiple surfaces with one driver call (values are 0, 1, 2, etc...)"};
117 cvar_t r_track_sprites = {CVAR_SAVE, "r_track_sprites", "1", "track SPR_LABEL* sprites by putting them as indicator at the screen border to rotate to"};
118 cvar_t r_track_sprites_flags = {CVAR_SAVE, "r_track_sprites_flags", "1", "1: Rotate sprites accodringly, 2: Make it a continuous rotation"};
119 cvar_t r_track_sprites_scalew = {CVAR_SAVE, "r_track_sprites_scalew", "1", "width scaling of tracked sprites"};
120 cvar_t r_track_sprites_scaleh = {CVAR_SAVE, "r_track_sprites_scaleh", "1", "height scaling of tracked sprites"};
121
122 extern qboolean v_flipped_state;
123
124 typedef struct r_glsl_bloomshader_s
125 {
126         int program;
127         int loc_Texture_Bloom;
128 }
129 r_glsl_bloomshader_t;
130
131 static struct r_bloomstate_s
132 {
133         qboolean enabled;
134         qboolean hdr;
135
136         int bloomwidth, bloomheight;
137
138         int screentexturewidth, screentextureheight;
139         rtexture_t *texture_screen;
140
141         int bloomtexturewidth, bloomtextureheight;
142         rtexture_t *texture_bloom;
143
144         r_glsl_bloomshader_t *shader;
145
146         // arrays for rendering the screen passes
147         float screentexcoord2f[8];
148         float bloomtexcoord2f[8];
149         float offsettexcoord2f[8];
150 }
151 r_bloomstate;
152
153 typedef struct r_waterstate_waterplane_s
154 {
155         rtexture_t *texture_refraction;
156         rtexture_t *texture_reflection;
157         mplane_t plane;
158         int materialflags; // combined flags of all water surfaces on this plane
159         unsigned char pvsbits[(32768+7)>>3]; // FIXME: buffer overflow on huge maps
160         qboolean pvsvalid;
161 }
162 r_waterstate_waterplane_t;
163
164 #define MAX_WATERPLANES 16
165
166 static struct r_waterstate_s
167 {
168         qboolean enabled;
169
170         qboolean renderingscene; // true while rendering a refraction or reflection texture, disables water surfaces
171
172         int waterwidth, waterheight;
173         int texturewidth, textureheight;
174
175         int maxwaterplanes; // same as MAX_WATERPLANES
176         int numwaterplanes;
177         r_waterstate_waterplane_t waterplanes[MAX_WATERPLANES];
178
179         float screenscale[2];
180         float screencenter[2];
181 }
182 r_waterstate;
183
184 // shadow volume bsp struct with automatically growing nodes buffer
185 svbsp_t r_svbsp;
186
187 rtexture_t *r_texture_blanknormalmap;
188 rtexture_t *r_texture_white;
189 rtexture_t *r_texture_grey128;
190 rtexture_t *r_texture_black;
191 rtexture_t *r_texture_notexture;
192 rtexture_t *r_texture_whitecube;
193 rtexture_t *r_texture_normalizationcube;
194 rtexture_t *r_texture_fogattenuation;
195 //rtexture_t *r_texture_fogintensity;
196
197 char r_qwskincache[MAX_SCOREBOARD][MAX_QPATH];
198 skinframe_t *r_qwskincache_skinframe[MAX_SCOREBOARD];
199
200 // vertex coordinates for a quad that covers the screen exactly
201 const static float r_screenvertex3f[12] =
202 {
203         0, 0, 0,
204         1, 0, 0,
205         1, 1, 0,
206         0, 1, 0
207 };
208
209 extern void R_DrawModelShadows(void);
210
211 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
212 {
213         int i;
214         for (i = 0;i < verts;i++)
215         {
216                 out[0] = in[0] * r;
217                 out[1] = in[1] * g;
218                 out[2] = in[2] * b;
219                 out[3] = in[3];
220                 in += 4;
221                 out += 4;
222         }
223 }
224
225 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
226 {
227         int i;
228         for (i = 0;i < verts;i++)
229         {
230                 out[0] = r;
231                 out[1] = g;
232                 out[2] = b;
233                 out[3] = a;
234                 out += 4;
235         }
236 }
237
238 // FIXME: move this to client?
239 void FOG_clear(void)
240 {
241         if (gamemode == GAME_NEHAHRA)
242         {
243                 Cvar_Set("gl_fogenable", "0");
244                 Cvar_Set("gl_fogdensity", "0.2");
245                 Cvar_Set("gl_fogred", "0.3");
246                 Cvar_Set("gl_foggreen", "0.3");
247                 Cvar_Set("gl_fogblue", "0.3");
248         }
249         r_refdef.fog_density = r_refdef.fog_red = r_refdef.fog_green = r_refdef.fog_blue = 0.0f;
250         r_refdef.fog_start = 0;
251         r_refdef.fog_end = 1000000000;
252 }
253
254 float FogForDistance(vec_t dist)
255 {
256         unsigned int fogmasktableindex = (unsigned int)(bound(0, dist - r_refdef.fog_start, r_refdef.fog_end - r_refdef.fog_start) * r_refdef.fogmasktabledistmultiplier);
257         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
258 }
259
260 float FogPoint_World(const vec3_t p)
261 {
262         return FogForDistance(VectorDistance((p), r_view.origin));
263 }
264
265 float FogPoint_Model(const vec3_t p)
266 {
267         return FogForDistance(VectorDistance((p), rsurface.modelorg));
268 }
269
270 static void R_BuildBlankTextures(void)
271 {
272         unsigned char data[4];
273         data[2] = 128; // normal X
274         data[1] = 128; // normal Y
275         data[0] = 255; // normal Z
276         data[3] = 128; // height
277         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
278         data[0] = 255;
279         data[1] = 255;
280         data[2] = 255;
281         data[3] = 255;
282         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
283         data[0] = 128;
284         data[1] = 128;
285         data[2] = 128;
286         data[3] = 255;
287         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
288         data[0] = 0;
289         data[1] = 0;
290         data[2] = 0;
291         data[3] = 255;
292         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
293 }
294
295 static void R_BuildNoTexture(void)
296 {
297         int x, y;
298         unsigned char pix[16][16][4];
299         // this makes a light grey/dark grey checkerboard texture
300         for (y = 0;y < 16;y++)
301         {
302                 for (x = 0;x < 16;x++)
303                 {
304                         if ((y < 8) ^ (x < 8))
305                         {
306                                 pix[y][x][0] = 128;
307                                 pix[y][x][1] = 128;
308                                 pix[y][x][2] = 128;
309                                 pix[y][x][3] = 255;
310                         }
311                         else
312                         {
313                                 pix[y][x][0] = 64;
314                                 pix[y][x][1] = 64;
315                                 pix[y][x][2] = 64;
316                                 pix[y][x][3] = 255;
317                         }
318                 }
319         }
320         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, NULL);
321 }
322
323 static void R_BuildWhiteCube(void)
324 {
325         unsigned char data[6*1*1*4];
326         memset(data, 255, sizeof(data));
327         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
328 }
329
330 static void R_BuildNormalizationCube(void)
331 {
332         int x, y, side;
333         vec3_t v;
334         vec_t s, t, intensity;
335 #define NORMSIZE 64
336         unsigned char data[6][NORMSIZE][NORMSIZE][4];
337         for (side = 0;side < 6;side++)
338         {
339                 for (y = 0;y < NORMSIZE;y++)
340                 {
341                         for (x = 0;x < NORMSIZE;x++)
342                         {
343                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
344                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
345                                 switch(side)
346                                 {
347                                 default:
348                                 case 0:
349                                         v[0] = 1;
350                                         v[1] = -t;
351                                         v[2] = -s;
352                                         break;
353                                 case 1:
354                                         v[0] = -1;
355                                         v[1] = -t;
356                                         v[2] = s;
357                                         break;
358                                 case 2:
359                                         v[0] = s;
360                                         v[1] = 1;
361                                         v[2] = t;
362                                         break;
363                                 case 3:
364                                         v[0] = s;
365                                         v[1] = -1;
366                                         v[2] = -t;
367                                         break;
368                                 case 4:
369                                         v[0] = s;
370                                         v[1] = -t;
371                                         v[2] = 1;
372                                         break;
373                                 case 5:
374                                         v[0] = -s;
375                                         v[1] = -t;
376                                         v[2] = -1;
377                                         break;
378                                 }
379                                 intensity = 127.0f / sqrt(DotProduct(v, v));
380                                 data[side][y][x][2] = (unsigned char)(128.0f + intensity * v[0]);
381                                 data[side][y][x][1] = (unsigned char)(128.0f + intensity * v[1]);
382                                 data[side][y][x][0] = (unsigned char)(128.0f + intensity * v[2]);
383                                 data[side][y][x][3] = 255;
384                         }
385                 }
386         }
387         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, &data[0][0][0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
388 }
389
390 static void R_BuildFogTexture(void)
391 {
392         int x, b;
393 #define FOGWIDTH 256
394         unsigned char data1[FOGWIDTH][4];
395         //unsigned char data2[FOGWIDTH][4];
396         for (x = 0;x < FOGWIDTH;x++)
397         {
398                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
399                 data1[x][0] = b;
400                 data1[x][1] = b;
401                 data1[x][2] = b;
402                 data1[x][3] = 255;
403                 //data2[x][0] = 255 - b;
404                 //data2[x][1] = 255 - b;
405                 //data2[x][2] = 255 - b;
406                 //data2[x][3] = 255;
407         }
408         r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
409         //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
410 }
411
412 static const char *builtinshaderstring =
413 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
414 "// written by Forest 'LordHavoc' Hale\n"
415 "\n"
416 "// common definitions between vertex shader and fragment shader:\n"
417 "\n"
418 "#ifdef __GLSL_CG_DATA_TYPES\n"
419 "# define myhalf half\n"
420 "# define myhvec2 hvec2\n"
421 "# define myhvec3 hvec3\n"
422 "# define myhvec4 hvec4\n"
423 "#else\n"
424 "# define myhalf float\n"
425 "# define myhvec2 vec2\n"
426 "# define myhvec3 vec3\n"
427 "# define myhvec4 vec4\n"
428 "#endif\n"
429 "\n"
430 "varying vec2 TexCoord;\n"
431 "varying vec2 TexCoordLightmap;\n"
432 "\n"
433 "//#ifdef MODE_LIGHTSOURCE\n"
434 "varying vec3 CubeVector;\n"
435 "//#endif\n"
436 "\n"
437 "//#ifdef MODE_LIGHTSOURCE\n"
438 "varying vec3 LightVector;\n"
439 "//#else\n"
440 "//# ifdef MODE_LIGHTDIRECTION\n"
441 "//varying vec3 LightVector;\n"
442 "//# endif\n"
443 "//#endif\n"
444 "\n"
445 "varying vec3 EyeVector;\n"
446 "//#ifdef USEFOG\n"
447 "varying vec3 EyeVectorModelSpace;\n"
448 "//#endif\n"
449 "\n"
450 "varying vec3 VectorS; // direction of S texcoord (sometimes crudely called tangent)\n"
451 "varying vec3 VectorT; // direction of T texcoord (sometimes crudely called binormal)\n"
452 "varying vec3 VectorR; // direction of R texcoord (surface normal)\n"
453 "\n"
454 "//#ifdef MODE_WATER\n"
455 "varying vec4 ModelViewProjectionPosition;\n"
456 "//#else\n"
457 "//# ifdef MODE_REFRACTION\n"
458 "//varying vec4 ModelViewProjectionPosition;\n"
459 "//# else\n"
460 "//#  ifdef USEREFLECTION\n"
461 "//varying vec4 ModelViewProjectionPosition;\n"
462 "//#  endif\n"
463 "//# endif\n"
464 "//#endif\n"
465 "\n"
466 "\n"
467 "\n"
468 "\n"
469 "\n"
470 "// vertex shader specific:\n"
471 "#ifdef VERTEX_SHADER\n"
472 "\n"
473 "uniform vec3 LightPosition;\n"
474 "uniform vec3 EyePosition;\n"
475 "uniform vec3 LightDir;\n"
476 "\n"
477 "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3)\n"
478 "\n"
479 "void main(void)\n"
480 "{\n"
481 "       gl_FrontColor = gl_Color;\n"
482 "       // copy the surface texcoord\n"
483 "       TexCoord = vec2(gl_TextureMatrix[0] * gl_MultiTexCoord0);\n"
484 "#ifndef MODE_LIGHTSOURCE\n"
485 "# ifndef MODE_LIGHTDIRECTION\n"
486 "       TexCoordLightmap = vec2(gl_MultiTexCoord4);\n"
487 "# endif\n"
488 "#endif\n"
489 "\n"
490 "#ifdef MODE_LIGHTSOURCE\n"
491 "       // transform vertex position into light attenuation/cubemap space\n"
492 "       // (-1 to +1 across the light box)\n"
493 "       CubeVector = vec3(gl_TextureMatrix[3] * gl_Vertex);\n"
494 "\n"
495 "       // transform unnormalized light direction into tangent space\n"
496 "       // (we use unnormalized to ensure that it interpolates correctly and then\n"
497 "       //  normalize it per pixel)\n"
498 "       vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n"
499 "       LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n"
500 "       LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n"
501 "       LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n"
502 "#endif\n"
503 "\n"
504 "#ifdef MODE_LIGHTDIRECTION\n"
505 "       LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n"
506 "       LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n"
507 "       LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n"
508 "#endif\n"
509 "\n"
510 "       // transform unnormalized eye direction into tangent space\n"
511 "#ifndef USEFOG\n"
512 "       vec3 EyeVectorModelSpace;\n"
513 "#endif\n"
514 "       EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n"
515 "       EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n"
516 "       EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n"
517 "       EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n"
518 "\n"
519 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
520 "       VectorS = gl_MultiTexCoord1.xyz;\n"
521 "       VectorT = gl_MultiTexCoord2.xyz;\n"
522 "       VectorR = gl_MultiTexCoord3.xyz;\n"
523 "#endif\n"
524 "\n"
525 "//#if defined(MODE_WATER) || defined(MODE_REFRACTION) || defined(USEREFLECTION)\n"
526 "//     ModelViewProjectionPosition = gl_Vertex * gl_ModelViewProjectionMatrix;\n"
527 "//     //ModelViewProjectionPosition_svector = (gl_Vertex + vec4(gl_MultiTexCoord1.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
528 "//     //ModelViewProjectionPosition_tvector = (gl_Vertex + vec4(gl_MultiTexCoord2.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
529 "//#endif\n"
530 "\n"
531 "// transform vertex to camera space, using ftransform to match non-VS\n"
532 "       // rendering\n"
533 "       gl_Position = ftransform();\n"
534 "\n"
535 "#ifdef MODE_WATER\n"
536 "       ModelViewProjectionPosition = gl_Position;\n"
537 "#endif\n"
538 "#ifdef MODE_REFRACTION\n"
539 "       ModelViewProjectionPosition = gl_Position;\n"
540 "#endif\n"
541 "#ifdef USEREFLECTION\n"
542 "       ModelViewProjectionPosition = gl_Position;\n"
543 "#endif\n"
544 "}\n"
545 "\n"
546 "#endif // VERTEX_SHADER\n"
547 "\n"
548 "\n"
549 "\n"
550 "\n"
551 "// fragment shader specific:\n"
552 "#ifdef FRAGMENT_SHADER\n"
553 "\n"
554 "// 13 textures, we can only use up to 16 on DX9-class hardware\n"
555 "uniform sampler2D Texture_Normal;\n"
556 "uniform sampler2D Texture_Color;\n"
557 "uniform sampler2D Texture_Gloss;\n"
558 "uniform samplerCube Texture_Cube;\n"
559 "uniform sampler2D Texture_Attenuation;\n"
560 "uniform sampler2D Texture_FogMask;\n"
561 "uniform sampler2D Texture_Pants;\n"
562 "uniform sampler2D Texture_Shirt;\n"
563 "uniform sampler2D Texture_Lightmap;\n"
564 "uniform sampler2D Texture_Deluxemap;\n"
565 "uniform sampler2D Texture_Glow;\n"
566 "uniform sampler2D Texture_Reflection;\n"
567 "uniform sampler2D Texture_Refraction;\n"
568 "\n"
569 "uniform myhvec3 LightColor;\n"
570 "uniform myhvec3 AmbientColor;\n"
571 "uniform myhvec3 DiffuseColor;\n"
572 "uniform myhvec3 SpecularColor;\n"
573 "uniform myhvec3 Color_Pants;\n"
574 "uniform myhvec3 Color_Shirt;\n"
575 "uniform myhvec3 FogColor;\n"
576 "\n"
577 "//#ifdef MODE_WATER\n"
578 "uniform vec4 DistortScaleRefractReflect;\n"
579 "uniform vec4 ScreenScaleRefractReflect;\n"
580 "uniform vec4 ScreenCenterRefractReflect;\n"
581 "uniform myhvec4 RefractColor;\n"
582 "uniform myhvec4 ReflectColor;\n"
583 "uniform myhalf ReflectFactor;\n"
584 "uniform myhalf ReflectOffset;\n"
585 "//#else\n"
586 "//# ifdef MODE_REFRACTION\n"
587 "//uniform vec4 DistortScaleRefractReflect;\n"
588 "//uniform vec4 ScreenScaleRefractReflect;\n"
589 "//uniform vec4 ScreenCenterRefractReflect;\n"
590 "//uniform myhvec4 RefractColor;\n"
591 "//#  ifdef USEREFLECTION\n"
592 "//uniform myhvec4 ReflectColor;\n"
593 "//#  endif\n"
594 "//# else\n"
595 "//#  ifdef USEREFLECTION\n"
596 "//uniform vec4 DistortScaleRefractReflect;\n"
597 "//uniform vec4 ScreenScaleRefractReflect;\n"
598 "//uniform vec4 ScreenCenterRefractReflect;\n"
599 "//uniform myhvec4 ReflectColor;\n"
600 "//#  endif\n"
601 "//# endif\n"
602 "//#endif\n"
603 "\n"
604 "uniform myhalf GlowScale;\n"
605 "uniform myhalf SceneBrightness;\n"
606 "#ifdef USECONTRASTBOOST\n"
607 "uniform myhalf ContrastBoostCoeff;\n"
608 "#endif\n"
609 "\n"
610 "uniform float OffsetMapping_Scale;\n"
611 "uniform float OffsetMapping_Bias;\n"
612 "uniform float FogRangeRecip;\n"
613 "uniform float FogStart;\n"
614 "uniform float FogLength;\n"
615 "\n"
616 "uniform myhalf AmbientScale;\n"
617 "uniform myhalf DiffuseScale;\n"
618 "uniform myhalf SpecularScale;\n"
619 "uniform myhalf SpecularPower;\n"
620 "\n"
621 "#ifdef USEOFFSETMAPPING\n"
622 "vec2 OffsetMapping(vec2 TexCoord)\n"
623 "{\n"
624 "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n"
625 "       // 14 sample relief mapping: linear search and then binary search\n"
626 "       // this basically steps forward a small amount repeatedly until it finds\n"
627 "       // itself inside solid, then jitters forward and back using decreasing\n"
628 "       // amounts to find the impact\n"
629 "       //vec3 OffsetVector = vec3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1), -1);\n"
630 "       //vec3 OffsetVector = vec3(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
631 "       vec3 OffsetVector = vec3(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
632 "       vec3 RT = vec3(TexCoord, 1);\n"
633 "       OffsetVector *= 0.1;\n"
634 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
635 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
636 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
637 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
638 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
639 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
640 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
641 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
642 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
643 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z)          - 0.5);\n"
644 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.5    - 0.25);\n"
645 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.25   - 0.125);\n"
646 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.125  - 0.0625);\n"
647 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n"
648 "       return RT.xy;\n"
649 "#else\n"
650 "       // 3 sample offset mapping (only 3 samples because of ATI Radeon 9500-9800/X300 limits)\n"
651 "       // this basically moves forward the full distance, and then backs up based\n"
652 "       // on height of samples\n"
653 "       //vec2 OffsetVector = vec2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1));\n"
654 "       //vec2 OffsetVector = vec2(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1));\n"
655 "       vec2 OffsetVector = vec2(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1));\n"
656 "       TexCoord += OffsetVector;\n"
657 "       OffsetVector *= 0.333;\n"
658 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
659 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
660 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
661 "       return TexCoord;\n"
662 "#endif\n"
663 "}\n"
664 "#endif // USEOFFSETMAPPING\n"
665 "\n"
666 "#ifdef MODE_WATER\n"
667 "\n"
668 "// water pass\n"
669 "void main(void)\n"
670 "{\n"
671 "#ifdef USEOFFSETMAPPING\n"
672 "       // apply offsetmapping\n"
673 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
674 "#define TexCoord TexCoordOffset\n"
675 "#endif\n"
676 "\n"
677 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
678 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
679 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec2(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xyxy * DistortScaleRefractReflect;\n"
680 "       float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 5.0) * ReflectFactor + ReflectOffset;\n"
681 "       gl_FragColor = mix(texture2D(Texture_Refraction, ScreenTexCoord.xy) * RefractColor, texture2D(Texture_Reflection, ScreenTexCoord.zw) * ReflectColor, Fresnel);\n"
682 "}\n"
683 "\n"
684 "#else // MODE_WATER\n"
685 "#ifdef MODE_REFRACTION\n"
686 "\n"
687 "// refraction pass\n"
688 "void main(void)\n"
689 "{\n"
690 "#ifdef USEOFFSETMAPPING\n"
691 "       // apply offsetmapping\n"
692 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
693 "#define TexCoord TexCoordOffset\n"
694 "#endif\n"
695 "\n"
696 "       vec2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n"
697 "       //vec2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n"
698 "       vec2 ScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy + vec2(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xy * DistortScaleRefractReflect.xy;\n"
699 "       gl_FragColor = texture2D(Texture_Refraction, ScreenTexCoord) * RefractColor;\n"
700 "}\n"
701 "\n"
702 "#else // MODE_REFRACTION\n"
703 "void main(void)\n"
704 "{\n"
705 "#ifdef USEOFFSETMAPPING\n"
706 "       // apply offsetmapping\n"
707 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
708 "#define TexCoord TexCoordOffset\n"
709 "#endif\n"
710 "\n"
711 "       // combine the diffuse textures (base, pants, shirt)\n"
712 "       myhvec4 color = myhvec4(texture2D(Texture_Color, TexCoord));\n"
713 "#ifdef USECOLORMAPPING\n"
714 "       color.rgb += myhvec3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhvec3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n"
715 "#endif\n"
716 "\n"
717 "\n"
718 "\n"
719 "\n"
720 "#ifdef MODE_LIGHTSOURCE\n"
721 "       // light source\n"
722 "\n"
723 "       // calculate surface normal, light normal, and specular normal\n"
724 "       // compute color intensity for the two textures (colormap and glossmap)\n"
725 "       // scale by light color and attenuation as efficiently as possible\n"
726 "       // (do as much scalar math as possible rather than vector math)\n"
727 "# ifdef USESPECULAR\n"
728 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
729 "       myhvec3 diffusenormal = myhvec3(normalize(LightVector));\n"
730 "       myhvec3 specularnormal = normalize(diffusenormal + myhvec3(normalize(EyeVector)));\n"
731 "\n"
732 "       // calculate directional shading\n"
733 "       color.rgb = LightColor * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (color.rgb * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))) + (SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower)) * myhvec3(texture2D(Texture_Gloss, TexCoord)));\n"
734 "# else\n"
735 "#  ifdef USEDIFFUSE\n"
736 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
737 "       myhvec3 diffusenormal = myhvec3(normalize(LightVector));\n"
738 "\n"
739 "       // calculate directional shading\n"
740 "       color.rgb = color.rgb * LightColor * (myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))));\n"
741 "#  else\n"
742 "       // calculate directionless shading\n"
743 "       color.rgb = color.rgb * LightColor * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n"
744 "#  endif\n"
745 "# endif\n"
746 "\n"
747 "# ifdef USECUBEFILTER\n"
748 "       // apply light cubemap filter\n"
749 "       //color.rgb *= normalize(CubeVector) * 0.5 + 0.5;//vec3(textureCube(Texture_Cube, CubeVector));\n"
750 "       color.rgb *= myhvec3(textureCube(Texture_Cube, CubeVector));\n"
751 "# endif\n"
752 "       color *= myhvec4(gl_Color);\n"
753 "#endif // MODE_LIGHTSOURCE\n"
754 "\n"
755 "\n"
756 "\n"
757 "\n"
758 "#ifdef MODE_LIGHTDIRECTION\n"
759 "       // directional model lighting\n"
760 "# ifdef USESPECULAR\n"
761 "       // get the surface normal and light normal\n"
762 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
763 "       myhvec3 diffusenormal = myhvec3(LightVector);\n"
764 "\n"
765 "       // calculate directional shading\n"
766 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
767 "       myhvec3 specularnormal = normalize(diffusenormal + myhvec3(normalize(EyeVector)));\n"
768 "       color.rgb += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularColor * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
769 "# else\n"
770 "#  ifdef USEDIFFUSE\n"
771 "       // get the surface normal and light normal\n"
772 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
773 "       myhvec3 diffusenormal = myhvec3(LightVector);\n"
774 "\n"
775 "       // calculate directional shading\n"
776 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
777 "#  else\n"
778 "       color.rgb *= AmbientColor;\n"
779 "#  endif\n"
780 "# endif\n"
781 "\n"
782 "       color *= myhvec4(gl_Color);\n"
783 "#endif // MODE_LIGHTDIRECTION\n"
784 "\n"
785 "\n"
786 "\n"
787 "\n"
788 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
789 "       // deluxemap lightmapping using light vectors in modelspace (evil q3map2)\n"
790 "\n"
791 "       // get the surface normal and light normal\n"
792 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
793 "\n"
794 "       myhvec3 diffusenormal_modelspace = myhvec3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhvec3(0.5);\n"
795 "       myhvec3 diffusenormal = normalize(myhvec3(dot(diffusenormal_modelspace, myhvec3(VectorS)), dot(diffusenormal_modelspace, myhvec3(VectorT)), dot(diffusenormal_modelspace, myhvec3(VectorR))));\n"
796 "       // calculate directional shading\n"
797 "       myhvec3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
798 "# ifdef USESPECULAR\n"
799 "       myhvec3 specularnormal = myhvec3(normalize(diffusenormal + myhvec3(normalize(EyeVector))));\n"
800 "       tempcolor += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
801 "# endif\n"
802 "\n"
803 "       // apply lightmap color\n"
804 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhvec3(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec3(gl_Color);\n"
805 "       color.a *= myhalf(gl_Color.a);\n"
806 "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
807 "\n"
808 "\n"
809 "\n"
810 "\n"
811 "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
812 "       // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n"
813 "\n"
814 "       // get the surface normal and light normal\n"
815 "       myhvec3 surfacenormal = normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5));\n"
816 "\n"
817 "       myhvec3 diffusenormal = normalize(myhvec3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhvec3(0.5));\n"
818 "       // calculate directional shading\n"
819 "       myhvec3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
820 "# ifdef USESPECULAR\n"
821 "       myhvec3 specularnormal = myhvec3(normalize(diffusenormal + myhvec3(normalize(EyeVector))));\n"
822 "       tempcolor += myhvec3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
823 "# endif\n"
824 "\n"
825 "       // apply lightmap color\n"
826 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhvec3(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec3(gl_Color);\n"
827 "       color.a *= myhalf(gl_Color.a);\n"
828 "#endif // MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
829 "\n"
830 "\n"
831 "\n"
832 "\n"
833 "#ifdef MODE_LIGHTMAP\n"
834 "       // apply lightmap color\n"
835 "       color *= myhvec4(texture2D(Texture_Lightmap, TexCoordLightmap)) * myhvec4(gl_Color) * myhvec4(myhvec3(DiffuseScale), 1) + myhvec4(myhvec3(AmbientScale), 0);\n"
836 "#endif // MODE_LIGHTMAP\n"
837 "\n"
838 "\n"
839 "\n"
840 "\n"
841 "\n"
842 "\n"
843 "\n"
844 "\n"
845 "#ifdef USEGLOW\n"
846 "       color.rgb += myhvec3(texture2D(Texture_Glow, TexCoord)) * GlowScale;\n"
847 "#endif\n"
848 "\n"
849 "#ifndef MODE_LIGHTSOURCE\n"
850 "# ifdef USEREFLECTION\n"
851 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
852 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
853 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec3(normalize(myhvec3(texture2D(Texture_Normal, TexCoord)) - myhvec3(0.5))).xyxy * DistortScaleRefractReflect;\n"
854 "       color.rgb = mix(color.rgb, myhvec3(texture2D(Texture_Reflection, ScreenTexCoord.zw)) * ReflectColor.rgb, ReflectColor.a);\n"
855 "# endif\n"
856 "#endif\n"
857 "\n"
858 "#ifdef USECONTRASTBOOST\n"
859 "       color.rgb = color.rgb / (ContrastBoostCoeff * color.rgb + myhvec3(1, 1, 1));\n"
860 "#endif\n"
861 "\n"
862 "       color.rgb *= SceneBrightness;\n"
863 "\n"
864 "#ifdef USEFOG\n"
865 "       // apply fog\n"
866 "       color.rgb = mix(FogColor, color.rgb, myhalf(texture2D(Texture_FogMask, myhvec2(max(0.0, min(length(EyeVectorModelSpace) - FogStart, FogLength))*FogRangeRecip, 0.0))));\n"
867 //"      color.rgb = mix(FogColor, color.rgb, myhalf(texture2D(Texture_FogMask, myhvec2(length(EyeVectorModelSpace)*FogRangeRecip, 0.0))));\n"
868 "#endif\n"
869 "\n"
870 "       gl_FragColor = vec4(color);\n"
871 "}\n"
872 "#endif // MODE_REFRACTION\n"
873 "#endif // MODE_WATER\n"
874 "\n"
875 "#endif // FRAGMENT_SHADER\n"
876 ;
877
878 #define SHADERPERMUTATION_COLORMAPPING (1<<0) // indicates this is a colormapped skin
879 #define SHADERPERMUTATION_CONTRASTBOOST (1<<1) // r_glsl_contrastboost boosts the contrast at low color levels (similar to gamma)
880 #define SHADERPERMUTATION_FOG (1<<2) // tint the color by fog color or black if using additive blend mode
881 #define SHADERPERMUTATION_CUBEFILTER (1<<3) // (lightsource) use cubemap light filter
882 #define SHADERPERMUTATION_GLOW (1<<4) // (lightmap) blend in an additive glow texture
883 #define SHADERPERMUTATION_DIFFUSE (1<<5) // (lightsource) whether to use directional shading
884 #define SHADERPERMUTATION_SPECULAR (1<<6) // (lightsource or deluxemapping) render specular effects
885 #define SHADERPERMUTATION_REFLECTION (1<<7) // normalmap-perturbed reflection of the scene infront of the surface, preformed as an overlay on the surface
886 #define SHADERPERMUTATION_OFFSETMAPPING (1<<8) // adjust texcoords to roughly simulate a displacement mapped surface
887 #define SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING (1<<9) // adjust texcoords to accurately simulate a displacement mapped surface (requires OFFSETMAPPING to also be set!)
888 #define SHADERPERMUTATION_MODEBASE (1<<10) // multiplier for the SHADERMODE_ values to get a valid index
889
890 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
891 const char *shaderpermutationinfo[][2] =
892 {
893         {"#define USECOLORMAPPING\n", " colormapping"},
894         {"#define USECONTRASTBOOST\n", " contrastboost"},
895         {"#define USEFOG\n", " fog"},
896         {"#define USECUBEFILTER\n", " cubefilter"},
897         {"#define USEGLOW\n", " glow"},
898         {"#define USEDIFFUSE\n", " diffuse"},
899         {"#define USESPECULAR\n", " specular"},
900         {"#define USEREFLECTION\n", " reflection"},
901         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
902         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
903         {NULL, NULL}
904 };
905
906 // this enum is multiplied by SHADERPERMUTATION_MODEBASE
907 typedef enum shadermode_e
908 {
909         SHADERMODE_LIGHTMAP, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
910         SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE, // (lightmap) use directional pixel shading from texture containing modelspace light directions (deluxemap)
911         SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE, // (lightmap) use directional pixel shading from texture containing tangentspace light directions (deluxemap)
912         SHADERMODE_LIGHTDIRECTION, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
913         SHADERMODE_LIGHTSOURCE, // (lightsource) use directional pixel shading from light source (rtlight)
914         SHADERMODE_REFRACTION, // refract background (the material is rendered normally after this pass)
915         SHADERMODE_WATER, // refract background and reflection (the material is rendered normally after this pass)
916         SHADERMODE_COUNT
917 }
918 shadermode_t;
919
920 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
921 const char *shadermodeinfo[][2] =
922 {
923         {"#define MODE_LIGHTMAP\n", " lightmap"},
924         {"#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
925         {"#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
926         {"#define MODE_LIGHTDIRECTION\n", " lightdirection"},
927         {"#define MODE_LIGHTSOURCE\n", " lightsource"},
928         {"#define MODE_REFRACTION\n", " refraction"},
929         {"#define MODE_WATER\n", " water"},
930         {NULL, NULL}
931 };
932
933 #define SHADERPERMUTATION_INDICES (SHADERPERMUTATION_MODEBASE * SHADERMODE_COUNT)
934
935 typedef struct r_glsl_permutation_s
936 {
937         // indicates if we have tried compiling this permutation already
938         qboolean compiled;
939         // 0 if compilation failed
940         int program;
941         // locations of detected uniforms in program object, or -1 if not found
942         int loc_Texture_Normal;
943         int loc_Texture_Color;
944         int loc_Texture_Gloss;
945         int loc_Texture_Cube;
946         int loc_Texture_Attenuation;
947         int loc_Texture_FogMask;
948         int loc_Texture_Pants;
949         int loc_Texture_Shirt;
950         int loc_Texture_Lightmap;
951         int loc_Texture_Deluxemap;
952         int loc_Texture_Glow;
953         int loc_Texture_Refraction;
954         int loc_Texture_Reflection;
955         int loc_FogColor;
956         int loc_LightPosition;
957         int loc_EyePosition;
958         int loc_LightColor;
959         int loc_Color_Pants;
960         int loc_Color_Shirt;
961         int loc_FogRangeRecip;
962         int loc_FogStart;
963         int loc_FogLength;
964         int loc_AmbientScale;
965         int loc_DiffuseScale;
966         int loc_SpecularScale;
967         int loc_SpecularPower;
968         int loc_GlowScale;
969         int loc_SceneBrightness; // or: Scenebrightness * ContrastBoost
970         int loc_OffsetMapping_Scale;
971         int loc_AmbientColor;
972         int loc_DiffuseColor;
973         int loc_SpecularColor;
974         int loc_LightDir;
975         int loc_ContrastBoostCoeff; // 1 - 1/ContrastBoost
976         int loc_DistortScaleRefractReflect;
977         int loc_ScreenScaleRefractReflect;
978         int loc_ScreenCenterRefractReflect;
979         int loc_RefractColor;
980         int loc_ReflectColor;
981         int loc_ReflectFactor;
982         int loc_ReflectOffset;
983 }
984 r_glsl_permutation_t;
985
986 // information about each possible shader permutation
987 r_glsl_permutation_t r_glsl_permutations[SHADERPERMUTATION_INDICES];
988 // currently selected permutation
989 r_glsl_permutation_t *r_glsl_permutation;
990
991 // these are additional flags used only by R_GLSL_CompilePermutation
992 #define SHADERTYPE_USES_VERTEXSHADER (1<<0)
993 #define SHADERTYPE_USES_GEOMETRYSHADER (1<<1)
994 #define SHADERTYPE_USES_FRAGMENTSHADER (1<<2)
995
996 static void R_GLSL_CompilePermutation(const char *filename, int permutation, int shadertype)
997 {
998         int i;
999         qboolean shaderfound;
1000         r_glsl_permutation_t *p = r_glsl_permutations + permutation;
1001         int vertstrings_count;
1002         int geomstrings_count;
1003         int fragstrings_count;
1004         char *shaderstring;
1005         const char *vertstrings_list[32+1];
1006         const char *geomstrings_list[32+1];
1007         const char *fragstrings_list[32+1];
1008         char permutationname[256];
1009         if (p->compiled)
1010                 return;
1011         p->compiled = true;
1012         p->program = 0;
1013         vertstrings_list[0] = "#define VERTEX_SHADER\n";
1014         geomstrings_list[0] = "#define GEOMETRY_SHADER\n";
1015         fragstrings_list[0] = "#define FRAGMENT_SHADER\n";
1016         vertstrings_count = 1;
1017         geomstrings_count = 1;
1018         fragstrings_count = 1;
1019         permutationname[0] = 0;
1020         i = permutation / SHADERPERMUTATION_MODEBASE;
1021         vertstrings_list[vertstrings_count++] = shadermodeinfo[i][0];
1022         geomstrings_list[geomstrings_count++] = shadermodeinfo[i][0];
1023         fragstrings_list[fragstrings_count++] = shadermodeinfo[i][0];
1024         strlcat(permutationname, shadermodeinfo[i][1], sizeof(permutationname));
1025         for (i = 0;shaderpermutationinfo[i][0];i++)
1026         {
1027                 if (permutation & (1<<i))
1028                 {
1029                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i][0];
1030                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i][0];
1031                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i][0];
1032                         strlcat(permutationname, shaderpermutationinfo[i][1], sizeof(permutationname));
1033                 }
1034                 else
1035                 {
1036                         // keep line numbers correct
1037                         vertstrings_list[vertstrings_count++] = "\n";
1038                         geomstrings_list[geomstrings_count++] = "\n";
1039                         fragstrings_list[fragstrings_count++] = "\n";
1040                 }
1041         }
1042         shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL);
1043         shaderfound = false;
1044         if (shaderstring)
1045         {
1046                 Con_DPrint("from disk... ");
1047                 vertstrings_list[vertstrings_count++] = shaderstring;
1048                 geomstrings_list[geomstrings_count++] = shaderstring;
1049                 fragstrings_list[fragstrings_count++] = shaderstring;
1050                 shaderfound = true;
1051         }
1052         else if (!strcmp(filename, "glsl/default.glsl"))
1053         {
1054                 vertstrings_list[vertstrings_count++] = builtinshaderstring;
1055                 geomstrings_list[geomstrings_count++] = builtinshaderstring;
1056                 fragstrings_list[fragstrings_count++] = builtinshaderstring;
1057                 shaderfound = true;
1058         }
1059         // clear any lists that are not needed by this shader
1060         if (!(shadertype & SHADERTYPE_USES_VERTEXSHADER))
1061                 vertstrings_count = 0;
1062         if (!(shadertype & SHADERTYPE_USES_GEOMETRYSHADER))
1063                 geomstrings_count = 0;
1064         if (!(shadertype & SHADERTYPE_USES_FRAGMENTSHADER))
1065                 fragstrings_count = 0;
1066         // compile the shader program
1067         if (shaderfound && vertstrings_count + geomstrings_count + fragstrings_count)
1068                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1069         if (p->program)
1070         {
1071                 CHECKGLERROR
1072                 qglUseProgramObjectARB(p->program);CHECKGLERROR
1073                 // look up all the uniform variable names we care about, so we don't
1074                 // have to look them up every time we set them
1075                 p->loc_Texture_Normal      = qglGetUniformLocationARB(p->program, "Texture_Normal");
1076                 p->loc_Texture_Color       = qglGetUniformLocationARB(p->program, "Texture_Color");
1077                 p->loc_Texture_Gloss       = qglGetUniformLocationARB(p->program, "Texture_Gloss");
1078                 p->loc_Texture_Cube        = qglGetUniformLocationARB(p->program, "Texture_Cube");
1079                 p->loc_Texture_Attenuation = qglGetUniformLocationARB(p->program, "Texture_Attenuation");
1080                 p->loc_Texture_FogMask     = qglGetUniformLocationARB(p->program, "Texture_FogMask");
1081                 p->loc_Texture_Pants       = qglGetUniformLocationARB(p->program, "Texture_Pants");
1082                 p->loc_Texture_Shirt       = qglGetUniformLocationARB(p->program, "Texture_Shirt");
1083                 p->loc_Texture_Lightmap    = qglGetUniformLocationARB(p->program, "Texture_Lightmap");
1084                 p->loc_Texture_Deluxemap   = qglGetUniformLocationARB(p->program, "Texture_Deluxemap");
1085                 p->loc_Texture_Glow        = qglGetUniformLocationARB(p->program, "Texture_Glow");
1086                 p->loc_Texture_Refraction  = qglGetUniformLocationARB(p->program, "Texture_Refraction");
1087                 p->loc_Texture_Reflection  = qglGetUniformLocationARB(p->program, "Texture_Reflection");
1088                 p->loc_FogColor            = qglGetUniformLocationARB(p->program, "FogColor");
1089                 p->loc_LightPosition       = qglGetUniformLocationARB(p->program, "LightPosition");
1090                 p->loc_EyePosition         = qglGetUniformLocationARB(p->program, "EyePosition");
1091                 p->loc_LightColor          = qglGetUniformLocationARB(p->program, "LightColor");
1092                 p->loc_Color_Pants         = qglGetUniformLocationARB(p->program, "Color_Pants");
1093                 p->loc_Color_Shirt         = qglGetUniformLocationARB(p->program, "Color_Shirt");
1094                 p->loc_FogRangeRecip       = qglGetUniformLocationARB(p->program, "FogRangeRecip");
1095                 p->loc_FogStart            = qglGetUniformLocationARB(p->program, "FogStart");
1096                 p->loc_FogLength           = qglGetUniformLocationARB(p->program, "FogLength");
1097                 p->loc_AmbientScale        = qglGetUniformLocationARB(p->program, "AmbientScale");
1098                 p->loc_DiffuseScale        = qglGetUniformLocationARB(p->program, "DiffuseScale");
1099                 p->loc_SpecularPower       = qglGetUniformLocationARB(p->program, "SpecularPower");
1100                 p->loc_SpecularScale       = qglGetUniformLocationARB(p->program, "SpecularScale");
1101                 p->loc_GlowScale           = qglGetUniformLocationARB(p->program, "GlowScale");
1102                 p->loc_SceneBrightness     = qglGetUniformLocationARB(p->program, "SceneBrightness");
1103                 p->loc_OffsetMapping_Scale = qglGetUniformLocationARB(p->program, "OffsetMapping_Scale");
1104                 p->loc_AmbientColor        = qglGetUniformLocationARB(p->program, "AmbientColor");
1105                 p->loc_DiffuseColor        = qglGetUniformLocationARB(p->program, "DiffuseColor");
1106                 p->loc_SpecularColor       = qglGetUniformLocationARB(p->program, "SpecularColor");
1107                 p->loc_LightDir            = qglGetUniformLocationARB(p->program, "LightDir");
1108                 p->loc_ContrastBoostCoeff  = qglGetUniformLocationARB(p->program, "ContrastBoostCoeff");
1109                 p->loc_DistortScaleRefractReflect = qglGetUniformLocationARB(p->program, "DistortScaleRefractReflect");
1110                 p->loc_ScreenScaleRefractReflect = qglGetUniformLocationARB(p->program, "ScreenScaleRefractReflect");
1111                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocationARB(p->program, "ScreenCenterRefractReflect");
1112                 p->loc_RefractColor        = qglGetUniformLocationARB(p->program, "RefractColor");
1113                 p->loc_ReflectColor        = qglGetUniformLocationARB(p->program, "ReflectColor");
1114                 p->loc_ReflectFactor       = qglGetUniformLocationARB(p->program, "ReflectFactor");
1115                 p->loc_ReflectOffset       = qglGetUniformLocationARB(p->program, "ReflectOffset");
1116                 // initialize the samplers to refer to the texture units we use
1117                 if (p->loc_Texture_Normal >= 0)    qglUniform1iARB(p->loc_Texture_Normal, 0);
1118                 if (p->loc_Texture_Color >= 0)     qglUniform1iARB(p->loc_Texture_Color, 1);
1119                 if (p->loc_Texture_Gloss >= 0)     qglUniform1iARB(p->loc_Texture_Gloss, 2);
1120                 if (p->loc_Texture_Cube >= 0)      qglUniform1iARB(p->loc_Texture_Cube, 3);
1121                 if (p->loc_Texture_FogMask >= 0)   qglUniform1iARB(p->loc_Texture_FogMask, 4);
1122                 if (p->loc_Texture_Pants >= 0)     qglUniform1iARB(p->loc_Texture_Pants, 5);
1123                 if (p->loc_Texture_Shirt >= 0)     qglUniform1iARB(p->loc_Texture_Shirt, 6);
1124                 if (p->loc_Texture_Lightmap >= 0)  qglUniform1iARB(p->loc_Texture_Lightmap, 7);
1125                 if (p->loc_Texture_Deluxemap >= 0) qglUniform1iARB(p->loc_Texture_Deluxemap, 8);
1126                 if (p->loc_Texture_Glow >= 0)      qglUniform1iARB(p->loc_Texture_Glow, 9);
1127                 if (p->loc_Texture_Attenuation >= 0) qglUniform1iARB(p->loc_Texture_Attenuation, 10);
1128                 if (p->loc_Texture_Refraction >= 0) qglUniform1iARB(p->loc_Texture_Refraction, 11);
1129                 if (p->loc_Texture_Reflection >= 0) qglUniform1iARB(p->loc_Texture_Reflection, 12);
1130                 CHECKGLERROR
1131                 qglUseProgramObjectARB(0);CHECKGLERROR
1132                 if (developer.integer)
1133                         Con_Printf("GLSL shader %s :%s compiled.\n", filename, permutationname);
1134         }
1135         else
1136         {
1137                 if (developer.integer)
1138                         Con_Printf("GLSL shader %s :%s failed!  source code line offset for above errors is %i.\n", permutationname, filename, -(vertstrings_count - 1));
1139                 else
1140                         Con_Printf("GLSL shader %s :%s failed!  some features may not work properly.\n", permutationname, filename);
1141         }
1142         if (shaderstring)
1143                 Mem_Free(shaderstring);
1144 }
1145
1146 void R_GLSL_Restart_f(void)
1147 {
1148         int i;
1149         for (i = 0;i < SHADERPERMUTATION_INDICES;i++)
1150                 if (r_glsl_permutations[i].program)
1151                         GL_Backend_FreeProgram(r_glsl_permutations[i].program);
1152         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1153 }
1154
1155 void R_GLSL_DumpShader_f(void)
1156 {
1157         int i;
1158
1159         qfile_t *file = FS_Open("glsl/default.glsl", "w", false, false);
1160         if(!file)
1161         {
1162                 Con_Printf("failed to write to glsl/default.glsl\n");
1163                 return;
1164         }
1165
1166         FS_Print(file, "// The engine may define the following macros:\n");
1167         FS_Print(file, "// #define VERTEX_SHADER\n// #define GEOMETRY_SHADER\n// #define FRAGMENT_SHADER\n");
1168         for (i = 0;shadermodeinfo[i][0];i++)
1169                 FS_Printf(file, "// %s", shadermodeinfo[i][0]);
1170         for (i = 0;shaderpermutationinfo[i][0];i++)
1171                 FS_Printf(file, "// %s", shaderpermutationinfo[i][0]);
1172         FS_Print(file, "\n");
1173         FS_Print(file, builtinshaderstring);
1174         FS_Close(file);
1175
1176         Con_Printf("glsl/default.glsl written\n");
1177 }
1178
1179 extern rtexture_t *r_shadow_attenuationgradienttexture;
1180 extern rtexture_t *r_shadow_attenuation2dtexture;
1181 extern rtexture_t *r_shadow_attenuation3dtexture;
1182 int R_SetupSurfaceShader(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass)
1183 {
1184         // select a permutation of the lighting shader appropriate to this
1185         // combination of texture, entity, light source, and fogging, only use the
1186         // minimum features necessary to avoid wasting rendering time in the
1187         // fragment shader on features that are not being used
1188         const char *shaderfilename = NULL;
1189         unsigned int permutation = 0;
1190         unsigned int shadertype = 0;
1191         shadermode_t mode = 0;
1192         r_glsl_permutation = NULL;
1193         shaderfilename = "glsl/default.glsl";
1194         shadertype = SHADERTYPE_USES_VERTEXSHADER | SHADERTYPE_USES_FRAGMENTSHADER;
1195         // TODO: implement geometry-shader based shadow volumes someday
1196         if (r_glsl_offsetmapping.integer)
1197         {
1198                 permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1199                 if (r_glsl_offsetmapping_reliefmapping.integer)
1200                         permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1201         }
1202         if (rsurfacepass == RSURFPASS_BACKGROUND)
1203         {
1204                 // distorted background
1205                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1206                         mode = SHADERMODE_WATER;
1207                 else
1208                         mode = SHADERMODE_REFRACTION;
1209         }
1210         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1211         {
1212                 // light source
1213                 mode = SHADERMODE_LIGHTSOURCE;
1214                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1215                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1216                 if (diffusescale > 0)
1217                         permutation |= SHADERPERMUTATION_DIFFUSE;
1218                 if (specularscale > 0)
1219                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1220                 if (r_refdef.fogenabled)
1221                         permutation |= SHADERPERMUTATION_FOG;
1222                 if (rsurface.texture->colormapping)
1223                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1224                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1225                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1226                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1227                         permutation |= SHADERPERMUTATION_REFLECTION;
1228         }
1229         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)
1230         {
1231                 // unshaded geometry (fullbright or ambient model lighting)
1232                 mode = SHADERMODE_LIGHTMAP;
1233                 if (rsurface.texture->currentskinframe->glow)
1234                         permutation |= SHADERPERMUTATION_GLOW;
1235                 if (r_refdef.fogenabled)
1236                         permutation |= SHADERPERMUTATION_FOG;
1237                 if (rsurface.texture->colormapping)
1238                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1239                 if (r_glsl_offsetmapping.integer)
1240                 {
1241                         permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1242                         if (r_glsl_offsetmapping_reliefmapping.integer)
1243                                 permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1244                 }
1245                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1246                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1247                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1248                         permutation |= SHADERPERMUTATION_REFLECTION;
1249         }
1250         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT_DIRECTIONAL)
1251         {
1252                 // directional model lighting
1253                 mode = SHADERMODE_LIGHTDIRECTION;
1254                 if (rsurface.texture->currentskinframe->glow)
1255                         permutation |= SHADERPERMUTATION_GLOW;
1256                 permutation |= SHADERPERMUTATION_DIFFUSE;
1257                 if (specularscale > 0)
1258                         permutation |= SHADERPERMUTATION_SPECULAR;
1259                 if (r_refdef.fogenabled)
1260                         permutation |= SHADERPERMUTATION_FOG;
1261                 if (rsurface.texture->colormapping)
1262                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1263                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1264                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1265                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1266                         permutation |= SHADERPERMUTATION_REFLECTION;
1267         }
1268         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1269         {
1270                 // ambient model lighting
1271                 mode = SHADERMODE_LIGHTDIRECTION;
1272                 if (rsurface.texture->currentskinframe->glow)
1273                         permutation |= SHADERPERMUTATION_GLOW;
1274                 if (r_refdef.fogenabled)
1275                         permutation |= SHADERPERMUTATION_FOG;
1276                 if (rsurface.texture->colormapping)
1277                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1278                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1279                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1280                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1281                         permutation |= SHADERPERMUTATION_REFLECTION;
1282         }
1283         else
1284         {
1285                 // lightmapped wall
1286                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.worldmodel && r_refdef.worldmodel->brushq3.deluxemapping)
1287                 {
1288                         // deluxemapping (light direction texture)
1289                         if (rsurface.uselightmaptexture && r_refdef.worldmodel && r_refdef.worldmodel->brushq3.deluxemapping && r_refdef.worldmodel->brushq3.deluxemapping_modelspace)
1290                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1291                         else
1292                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1293                         if (specularscale > 0)
1294                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1295                 }
1296                 else if (r_glsl_deluxemapping.integer >= 2)
1297                 {
1298                         // fake deluxemapping (uniform light direction in tangentspace)
1299                         mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1300                         if (specularscale > 0)
1301                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1302                 }
1303                 else
1304                 {
1305                         // ordinary lightmapping
1306                         mode = SHADERMODE_LIGHTMAP;
1307                 }
1308                 if (rsurface.texture->currentskinframe->glow)
1309                         permutation |= SHADERPERMUTATION_GLOW;
1310                 if (r_refdef.fogenabled)
1311                         permutation |= SHADERPERMUTATION_FOG;
1312                 if (rsurface.texture->colormapping)
1313                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1314                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1315                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1316                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1317                         permutation |= SHADERPERMUTATION_REFLECTION;
1318         }
1319         permutation |= mode * SHADERPERMUTATION_MODEBASE;
1320         if (!r_glsl_permutations[permutation].program)
1321         {
1322                 if (!r_glsl_permutations[permutation].compiled)
1323                         R_GLSL_CompilePermutation(shaderfilename, permutation, shadertype);
1324                 if (!r_glsl_permutations[permutation].program)
1325                 {
1326                         // remove features until we find a valid permutation
1327                         unsigned int i;
1328                         for (i = (SHADERPERMUTATION_MODEBASE >> 1);;i>>=1)
1329                         {
1330                                 if (!i)
1331                                 {
1332                                         Con_Printf("OpenGL 2.0 shaders disabled - unable to find a working shader permutation fallback on this driver (set r_glsl 1 if you want to try again)\n");
1333                                         Cvar_SetValueQuick(&r_glsl, 0);
1334                                         return 0; // no bit left to clear
1335                                 }
1336                                 // reduce i more quickly whenever it would not remove any bits
1337                                 if (!(permutation & i))
1338                                         continue;
1339                                 permutation &= ~i;
1340                                 if (!r_glsl_permutations[permutation].compiled)
1341                                         R_GLSL_CompilePermutation(shaderfilename, permutation, shadertype);
1342                                 if (r_glsl_permutations[permutation].program)
1343                                         break;
1344                         }
1345                 }
1346         }
1347         r_glsl_permutation = r_glsl_permutations + permutation;
1348         CHECKGLERROR
1349         qglUseProgramObjectARB(r_glsl_permutation->program);CHECKGLERROR
1350         if (mode == SHADERMODE_LIGHTSOURCE)
1351         {
1352                 if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1353                 if (permutation & SHADERPERMUTATION_DIFFUSE)
1354                 {
1355                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2]);
1356                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, ambientscale);
1357                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, diffusescale);
1358                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, specularscale);
1359                 }
1360                 else
1361                 {
1362                         // ambient only is simpler
1363                         if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, lightcolorbase[0] * ambientscale, lightcolorbase[1] * ambientscale, lightcolorbase[2] * ambientscale);
1364                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, 1);
1365                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, 0);
1366                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, 0);
1367                 }
1368         }
1369         else if (mode == SHADERMODE_LIGHTDIRECTION)
1370         {
1371                 if (r_glsl_permutation->loc_AmbientColor >= 0)
1372                         qglUniform3fARB(r_glsl_permutation->loc_AmbientColor, rsurface.modellight_ambient[0] * ambientscale * r_refdef.lightmapintensity, rsurface.modellight_ambient[1] * ambientscale * r_refdef.lightmapintensity, rsurface.modellight_ambient[2] * ambientscale * r_refdef.lightmapintensity);
1373                 if (r_glsl_permutation->loc_DiffuseColor >= 0)
1374                         qglUniform3fARB(r_glsl_permutation->loc_DiffuseColor, rsurface.modellight_diffuse[0] * diffusescale * r_refdef.lightmapintensity, rsurface.modellight_diffuse[1] * diffusescale * r_refdef.lightmapintensity, rsurface.modellight_diffuse[2] * diffusescale * r_refdef.lightmapintensity);
1375                 if (r_glsl_permutation->loc_SpecularColor >= 0)
1376                         qglUniform3fARB(r_glsl_permutation->loc_SpecularColor, rsurface.modellight_diffuse[0] * specularscale * r_refdef.lightmapintensity, rsurface.modellight_diffuse[1] * specularscale * r_refdef.lightmapintensity, rsurface.modellight_diffuse[2] * specularscale * r_refdef.lightmapintensity);
1377                 if (r_glsl_permutation->loc_LightDir >= 0)
1378                         qglUniform3fARB(r_glsl_permutation->loc_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);
1379         }
1380         else
1381         {
1382                 if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, r_ambient.value * 2.0f / 128.0f);
1383                 if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, r_refdef.lightmapintensity * 2.0f);
1384                 if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, r_refdef.lightmapintensity * specularscale * 2.0f);
1385         }
1386         if (r_glsl_permutation->loc_GlowScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_GlowScale, r_hdr_glowintensity.value);
1387         if (r_glsl_permutation->loc_ContrastBoostCoeff >= 0)
1388         {
1389                 // The formula used is actually:
1390                 //   color.rgb *= SceneBrightness;
1391                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1392                 // I simplify that to
1393                 //   color.rgb *= [[SceneBrightness * ContrastBoost]];
1394                 //   color.rgb /= [[(ContrastBoost - 1) / ContrastBoost]] * color.rgb + 1;
1395                 // and Black:
1396                 //   color.rgb = [[SceneBrightness * ContrastBoost]] * color.rgb / ([[(ContrastBoost - 1) * SceneBrightness]] * color.rgb + 1);
1397                 // and do [[calculations]] here in the engine
1398                 qglUniform1fARB(r_glsl_permutation->loc_ContrastBoostCoeff, (r_glsl_contrastboost.value - 1) * r_view.colorscale);
1399                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_view.colorscale * r_glsl_contrastboost.value);
1400         }
1401         else
1402                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_view.colorscale);
1403         if (r_glsl_permutation->loc_FogColor >= 0)
1404         {
1405                 // additive passes are only darkened by fog, not tinted
1406                 if (rsurface.rtlight || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD))
1407                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1408                 else
1409                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1410         }
1411         if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_EyePosition, rsurface.modelorg[0], rsurface.modelorg[1], rsurface.modelorg[2]);
1412         if (r_glsl_permutation->loc_Color_Pants >= 0)
1413         {
1414                 if (rsurface.texture->currentskinframe->pants)
1415                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]);
1416                 else
1417                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1418         }
1419         if (r_glsl_permutation->loc_Color_Shirt >= 0)
1420         {
1421                 if (rsurface.texture->currentskinframe->shirt)
1422                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]);
1423                 else
1424                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
1425         }
1426         if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogRangeRecip, r_refdef.fograngerecip);
1427         if (r_glsl_permutation->loc_FogStart >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogStart, r_refdef.fog_start);
1428         if (r_glsl_permutation->loc_FogLength >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogLength, r_refdef.fog_end - r_refdef.fog_start);
1429         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower);
1430         if (r_glsl_permutation->loc_OffsetMapping_Scale >= 0) qglUniform1fARB(r_glsl_permutation->loc_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value);
1431         if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor);
1432         if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]);
1433         if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]);
1434         if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_RefractColor, 1, rsurface.texture->refractcolor4f);
1435         if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_ReflectColor, 1, rsurface.texture->reflectcolor4f);
1436         if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin);
1437         if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectOffset, rsurface.texture->reflectmin);
1438         CHECKGLERROR
1439         return permutation;
1440 }
1441
1442 #define SKINFRAME_HASH 1024
1443
1444 struct
1445 {
1446         int loadsequence; // incremented each level change
1447         memexpandablearray_t array;
1448         skinframe_t *hash[SKINFRAME_HASH];
1449 }
1450 r_skinframe;
1451
1452 void R_SkinFrame_PrepareForPurge(void)
1453 {
1454         r_skinframe.loadsequence++;
1455         // wrap it without hitting zero
1456         if (r_skinframe.loadsequence >= 200)
1457                 r_skinframe.loadsequence = 1;
1458 }
1459
1460 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
1461 {
1462         if (!skinframe)
1463                 return;
1464         // mark the skinframe as used for the purging code
1465         skinframe->loadsequence = r_skinframe.loadsequence;
1466 }
1467
1468 void R_SkinFrame_Purge(void)
1469 {
1470         int i;
1471         skinframe_t *s;
1472         for (i = 0;i < SKINFRAME_HASH;i++)
1473         {
1474                 for (s = r_skinframe.hash[i];s;s = s->next)
1475                 {
1476                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
1477                         {
1478                                 if (s->merged == s->base)
1479                                         s->merged = NULL;
1480                                 // FIXME: maybe pass a pointer to the pointer to R_PurgeTexture and reset it to NULL inside? [11/29/2007 Black]
1481                                 R_PurgeTexture(s->stain );s->stain  = NULL;
1482                                 R_PurgeTexture(s->merged);s->merged = NULL;
1483                                 R_PurgeTexture(s->base  );s->base   = NULL;
1484                                 R_PurgeTexture(s->pants );s->pants  = NULL;
1485                                 R_PurgeTexture(s->shirt );s->shirt  = NULL;
1486                                 R_PurgeTexture(s->nmap  );s->nmap   = NULL;
1487                                 R_PurgeTexture(s->gloss );s->gloss  = NULL;
1488                                 R_PurgeTexture(s->glow  );s->glow   = NULL;
1489                                 R_PurgeTexture(s->fog   );s->fog    = NULL;
1490                                 s->loadsequence = 0;
1491                         }
1492                 }
1493         }
1494 }
1495
1496 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
1497         skinframe_t *item;
1498         char basename[MAX_QPATH];
1499
1500         Image_StripImageExtension(name, basename, sizeof(basename));
1501
1502         if( last == NULL ) {
1503                 int hashindex;
1504                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1505                 item = r_skinframe.hash[hashindex];
1506         } else {
1507                 item = last->next;
1508         }
1509
1510         // linearly search through the hash bucket
1511         for( ; item ; item = item->next ) {
1512                 if( !strcmp( item->basename, basename ) ) {
1513                         return item;
1514                 }
1515         }
1516         return NULL;
1517 }
1518
1519 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add)
1520 {
1521         skinframe_t *item;
1522         int hashindex;
1523         char basename[MAX_QPATH];
1524         
1525         Image_StripImageExtension(name, basename, sizeof(basename));
1526
1527         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1528         for (item = r_skinframe.hash[hashindex];item;item = item->next)
1529                 if (!strcmp(item->basename, basename) && item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc)
1530                         break;
1531
1532         if (!item) {
1533                 rtexture_t *dyntexture;
1534                 // check whether its a dynamic texture
1535                 dyntexture = CL_GetDynTexture( basename );
1536                 if (!add && !dyntexture)
1537                         return NULL;
1538                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
1539                 memset(item, 0, sizeof(*item));
1540                 strlcpy(item->basename, basename, sizeof(item->basename));
1541                 item->base = dyntexture; // either NULL or dyntexture handle
1542                 item->textureflags = textureflags;
1543                 item->comparewidth = comparewidth;
1544                 item->compareheight = compareheight;
1545                 item->comparecrc = comparecrc;
1546                 item->next = r_skinframe.hash[hashindex];       
1547                 r_skinframe.hash[hashindex] = item;
1548         }
1549         else if( item->base == NULL )
1550         {
1551                 rtexture_t *dyntexture;
1552                 // check whether its a dynamic texture
1553                 // this only needs to be done because Purge doesnt delete skinframes - only sets the texture pointers to NULL and we need to restore it before returing.. [11/29/2007 Black]
1554                 dyntexture = CL_GetDynTexture( basename );
1555                 item->base = dyntexture; // either NULL or dyntexture handle
1556         }
1557
1558         R_SkinFrame_MarkUsed(item);
1559         return item;
1560 }
1561
1562 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain)
1563 {
1564         // FIXME: it should be possible to disable loading various layers using
1565         // cvars, to prevent wasted loading time and memory usage if the user does
1566         // not want them
1567         qboolean loadnormalmap = true;
1568         qboolean loadgloss = true;
1569         qboolean loadpantsandshirt = true;
1570         qboolean loadglow = true;
1571         int j;
1572         unsigned char *pixels;
1573         unsigned char *bumppixels;
1574         unsigned char *basepixels = NULL;
1575         int basepixels_width;
1576         int basepixels_height;
1577         skinframe_t *skinframe;
1578
1579         if (cls.state == ca_dedicated)
1580                 return NULL;
1581
1582         // return an existing skinframe if already loaded
1583         // if loading of the first image fails, don't make a new skinframe as it
1584         // would cause all future lookups of this to be missing
1585         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
1586         if (skinframe && skinframe->base)
1587                 return skinframe;
1588
1589         basepixels = loadimagepixelsbgra(name, complain, true);
1590         if (basepixels == NULL)
1591                 return NULL;
1592
1593         // we've got some pixels to store, so really allocate this new texture now
1594         if (!skinframe)
1595                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
1596         skinframe->stain = NULL;
1597         skinframe->merged = NULL;
1598         skinframe->base = r_texture_notexture;
1599         skinframe->pants = NULL;
1600         skinframe->shirt = NULL;
1601         skinframe->nmap = r_texture_blanknormalmap;
1602         skinframe->gloss = NULL;
1603         skinframe->glow = NULL;
1604         skinframe->fog = NULL;
1605
1606         basepixels_width = image_width;
1607         basepixels_height = image_height;
1608         skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1609
1610         if (textureflags & TEXF_ALPHA)
1611         {
1612                 for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
1613                         if (basepixels[j] < 255)
1614                                 break;
1615                 if (j < basepixels_width * basepixels_height * 4)
1616                 {
1617                         // has transparent pixels
1618                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1619                         for (j = 0;j < image_width * image_height * 4;j += 4)
1620                         {
1621                                 pixels[j+0] = 255;
1622                                 pixels[j+1] = 255;
1623                                 pixels[j+2] = 255;
1624                                 pixels[j+3] = basepixels[j+3];
1625                         }
1626                         skinframe->fog = R_LoadTexture2D (r_main_texturepool, va("%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1627                         Mem_Free(pixels);
1628                 }
1629         }
1630
1631         // _norm is the name used by tenebrae and has been adopted as standard
1632         if (loadnormalmap)
1633         {
1634                 if ((pixels = loadimagepixelsbgra(va("%s_norm", skinframe->basename), false, false)) != NULL)
1635                 {
1636                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1637                         Mem_Free(pixels);
1638                         pixels = NULL;
1639                 }
1640                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va("%s_bump", skinframe->basename), false, false)) != NULL)
1641                 {
1642                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1643                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
1644                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1645                         Mem_Free(pixels);
1646                         Mem_Free(bumppixels);
1647                 }
1648                 else if (r_shadow_bumpscale_basetexture.value > 0)
1649                 {
1650                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
1651                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
1652                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1653                         Mem_Free(pixels);
1654                 }
1655         }
1656         // _luma is supported for tenebrae compatibility
1657         // (I think it's a very stupid name, but oh well)
1658         // _glow is the preferred name
1659         if (loadglow          && ((pixels = loadimagepixelsbgra(va("%s_glow", skinframe->basename), false, false)) != NULL || (pixels = loadimagepixelsbgra(va("%s_luma", skinframe->basename), false, false)) != NULL)) {skinframe->glow = R_LoadTexture2D (r_main_texturepool, va("%s_glow", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_glow.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1660         if (loadgloss         && (pixels = loadimagepixelsbgra(va("%s_gloss", skinframe->basename), false, false)) != NULL) {skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va("%s_gloss", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_gloss.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1661         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_pants", skinframe->basename), false, false)) != NULL) {skinframe->pants = R_LoadTexture2D (r_main_texturepool, va("%s_pants", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1662         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_shirt", skinframe->basename), false, false)) != NULL) {skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va("%s_shirt", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1663
1664         if (basepixels)
1665                 Mem_Free(basepixels);
1666
1667         return skinframe;
1668 }
1669
1670 static rtexture_t *R_SkinFrame_TextureForSkinLayer(const unsigned char *in, int width, int height, const char *name, const unsigned int *palette, int textureflags, qboolean force)
1671 {
1672         int i;
1673         if (!force)
1674         {
1675                 for (i = 0;i < width*height;i++)
1676                         if (((unsigned char *)&palette[in[i]])[3] > 0)
1677                                 break;
1678                 if (i == width*height)
1679                         return NULL;
1680         }
1681         return R_LoadTexture2D (r_main_texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette);
1682 }
1683
1684 // this is only used by .spr32 sprites, HL .spr files, HL .bsp files
1685 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height)
1686 {
1687         int i;
1688         unsigned char *temp1, *temp2;
1689         skinframe_t *skinframe;
1690
1691         if (cls.state == ca_dedicated)
1692                 return NULL;
1693
1694         // if already loaded just return it, otherwise make a new skinframe
1695         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height*4) : 0, true);
1696         if (skinframe && skinframe->base)
1697                 return skinframe;
1698
1699         skinframe->stain = NULL;
1700         skinframe->merged = NULL;
1701         skinframe->base = r_texture_notexture;
1702         skinframe->pants = NULL;
1703         skinframe->shirt = NULL;
1704         skinframe->nmap = r_texture_blanknormalmap;
1705         skinframe->gloss = NULL;
1706         skinframe->glow = NULL;
1707         skinframe->fog = NULL;
1708
1709         // if no data was provided, then clearly the caller wanted to get a blank skinframe
1710         if (!skindata)
1711                 return NULL;
1712
1713         if (r_shadow_bumpscale_basetexture.value > 0)
1714         {
1715                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
1716                 temp2 = temp1 + width * height * 4;
1717                 Image_HeightmapToNormalmap_BGRA(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
1718                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
1719                 Mem_Free(temp1);
1720         }
1721         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_BGRA, skinframe->textureflags, NULL);
1722         if (textureflags & TEXF_ALPHA)
1723         {
1724                 for (i = 3;i < width * height * 4;i += 4)
1725                         if (skindata[i] < 255)
1726                                 break;
1727                 if (i < width * height * 4)
1728                 {
1729                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
1730                         memcpy(fogpixels, skindata, width * height * 4);
1731                         for (i = 0;i < width * height * 4;i += 4)
1732                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
1733                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, skinframe->textureflags, NULL);
1734                         Mem_Free(fogpixels);
1735                 }
1736         }
1737
1738         return skinframe;
1739 }
1740
1741 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
1742 {
1743         int i;
1744         unsigned char *temp1, *temp2;
1745         skinframe_t *skinframe;
1746
1747         if (cls.state == ca_dedicated)
1748                 return NULL;
1749
1750         // if already loaded just return it, otherwise make a new skinframe
1751         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
1752         if (skinframe && skinframe->base)
1753                 return skinframe;
1754
1755         skinframe->stain = NULL;
1756         skinframe->merged = NULL;
1757         skinframe->base = r_texture_notexture;
1758         skinframe->pants = NULL;
1759         skinframe->shirt = NULL;
1760         skinframe->nmap = r_texture_blanknormalmap;
1761         skinframe->gloss = NULL;
1762         skinframe->glow = NULL;
1763         skinframe->fog = NULL;
1764
1765         // if no data was provided, then clearly the caller wanted to get a blank skinframe
1766         if (!skindata)
1767                 return NULL;
1768
1769         if (r_shadow_bumpscale_basetexture.value > 0)
1770         {
1771                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
1772                 temp2 = temp1 + width * height * 4;
1773                 // use either a custom palette or the quake palette
1774                 Image_Copy8bitBGRA(skindata, temp1, width * height, palette_bgra_complete);
1775                 Image_HeightmapToNormalmap_BGRA(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
1776                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
1777                 Mem_Free(temp1);
1778         }
1779         // use either a custom palette, or the quake palette
1780         skinframe->base = skinframe->merged = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_merged", skinframe->basename), (loadglowtexture ? palette_bgra_nofullbrights : ((skinframe->textureflags & TEXF_ALPHA) ? palette_bgra_transparent : palette_bgra_complete)), skinframe->textureflags, true); // all
1781         if (loadglowtexture)
1782                 skinframe->glow = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_glow", skinframe->basename), palette_bgra_onlyfullbrights, skinframe->textureflags, false); // glow
1783         if (loadpantsandshirt)
1784         {
1785                 skinframe->pants = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_pants", skinframe->basename), palette_bgra_pantsaswhite, skinframe->textureflags, false); // pants
1786                 skinframe->shirt = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_shirt", skinframe->basename), palette_bgra_shirtaswhite, skinframe->textureflags, false); // shirt
1787         }
1788         if (skinframe->pants || skinframe->shirt)
1789                 skinframe->base = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", skinframe->basename), loadglowtexture ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap, skinframe->textureflags, false); // no special colors
1790         if (textureflags & TEXF_ALPHA)
1791         {
1792                 for (i = 0;i < width * height;i++)
1793                         if (((unsigned char *)palette_bgra_alpha)[skindata[i]*4+3] < 255)
1794                                 break;
1795                 if (i < width * height)
1796                         skinframe->fog = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_fog", skinframe->basename), palette_bgra_alpha, skinframe->textureflags, true); // fog mask
1797         }
1798
1799         return skinframe;
1800 }
1801
1802 skinframe_t *R_SkinFrame_LoadMissing(void)
1803 {
1804         skinframe_t *skinframe;
1805
1806         if (cls.state == ca_dedicated)
1807                 return NULL;
1808
1809         skinframe = R_SkinFrame_Find("missing", TEXF_PRECACHE, 0, 0, 0, true);
1810         skinframe->stain = NULL;
1811         skinframe->merged = NULL;
1812         skinframe->base = r_texture_notexture;
1813         skinframe->pants = NULL;
1814         skinframe->shirt = NULL;
1815         skinframe->nmap = r_texture_blanknormalmap;
1816         skinframe->gloss = NULL;
1817         skinframe->glow = NULL;
1818         skinframe->fog = NULL;
1819
1820         return skinframe;
1821 }
1822
1823 void gl_main_start(void)
1824 {
1825         int x;
1826         double r, alpha;
1827
1828         r = -16.0 / (1.0 * FOGMASKTABLEWIDTH * FOGMASKTABLEWIDTH);
1829         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
1830         {
1831                 alpha = exp(r * ((double)x*(double)x));
1832                 if (x == FOGMASKTABLEWIDTH - 1)
1833                         alpha = 0;
1834                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
1835         }
1836
1837         memset(r_qwskincache, 0, sizeof(r_qwskincache));
1838         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
1839
1840         // set up r_skinframe loading system for textures
1841         memset(&r_skinframe, 0, sizeof(r_skinframe));
1842         r_skinframe.loadsequence = 1;
1843         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
1844
1845         r_main_texturepool = R_AllocTexturePool();
1846         R_BuildBlankTextures();
1847         R_BuildNoTexture();
1848         if (gl_texturecubemap)
1849         {
1850                 R_BuildWhiteCube();
1851                 R_BuildNormalizationCube();
1852         }
1853         R_BuildFogTexture();
1854         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
1855         memset(&r_waterstate, 0, sizeof(r_waterstate));
1856         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1857         memset(&r_svbsp, 0, sizeof (r_svbsp));
1858 }
1859
1860 void gl_main_shutdown(void)
1861 {
1862         memset(r_qwskincache, 0, sizeof(r_qwskincache));
1863         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
1864
1865         // clear out the r_skinframe state
1866         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
1867         memset(&r_skinframe, 0, sizeof(r_skinframe));
1868
1869         if (r_svbsp.nodes)
1870                 Mem_Free(r_svbsp.nodes);
1871         memset(&r_svbsp, 0, sizeof (r_svbsp));
1872         R_FreeTexturePool(&r_main_texturepool);
1873         r_texture_blanknormalmap = NULL;
1874         r_texture_white = NULL;
1875         r_texture_grey128 = NULL;
1876         r_texture_black = NULL;
1877         r_texture_whitecube = NULL;
1878         r_texture_normalizationcube = NULL;
1879         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
1880         memset(&r_waterstate, 0, sizeof(r_waterstate));
1881         R_GLSL_Restart_f();
1882 }
1883
1884 extern void CL_ParseEntityLump(char *entitystring);
1885 void gl_main_newmap(void)
1886 {
1887         // FIXME: move this code to client
1888         int l;
1889         char *entities, entname[MAX_QPATH];
1890         if (cl.worldmodel)
1891         {
1892                 strlcpy(entname, cl.worldmodel->name, sizeof(entname));
1893                 l = (int)strlen(entname) - 4;
1894                 if (l >= 0 && !strcmp(entname + l, ".bsp"))
1895                 {
1896                         memcpy(entname + l, ".ent", 5);
1897                         if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
1898                         {
1899                                 CL_ParseEntityLump(entities);
1900                                 Mem_Free(entities);
1901                                 return;
1902                         }
1903                 }
1904                 if (cl.worldmodel->brush.entities)
1905                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
1906         }
1907 }
1908
1909 void GL_Main_Init(void)
1910 {
1911         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
1912
1913         Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
1914         Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
1915         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
1916         if (gamemode == GAME_NEHAHRA)
1917         {
1918                 Cvar_RegisterVariable (&gl_fogenable);
1919                 Cvar_RegisterVariable (&gl_fogdensity);
1920                 Cvar_RegisterVariable (&gl_fogred);
1921                 Cvar_RegisterVariable (&gl_foggreen);
1922                 Cvar_RegisterVariable (&gl_fogblue);
1923                 Cvar_RegisterVariable (&gl_fogstart);
1924                 Cvar_RegisterVariable (&gl_fogend);
1925         }
1926         Cvar_RegisterVariable(&r_depthfirst);
1927         Cvar_RegisterVariable(&r_nearclip);
1928         Cvar_RegisterVariable(&r_showbboxes);
1929         Cvar_RegisterVariable(&r_showsurfaces);
1930         Cvar_RegisterVariable(&r_showtris);
1931         Cvar_RegisterVariable(&r_shownormals);
1932         Cvar_RegisterVariable(&r_showlighting);
1933         Cvar_RegisterVariable(&r_showshadowvolumes);
1934         Cvar_RegisterVariable(&r_showcollisionbrushes);
1935         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
1936         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
1937         Cvar_RegisterVariable(&r_showdisabledepthtest);
1938         Cvar_RegisterVariable(&r_drawportals);
1939         Cvar_RegisterVariable(&r_drawentities);
1940         Cvar_RegisterVariable(&r_cullentities_trace);
1941         Cvar_RegisterVariable(&r_cullentities_trace_samples);
1942         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
1943         Cvar_RegisterVariable(&r_cullentities_trace_delay);
1944         Cvar_RegisterVariable(&r_drawviewmodel);
1945         Cvar_RegisterVariable(&r_speeds);
1946         Cvar_RegisterVariable(&r_fullbrights);
1947         Cvar_RegisterVariable(&r_wateralpha);
1948         Cvar_RegisterVariable(&r_dynamic);
1949         Cvar_RegisterVariable(&r_fullbright);
1950         Cvar_RegisterVariable(&r_shadows);
1951         Cvar_RegisterVariable(&r_shadows_throwdistance);
1952         Cvar_RegisterVariable(&r_q1bsp_skymasking);
1953         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
1954         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
1955         Cvar_RegisterVariable(&r_textureunits);
1956         Cvar_RegisterVariable(&r_glsl);
1957         Cvar_RegisterVariable(&r_glsl_offsetmapping);
1958         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
1959         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
1960         Cvar_RegisterVariable(&r_glsl_deluxemapping);
1961         Cvar_RegisterVariable(&r_water);
1962         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
1963         Cvar_RegisterVariable(&r_water_clippingplanebias);
1964         Cvar_RegisterVariable(&r_water_refractdistort);
1965         Cvar_RegisterVariable(&r_water_reflectdistort);
1966         Cvar_RegisterVariable(&r_lerpsprites);
1967         Cvar_RegisterVariable(&r_lerpmodels);
1968         Cvar_RegisterVariable(&r_lerplightstyles);
1969         Cvar_RegisterVariable(&r_waterscroll);
1970         Cvar_RegisterVariable(&r_bloom);
1971         Cvar_RegisterVariable(&r_bloom_colorscale);
1972         Cvar_RegisterVariable(&r_bloom_brighten);
1973         Cvar_RegisterVariable(&r_bloom_blur);
1974         Cvar_RegisterVariable(&r_bloom_resolution);
1975         Cvar_RegisterVariable(&r_bloom_colorexponent);
1976         Cvar_RegisterVariable(&r_bloom_colorsubtract);
1977         Cvar_RegisterVariable(&r_hdr);
1978         Cvar_RegisterVariable(&r_hdr_scenebrightness);
1979         Cvar_RegisterVariable(&r_glsl_contrastboost);
1980         Cvar_RegisterVariable(&r_hdr_glowintensity);
1981         Cvar_RegisterVariable(&r_hdr_range);
1982         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
1983         Cvar_RegisterVariable(&developer_texturelogging);
1984         Cvar_RegisterVariable(&gl_lightmaps);
1985         Cvar_RegisterVariable(&r_test);
1986         Cvar_RegisterVariable(&r_batchmode);
1987         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
1988                 Cvar_SetValue("r_fullbrights", 0);
1989         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap);
1990
1991         Cvar_RegisterVariable(&r_track_sprites);
1992         Cvar_RegisterVariable(&r_track_sprites_flags);
1993         Cvar_RegisterVariable(&r_track_sprites_scalew);
1994         Cvar_RegisterVariable(&r_track_sprites_scaleh);
1995 }
1996
1997 extern void R_Textures_Init(void);
1998 extern void GL_Draw_Init(void);
1999 extern void GL_Main_Init(void);
2000 extern void R_Shadow_Init(void);
2001 extern void R_Sky_Init(void);
2002 extern void GL_Surf_Init(void);
2003 extern void R_Particles_Init(void);
2004 extern void R_Explosion_Init(void);
2005 extern void gl_backend_init(void);
2006 extern void Sbar_Init(void);
2007 extern void R_LightningBeams_Init(void);
2008 extern void Mod_RenderInit(void);
2009
2010 void Render_Init(void)
2011 {
2012         gl_backend_init();
2013         R_Textures_Init();
2014         GL_Main_Init();
2015         GL_Draw_Init();
2016         R_Shadow_Init();
2017         R_Sky_Init();
2018         GL_Surf_Init();
2019         Sbar_Init();
2020         R_Particles_Init();
2021         R_Explosion_Init();
2022         R_LightningBeams_Init();
2023         Mod_RenderInit();
2024 }
2025
2026 /*
2027 ===============
2028 GL_Init
2029 ===============
2030 */
2031 extern char *ENGINE_EXTENSIONS;
2032 void GL_Init (void)
2033 {
2034         VID_CheckExtensions();
2035
2036         // LordHavoc: report supported extensions
2037         Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions );
2038
2039         // clear to black (loading plaque will be seen over this)
2040         CHECKGLERROR
2041         qglClearColor(0,0,0,1);CHECKGLERROR
2042         qglClear(GL_COLOR_BUFFER_BIT);CHECKGLERROR
2043 }
2044
2045 int R_CullBox(const vec3_t mins, const vec3_t maxs)
2046 {
2047         int i;
2048         mplane_t *p;
2049         for (i = 0;i < r_view.numfrustumplanes;i++)
2050         {
2051                 // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
2052                 if (i == 4)
2053                         continue;
2054                 p = r_view.frustum + i;
2055                 switch(p->signbits)
2056                 {
2057                 default:
2058                 case 0:
2059                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2060                                 return true;
2061                         break;
2062                 case 1:
2063                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2064                                 return true;
2065                         break;
2066                 case 2:
2067                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2068                                 return true;
2069                         break;
2070                 case 3:
2071                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2072                                 return true;
2073                         break;
2074                 case 4:
2075                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2076                                 return true;
2077                         break;
2078                 case 5:
2079                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2080                                 return true;
2081                         break;
2082                 case 6:
2083                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2084                                 return true;
2085                         break;
2086                 case 7:
2087                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2088                                 return true;
2089                         break;
2090                 }
2091         }
2092         return false;
2093 }
2094
2095 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
2096 {
2097         int i;
2098         const mplane_t *p;
2099         for (i = 0;i < numplanes;i++)
2100         {
2101                 p = planes + i;
2102                 switch(p->signbits)
2103                 {
2104                 default:
2105                 case 0:
2106                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2107                                 return true;
2108                         break;
2109                 case 1:
2110                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2111                                 return true;
2112                         break;
2113                 case 2:
2114                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2115                                 return true;
2116                         break;
2117                 case 3:
2118                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2119                                 return true;
2120                         break;
2121                 case 4:
2122                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2123                                 return true;
2124                         break;
2125                 case 5:
2126                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2127                                 return true;
2128                         break;
2129                 case 6:
2130                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2131                                 return true;
2132                         break;
2133                 case 7:
2134                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2135                                 return true;
2136                         break;
2137                 }
2138         }
2139         return false;
2140 }
2141
2142 //==================================================================================
2143
2144 static void R_View_UpdateEntityVisible (void)
2145 {
2146         int i, renderimask;
2147         entity_render_t *ent;
2148
2149         if (!r_drawentities.integer)
2150                 return;
2151
2152         renderimask = r_refdef.envmap ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : ((chase_active.integer || r_waterstate.renderingscene) ? RENDER_VIEWMODEL : RENDER_EXTERIORMODEL);
2153         if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingVisibleLeafs)
2154         {
2155                 // worldmodel can check visibility
2156                 for (i = 0;i < r_refdef.numentities;i++)
2157                 {
2158                         ent = r_refdef.entities[i];
2159                         r_viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs)) && ((ent->effects & EF_NODEPTHTEST) || (ent->flags & RENDER_VIEWMODEL) || r_refdef.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.worldmodel, r_viewcache.world_leafvisible, ent->mins, ent->maxs));
2160
2161                 }
2162                 if(r_cullentities_trace.integer)
2163                 {
2164                         for (i = 0;i < r_refdef.numentities;i++)
2165                         {
2166                                 ent = r_refdef.entities[i];
2167                                 if(r_viewcache.entityvisible[i] && !(ent->effects & EF_NODEPTHTEST) && !(ent->flags & RENDER_VIEWMODEL) && !(ent->model && (ent->model->name[0] == '*')))
2168                                 {
2169                                         if(Mod_CanSeeBox_Trace(r_cullentities_trace_samples.integer, r_cullentities_trace_enlarge.value, r_refdef.worldmodel, r_view.origin, ent->mins, ent->maxs))
2170                                                 ent->last_trace_visibility = realtime;
2171                                         if(ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value)
2172                                                 r_viewcache.entityvisible[i] = 0;
2173                                 }
2174                         }
2175                 }
2176         }
2177         else
2178         {
2179                 // no worldmodel or it can't check visibility
2180                 for (i = 0;i < r_refdef.numentities;i++)
2181                 {
2182                         ent = r_refdef.entities[i];
2183                         r_viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs));
2184                 }
2185         }
2186 }
2187
2188 // only used if skyrendermasked, and normally returns false
2189 int R_DrawBrushModelsSky (void)
2190 {
2191         int i, sky;
2192         entity_render_t *ent;
2193
2194         if (!r_drawentities.integer)
2195                 return false;
2196
2197         sky = false;
2198         for (i = 0;i < r_refdef.numentities;i++)
2199         {
2200                 if (!r_viewcache.entityvisible[i])
2201                         continue;
2202                 ent = r_refdef.entities[i];
2203                 if (!ent->model || !ent->model->DrawSky)
2204                         continue;
2205                 ent->model->DrawSky(ent);
2206                 sky = true;
2207         }
2208         return sky;
2209 }
2210
2211 static void R_DrawNoModel(entity_render_t *ent);
2212 static void R_DrawModels(void)
2213 {
2214         int i;
2215         entity_render_t *ent;
2216
2217         if (!r_drawentities.integer)
2218                 return;
2219
2220         for (i = 0;i < r_refdef.numentities;i++)
2221         {
2222                 if (!r_viewcache.entityvisible[i])
2223                         continue;
2224                 ent = r_refdef.entities[i];
2225                 r_refdef.stats.entities++;
2226                 if (ent->model && ent->model->Draw != NULL)
2227                         ent->model->Draw(ent);
2228                 else
2229                         R_DrawNoModel(ent);
2230         }
2231 }
2232
2233 static void R_DrawModelsDepth(void)
2234 {
2235         int i;
2236         entity_render_t *ent;
2237
2238         if (!r_drawentities.integer)
2239                 return;
2240
2241         for (i = 0;i < r_refdef.numentities;i++)
2242         {
2243                 if (!r_viewcache.entityvisible[i])
2244                         continue;
2245                 ent = r_refdef.entities[i];
2246                 if (ent->model && ent->model->DrawDepth != NULL)
2247                         ent->model->DrawDepth(ent);
2248         }
2249 }
2250
2251 static void R_DrawModelsDebug(void)
2252 {
2253         int i;
2254         entity_render_t *ent;
2255
2256         if (!r_drawentities.integer)
2257                 return;
2258
2259         for (i = 0;i < r_refdef.numentities;i++)
2260         {
2261                 if (!r_viewcache.entityvisible[i])
2262                         continue;
2263                 ent = r_refdef.entities[i];
2264                 if (ent->model && ent->model->DrawDebug != NULL)
2265                         ent->model->DrawDebug(ent);
2266         }
2267 }
2268
2269 static void R_DrawModelsAddWaterPlanes(void)
2270 {
2271         int i;
2272         entity_render_t *ent;
2273
2274         if (!r_drawentities.integer)
2275                 return;
2276
2277         for (i = 0;i < r_refdef.numentities;i++)
2278         {
2279                 if (!r_viewcache.entityvisible[i])
2280                         continue;
2281                 ent = r_refdef.entities[i];
2282                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
2283                         ent->model->DrawAddWaterPlanes(ent);
2284         }
2285 }
2286
2287 static void R_View_SetFrustum(void)
2288 {
2289         int i;
2290         double slopex, slopey;
2291
2292         // break apart the view matrix into vectors for various purposes
2293         Matrix4x4_ToVectors(&r_view.matrix, r_view.forward, r_view.left, r_view.up, r_view.origin);
2294         VectorNegate(r_view.left, r_view.right);
2295
2296 #if 0
2297         r_view.frustum[0].normal[0] = 0 - 1.0 / r_view.frustum_x;
2298         r_view.frustum[0].normal[1] = 0 - 0;
2299         r_view.frustum[0].normal[2] = -1 - 0;
2300         r_view.frustum[1].normal[0] = 0 + 1.0 / r_view.frustum_x;
2301         r_view.frustum[1].normal[1] = 0 + 0;
2302         r_view.frustum[1].normal[2] = -1 + 0;
2303         r_view.frustum[2].normal[0] = 0 - 0;
2304         r_view.frustum[2].normal[1] = 0 - 1.0 / r_view.frustum_y;
2305         r_view.frustum[2].normal[2] = -1 - 0;
2306         r_view.frustum[3].normal[0] = 0 + 0;
2307         r_view.frustum[3].normal[1] = 0 + 1.0 / r_view.frustum_y;
2308         r_view.frustum[3].normal[2] = -1 + 0;
2309 #endif
2310
2311 #if 0
2312         zNear = r_refdef.nearclip;
2313         nudge = 1.0 - 1.0 / (1<<23);
2314         r_view.frustum[4].normal[0] = 0 - 0;
2315         r_view.frustum[4].normal[1] = 0 - 0;
2316         r_view.frustum[4].normal[2] = -1 - -nudge;
2317         r_view.frustum[4].dist = 0 - -2 * zNear * nudge;
2318         r_view.frustum[5].normal[0] = 0 + 0;
2319         r_view.frustum[5].normal[1] = 0 + 0;
2320         r_view.frustum[5].normal[2] = -1 + -nudge;
2321         r_view.frustum[5].dist = 0 + -2 * zNear * nudge;
2322 #endif
2323
2324
2325
2326 #if 0
2327         r_view.frustum[0].normal[0] = m[3] - m[0];
2328         r_view.frustum[0].normal[1] = m[7] - m[4];
2329         r_view.frustum[0].normal[2] = m[11] - m[8];
2330         r_view.frustum[0].dist = m[15] - m[12];
2331
2332         r_view.frustum[1].normal[0] = m[3] + m[0];
2333         r_view.frustum[1].normal[1] = m[7] + m[4];
2334         r_view.frustum[1].normal[2] = m[11] + m[8];
2335         r_view.frustum[1].dist = m[15] + m[12];
2336
2337         r_view.frustum[2].normal[0] = m[3] - m[1];
2338         r_view.frustum[2].normal[1] = m[7] - m[5];
2339         r_view.frustum[2].normal[2] = m[11] - m[9];
2340         r_view.frustum[2].dist = m[15] - m[13];
2341
2342         r_view.frustum[3].normal[0] = m[3] + m[1];
2343         r_view.frustum[3].normal[1] = m[7] + m[5];
2344         r_view.frustum[3].normal[2] = m[11] + m[9];
2345         r_view.frustum[3].dist = m[15] + m[13];
2346
2347         r_view.frustum[4].normal[0] = m[3] - m[2];
2348         r_view.frustum[4].normal[1] = m[7] - m[6];
2349         r_view.frustum[4].normal[2] = m[11] - m[10];
2350         r_view.frustum[4].dist = m[15] - m[14];
2351
2352         r_view.frustum[5].normal[0] = m[3] + m[2];
2353         r_view.frustum[5].normal[1] = m[7] + m[6];
2354         r_view.frustum[5].normal[2] = m[11] + m[10];
2355         r_view.frustum[5].dist = m[15] + m[14];
2356 #endif
2357
2358         if (r_view.useperspective)
2359         {
2360                 slopex = 1.0 / r_view.frustum_x;
2361                 slopey = 1.0 / r_view.frustum_y;
2362                 VectorMA(r_view.forward, -slopex, r_view.left, r_view.frustum[0].normal);
2363                 VectorMA(r_view.forward,  slopex, r_view.left, r_view.frustum[1].normal);
2364                 VectorMA(r_view.forward, -slopey, r_view.up  , r_view.frustum[2].normal);
2365                 VectorMA(r_view.forward,  slopey, r_view.up  , r_view.frustum[3].normal);
2366                 VectorCopy(r_view.forward, r_view.frustum[4].normal);
2367                 
2368                 // Leaving those out was a mistake, those were in the old code, and they
2369                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
2370                 // I couldn't reproduce it after adding those normalizations. --blub
2371                 VectorNormalize(r_view.frustum[0].normal);
2372                 VectorNormalize(r_view.frustum[1].normal);
2373                 VectorNormalize(r_view.frustum[2].normal);
2374                 VectorNormalize(r_view.frustum[3].normal);
2375
2376                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
2377                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward, -1024 * slopex, r_view.left, -1024 * slopey, r_view.up, r_view.frustumcorner[0]);
2378                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward,  1024 * slopex, r_view.left, -1024 * slopey, r_view.up, r_view.frustumcorner[1]);
2379                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward, -1024 * slopex, r_view.left,  1024 * slopey, r_view.up, r_view.frustumcorner[2]);
2380                 VectorMAMAMAM(1, r_view.origin, 1024, r_view.forward,  1024 * slopex, r_view.left,  1024 * slopey, r_view.up, r_view.frustumcorner[3]);
2381
2382                 r_view.frustum[0].dist = DotProduct (r_view.origin, r_view.frustum[0].normal);
2383                 r_view.frustum[1].dist = DotProduct (r_view.origin, r_view.frustum[1].normal);
2384                 r_view.frustum[2].dist = DotProduct (r_view.origin, r_view.frustum[2].normal);
2385                 r_view.frustum[3].dist = DotProduct (r_view.origin, r_view.frustum[3].normal);
2386                 r_view.frustum[4].dist = DotProduct (r_view.origin, r_view.frustum[4].normal) + r_refdef.nearclip;
2387         }
2388         else
2389         {
2390                 VectorScale(r_view.left, -r_view.ortho_x, r_view.frustum[0].normal);
2391                 VectorScale(r_view.left,  r_view.ortho_x, r_view.frustum[1].normal);
2392                 VectorScale(r_view.up, -r_view.ortho_y, r_view.frustum[2].normal);
2393                 VectorScale(r_view.up,  r_view.ortho_y, r_view.frustum[3].normal);
2394                 VectorCopy(r_view.forward, r_view.frustum[4].normal);
2395                 r_view.frustum[0].dist = DotProduct (r_view.origin, r_view.frustum[0].normal) + r_view.ortho_x;
2396                 r_view.frustum[1].dist = DotProduct (r_view.origin, r_view.frustum[1].normal) + r_view.ortho_x;
2397                 r_view.frustum[2].dist = DotProduct (r_view.origin, r_view.frustum[2].normal) + r_view.ortho_y;
2398                 r_view.frustum[3].dist = DotProduct (r_view.origin, r_view.frustum[3].normal) + r_view.ortho_y;
2399                 r_view.frustum[4].dist = DotProduct (r_view.origin, r_view.frustum[4].normal) + r_refdef.nearclip;
2400         }
2401         r_view.numfrustumplanes = 5;
2402
2403         if (r_view.useclipplane)
2404         {
2405                 r_view.numfrustumplanes = 6;
2406                 r_view.frustum[5] = r_view.clipplane;
2407         }
2408
2409         for (i = 0;i < r_view.numfrustumplanes;i++)
2410                 PlaneClassify(r_view.frustum + i);
2411
2412         // LordHavoc: note to all quake engine coders, Quake had a special case
2413         // for 90 degrees which assumed a square view (wrong), so I removed it,
2414         // Quake2 has it disabled as well.
2415
2416         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
2417         //RotatePointAroundVector( r_view.frustum[0].normal, r_view.up, r_view.forward, -(90 - r_refdef.fov_x / 2));
2418         //r_view.frustum[0].dist = DotProduct (r_view.origin, frustum[0].normal);
2419         //PlaneClassify(&frustum[0]);
2420
2421         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
2422         //RotatePointAroundVector( r_view.frustum[1].normal, r_view.up, r_view.forward, (90 - r_refdef.fov_x / 2));
2423         //r_view.frustum[1].dist = DotProduct (r_view.origin, frustum[1].normal);
2424         //PlaneClassify(&frustum[1]);
2425
2426         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
2427         //RotatePointAroundVector( r_view.frustum[2].normal, r_view.left, r_view.forward, -(90 - r_refdef.fov_y / 2));
2428         //r_view.frustum[2].dist = DotProduct (r_view.origin, frustum[2].normal);
2429         //PlaneClassify(&frustum[2]);
2430
2431         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
2432         //RotatePointAroundVector( r_view.frustum[3].normal, r_view.left, r_view.forward, (90 - r_refdef.fov_y / 2));
2433         //r_view.frustum[3].dist = DotProduct (r_view.origin, frustum[3].normal);
2434         //PlaneClassify(&frustum[3]);
2435
2436         // nearclip plane
2437         //VectorCopy(r_view.forward, r_view.frustum[4].normal);
2438         //r_view.frustum[4].dist = DotProduct (r_view.origin, frustum[4].normal) + r_nearclip.value;
2439         //PlaneClassify(&frustum[4]);
2440 }
2441
2442 void R_View_Update(void)
2443 {
2444         R_View_SetFrustum();
2445         R_View_WorldVisibility(r_view.useclipplane);
2446         R_View_UpdateEntityVisible();
2447 }
2448
2449 void R_SetupView(void)
2450 {
2451         if (!r_view.useperspective)
2452                 GL_SetupView_Mode_Ortho(-r_view.ortho_x, -r_view.ortho_y, r_view.ortho_x, r_view.ortho_y, -r_refdef.farclip, r_refdef.farclip);
2453         else if (r_refdef.rtworldshadows || r_refdef.rtdlightshadows)
2454                 GL_SetupView_Mode_PerspectiveInfiniteFarClip(r_view.frustum_x, r_view.frustum_y, r_refdef.nearclip);
2455         else
2456                 GL_SetupView_Mode_Perspective(r_view.frustum_x, r_view.frustum_y, r_refdef.nearclip, r_refdef.farclip);
2457
2458         GL_SetupView_Orientation_FromEntity(&r_view.matrix);
2459
2460         if (r_view.useclipplane)
2461         {
2462                 // LordHavoc: couldn't figure out how to make this approach the
2463                 vec_t dist = r_view.clipplane.dist - r_water_clippingplanebias.value;
2464                 vec_t viewdist = DotProduct(r_view.origin, r_view.clipplane.normal);
2465                 if (viewdist < r_view.clipplane.dist + r_water_clippingplanebias.value)
2466                         dist = r_view.clipplane.dist;
2467                 GL_SetupView_ApplyCustomNearClipPlane(r_view.clipplane.normal[0], r_view.clipplane.normal[1], r_view.clipplane.normal[2], dist);
2468         }
2469 }
2470
2471 void R_ResetViewRendering2D(void)
2472 {
2473         if (gl_support_fragment_shader)
2474         {
2475                 qglUseProgramObjectARB(0);CHECKGLERROR
2476         }
2477
2478         DrawQ_Finish();
2479
2480         // GL is weird because it's bottom to top, r_view.y is top to bottom
2481         qglViewport(r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2482         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
2483         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
2484         GL_Color(1, 1, 1, 1);
2485         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
2486         GL_BlendFunc(GL_ONE, GL_ZERO);
2487         GL_AlphaTest(false);
2488         GL_ScissorTest(false);
2489         GL_DepthMask(false);
2490         GL_DepthRange(0, 1);
2491         GL_DepthTest(false);
2492         R_Mesh_Matrix(&identitymatrix);
2493         R_Mesh_ResetTextureState();
2494         GL_PolygonOffset(0, 0);
2495         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2496         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2497         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2498         qglStencilMask(~0);CHECKGLERROR
2499         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2500         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2501         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2502 }
2503
2504 void R_ResetViewRendering3D(void)
2505 {
2506         if (gl_support_fragment_shader)
2507         {
2508                 qglUseProgramObjectARB(0);CHECKGLERROR
2509         }
2510
2511         DrawQ_Finish();
2512
2513         // GL is weird because it's bottom to top, r_view.y is top to bottom
2514         qglViewport(r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2515         R_SetupView();
2516         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
2517         GL_Color(1, 1, 1, 1);
2518         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
2519         GL_BlendFunc(GL_ONE, GL_ZERO);
2520         GL_AlphaTest(false);
2521         GL_ScissorTest(true);
2522         GL_DepthMask(true);
2523         GL_DepthRange(0, 1);
2524         GL_DepthTest(true);
2525         R_Mesh_Matrix(&identitymatrix);
2526         R_Mesh_ResetTextureState();
2527         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
2528         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2529         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2530         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2531         qglStencilMask(~0);CHECKGLERROR
2532         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2533         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2534         GL_CullFace(r_view.cullface_back);
2535 }
2536
2537 /*
2538         R_Bloom_SetupShader(
2539 "// bloom shader\n"
2540 "// written by Forest 'LordHavoc' Hale\n"
2541 "\n"
2542 "// common definitions between vertex shader and fragment shader:\n"
2543 "\n"
2544 "#ifdef __GLSL_CG_DATA_TYPES\n"
2545 "#define myhalf half\n"
2546 "#define myhvec2 hvec2\n"
2547 "#define myhvec3 hvec3\n"
2548 "#define myhvec4 hvec4\n"
2549 "#else\n"
2550 "#define myhalf float\n"
2551 "#define myhvec2 vec2\n"
2552 "#define myhvec3 vec3\n"
2553 "#define myhvec4 vec4\n"
2554 "#endif\n"
2555 "\n"
2556 "varying vec2 ScreenTexCoord;\n"
2557 "varying vec2 BloomTexCoord;\n"
2558 "\n"
2559 "\n"
2560 "\n"
2561 "\n"
2562 "// vertex shader specific:\n"
2563 "#ifdef VERTEX_SHADER\n"
2564 "\n"
2565 "void main(void)\n"
2566 "{\n"
2567 "       ScreenTexCoord = vec2(gl_MultiTexCoord0);\n"
2568 "       BloomTexCoord = vec2(gl_MultiTexCoord1);\n"
2569 "       // transform vertex to camera space, using ftransform to match non-VS\n"
2570 "       // rendering\n"
2571 "       gl_Position = ftransform();\n"
2572 "}\n"
2573 "\n"
2574 "#endif // VERTEX_SHADER\n"
2575 "\n"
2576 "\n"
2577 "\n"
2578 "\n"
2579 "// fragment shader specific:\n"
2580 "#ifdef FRAGMENT_SHADER\n"
2581 "\n"
2582 "void main(void)\n"
2583 "{\n"
2584 "       int x, y;
2585 "       myhvec3 color = myhvec3(texture2D(Texture_Screen, ScreenTexCoord));\n"
2586 "       for (x = -BLUR_X;x <= BLUR_X;x++)
2587 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2588 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2589 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2590 "       color.rgb += myhvec3(texture2D(Texture_Bloom, BloomTexCoord));\n"
2591
2592 "       gl_FragColor = vec4(color);\n"
2593 "}\n"
2594 "\n"
2595 "#endif // FRAGMENT_SHADER\n"
2596 */
2597
2598 void R_RenderScene(qboolean addwaterplanes);
2599
2600 static void R_Water_StartFrame(void)
2601 {
2602         int i;
2603         int waterwidth, waterheight, texturewidth, textureheight;
2604         r_waterstate_waterplane_t *p;
2605
2606         // set waterwidth and waterheight to the water resolution that will be
2607         // used (often less than the screen resolution for faster rendering)
2608         waterwidth = (int)bound(1, r_view.width * r_water_resolutionmultiplier.value, r_view.width);
2609         waterheight = (int)bound(1, r_view.height * r_water_resolutionmultiplier.value, r_view.height);
2610
2611         // calculate desired texture sizes
2612         // can't use water if the card does not support the texture size
2613         if (!r_water.integer || !r_glsl.integer || !gl_support_fragment_shader || waterwidth > gl_max_texture_size || waterheight > gl_max_texture_size)
2614                 texturewidth = textureheight = waterwidth = waterheight = 0;
2615         else if (gl_support_arb_texture_non_power_of_two)
2616         {
2617                 texturewidth = waterwidth;
2618                 textureheight = waterheight;
2619         }
2620         else
2621         {
2622                 for (texturewidth   = 1;texturewidth   < waterwidth ;texturewidth   *= 2);
2623                 for (textureheight  = 1;textureheight  < waterheight;textureheight  *= 2);
2624         }
2625
2626         // allocate textures as needed
2627         if (r_waterstate.waterwidth != waterwidth || r_waterstate.waterheight != waterheight || r_waterstate.texturewidth != texturewidth || r_waterstate.textureheight != textureheight)
2628         {
2629                 r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2630                 for (i = 0, p = r_waterstate.waterplanes;i < r_waterstate.maxwaterplanes;i++, p++)
2631                 {
2632                         if (p->texture_refraction)
2633                                 R_FreeTexture(p->texture_refraction);
2634                         p->texture_refraction = NULL;
2635                         if (p->texture_reflection)
2636                                 R_FreeTexture(p->texture_reflection);
2637                         p->texture_reflection = NULL;
2638                 }
2639                 memset(&r_waterstate, 0, sizeof(r_waterstate));
2640                 r_waterstate.waterwidth = waterwidth;
2641                 r_waterstate.waterheight = waterheight;
2642                 r_waterstate.texturewidth = texturewidth;
2643                 r_waterstate.textureheight = textureheight;
2644         }
2645
2646         if (r_waterstate.waterwidth)
2647         {
2648                 r_waterstate.enabled = true;
2649
2650                 // set up variables that will be used in shader setup
2651                 r_waterstate.screenscale[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2652                 r_waterstate.screenscale[1] = 0.5f * (float)waterheight / (float)textureheight;
2653                 r_waterstate.screencenter[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2654                 r_waterstate.screencenter[1] = 0.5f * (float)waterheight / (float)textureheight;
2655         }
2656
2657         r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2658         r_waterstate.numwaterplanes = 0;
2659 }
2660
2661 static void R_Water_AddWaterPlane(msurface_t *surface)
2662 {
2663         int triangleindex, planeindex;
2664         const int *e;
2665         vec3_t vert[3];
2666         vec3_t normal;
2667         vec3_t center;
2668         r_waterstate_waterplane_t *p;
2669         // just use the first triangle with a valid normal for any decisions
2670         VectorClear(normal);
2671         for (triangleindex = 0, e = rsurface.modelelement3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
2672         {
2673                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[0]*3, vert[0]);
2674                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[1]*3, vert[1]);
2675                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[2]*3, vert[2]);
2676                 TriangleNormal(vert[0], vert[1], vert[2], normal);
2677                 if (VectorLength2(normal) >= 0.001)
2678                         break;
2679         }
2680
2681         // find a matching plane if there is one
2682         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2683                 if (fabs(PlaneDiff(vert[0], &p->plane)) < 1 && fabs(PlaneDiff(vert[1], &p->plane)) < 1 && fabs(PlaneDiff(vert[2], &p->plane)) < 1)
2684                         break;
2685         if (planeindex >= r_waterstate.maxwaterplanes)
2686                 return; // nothing we can do, out of planes
2687
2688         // if this triangle does not fit any known plane rendered this frame, add one
2689         if (planeindex >= r_waterstate.numwaterplanes)
2690         {
2691                 // store the new plane
2692                 r_waterstate.numwaterplanes++;
2693                 VectorCopy(normal, p->plane.normal);
2694                 VectorNormalize(p->plane.normal);
2695                 p->plane.dist = DotProduct(vert[0], p->plane.normal);
2696                 PlaneClassify(&p->plane);
2697                 // flip the plane if it does not face the viewer
2698                 if (PlaneDiff(r_view.origin, &p->plane) < 0)
2699                 {
2700                         VectorNegate(p->plane.normal, p->plane.normal);
2701                         p->plane.dist *= -1;
2702                         PlaneClassify(&p->plane);
2703                 }
2704                 // clear materialflags and pvs
2705                 p->materialflags = 0;
2706                 p->pvsvalid = false;
2707         }
2708         // merge this surface's materialflags into the waterplane
2709         p->materialflags |= surface->texture->currentframe->currentmaterialflags;
2710         // merge this surface's PVS into the waterplane
2711         VectorMAM(0.5f, surface->mins, 0.5f, surface->maxs, center);
2712         if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.worldmodel && r_refdef.worldmodel->brush.FatPVS
2713          && r_refdef.worldmodel->brush.PointInLeaf && r_refdef.worldmodel->brush.PointInLeaf(r_refdef.worldmodel, center)->clusterindex >= 0)
2714         {
2715                 r_refdef.worldmodel->brush.FatPVS(r_refdef.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
2716                 p->pvsvalid = true;
2717         }
2718 }
2719
2720 static void R_Water_ProcessPlanes(void)
2721 {
2722         r_view_t originalview;
2723         int planeindex;
2724         r_waterstate_waterplane_t *p;
2725
2726         originalview = r_view;
2727
2728         // make sure enough textures are allocated
2729         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2730         {
2731                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2732                 {
2733                         if (!p->texture_refraction)
2734                                 p->texture_refraction = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_refraction", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2735                         if (!p->texture_refraction)
2736                                 goto error;
2737                 }
2738
2739                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2740                 {
2741                         if (!p->texture_reflection)
2742                                 p->texture_reflection = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_reflection", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2743                         if (!p->texture_reflection)
2744                                 goto error;
2745                 }
2746         }
2747
2748         // render views
2749         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2750         {
2751                 r_view.showdebug = false;
2752                 r_view.width = r_waterstate.waterwidth;
2753                 r_view.height = r_waterstate.waterheight;
2754                 r_view.useclipplane = true;
2755                 r_waterstate.renderingscene = true;
2756
2757                 // render the normal view scene and copy into texture
2758                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
2759                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2760                 {
2761                         r_view.clipplane = p->plane;
2762                         VectorNegate(r_view.clipplane.normal, r_view.clipplane.normal);
2763                         r_view.clipplane.dist = -r_view.clipplane.dist;
2764                         PlaneClassify(&r_view.clipplane);
2765
2766                         R_RenderScene(false);
2767
2768                         // copy view into the screen texture
2769                         R_Mesh_TexBind(0, R_GetTexture(p->texture_refraction));
2770                         GL_ActiveTexture(0);
2771                         CHECKGLERROR
2772                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2773                 }
2774
2775                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2776                 {
2777                         // render reflected scene and copy into texture
2778                         Matrix4x4_Reflect(&r_view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
2779                         r_view.clipplane = p->plane;
2780                         // reverse the cullface settings for this render
2781                         r_view.cullface_front = GL_FRONT;
2782                         r_view.cullface_back = GL_BACK;
2783                         if (r_refdef.worldmodel && r_refdef.worldmodel->brush.num_pvsclusterbytes)
2784                         {
2785                                 r_view.usecustompvs = true;
2786                                 if (p->pvsvalid)
2787                                         memcpy(r_viewcache.world_pvsbits, p->pvsbits, r_refdef.worldmodel->brush.num_pvsclusterbytes);
2788                                 else
2789                                         memset(r_viewcache.world_pvsbits, 0xFF, r_refdef.worldmodel->brush.num_pvsclusterbytes);
2790                         }
2791
2792                         R_ResetViewRendering3D();
2793                         R_ClearScreen();
2794                         if (r_timereport_active)
2795                                 R_TimeReport("viewclear");
2796
2797                         R_RenderScene(false);
2798
2799                         R_Mesh_TexBind(0, R_GetTexture(p->texture_reflection));
2800                         GL_ActiveTexture(0);
2801                         CHECKGLERROR
2802                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2803
2804                         R_ResetViewRendering3D();
2805                         R_ClearScreen();
2806                         if (r_timereport_active)
2807                                 R_TimeReport("viewclear");
2808                 }
2809
2810                 r_view = originalview;
2811                 r_view.clear = true;
2812                 r_waterstate.renderingscene = false;
2813         }
2814         return;
2815 error:
2816         r_view = originalview;
2817         r_waterstate.renderingscene = false;
2818         Cvar_SetValueQuick(&r_water, 0);
2819         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
2820         return;
2821 }
2822
2823 void R_Bloom_StartFrame(void)
2824 {
2825         int bloomtexturewidth, bloomtextureheight, screentexturewidth, screentextureheight;
2826
2827         // set bloomwidth and bloomheight to the bloom resolution that will be
2828         // used (often less than the screen resolution for faster rendering)
2829         r_bloomstate.bloomwidth = bound(1, r_bloom_resolution.integer, r_view.width);
2830         r_bloomstate.bloomheight = r_bloomstate.bloomwidth * r_view.height / r_view.width;
2831         r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, r_view.height);
2832
2833         // calculate desired texture sizes
2834         if (gl_support_arb_texture_non_power_of_two)
2835         {
2836                 screentexturewidth = r_view.width;
2837                 screentextureheight = r_view.height;
2838                 bloomtexturewidth = r_bloomstate.bloomwidth;
2839                 bloomtextureheight = r_bloomstate.bloomheight;
2840         }
2841         else
2842         {
2843                 for (screentexturewidth  = 1;screentexturewidth  < vid.width               ;screentexturewidth  *= 2);
2844                 for (screentextureheight = 1;screentextureheight < vid.height              ;screentextureheight *= 2);
2845                 for (bloomtexturewidth   = 1;bloomtexturewidth   < r_bloomstate.bloomwidth ;bloomtexturewidth   *= 2);
2846                 for (bloomtextureheight  = 1;bloomtextureheight  < r_bloomstate.bloomheight;bloomtextureheight  *= 2);
2847         }
2848
2849         if (r_hdr.integer)
2850         {
2851                 screentexturewidth = screentextureheight = 0;
2852         }
2853         else if (r_bloom.integer)
2854         {
2855         }
2856         else
2857         {
2858                 screentexturewidth = screentextureheight = 0;
2859                 bloomtexturewidth = bloomtextureheight = 0;
2860         }
2861
2862         if ((!bloomtexturewidth && !bloomtextureheight) || r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512 || screentexturewidth > gl_max_texture_size || screentextureheight > gl_max_texture_size || bloomtexturewidth > gl_max_texture_size || bloomtextureheight > gl_max_texture_size)
2863         {
2864                 // can't use bloom if the parameters are too weird
2865                 // can't use bloom if the card does not support the texture size
2866                 if (r_bloomstate.texture_screen)
2867                         R_FreeTexture(r_bloomstate.texture_screen);
2868                 if (r_bloomstate.texture_bloom)
2869                         R_FreeTexture(r_bloomstate.texture_bloom);
2870                 memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2871                 return;
2872         }
2873
2874         r_bloomstate.enabled = true;
2875         r_bloomstate.hdr = r_hdr.integer != 0;
2876
2877         // allocate textures as needed
2878         if (r_bloomstate.screentexturewidth != screentexturewidth || r_bloomstate.screentextureheight != screentextureheight)
2879         {
2880                 if (r_bloomstate.texture_screen)
2881                         R_FreeTexture(r_bloomstate.texture_screen);
2882                 r_bloomstate.texture_screen = NULL;
2883                 r_bloomstate.screentexturewidth = screentexturewidth;
2884                 r_bloomstate.screentextureheight = screentextureheight;
2885                 if (r_bloomstate.screentexturewidth && r_bloomstate.screentextureheight)
2886                         r_bloomstate.texture_screen = R_LoadTexture2D(r_main_texturepool, "screen", r_bloomstate.screentexturewidth, r_bloomstate.screentextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2887         }
2888         if (r_bloomstate.bloomtexturewidth != bloomtexturewidth || r_bloomstate.bloomtextureheight != bloomtextureheight)
2889         {
2890                 if (r_bloomstate.texture_bloom)
2891                         R_FreeTexture(r_bloomstate.texture_bloom);
2892                 r_bloomstate.texture_bloom = NULL;
2893                 r_bloomstate.bloomtexturewidth = bloomtexturewidth;
2894                 r_bloomstate.bloomtextureheight = bloomtextureheight;
2895                 if (r_bloomstate.bloomtexturewidth && r_bloomstate.bloomtextureheight)
2896                         r_bloomstate.texture_bloom = R_LoadTexture2D(r_main_texturepool, "bloom", r_bloomstate.bloomtexturewidth, r_bloomstate.bloomtextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2897         }
2898
2899         // set up a texcoord array for the full resolution screen image
2900         // (we have to keep this around to copy back during final render)
2901         r_bloomstate.screentexcoord2f[0] = 0;
2902         r_bloomstate.screentexcoord2f[1] = (float)r_view.height / (float)r_bloomstate.screentextureheight;
2903         r_bloomstate.screentexcoord2f[2] = (float)r_view.width / (float)r_bloomstate.screentexturewidth;
2904         r_bloomstate.screentexcoord2f[3] = (float)r_view.height / (float)r_bloomstate.screentextureheight;
2905         r_bloomstate.screentexcoord2f[4] = (float)r_view.width / (float)r_bloomstate.screentexturewidth;
2906         r_bloomstate.screentexcoord2f[5] = 0;
2907         r_bloomstate.screentexcoord2f[6] = 0;
2908         r_bloomstate.screentexcoord2f[7] = 0;
2909
2910         // set up a texcoord array for the reduced resolution bloom image
2911         // (which will be additive blended over the screen image)
2912         r_bloomstate.bloomtexcoord2f[0] = 0;
2913         r_bloomstate.bloomtexcoord2f[1] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
2914         r_bloomstate.bloomtexcoord2f[2] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
2915         r_bloomstate.bloomtexcoord2f[3] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
2916         r_bloomstate.bloomtexcoord2f[4] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
2917         r_bloomstate.bloomtexcoord2f[5] = 0;
2918         r_bloomstate.bloomtexcoord2f[6] = 0;
2919         r_bloomstate.bloomtexcoord2f[7] = 0;
2920 }
2921
2922 void R_Bloom_CopyScreenTexture(float colorscale)
2923 {
2924         r_refdef.stats.bloom++;
2925
2926         R_ResetViewRendering2D();
2927         R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
2928         R_Mesh_ColorPointer(NULL, 0, 0);
2929         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
2930         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
2931
2932         // copy view into the screen texture
2933         GL_ActiveTexture(0);
2934         CHECKGLERROR
2935         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2936         r_refdef.stats.bloom_copypixels += r_view.width * r_view.height;
2937
2938         // now scale it down to the bloom texture size
2939         CHECKGLERROR
2940         qglViewport(r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2941         GL_BlendFunc(GL_ONE, GL_ZERO);
2942         GL_Color(colorscale, colorscale, colorscale, 1);
2943         // TODO: optimize with multitexture or GLSL
2944         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
2945         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2946
2947         // we now have a bloom image in the framebuffer
2948         // copy it into the bloom image texture for later processing
2949         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
2950         GL_ActiveTexture(0);
2951         CHECKGLERROR
2952         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2953         r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2954 }
2955
2956 void R_Bloom_CopyHDRTexture(void)
2957 {
2958         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
2959         GL_ActiveTexture(0);
2960         CHECKGLERROR
2961         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_view.height), r_view.width, r_view.height);CHECKGLERROR
2962         r_refdef.stats.bloom_copypixels += r_view.width * r_view.height;
2963 }
2964
2965 void R_Bloom_MakeTexture(void)
2966 {
2967         int x, range, dir;
2968         float xoffset, yoffset, r, brighten;
2969
2970         r_refdef.stats.bloom++;
2971
2972         R_ResetViewRendering2D();
2973         R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
2974         R_Mesh_ColorPointer(NULL, 0, 0);
2975
2976         // we have a bloom image in the framebuffer
2977         CHECKGLERROR
2978         qglViewport(r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2979
2980         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
2981         {
2982                 x *= 2;
2983                 r = bound(0, r_bloom_colorexponent.value / x, 1);
2984                 GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR);
2985                 GL_Color(r, r, r, 1);
2986                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
2987                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
2988                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
2989                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2990
2991                 // copy the vertically blurred bloom view to a texture
2992                 GL_ActiveTexture(0);
2993                 CHECKGLERROR
2994                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
2995                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
2996         }
2997
2998         range = r_bloom_blur.integer * r_bloomstate.bloomwidth / 320;
2999         brighten = r_bloom_brighten.value;
3000         if (r_hdr.integer)
3001                 brighten *= r_hdr_range.value;
3002         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3003         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.offsettexcoord2f, 0, 0);
3004
3005         for (dir = 0;dir < 2;dir++)
3006         {
3007                 // blend on at multiple vertical offsets to achieve a vertical blur
3008                 // TODO: do offset blends using GLSL
3009                 GL_BlendFunc(GL_ONE, GL_ZERO);
3010                 for (x = -range;x <= range;x++)
3011                 {
3012                         if (!dir){xoffset = 0;yoffset = x;}
3013                         else {xoffset = x;yoffset = 0;}
3014                         xoffset /= (float)r_bloomstate.bloomtexturewidth;
3015                         yoffset /= (float)r_bloomstate.bloomtextureheight;
3016                         // compute a texcoord array with the specified x and y offset
3017                         r_bloomstate.offsettexcoord2f[0] = xoffset+0;
3018                         r_bloomstate.offsettexcoord2f[1] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3019                         r_bloomstate.offsettexcoord2f[2] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3020                         r_bloomstate.offsettexcoord2f[3] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3021                         r_bloomstate.offsettexcoord2f[4] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3022                         r_bloomstate.offsettexcoord2f[5] = yoffset+0;
3023                         r_bloomstate.offsettexcoord2f[6] = xoffset+0;
3024                         r_bloomstate.offsettexcoord2f[7] = yoffset+0;
3025                         // this r value looks like a 'dot' particle, fading sharply to
3026                         // black at the edges
3027                         // (probably not realistic but looks good enough)
3028                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
3029                         //r = (dir ? 1.0f : brighten)/(range*2+1);
3030                         r = (dir ? 1.0f : brighten)/(range*2+1)*(1 - x*x/(float)(range*range));
3031                         GL_Color(r, r, r, 1);
3032                         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3033                         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3034                         GL_BlendFunc(GL_ONE, GL_ONE);
3035                 }
3036
3037                 // copy the vertically blurred bloom view to a texture
3038                 GL_ActiveTexture(0);
3039                 CHECKGLERROR
3040                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3041                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3042         }
3043
3044         // apply subtract last
3045         // (just like it would be in a GLSL shader)
3046         if (r_bloom_colorsubtract.value > 0 && gl_support_ext_blend_subtract)
3047         {
3048                 GL_BlendFunc(GL_ONE, GL_ZERO);
3049                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3050                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3051                 GL_Color(1, 1, 1, 1);
3052                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3053                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3054
3055                 GL_BlendFunc(GL_ONE, GL_ONE);
3056                 qglBlendEquationEXT(GL_FUNC_REVERSE_SUBTRACT_EXT);
3057                 R_Mesh_TexBind(0, R_GetTexture(r_texture_white));
3058                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3059                 GL_Color(r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 1);
3060                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3061                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3062                 qglBlendEquationEXT(GL_FUNC_ADD_EXT);
3063
3064                 // copy the darkened bloom view to a texture
3065                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3066                 GL_ActiveTexture(0);
3067                 CHECKGLERROR
3068                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_view.x, vid.height - (r_view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3069                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3070         }
3071 }
3072
3073 static void R_UpdateFogColor(void); // needs to be called before HDR subrender too, as that changes colorscale!
3074
3075 void R_HDR_RenderBloomTexture(void)
3076 {
3077         int oldwidth, oldheight;
3078
3079         oldwidth = r_view.width;
3080         oldheight = r_view.height;
3081         r_view.width = r_bloomstate.bloomwidth;
3082         r_view.height = r_bloomstate.bloomheight;
3083
3084         // TODO: support GL_EXT_framebuffer_object rather than reusing the framebuffer?  it might improve SLI performance.
3085         // TODO: add exposure compensation features
3086         // TODO: add fp16 framebuffer support
3087
3088         r_view.showdebug = false;
3089         r_view.colorscale = r_bloom_colorscale.value * r_hdr_scenebrightness.value;
3090         if (r_hdr.integer)
3091                 r_view.colorscale /= r_hdr_range.value;
3092
3093         R_UpdateFogColor();
3094
3095         r_waterstate.numwaterplanes = 0;
3096         R_RenderScene(r_waterstate.enabled);
3097         r_view.showdebug = true;
3098
3099         R_ResetViewRendering2D();
3100
3101         R_Bloom_CopyHDRTexture();
3102         R_Bloom_MakeTexture();
3103
3104         R_ResetViewRendering3D();
3105
3106         R_ClearScreen();
3107         if (r_timereport_active)
3108                 R_TimeReport("viewclear");
3109
3110         // restore the view settings
3111         r_view.width = oldwidth;
3112         r_view.height = oldheight;
3113 }
3114
3115 static void R_BlendView(void)
3116 {
3117         if (r_bloomstate.enabled && r_bloomstate.hdr)
3118         {
3119                 // render high dynamic range bloom effect
3120                 // the bloom texture was made earlier this render, so we just need to
3121                 // blend it onto the screen...
3122                 R_ResetViewRendering2D();
3123                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3124                 R_Mesh_ColorPointer(NULL, 0, 0);
3125                 GL_Color(1, 1, 1, 1);
3126                 GL_BlendFunc(GL_ONE, GL_ONE);
3127                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3128                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3129                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3130                 r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3131         }
3132         else if (r_bloomstate.enabled)
3133         {
3134                 // render simple bloom effect
3135                 // copy the screen and shrink it and darken it for the bloom process
3136                 R_Bloom_CopyScreenTexture(r_bloom_colorscale.value);
3137                 // make the bloom texture
3138                 R_Bloom_MakeTexture();
3139                 // put the original screen image back in place and blend the bloom
3140                 // texture on it
3141                 R_ResetViewRendering2D();
3142                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3143                 R_Mesh_ColorPointer(NULL, 0, 0);
3144                 GL_Color(1, 1, 1, 1);
3145                 GL_BlendFunc(GL_ONE, GL_ZERO);
3146                 // do both in one pass if possible
3147                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3148                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3149                 if (r_textureunits.integer >= 2 && gl_combine.integer)
3150                 {
3151                         R_Mesh_TexCombine(1, GL_ADD, GL_ADD, 1, 1);
3152                         R_Mesh_TexBind(1, R_GetTexture(r_bloomstate.texture_screen));
3153                         R_Mesh_TexCoordPointer(1, 2, r_bloomstate.screentexcoord2f, 0, 0);
3154                 }
3155                 else
3156                 {
3157                         R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3158                         r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3159                         // now blend on the bloom texture
3160                         GL_BlendFunc(GL_ONE, GL_ONE);
3161                         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3162                         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
3163                 }
3164                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3165                 r_refdef.stats.bloom_drawpixels += r_view.width * r_view.height;
3166         }
3167         if (r_refdef.viewblend[3] >= (1.0f / 256.0f))
3168         {
3169                 // apply a color tint to the whole view
3170                 R_ResetViewRendering2D();
3171                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3172                 R_Mesh_ColorPointer(NULL, 0, 0);
3173                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3174                 GL_Color(r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
3175                 R_Mesh_Draw(0, 4, 2, polygonelements, 0, 0);
3176         }
3177 }
3178
3179 void R_RenderScene(qboolean addwaterplanes);
3180
3181 matrix4x4_t r_waterscrollmatrix;
3182
3183 static void R_UpdateFogColor(void) // needs to be called before HDR subrender too, as that changes colorscale!
3184 {
3185         if (r_refdef.fog_density)
3186         {
3187                 r_refdef.fogcolor[0] = r_refdef.fog_red;
3188                 r_refdef.fogcolor[1] = r_refdef.fog_green;
3189                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
3190
3191                 {
3192                         vec3_t fogvec;
3193                         //   color.rgb *= SceneBrightness;
3194                         VectorScale(r_refdef.fogcolor, r_view.colorscale, fogvec);
3195                         if(r_glsl.integer && (r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)) // need to support contrast boost
3196                         {
3197                                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
3198                                 fogvec[0] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[0] + 1);
3199                                 fogvec[1] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[1] + 1);
3200                                 fogvec[2] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[2] + 1);
3201                         }
3202                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
3203                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
3204                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
3205                 }
3206         }
3207 }
3208
3209 void R_UpdateVariables(void)
3210 {
3211         R_Textures_Frame();
3212
3213         r_refdef.farclip = 4096;
3214         if (r_refdef.worldmodel)
3215                 r_refdef.farclip += VectorDistance(r_refdef.worldmodel->normalmins, r_refdef.worldmodel->normalmaxs);
3216         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
3217
3218         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
3219                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
3220         r_refdef.polygonfactor = 0;
3221         r_refdef.polygonoffset = 0;
3222         r_refdef.shadowpolygonfactor = r_refdef.polygonfactor + r_shadow_polygonfactor.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3223         r_refdef.shadowpolygonoffset = r_refdef.polygonoffset + r_shadow_polygonoffset.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3224
3225         r_refdef.rtworld = r_shadow_realtime_world.integer;
3226         r_refdef.rtworldshadows = r_shadow_realtime_world_shadows.integer && gl_stencil;
3227         r_refdef.rtdlight = (r_shadow_realtime_world.integer || r_shadow_realtime_dlight.integer) && !gl_flashblend.integer && r_dynamic.integer;
3228         r_refdef.rtdlightshadows = r_refdef.rtdlight && r_shadow_realtime_dlight_shadows.integer && gl_stencil;
3229         r_refdef.lightmapintensity = r_refdef.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
3230         if (r_showsurfaces.integer)
3231         {
3232                 r_refdef.rtworld = false;
3233                 r_refdef.rtworldshadows = false;
3234                 r_refdef.rtdlight = false;
3235                 r_refdef.rtdlightshadows = false;
3236                 r_refdef.lightmapintensity = 0;
3237         }
3238
3239         if (gamemode == GAME_NEHAHRA)
3240         {
3241                 if (gl_fogenable.integer)
3242                 {
3243                         r_refdef.oldgl_fogenable = true;
3244                         r_refdef.fog_density = gl_fogdensity.value;
3245                         r_refdef.fog_red = gl_fogred.value;
3246                         r_refdef.fog_green = gl_foggreen.value;
3247                         r_refdef.fog_blue = gl_fogblue.value;
3248                 }
3249                 else if (r_refdef.oldgl_fogenable)
3250                 {
3251                         r_refdef.oldgl_fogenable = false;
3252                         r_refdef.fog_density = 0;
3253                         r_refdef.fog_red = 0;
3254                         r_refdef.fog_green = 0;
3255                         r_refdef.fog_blue = 0;
3256                 }
3257         }
3258
3259         if (r_refdef.fog_start >= r_refdef.fog_end || r_refdef.fog_start < 0)
3260         {
3261                 r_refdef.fog_start = 0;
3262                 r_refdef.fog_end = 1000000000;
3263                 // TODO update fog cvars here too
3264         }
3265
3266         R_UpdateFogColor();
3267
3268         if (r_refdef.fog_density)
3269         {
3270                 r_refdef.fogenabled = true;
3271                 // this is the point where the fog reaches 0.9986 alpha, which we
3272                 // consider a good enough cutoff point for the texture
3273                 // (0.9986 * 256 == 255.6)
3274                 r_refdef.fogrange = 16 / (r_refdef.fog_density * r_refdef.fog_density);
3275                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
3276                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
3277                 // fog color was already set
3278         }
3279         else
3280                 r_refdef.fogenabled = false;
3281 }
3282
3283 /*
3284 ================
3285 R_RenderView
3286 ================
3287 */
3288 void R_RenderView(void)
3289 {
3290         if (!r_refdef.entities/* || !r_refdef.worldmodel*/)
3291                 return; //Host_Error ("R_RenderView: NULL worldmodel");
3292
3293         R_Shadow_UpdateWorldLightSelection();
3294
3295         R_Bloom_StartFrame();
3296         R_Water_StartFrame();
3297
3298         CHECKGLERROR
3299         if (r_timereport_active)
3300                 R_TimeReport("viewsetup");
3301
3302         R_ResetViewRendering3D();
3303
3304         if (r_view.clear)
3305         {
3306                 R_ClearScreen();
3307                 if (r_timereport_active)
3308                         R_TimeReport("viewclear");
3309         }
3310         r_view.clear = true;
3311
3312         r_view.showdebug = true;
3313
3314         // this produces a bloom texture to be used in R_BlendView() later
3315         if (r_hdr.integer)
3316                 R_HDR_RenderBloomTexture();
3317
3318         r_view.colorscale = r_hdr_scenebrightness.value;
3319         r_waterstate.numwaterplanes = 0;
3320         R_RenderScene(r_waterstate.enabled);
3321
3322         R_BlendView();
3323         if (r_timereport_active)
3324                 R_TimeReport("blendview");
3325
3326         GL_Scissor(0, 0, vid.width, vid.height);
3327         GL_ScissorTest(false);
3328         CHECKGLERROR
3329 }
3330
3331 extern void R_DrawLightningBeams (void);
3332 extern void VM_CL_AddPolygonsToMeshQueue (void);
3333 extern void R_DrawPortals (void);
3334 extern cvar_t cl_locs_show;
3335 static void R_DrawLocs(void);
3336 static void R_DrawEntityBBoxes(void);
3337 void R_RenderScene(qboolean addwaterplanes)
3338 {
3339         if (addwaterplanes)
3340         {
3341                 R_ResetViewRendering3D();
3342
3343                 R_View_Update();
3344                 if (r_timereport_active)
3345                         R_TimeReport("watervis");
3346
3347                 if (cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->DrawAddWaterPlanes)
3348                 {
3349                         r_refdef.worldmodel->DrawAddWaterPlanes(r_refdef.worldentity);
3350                         if (r_timereport_active)
3351                                 R_TimeReport("waterworld");
3352                 }
3353
3354                 // don't let sound skip if going slow
3355                 if (r_refdef.extraupdate)
3356                         S_ExtraUpdate ();
3357
3358                 R_DrawModelsAddWaterPlanes();
3359                 if (r_timereport_active)
3360                         R_TimeReport("watermodels");
3361
3362                 R_Water_ProcessPlanes();
3363                 if (r_timereport_active)
3364                         R_TimeReport("waterscenes");
3365         }
3366
3367         R_ResetViewRendering3D();
3368
3369         // don't let sound skip if going slow
3370         if (r_refdef.extraupdate)
3371                 S_ExtraUpdate ();
3372
3373         R_MeshQueue_BeginScene();
3374
3375         R_SkyStartFrame();
3376
3377         R_View_Update();
3378         if (r_timereport_active)
3379                 R_TimeReport("visibility");
3380
3381         Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.time) * 0.025 * r_waterscroll.value, sin(r_refdef.time * 0.8f) * 0.025 * r_waterscroll.value, 0);
3382
3383         if (cl.csqc_vidvars.drawworld)
3384         {
3385                 // don't let sound skip if going slow
3386                 if (r_refdef.extraupdate)
3387                         S_ExtraUpdate ();
3388
3389                 if (r_refdef.worldmodel && r_refdef.worldmodel->DrawSky)
3390                 {
3391                         r_refdef.worldmodel->DrawSky(r_refdef.worldentity);
3392                         if (r_timereport_active)
3393                                 R_TimeReport("worldsky");
3394                 }
3395
3396                 if (R_DrawBrushModelsSky() && r_timereport_active)
3397                         R_TimeReport("bmodelsky");
3398         }
3399
3400         if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->DrawDepth)
3401         {
3402                 r_refdef.worldmodel->DrawDepth(r_refdef.worldentity);
3403                 if (r_timereport_active)
3404                         R_TimeReport("worlddepth");
3405         }
3406         if (r_depthfirst.integer >= 2)
3407         {
3408                 R_DrawModelsDepth();
3409                 if (r_timereport_active)
3410                         R_TimeReport("modeldepth");
3411         }
3412
3413         if (cl.csqc_vidvars.drawworld && r_refdef.worldmodel && r_refdef.worldmodel->Draw)
3414         {
3415                 r_refdef.worldmodel->Draw(r_refdef.worldentity);
3416                 if (r_timereport_active)
3417                         R_TimeReport("world");
3418         }
3419
3420         // don't let sound skip if going slow
3421         if (r_refdef.extraupdate)
3422                 S_ExtraUpdate ();
3423
3424         R_DrawModels();
3425         if (r_timereport_active)
3426                 R_TimeReport("models");
3427
3428         // don't let sound skip if going slow
3429         if (r_refdef.extraupdate)
3430                 S_ExtraUpdate ();
3431
3432         if (r_shadows.integer > 0 && r_refdef.lightmapintensity > 0)
3433         {
3434                 R_DrawModelShadows();
3435
3436                 R_ResetViewRendering3D();
3437
3438                 // don't let sound skip if going slow
3439                 if (r_refdef.extraupdate)
3440                         S_ExtraUpdate ();
3441         }
3442
3443         R_ShadowVolumeLighting(false);
3444         if (r_timereport_active)
3445                 R_TimeReport("rtlights");
3446
3447         // don't let sound skip if going slow
3448         if (r_refdef.extraupdate)
3449                 S_ExtraUpdate ();
3450
3451         if (cl.csqc_vidvars.drawworld)
3452         {
3453                 R_DrawLightningBeams();
3454                 if (r_timereport_active)
3455                         R_TimeReport("lightning");
3456
3457                 R_DrawDecals();
3458                 if (r_timereport_active)
3459                         R_TimeReport("decals");
3460
3461                 R_DrawParticles();
3462                 if (r_timereport_active)
3463                         R_TimeReport("particles");
3464
3465                 R_DrawExplosions();
3466                 if (r_timereport_active)
3467                         R_TimeReport("explosions");
3468         }
3469
3470         if (gl_support_fragment_shader)
3471         {
3472                 qglUseProgramObjectARB(0);CHECKGLERROR
3473         }
3474         VM_CL_AddPolygonsToMeshQueue();
3475
3476         if (r_view.showdebug)
3477         {
3478                 if (cl_locs_show.integer)
3479                 {
3480                         R_DrawLocs();
3481                         if (r_timereport_active)
3482                                 R_TimeReport("showlocs");
3483                 }
3484
3485                 if (r_drawportals.integer)
3486                 {
3487                         R_DrawPortals();
3488                         if (r_timereport_active)
3489                                 R_TimeReport("portals");
3490                 }
3491
3492                 if (r_showbboxes.value > 0)
3493                 {
3494                         R_DrawEntityBBoxes();
3495                         if (r_timereport_active)
3496                                 R_TimeReport("bboxes");
3497                 }
3498         }
3499
3500         if (gl_support_fragment_shader)
3501         {
3502                 qglUseProgramObjectARB(0);CHECKGLERROR
3503         }
3504         R_MeshQueue_RenderTransparent();
3505         if (r_timereport_active)
3506                 R_TimeReport("drawtrans");
3507
3508         if (gl_support_fragment_shader)
3509         {
3510                 qglUseProgramObjectARB(0);CHECKGLERROR
3511         }
3512
3513         if (r_view.showdebug && r_refdef.worldmodel && r_refdef.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value > 0 || r_showcollisionbrushes.value > 0))
3514         {
3515                 r_refdef.worldmodel->DrawDebug(r_refdef.worldentity);
3516                 if (r_timereport_active)
3517                         R_TimeReport("worlddebug");
3518                 R_DrawModelsDebug();
3519                 if (r_timereport_active)
3520                         R_TimeReport("modeldebug");
3521         }
3522
3523         if (gl_support_fragment_shader)
3524         {
3525                 qglUseProgramObjectARB(0);CHECKGLERROR
3526         }
3527
3528         if (cl.csqc_vidvars.drawworld)
3529         {
3530                 R_DrawCoronas();
3531                 if (r_timereport_active)
3532                         R_TimeReport("coronas");
3533         }
3534
3535         // don't let sound skip if going slow
3536         if (r_refdef.extraupdate)
3537                 S_ExtraUpdate ();
3538
3539         R_ResetViewRendering2D();
3540 }
3541
3542 static const int bboxelements[36] =
3543 {
3544         5, 1, 3, 5, 3, 7,
3545         6, 2, 0, 6, 0, 4,
3546         7, 3, 2, 7, 2, 6,
3547         4, 0, 1, 4, 1, 5,
3548         4, 5, 7, 4, 7, 6,
3549         1, 0, 2, 1, 2, 3,
3550 };
3551
3552 void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca)
3553 {
3554         int i;
3555         float *v, *c, f1, f2, vertex3f[8*3], color4f[8*4];
3556         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3557         GL_DepthMask(false);
3558         GL_DepthRange(0, 1);
3559         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
3560         R_Mesh_Matrix(&identitymatrix);
3561         R_Mesh_ResetTextureState();
3562
3563         vertex3f[ 0] = mins[0];vertex3f[ 1] = mins[1];vertex3f[ 2] = mins[2]; //
3564         vertex3f[ 3] = maxs[0];vertex3f[ 4] = mins[1];vertex3f[ 5] = mins[2];
3565         vertex3f[ 6] = mins[0];vertex3f[ 7] = maxs[1];vertex3f[ 8] = mins[2];
3566         vertex3f[ 9] = maxs[0];vertex3f[10] = maxs[1];vertex3f[11] = mins[2];
3567         vertex3f[12] = mins[0];vertex3f[13] = mins[1];vertex3f[14] = maxs[2];
3568         vertex3f[15] = maxs[0];vertex3f[16] = mins[1];vertex3f[17] = maxs[2];
3569         vertex3f[18] = mins[0];vertex3f[19] = maxs[1];vertex3f[20] = maxs[2];
3570         vertex3f[21] = maxs[0];vertex3f[22] = maxs[1];vertex3f[23] = maxs[2];
3571         R_FillColors(color4f, 8, cr, cg, cb, ca);
3572         if (r_refdef.fogenabled)
3573         {
3574                 for (i = 0, v = vertex3f, c = color4f;i < 8;i++, v += 3, c += 4)
3575                 {
3576                         f1 = FogPoint_World(v);
3577                         f2 = 1 - f1;
3578                         c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2;
3579                         c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2;
3580                         c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2;
3581                 }
3582         }
3583         R_Mesh_VertexPointer(vertex3f, 0, 0);
3584         R_Mesh_ColorPointer(color4f, 0, 0);
3585         R_Mesh_ResetTextureState();
3586         R_Mesh_Draw(0, 8, 12, bboxelements, 0, 0);
3587 }
3588
3589 static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3590 {
3591         int i;
3592         float color[4];
3593         prvm_edict_t *edict;
3594         // this function draws bounding boxes of server entities
3595         if (!sv.active)
3596                 return;
3597         SV_VM_Begin();
3598         for (i = 0;i < numsurfaces;i++)
3599         {
3600                 edict = PRVM_EDICT_NUM(surfacelist[i]);
3601                 switch ((int)edict->fields.server->solid)
3602                 {
3603                         case SOLID_NOT:      Vector4Set(color, 1, 1, 1, 0.05);break;
3604                         case SOLID_TRIGGER:  Vector4Set(color, 1, 0, 1, 0.10);break;
3605                         case SOLID_BBOX:     Vector4Set(color, 0, 1, 0, 0.10);break;
3606                         case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break;
3607                         case SOLID_BSP:      Vector4Set(color, 0, 0, 1, 0.05);break;
3608                         default:             Vector4Set(color, 0, 0, 0, 0.50);break;
3609                 }
3610                 color[3] *= r_showbboxes.value;
3611                 color[3] = bound(0, color[3], 1);
3612                 GL_DepthTest(!r_showdisabledepthtest.integer);
3613                 GL_CullFace(r_view.cullface_front);
3614                 R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]);
3615         }
3616         SV_VM_End();
3617 }
3618
3619 static void R_DrawEntityBBoxes(void)
3620 {
3621         int i;
3622         prvm_edict_t *edict;
3623         vec3_t center;
3624         // this function draws bounding boxes of server entities
3625         if (!sv.active)
3626                 return;
3627         SV_VM_Begin();
3628         for (i = 0;i < prog->num_edicts;i++)
3629         {
3630                 edict = PRVM_EDICT_NUM(i);
3631                 if (edict->priv.server->free)
3632                         continue;
3633                 VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center);
3634                 R_MeshQueue_AddTransparent(center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)NULL);
3635         }
3636         SV_VM_End();
3637 }
3638
3639 int nomodelelements[24] =
3640 {
3641         5, 2, 0,
3642         5, 1, 2,
3643         5, 0, 3,
3644         5, 3, 1,
3645         0, 2, 4,
3646         2, 1, 4,
3647         3, 0, 4,
3648         1, 3, 4
3649 };
3650
3651 float nomodelvertex3f[6*3] =
3652 {
3653         -16,   0,   0,
3654          16,   0,   0,
3655           0, -16,   0,
3656           0,  16,   0,
3657           0,   0, -16,
3658           0,   0,  16
3659 };
3660
3661 float nomodelcolor4f[6*4] =
3662 {
3663         0.0f, 0.0f, 0.5f, 1.0f,
3664         0.0f, 0.0f, 0.5f, 1.0f,
3665         0.0f, 0.5f, 0.0f, 1.0f,
3666         0.0f, 0.5f, 0.0f, 1.0f,
3667         0.5f, 0.0f, 0.0f, 1.0f,
3668         0.5f, 0.0f, 0.0f, 1.0f
3669 };
3670
3671 void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
3672 {
3673         int i;
3674         float f1, f2, *c;
3675         float color4f[6*4];
3676         // this is only called once per entity so numsurfaces is always 1, and
3677         // surfacelist is always {0}, so this code does not handle batches
3678         R_Mesh_Matrix(&ent->matrix);
3679
3680         if (ent->flags & EF_ADDITIVE)
3681         {
3682                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
3683                 GL_DepthMask(false);
3684         }
3685         else if (ent->alpha < 1)
3686         {
3687                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3688                 GL_DepthMask(false);
3689         }
3690         else
3691         {
3692                 GL_BlendFunc(GL_ONE, GL_ZERO);
3693                 GL_DepthMask(true);
3694         }
3695         GL_DepthRange(0, (ent->flags & RENDER_VIEWMODEL) ? 0.0625 : 1);
3696         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
3697         GL_DepthTest(!(ent->effects & EF_NODEPTHTEST));
3698         GL_CullFace((ent->effects & EF_DOUBLESIDED) ? GL_NONE : r_view.cullface_back);
3699         R_Mesh_VertexPointer(nomodelvertex3f, 0, 0);
3700         if (r_refdef.fogenabled)
3701         {
3702                 vec3_t org;
3703                 memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
3704                 R_Mesh_ColorPointer(color4f, 0, 0);
3705                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
3706                 f1 = FogPoint_World(org);
3707                 f2 = 1 - f1;
3708                 for (i = 0, c = color4f;i < 6;i++, c += 4)
3709                 {
3710                         c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2);
3711                         c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2);
3712                         c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2);
3713                         c[3] *= ent->alpha;
3714                 }
3715         }
3716         else if (ent->alpha != 1)
3717         {
3718                 memcpy(color4f, nomodelcolor4f, sizeof(float[6*4]));
3719                 R_Mesh_ColorPointer(color4f, 0, 0);
3720                 for (i = 0, c = color4f;i < 6;i++, c += 4)
3721                         c[3] *= ent->alpha;
3722         }
3723         else
3724                 R_Mesh_ColorPointer(nomodelcolor4f, 0, 0);
3725         R_Mesh_ResetTextureState();
3726         R_Mesh_Draw(0, 6, 8, nomodelelements, 0, 0);
3727 }
3728
3729 void R_DrawNoModel(entity_render_t *ent)
3730 {
3731         vec3_t org;
3732         Matrix4x4_OriginFromMatrix(&ent->matrix, org);
3733         //if ((ent->effects & EF_ADDITIVE) || (ent->alpha < 1))
3734                 R_MeshQueue_AddTransparent(ent->effects & EF_NODEPTHTEST ? r_view.origin : org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight);
3735         //else
3736         //      R_DrawNoModelCallback(ent, 0);
3737 }
3738
3739 void R_CalcBeam_Vertex3f (float *vert, const vec3_t org1, const vec3_t org2, float width)
3740 {
3741         vec3_t right1, right2, diff, normal;
3742
3743         VectorSubtract (org2, org1, normal);
3744
3745         // calculate 'right' vector for start
3746         VectorSubtract (r_view.origin, org1, diff);
3747         CrossProduct (normal, diff, right1);
3748         VectorNormalize (right1);
3749
3750         // calculate 'right' vector for end
3751         VectorSubtract (r_view.origin, org2, diff);
3752         CrossProduct (normal, diff, right2);
3753         VectorNormalize (right2);
3754
3755         vert[ 0] = org1[0] + width * right1[0];
3756         vert[ 1] = org1[1] + width * right1[1];
3757         vert[ 2] = org1[2] + width * right1[2];
3758         vert[ 3] = org1[0] - width * right1[0];
3759         vert[ 4] = org1[1] - width * right1[1];
3760         vert[ 5] = org1[2] - width * right1[2];
3761         vert[ 6] = org2[0] - width * right2[0];
3762         vert[ 7] = org2[1] - width * right2[1];
3763         vert[ 8] = org2[2] - width * right2[2];
3764         vert[ 9] = org2[0] + width * right2[0];
3765         vert[10] = org2[1] + width * right2[1];
3766         vert[11] = org2[2] + width * right2[2];
3767 }
3768
3769 float spritetexcoord2f[4*2] = {0, 1, 0, 0, 1, 0, 1, 1};
3770
3771 void R_DrawSprite(int blendfunc1, int blendfunc2, rtexture_t *texture, rtexture_t *fogtexture, qboolean depthdisable, qboolean depthshort, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2, float cr, float cg, float cb, float ca)
3772 {
3773         float fog = 1.0f;
3774         float vertex3f[12];
3775
3776         if (r_refdef.fogenabled)
3777                 fog = FogPoint_World(origin);
3778
3779         R_Mesh_Matrix(&identitymatrix);
3780         GL_BlendFunc(blendfunc1, blendfunc2);
3781
3782         if(v_flipped_state)
3783         {
3784        &n