2ce371f1c4e37fff9d78e0b52798d00d4e3816d3
[xonotic/darkplaces.git] / gl_rmain.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20 // r_main.c
21
22 #include "quakedef.h"
23 #include "cl_dyntexture.h"
24 #include "r_shadow.h"
25 #include "polygon.h"
26 #include "image.h"
27
28 mempool_t *r_main_mempool;
29 rtexturepool_t *r_main_texturepool;
30
31 //
32 // screen size info
33 //
34 r_refdef_t r_refdef;
35
36 cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "1", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"};
37 cvar_t r_useinfinitefarclip = {CVAR_SAVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"};
38 cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" };
39 cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%,  10 = 100%)"};
40 cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"};
41 cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"};
42 cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"};
43 cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
44 cvar_t r_showshadowvolumes = {0, "r_showshadowvolumes", "0", "shows areas shadowed by lights, useful for finding out why some areas of a map render slowly (bright blue = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"};
45 cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"};
46 cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"};
47 cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"};
48 cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"};
49 cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"};
50 cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"};
51 cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"};
52 cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"};
53 cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling"};
54 cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"};
55 cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"};
56 cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"};
57 cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"};
58 cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"};
59 cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"};
60 cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"};
61 cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this)"};
62 cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"};
63 cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"};
64 cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
65 cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "2", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"};
66 cvar_t r_fog_exp2 = {0, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"};
67 cvar_t r_drawfog = {CVAR_SAVE, "r_drawfog", "1", "allows one to disable fog rendering"};
68
69 cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"};
70 cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"};
71 cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"};
72 cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"};
73 cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"};
74 cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"};
75 cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"};
76 cvar_t gl_skyclip = {0, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"};
77
78 cvar_t r_textureunits = {0, "r_textureunits", "32", "number of hardware texture units reported by driver (note: setting this to 1 turns off gl_combine)"};
79
80 cvar_t r_glsl = {CVAR_SAVE, "r_glsl", "1", "enables use of OpenGL 2.0 pixel shaders for lighting"};
81 cvar_t r_glsl_contrastboost = {CVAR_SAVE, "r_glsl_contrastboost", "1", "by how much to multiply the contrast in dark areas (1 is no change)"};
82 cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"};
83 cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"};
84 cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"};
85 cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"};
86 cvar_t r_glsl_postprocess = {CVAR_SAVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"};
87 cvar_t r_glsl_postprocess_uservec1 = {CVAR_SAVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"};
88 cvar_t r_glsl_postprocess_uservec2 = {CVAR_SAVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"};
89 cvar_t r_glsl_postprocess_uservec3 = {CVAR_SAVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"};
90 cvar_t r_glsl_postprocess_uservec4 = {CVAR_SAVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"};
91 cvar_t r_glsl_usegeneric = {CVAR_SAVE, "r_glsl_usegeneric", "1", "use shaders for rendering simple geometry (rather than conventional fixed-function rendering for this purpose)"};
92
93 cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"};
94 cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"};
95 cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"};
96 cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"};
97 cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"};
98
99 cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "1", "enables animation smoothing on sprites (requires r_lerpmodels 1)"};
100 cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"};
101 cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"};
102 cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"};
103
104 cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"};
105 cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"};
106 cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"};
107 cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"};
108 cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"};
109 cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exagerated the glow is"};
110 cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"};
111
112 cvar_t r_hdr = {CVAR_SAVE, "r_hdr", "0", "enables High Dynamic Range bloom effect (higher quality version of r_bloom)"};
113 cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"};
114 cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"};
115 cvar_t r_hdr_range = {CVAR_SAVE, "r_hdr_range", "4", "how much dynamic range to render bloom with (equivilant to multiplying r_bloom_brighten by this value and dividing r_bloom_colorscale by this value)"};
116
117 cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"};
118
119 cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"};
120
121 cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers)"};
122
123 cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"};
124 cvar_t r_batchmode = {0, "r_batchmode", "1", "selects method of rendering multiple surfaces with one driver call (values are 0, 1, 2, etc...)"};
125 cvar_t r_track_sprites = {CVAR_SAVE, "r_track_sprites", "1", "track SPR_LABEL* sprites by putting them as indicator at the screen border to rotate to"};
126 cvar_t r_track_sprites_flags = {CVAR_SAVE, "r_track_sprites_flags", "1", "1: Rotate sprites accodringly, 2: Make it a continuous rotation"};
127 cvar_t r_track_sprites_scalew = {CVAR_SAVE, "r_track_sprites_scalew", "1", "width scaling of tracked sprites"};
128 cvar_t r_track_sprites_scaleh = {CVAR_SAVE, "r_track_sprites_scaleh", "1", "height scaling of tracked sprites"};
129
130 extern cvar_t v_glslgamma;
131
132 extern qboolean v_flipped_state;
133
134 static struct r_bloomstate_s
135 {
136         qboolean enabled;
137         qboolean hdr;
138
139         int bloomwidth, bloomheight;
140
141         int screentexturewidth, screentextureheight;
142         rtexture_t *texture_screen;
143
144         int bloomtexturewidth, bloomtextureheight;
145         rtexture_t *texture_bloom;
146
147         // arrays for rendering the screen passes
148         float screentexcoord2f[8];
149         float bloomtexcoord2f[8];
150         float offsettexcoord2f[8];
151 }
152 r_bloomstate;
153
154 r_waterstate_t r_waterstate;
155
156 // shadow volume bsp struct with automatically growing nodes buffer
157 svbsp_t r_svbsp;
158
159 rtexture_t *r_texture_blanknormalmap;
160 rtexture_t *r_texture_white;
161 rtexture_t *r_texture_grey128;
162 rtexture_t *r_texture_black;
163 rtexture_t *r_texture_notexture;
164 rtexture_t *r_texture_whitecube;
165 rtexture_t *r_texture_normalizationcube;
166 rtexture_t *r_texture_fogattenuation;
167 rtexture_t *r_texture_gammaramps;
168 unsigned int r_texture_gammaramps_serial;
169 //rtexture_t *r_texture_fogintensity;
170
171 char r_qwskincache[MAX_SCOREBOARD][MAX_QPATH];
172 skinframe_t *r_qwskincache_skinframe[MAX_SCOREBOARD];
173
174 // vertex coordinates for a quad that covers the screen exactly
175 const static float r_screenvertex3f[12] =
176 {
177         0, 0, 0,
178         1, 0, 0,
179         1, 1, 0,
180         0, 1, 0
181 };
182
183 extern void R_DrawModelShadows(void);
184
185 void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b)
186 {
187         int i;
188         for (i = 0;i < verts;i++)
189         {
190                 out[0] = in[0] * r;
191                 out[1] = in[1] * g;
192                 out[2] = in[2] * b;
193                 out[3] = in[3];
194                 in += 4;
195                 out += 4;
196         }
197 }
198
199 void R_FillColors(float *out, int verts, float r, float g, float b, float a)
200 {
201         int i;
202         for (i = 0;i < verts;i++)
203         {
204                 out[0] = r;
205                 out[1] = g;
206                 out[2] = b;
207                 out[3] = a;
208                 out += 4;
209         }
210 }
211
212 // FIXME: move this to client?
213 void FOG_clear(void)
214 {
215         if (gamemode == GAME_NEHAHRA)
216         {
217                 Cvar_Set("gl_fogenable", "0");
218                 Cvar_Set("gl_fogdensity", "0.2");
219                 Cvar_Set("gl_fogred", "0.3");
220                 Cvar_Set("gl_foggreen", "0.3");
221                 Cvar_Set("gl_fogblue", "0.3");
222         }
223         r_refdef.fog_density = 0;
224         r_refdef.fog_red = 0;
225         r_refdef.fog_green = 0;
226         r_refdef.fog_blue = 0;
227         r_refdef.fog_alpha = 1;
228         r_refdef.fog_start = 0;
229         r_refdef.fog_end = 0;
230 }
231
232 float FogForDistance(vec_t dist)
233 {
234         unsigned int fogmasktableindex = (unsigned int)(dist * r_refdef.fogmasktabledistmultiplier);
235         return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)];
236 }
237
238 float FogPoint_World(const vec3_t p)
239 {
240         return FogForDistance(VectorDistance((p), r_refdef.view.origin));
241 }
242
243 float FogPoint_Model(const vec3_t p)
244 {
245         return FogForDistance(VectorDistance((p), rsurface.modelorg));
246 }
247
248 static void R_BuildBlankTextures(void)
249 {
250         unsigned char data[4];
251         data[2] = 128; // normal X
252         data[1] = 128; // normal Y
253         data[0] = 255; // normal Z
254         data[3] = 128; // height
255         r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
256         data[0] = 255;
257         data[1] = 255;
258         data[2] = 255;
259         data[3] = 255;
260         r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
261         data[0] = 128;
262         data[1] = 128;
263         data[2] = 128;
264         data[3] = 255;
265         r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
266         data[0] = 0;
267         data[1] = 0;
268         data[2] = 0;
269         data[3] = 255;
270         r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_PERSISTENT, NULL);
271 }
272
273 static void R_BuildNoTexture(void)
274 {
275         int x, y;
276         unsigned char pix[16][16][4];
277         // this makes a light grey/dark grey checkerboard texture
278         for (y = 0;y < 16;y++)
279         {
280                 for (x = 0;x < 16;x++)
281                 {
282                         if ((y < 8) ^ (x < 8))
283                         {
284                                 pix[y][x][0] = 128;
285                                 pix[y][x][1] = 128;
286                                 pix[y][x][2] = 128;
287                                 pix[y][x][3] = 255;
288                         }
289                         else
290                         {
291                                 pix[y][x][0] = 64;
292                                 pix[y][x][1] = 64;
293                                 pix[y][x][2] = 64;
294                                 pix[y][x][3] = 255;
295                         }
296                 }
297         }
298         r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, NULL);
299 }
300
301 static void R_BuildWhiteCube(void)
302 {
303         unsigned char data[6*1*1*4];
304         memset(data, 255, sizeof(data));
305         r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
306 }
307
308 static void R_BuildNormalizationCube(void)
309 {
310         int x, y, side;
311         vec3_t v;
312         vec_t s, t, intensity;
313 #define NORMSIZE 64
314         unsigned char data[6][NORMSIZE][NORMSIZE][4];
315         for (side = 0;side < 6;side++)
316         {
317                 for (y = 0;y < NORMSIZE;y++)
318                 {
319                         for (x = 0;x < NORMSIZE;x++)
320                         {
321                                 s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
322                                 t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f;
323                                 switch(side)
324                                 {
325                                 default:
326                                 case 0:
327                                         v[0] = 1;
328                                         v[1] = -t;
329                                         v[2] = -s;
330                                         break;
331                                 case 1:
332                                         v[0] = -1;
333                                         v[1] = -t;
334                                         v[2] = s;
335                                         break;
336                                 case 2:
337                                         v[0] = s;
338                                         v[1] = 1;
339                                         v[2] = t;
340                                         break;
341                                 case 3:
342                                         v[0] = s;
343                                         v[1] = -1;
344                                         v[2] = -t;
345                                         break;
346                                 case 4:
347                                         v[0] = s;
348                                         v[1] = -t;
349                                         v[2] = 1;
350                                         break;
351                                 case 5:
352                                         v[0] = -s;
353                                         v[1] = -t;
354                                         v[2] = -1;
355                                         break;
356                                 }
357                                 intensity = 127.0f / sqrt(DotProduct(v, v));
358                                 data[side][y][x][2] = (unsigned char)(128.0f + intensity * v[0]);
359                                 data[side][y][x][1] = (unsigned char)(128.0f + intensity * v[1]);
360                                 data[side][y][x][0] = (unsigned char)(128.0f + intensity * v[2]);
361                                 data[side][y][x][3] = 255;
362                         }
363                 }
364         }
365         r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, &data[0][0][0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
366 }
367
368 static void R_BuildFogTexture(void)
369 {
370         int x, b;
371 #define FOGWIDTH 256
372         unsigned char data1[FOGWIDTH][4];
373         //unsigned char data2[FOGWIDTH][4];
374         double d, r, alpha;
375
376         r_refdef.fogmasktable_start = r_refdef.fog_start;
377         r_refdef.fogmasktable_alpha = r_refdef.fog_alpha;
378         r_refdef.fogmasktable_range = r_refdef.fogrange;
379         r_refdef.fogmasktable_density = r_refdef.fog_density;
380
381         r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH;
382         for (x = 0;x < FOGMASKTABLEWIDTH;x++)
383         {
384                 d = (x * r - r_refdef.fogmasktable_start);
385                 if(developer.integer >= 100)
386                         Con_Printf("%f ", d);
387                 d = max(0, d);
388                 if (r_fog_exp2.integer)
389                         alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d);
390                 else
391                         alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d);
392                 if(developer.integer >= 100)
393                         Con_Printf(" : %f ", alpha);
394                 alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha;
395                 if(developer.integer >= 100)
396                         Con_Printf(" = %f\n", alpha);
397                 r_refdef.fogmasktable[x] = bound(0, alpha, 1);
398         }
399
400         for (x = 0;x < FOGWIDTH;x++)
401         {
402                 b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255);
403                 data1[x][0] = b;
404                 data1[x][1] = b;
405                 data1[x][2] = b;
406                 data1[x][3] = 255;
407                 //data2[x][0] = 255 - b;
408                 //data2[x][1] = 255 - b;
409                 //data2[x][2] = 255 - b;
410                 //data2[x][3] = 255;
411         }
412         if (r_texture_fogattenuation)
413         {
414                 R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, FOGWIDTH, 1);
415                 //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, FOGWIDTH, 1);
416         }
417         else
418         {
419                 r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
420                 //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP, NULL);
421         }
422 }
423
424 static const char *builtinshaderstring =
425 "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n"
426 "// written by Forest 'LordHavoc' Hale\n"
427 "\n"
428 "// common definitions between vertex shader and fragment shader:\n"
429 "\n"
430 "//#ifdef __GLSL_CG_DATA_TYPES\n"
431 "//# define myhalf half\n"
432 "//# define myhalf2 half2\n"
433 "//# define myhalf3 half3\n"
434 "//# define myhalf4 half4\n"
435 "//#else\n"
436 "# define myhalf float\n"
437 "# define myhalf2 vec2\n"
438 "# define myhalf3 vec3\n"
439 "# define myhalf4 vec4\n"
440 "//#endif\n"
441 "\n"
442 "#ifdef MODE_DEPTH_OR_SHADOW\n"
443 "\n"
444 "# ifdef VERTEX_SHADER\n"
445 "void main(void)\n"
446 "{\n"
447 "       gl_Position = ftransform();\n"
448 "}\n"
449 "# endif\n"
450 "\n"
451 "#else\n"
452 "\n"
453 "#ifdef MODE_POSTPROCESS\n"
454 "# ifdef VERTEX_SHADER\n"
455 "void main(void)\n"
456 "{\n"
457 "       gl_FrontColor = gl_Color;\n"
458 "       gl_Position = ftransform();\n"
459 "       gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;\n"
460 "#ifdef USEGLOW\n"
461 "       gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;\n"
462 "#endif\n"
463 "}\n"
464 "# endif\n"
465 "# ifdef FRAGMENT_SHADER\n"
466 "\n"
467 "uniform sampler2D Texture_First;\n"
468 "#ifdef USEGLOW\n"
469 "uniform sampler2D Texture_Second;\n"
470 "#endif\n"
471 "#ifdef USEGAMMARAMPS\n"
472 "uniform sampler2D Texture_GammaRamps;\n"
473 "#endif\n"
474 "#ifdef USEVERTEXTEXTUREBLEND\n"
475 "uniform vec4 TintColor;\n"
476 "#endif\n"
477 "#ifdef USECOLORMOD\n"
478 "uniform vec3 Gamma;\n"
479 "#endif\n"
480 "//uncomment these if you want to use them:\n"
481 "// uniform vec4 UserVec1;\n"
482 "// uniform vec4 UserVec2;\n"
483 "// uniform vec4 UserVec3;\n"
484 "// uniform vec4 UserVec4;\n"
485 "// uniform float ClientTime;\n"
486 "// uniform vec2 PixelSize;\n"
487 "void main(void)\n"
488 "{\n"
489 "       gl_FragColor = texture2D(Texture_First, gl_TexCoord[0].xy);\n"
490 "#ifdef USEGLOW\n"
491 "       gl_FragColor += texture2D(Texture_Second, gl_TexCoord[1].xy);\n"
492 "#endif\n"
493 "#ifdef USEVERTEXTEXTUREBLEND\n"
494 "       gl_FragColor = mix(gl_FragColor, TintColor, TintColor.a);\n"
495 "#endif\n"
496 "\n"
497 "#ifdef USEPOSTPROCESSING\n"
498 "// add your own postprocessing here or make your own ifdef for it\n"
499 "#endif\n"
500 "\n"
501 "#ifdef USEGAMMARAMPS\n"
502 "       gl_FragColor.r = texture2D(Texture_GammaRamps, vec2(gl_FragColor.r, 0)).r;\n"
503 "       gl_FragColor.g = texture2D(Texture_GammaRamps, vec2(gl_FragColor.g, 0)).g;\n"
504 "       gl_FragColor.b = texture2D(Texture_GammaRamps, vec2(gl_FragColor.b, 0)).b;\n"
505 "#endif\n"
506 "}\n"
507 "# endif\n"
508 "\n"
509 "\n"
510 "#else\n"
511 "#ifdef MODE_GENERIC\n"
512 "# ifdef VERTEX_SHADER\n"
513 "void main(void)\n"
514 "{\n"
515 "       gl_FrontColor = gl_Color;\n"
516 "#  ifdef USEDIFFUSE\n"
517 "       gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;\n"
518 "#  endif\n"
519 "#  ifdef USESPECULAR\n"
520 "       gl_TexCoord[1] = gl_TextureMatrix[1] * gl_MultiTexCoord1;\n"
521 "#  endif\n"
522 "       gl_Position = ftransform();\n"
523 "}\n"
524 "# endif\n"
525 "# ifdef FRAGMENT_SHADER\n"
526 "\n"
527 "#  ifdef USEDIFFUSE\n"
528 "uniform sampler2D Texture_First;\n"
529 "#  endif\n"
530 "#  ifdef USESPECULAR\n"
531 "uniform sampler2D Texture_Second;\n"
532 "#  endif\n"
533 "\n"
534 "void main(void)\n"
535 "{\n"
536 "       gl_FragColor = gl_Color;\n"
537 "#  ifdef USEDIFFUSE\n"
538 "       gl_FragColor *= texture2D(Texture_First, gl_TexCoord[0].xy);\n"
539 "#  endif\n"
540 "\n"
541 "#  ifdef USESPECULAR\n"
542 "       vec4 tex2 = texture2D(Texture_Second, gl_TexCoord[1].xy);\n"
543 "#  endif\n"
544 "#  ifdef USECOLORMAPPING\n"
545 "       gl_FragColor *= tex2;\n"
546 "#  endif\n"
547 "#  ifdef USEGLOW\n"
548 "       gl_FragColor += tex2;\n"
549 "#  endif\n"
550 "#  ifdef USEVERTEXTEXTUREBLEND\n"
551 "       gl_FragColor = mix(gl_FragColor, tex2, tex2.a);\n"
552 "#  endif\n"
553 "}\n"
554 "# endif\n"
555 "\n"
556 "#else // !MODE_GENERIC\n"
557 "\n"
558 "varying vec2 TexCoord;\n"
559 "varying vec2 TexCoordLightmap;\n"
560 "\n"
561 "#ifdef MODE_LIGHTSOURCE\n"
562 "varying vec3 CubeVector;\n"
563 "#endif\n"
564 "\n"
565 "#ifdef MODE_LIGHTSOURCE\n"
566 "varying vec3 LightVector;\n"
567 "#endif\n"
568 "#ifdef MODE_LIGHTDIRECTION\n"
569 "varying vec3 LightVector;\n"
570 "#endif\n"
571 "\n"
572 "varying vec3 EyeVector;\n"
573 "#ifdef USEFOG\n"
574 "varying vec3 EyeVectorModelSpace;\n"
575 "#endif\n"
576 "\n"
577 "varying vec3 VectorS; // direction of S texcoord (sometimes crudely called tangent)\n"
578 "varying vec3 VectorT; // direction of T texcoord (sometimes crudely called binormal)\n"
579 "varying vec3 VectorR; // direction of R texcoord (surface normal)\n"
580 "\n"
581 "#ifdef MODE_WATER\n"
582 "varying vec4 ModelViewProjectionPosition;\n"
583 "#endif\n"
584 "#ifdef MODE_REFRACTION\n"
585 "varying vec4 ModelViewProjectionPosition;\n"
586 "#endif\n"
587 "#ifdef USEREFLECTION\n"
588 "varying vec4 ModelViewProjectionPosition;\n"
589 "#endif\n"
590 "\n"
591 "\n"
592 "\n"
593 "\n"
594 "\n"
595 "// vertex shader specific:\n"
596 "#ifdef VERTEX_SHADER\n"
597 "\n"
598 "uniform vec3 LightPosition;\n"
599 "uniform vec3 EyePosition;\n"
600 "uniform vec3 LightDir;\n"
601 "\n"
602 "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3), this would require sending a 4 component texcoord1 with W as 1 or -1 according to which side the texcoord2 should be on\n"
603 "\n"
604 "void main(void)\n"
605 "{\n"
606 "       gl_FrontColor = gl_Color;\n"
607 "       // copy the surface texcoord\n"
608 "       TexCoord = vec2(gl_TextureMatrix[0] * gl_MultiTexCoord0);\n"
609 "#ifndef MODE_LIGHTSOURCE\n"
610 "# ifndef MODE_LIGHTDIRECTION\n"
611 "       TexCoordLightmap = vec2(gl_MultiTexCoord4);\n"
612 "# endif\n"
613 "#endif\n"
614 "\n"
615 "#ifdef MODE_LIGHTSOURCE\n"
616 "       // transform vertex position into light attenuation/cubemap space\n"
617 "       // (-1 to +1 across the light box)\n"
618 "       CubeVector = vec3(gl_TextureMatrix[3] * gl_Vertex);\n"
619 "\n"
620 "       // transform unnormalized light direction into tangent space\n"
621 "       // (we use unnormalized to ensure that it interpolates correctly and then\n"
622 "       //  normalize it per pixel)\n"
623 "       vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n"
624 "       LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n"
625 "       LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n"
626 "       LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n"
627 "#endif\n"
628 "\n"
629 "#ifdef MODE_LIGHTDIRECTION\n"
630 "       LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n"
631 "       LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n"
632 "       LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n"
633 "#endif\n"
634 "\n"
635 "       // transform unnormalized eye direction into tangent space\n"
636 "#ifndef USEFOG\n"
637 "       vec3 EyeVectorModelSpace;\n"
638 "#endif\n"
639 "       EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n"
640 "       EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n"
641 "       EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n"
642 "       EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n"
643 "\n"
644 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
645 "       VectorS = gl_MultiTexCoord1.xyz;\n"
646 "       VectorT = gl_MultiTexCoord2.xyz;\n"
647 "       VectorR = gl_MultiTexCoord3.xyz;\n"
648 "#endif\n"
649 "\n"
650 "//#if defined(MODE_WATER) || defined(MODE_REFRACTION) || defined(USEREFLECTION)\n"
651 "//     ModelViewProjectionPosition = gl_Vertex * gl_ModelViewProjectionMatrix;\n"
652 "//     //ModelViewProjectionPosition_svector = (gl_Vertex + vec4(gl_MultiTexCoord1.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
653 "//     //ModelViewProjectionPosition_tvector = (gl_Vertex + vec4(gl_MultiTexCoord2.xyz, 0)) * gl_ModelViewProjectionMatrix - ModelViewProjectionPosition;\n"
654 "//#endif\n"
655 "\n"
656 "// transform vertex to camera space, using ftransform to match non-VS\n"
657 "       // rendering\n"
658 "       gl_Position = ftransform();\n"
659 "\n"
660 "#ifdef MODE_WATER\n"
661 "       ModelViewProjectionPosition = gl_Position;\n"
662 "#endif\n"
663 "#ifdef MODE_REFRACTION\n"
664 "       ModelViewProjectionPosition = gl_Position;\n"
665 "#endif\n"
666 "#ifdef USEREFLECTION\n"
667 "       ModelViewProjectionPosition = gl_Position;\n"
668 "#endif\n"
669 "}\n"
670 "\n"
671 "#endif // VERTEX_SHADER\n"
672 "\n"
673 "\n"
674 "\n"
675 "\n"
676 "// fragment shader specific:\n"
677 "#ifdef FRAGMENT_SHADER\n"
678 "\n"
679 "// 13 textures, we can only use up to 16 on DX9-class hardware\n"
680 "uniform sampler2D Texture_Normal;\n"
681 "uniform sampler2D Texture_Color;\n"
682 "uniform sampler2D Texture_Gloss;\n"
683 "uniform sampler2D Texture_Glow;\n"
684 "uniform sampler2D Texture_SecondaryNormal;\n"
685 "uniform sampler2D Texture_SecondaryColor;\n"
686 "uniform sampler2D Texture_SecondaryGloss;\n"
687 "uniform sampler2D Texture_SecondaryGlow;\n"
688 "uniform sampler2D Texture_Pants;\n"
689 "uniform sampler2D Texture_Shirt;\n"
690 "uniform sampler2D Texture_FogMask;\n"
691 "uniform sampler2D Texture_Lightmap;\n"
692 "uniform sampler2D Texture_Deluxemap;\n"
693 "uniform sampler2D Texture_Refraction;\n"
694 "uniform sampler2D Texture_Reflection;\n"
695 "uniform sampler2D Texture_Attenuation;\n"
696 "uniform samplerCube Texture_Cube;\n"
697 "\n"
698 "uniform myhalf3 LightColor;\n"
699 "uniform myhalf3 AmbientColor;\n"
700 "uniform myhalf3 DiffuseColor;\n"
701 "uniform myhalf3 SpecularColor;\n"
702 "uniform myhalf3 Color_Pants;\n"
703 "uniform myhalf3 Color_Shirt;\n"
704 "uniform myhalf3 FogColor;\n"
705 "\n"
706 "uniform myhalf4 TintColor;\n"
707 "\n"
708 "\n"
709 "//#ifdef MODE_WATER\n"
710 "uniform vec4 DistortScaleRefractReflect;\n"
711 "uniform vec4 ScreenScaleRefractReflect;\n"
712 "uniform vec4 ScreenCenterRefractReflect;\n"
713 "uniform myhalf4 RefractColor;\n"
714 "uniform myhalf4 ReflectColor;\n"
715 "uniform myhalf ReflectFactor;\n"
716 "uniform myhalf ReflectOffset;\n"
717 "//#else\n"
718 "//# ifdef MODE_REFRACTION\n"
719 "//uniform vec4 DistortScaleRefractReflect;\n"
720 "//uniform vec4 ScreenScaleRefractReflect;\n"
721 "//uniform vec4 ScreenCenterRefractReflect;\n"
722 "//uniform myhalf4 RefractColor;\n"
723 "//#  ifdef USEREFLECTION\n"
724 "//uniform myhalf4 ReflectColor;\n"
725 "//#  endif\n"
726 "//# else\n"
727 "//#  ifdef USEREFLECTION\n"
728 "//uniform vec4 DistortScaleRefractReflect;\n"
729 "//uniform vec4 ScreenScaleRefractReflect;\n"
730 "//uniform vec4 ScreenCenterRefractReflect;\n"
731 "//uniform myhalf4 ReflectColor;\n"
732 "//#  endif\n"
733 "//# endif\n"
734 "//#endif\n"
735 "\n"
736 "uniform myhalf GlowScale;\n"
737 "uniform myhalf SceneBrightness;\n"
738 "#ifdef USECONTRASTBOOST\n"
739 "uniform myhalf ContrastBoostCoeff;\n"
740 "#endif\n"
741 "\n"
742 "uniform float OffsetMapping_Scale;\n"
743 "uniform float OffsetMapping_Bias;\n"
744 "uniform float FogRangeRecip;\n"
745 "\n"
746 "uniform myhalf AmbientScale;\n"
747 "uniform myhalf DiffuseScale;\n"
748 "uniform myhalf SpecularScale;\n"
749 "uniform myhalf SpecularPower;\n"
750 "\n"
751 "#ifdef USEOFFSETMAPPING\n"
752 "vec2 OffsetMapping(vec2 TexCoord)\n"
753 "{\n"
754 "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n"
755 "       // 14 sample relief mapping: linear search and then binary search\n"
756 "       // this basically steps forward a small amount repeatedly until it finds\n"
757 "       // itself inside solid, then jitters forward and back using decreasing\n"
758 "       // amounts to find the impact\n"
759 "       //vec3 OffsetVector = vec3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1), -1);\n"
760 "       //vec3 OffsetVector = vec3(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
761 "       vec3 OffsetVector = vec3(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1), -1);\n"
762 "       vec3 RT = vec3(TexCoord, 1);\n"
763 "       OffsetVector *= 0.1;\n"
764 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
765 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
766 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
767 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
768 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
769 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
770 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
771 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
772 "       RT += OffsetVector *  step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n"
773 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z)          - 0.5);\n"
774 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.5    - 0.25);\n"
775 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.25   - 0.125);\n"
776 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.125  - 0.0625);\n"
777 "       RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n"
778 "       return RT.xy;\n"
779 "#else\n"
780 "       // 3 sample offset mapping (only 3 samples because of ATI Radeon 9500-9800/X300 limits)\n"
781 "       // this basically moves forward the full distance, and then backs up based\n"
782 "       // on height of samples\n"
783 "       //vec2 OffsetVector = vec2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1));\n"
784 "       //vec2 OffsetVector = vec2(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1));\n"
785 "       vec2 OffsetVector = vec2(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1));\n"
786 "       TexCoord += OffsetVector;\n"
787 "       OffsetVector *= 0.333;\n"
788 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
789 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
790 "       TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n"
791 "       return TexCoord;\n"
792 "#endif\n"
793 "}\n"
794 "#endif // USEOFFSETMAPPING\n"
795 "\n"
796 "#ifdef MODE_WATER\n"
797 "\n"
798 "// water pass\n"
799 "void main(void)\n"
800 "{\n"
801 "#ifdef USEOFFSETMAPPING\n"
802 "       // apply offsetmapping\n"
803 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
804 "#define TexCoord TexCoordOffset\n"
805 "#endif\n"
806 "\n"
807 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
808 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
809 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec2(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xyxy * DistortScaleRefractReflect;\n"
810 "       float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 2.0) * ReflectFactor + ReflectOffset;\n"
811 "       gl_FragColor = mix(texture2D(Texture_Refraction, ScreenTexCoord.xy) * RefractColor, texture2D(Texture_Reflection, ScreenTexCoord.zw) * ReflectColor, Fresnel);\n"
812 "}\n"
813 "\n"
814 "#else // !MODE_WATER\n"
815 "#ifdef MODE_REFRACTION\n"
816 "\n"
817 "// refraction pass\n"
818 "void main(void)\n"
819 "{\n"
820 "#ifdef USEOFFSETMAPPING\n"
821 "       // apply offsetmapping\n"
822 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
823 "#define TexCoord TexCoordOffset\n"
824 "#endif\n"
825 "\n"
826 "       vec2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n"
827 "       //vec2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n"
828 "       vec2 ScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy + vec2(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xy * DistortScaleRefractReflect.xy;\n"
829 "       gl_FragColor = texture2D(Texture_Refraction, ScreenTexCoord) * RefractColor;\n"
830 "}\n"
831 "\n"
832 "#else // !MODE_REFRACTION\n"
833 "void main(void)\n"
834 "{\n"
835 "#ifdef USEOFFSETMAPPING\n"
836 "       // apply offsetmapping\n"
837 "       vec2 TexCoordOffset = OffsetMapping(TexCoord);\n"
838 "#define TexCoord TexCoordOffset\n"
839 "#endif\n"
840 "\n"
841 "       // combine the diffuse textures (base, pants, shirt)\n"
842 "       myhalf4 color = myhalf4(texture2D(Texture_Color, TexCoord));\n"
843 "#ifdef USECOLORMAPPING\n"
844 "       color.rgb += myhalf3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhalf3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n"
845 "#endif\n"
846 "#ifdef USEVERTEXTEXTUREBLEND\n"
847 "       myhalf terrainblend = clamp(myhalf(gl_Color.a) * color.a * 2.0 - 0.5, myhalf(0.0), myhalf(1.0));\n"
848 "       //myhalf terrainblend = min(myhalf(gl_Color.a) * color.a * 2.0, myhalf(1.0));\n"
849 "       //myhalf terrainblend = myhalf(gl_Color.a) * color.a > 0.5;\n"
850 "       color = mix(myhalf4(texture2D(Texture_SecondaryColor, TexCoord)), color, terrainblend);\n"
851 "       //color = mix(myhalf4(1, 0, 0, 1), color, terrainblend);\n"
852 "#endif\n"
853 "\n"
854 "#ifdef USEDIFFUSE\n"
855 "       // get the surface normal and the gloss color\n"
856 "# ifdef USEVERTEXTEXTUREBLEND\n"
857 "       myhalf3 surfacenormal = normalize(mix(myhalf3(texture2D(Texture_SecondaryNormal, TexCoord)), myhalf3(texture2D(Texture_Normal, TexCoord)), terrainblend) - myhalf3(0.5, 0.5, 0.5));\n"
858 "#  ifdef USESPECULAR\n"
859 "       myhalf3 glosscolor = mix(myhalf3(texture2D(Texture_SecondaryGloss, TexCoord)), myhalf3(texture2D(Texture_Gloss, TexCoord)), terrainblend);\n"
860 "#  endif\n"
861 "# else\n"
862 "       myhalf3 surfacenormal = normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5));\n"
863 "#  ifdef USESPECULAR\n"
864 "       myhalf3 glosscolor = myhalf3(texture2D(Texture_Gloss, TexCoord));\n"
865 "#  endif\n"
866 "# endif\n"
867 "#endif\n"
868 "\n"
869 "\n"
870 "\n"
871 "#ifdef MODE_LIGHTSOURCE\n"
872 "       // light source\n"
873 "\n"
874 "       // calculate surface normal, light normal, and specular normal\n"
875 "       // compute color intensity for the two textures (colormap and glossmap)\n"
876 "       // scale by light color and attenuation as efficiently as possible\n"
877 "       // (do as much scalar math as possible rather than vector math)\n"
878 "# ifdef USEDIFFUSE\n"
879 "       // get the light normal\n"
880 "       myhalf3 diffusenormal = myhalf3(normalize(LightVector));\n"
881 "# endif\n"
882 "# ifdef USESPECULAR\n"
883 "       myhalf3 specularnormal = normalize(diffusenormal + myhalf3(normalize(EyeVector)));\n"
884 "\n"
885 "       // calculate directional shading\n"
886 "       color.rgb = myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (color.rgb * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))) + (SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower)) * glosscolor);\n"
887 "# else\n"
888 "#  ifdef USEDIFFUSE\n"
889 "       // calculate directional shading\n"
890 "       color.rgb = color.rgb * (myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0))) * (AmbientScale + DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0))));\n"
891 "#  else\n"
892 "       // calculate directionless shading\n"
893 "       color.rgb = color.rgb * myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n"
894 "#  endif\n"
895 "# endif\n"
896 "\n"
897 "# ifdef USECUBEFILTER\n"
898 "       // apply light cubemap filter\n"
899 "       //color.rgb *= normalize(CubeVector) * 0.5 + 0.5;//vec3(textureCube(Texture_Cube, CubeVector));\n"
900 "       color.rgb *= myhalf3(textureCube(Texture_Cube, CubeVector));\n"
901 "# endif\n"
902 "#endif // MODE_LIGHTSOURCE\n"
903 "\n"
904 "\n"
905 "\n"
906 "\n"
907 "#ifdef MODE_LIGHTDIRECTION\n"
908 "       // directional model lighting\n"
909 "# ifdef USEDIFFUSE\n"
910 "       // get the light normal\n"
911 "       myhalf3 diffusenormal = myhalf3(LightVector);\n"
912 "# endif\n"
913 "# ifdef USESPECULAR\n"
914 "       // calculate directional shading\n"
915 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
916 "       myhalf3 specularnormal = normalize(diffusenormal + myhalf3(normalize(EyeVector)));\n"
917 "       color.rgb += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularColor * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
918 "# else\n"
919 "#  ifdef USEDIFFUSE\n"
920 "\n"
921 "       // calculate directional shading\n"
922 "       color.rgb *= AmbientColor + DiffuseColor * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0));\n"
923 "#  else\n"
924 "       color.rgb *= AmbientColor;\n"
925 "#  endif\n"
926 "# endif\n"
927 "#endif // MODE_LIGHTDIRECTION\n"
928 "\n"
929 "\n"
930 "\n"
931 "\n"
932 "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
933 "       // deluxemap lightmapping using light vectors in modelspace (evil q3map2)\n"
934 "\n"
935 "       // get the light normal\n"
936 "       myhalf3 diffusenormal_modelspace = myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhalf3(0.5);\n"
937 "       myhalf3 diffusenormal = normalize(myhalf3(dot(diffusenormal_modelspace, myhalf3(VectorS)), dot(diffusenormal_modelspace, myhalf3(VectorT)), dot(diffusenormal_modelspace, myhalf3(VectorR))));\n"
938 "       // calculate directional shading\n"
939 "       myhalf3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
940 "# ifdef USESPECULAR\n"
941 "       myhalf3 specularnormal = myhalf3(normalize(diffusenormal + myhalf3(normalize(EyeVector))));\n"
942 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
943 "# endif\n"
944 "\n"
945 "       // apply lightmap color\n"
946 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n"
947 "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n"
948 "\n"
949 "\n"
950 "\n"
951 "\n"
952 "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
953 "       // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n"
954 "\n"
955 "       // get the light normal\n"
956 "       myhalf3 diffusenormal = normalize(myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) - myhalf3(0.5));\n"
957 "       // calculate directional shading\n"
958 "       myhalf3 tempcolor = color.rgb * (DiffuseScale * myhalf(max(float(dot(surfacenormal, diffusenormal)), 0.0)));\n"
959 "# ifdef USESPECULAR\n"
960 "       myhalf3 specularnormal = myhalf3(normalize(diffusenormal + myhalf3(normalize(EyeVector))));\n"
961 "       tempcolor += myhalf3(texture2D(Texture_Gloss, TexCoord)) * SpecularScale * pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower);\n"
962 "# endif\n"
963 "\n"
964 "       // apply lightmap color\n"
965 "       color.rgb = color.rgb * AmbientScale + tempcolor * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n"
966 "#endif // MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n"
967 "\n"
968 "\n"
969 "\n"
970 "\n"
971 "#ifdef MODE_LIGHTMAP\n"
972 "       // apply lightmap color\n"
973 "       color.rgb = color.rgb * myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap)) * DiffuseScale + color.rgb * AmbientScale;\n"
974 "#endif // MODE_LIGHTMAP\n"
975 "\n"
976 "\n"
977 "\n"
978 "\n"
979 "#ifdef MODE_VERTEXCOLOR\n"
980 "       // apply lightmap color\n"
981 "       color.rgb = color.rgb * myhalf3(gl_Color.rgb) * DiffuseScale + color.rgb * AmbientScale;\n"
982 "#endif // MODE_VERTEXCOLOR\n"
983 "\n"
984 "\n"
985 "\n"
986 "\n"
987 "#ifdef MODE_FLATCOLOR\n"
988 "#endif // MODE_FLATCOLOR\n"
989 "\n"
990 "\n"
991 "\n"
992 "\n"
993 "\n"
994 "\n"
995 "\n"
996 "       color *= TintColor;\n"
997 "\n"
998 "#ifdef USEGLOW\n"
999 "       color.rgb += myhalf3(texture2D(Texture_Glow, TexCoord)) * GlowScale;\n"
1000 "#endif\n"
1001 "\n"
1002 "#ifdef USECONTRASTBOOST\n"
1003 "       color.rgb = color.rgb / (ContrastBoostCoeff * color.rgb + myhalf3(1, 1, 1));\n"
1004 "#endif\n"
1005 "\n"
1006 "       color.rgb *= SceneBrightness;\n"
1007 "\n"
1008 "       // apply fog after Contrastboost/SceneBrightness because its color is already modified appropriately\n"
1009 "#ifdef USEFOG\n"
1010 "       color.rgb = mix(FogColor, color.rgb, myhalf(texture2D(Texture_FogMask, myhalf2(length(EyeVectorModelSpace)*FogRangeRecip, 0.0))));\n"
1011 "#endif\n"
1012 "\n"
1013 "       // reflection must come last because it already contains exactly the correct fog (the reflection render preserves camera distance from the plane, it only flips the side) and ContrastBoost/SceneBrightness\n"
1014 "#ifdef USEREFLECTION\n"
1015 "       vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n"
1016 "       //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n"
1017 "       vec4 ScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect + vec3(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xyxy * DistortScaleRefractReflect;\n"
1018 "       color.rgb = mix(color.rgb, myhalf3(texture2D(Texture_Reflection, ScreenTexCoord.zw)) * ReflectColor.rgb, ReflectColor.a);\n"
1019 "#endif\n"
1020 "\n"
1021 "       gl_FragColor = vec4(color);\n"
1022 "}\n"
1023 "#endif // !MODE_REFRACTION\n"
1024 "#endif // !MODE_WATER\n"
1025 "\n"
1026 "#endif // FRAGMENT_SHADER\n"
1027 "\n"
1028 "#endif // !MODE_GENERIC\n"
1029 "#endif // !MODE_POSTPROCESS\n"
1030 "#endif // !MODE_DEPTH_OR_SHADOW\n"
1031 ;
1032
1033 typedef struct shaderpermutationinfo_s
1034 {
1035         const char *pretext;
1036         const char *name;
1037 }
1038 shaderpermutationinfo_t;
1039
1040 typedef struct shadermodeinfo_s
1041 {
1042         const char *vertexfilename;
1043         const char *geometryfilename;
1044         const char *fragmentfilename;
1045         const char *pretext;
1046         const char *name;
1047 }
1048 shadermodeinfo_t;
1049
1050 typedef enum shaderpermutation_e
1051 {
1052         SHADERPERMUTATION_DIFFUSE = 1<<0, // (lightsource) whether to use directional shading
1053         SHADERPERMUTATION_VERTEXTEXTUREBLEND = 1<<1, // indicates this is a two-layer material blend based on vertex alpha (q3bsp)
1054         SHADERPERMUTATION_COLORMAPPING = 1<<2, // indicates this is a colormapped skin
1055         SHADERPERMUTATION_CONTRASTBOOST = 1<<3, // r_glsl_contrastboost boosts the contrast at low color levels (similar to gamma)
1056         SHADERPERMUTATION_FOG = 1<<4, // tint the color by fog color or black if using additive blend mode
1057         SHADERPERMUTATION_CUBEFILTER = 1<<5, // (lightsource) use cubemap light filter
1058         SHADERPERMUTATION_GLOW = 1<<6, // (lightmap) blend in an additive glow texture
1059         SHADERPERMUTATION_SPECULAR = 1<<7, // (lightsource or deluxemapping) render specular effects
1060         SHADERPERMUTATION_REFLECTION = 1<<8, // normalmap-perturbed reflection of the scene infront of the surface, preformed as an overlay on the surface
1061         SHADERPERMUTATION_OFFSETMAPPING = 1<<9, // adjust texcoords to roughly simulate a displacement mapped surface
1062         SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING = 1<<10, // adjust texcoords to accurately simulate a displacement mapped surface (requires OFFSETMAPPING to also be set!)
1063         SHADERPERMUTATION_GAMMARAMPS = 1<<11, // gamma (postprocessing only)
1064         SHADERPERMUTATION_POSTPROCESSING = 1<<12, // user defined postprocessing
1065         SHADERPERMUTATION_LIMIT = 1<<13, // size of permutations array
1066         SHADERPERMUTATION_COUNT = 13 // size of shaderpermutationinfo array
1067 }
1068 shaderpermutation_t;
1069
1070 // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES!
1071 shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] =
1072 {
1073         {"#define USEDIFFUSE\n", " diffuse"},
1074         {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"},
1075         {"#define USECOLORMAPPING\n", " colormapping"},
1076         {"#define USECONTRASTBOOST\n", " contrastboost"},
1077         {"#define USEFOG\n", " fog"},
1078         {"#define USECUBEFILTER\n", " cubefilter"},
1079         {"#define USEGLOW\n", " glow"},
1080         {"#define USESPECULAR\n", " specular"},
1081         {"#define USEREFLECTION\n", " reflection"},
1082         {"#define USEOFFSETMAPPING\n", " offsetmapping"},
1083         {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"},
1084         {"#define USEGAMMARAMPS\n", " gammaramps"},
1085         {"#define USEPOSTPROCESSING\n", " postprocessing"},
1086 };
1087
1088 // this enum is multiplied by SHADERPERMUTATION_MODEBASE
1089 typedef enum shadermode_e
1090 {
1091         SHADERMODE_GENERIC, // (particles/HUD/etc) vertex color, optionally multiplied by one texture
1092         SHADERMODE_POSTPROCESS, // postprocessing shader (r_glsl_postprocess)
1093         SHADERMODE_DEPTH_OR_SHADOW, // (depthfirst/shadows) vertex shader only
1094         SHADERMODE_FLATCOLOR, // (lightmap) modulate texture by uniform color (q1bsp, q3bsp)
1095         SHADERMODE_VERTEXCOLOR, // (lightmap) modulate texture by vertex colors (q3bsp)
1096         SHADERMODE_LIGHTMAP, // (lightmap) modulate texture by lightmap texture (q1bsp, q3bsp)
1097         SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE, // (lightmap) use directional pixel shading from texture containing modelspace light directions (q3bsp deluxemap)
1098         SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE, // (lightmap) use directional pixel shading from texture containing tangentspace light directions (q1bsp deluxemap)
1099         SHADERMODE_LIGHTDIRECTION, // (lightmap) use directional pixel shading from fixed light direction (q3bsp)
1100         SHADERMODE_LIGHTSOURCE, // (lightsource) use directional pixel shading from light source (rtlight)
1101         SHADERMODE_REFRACTION, // refract background (the material is rendered normally after this pass)
1102         SHADERMODE_WATER, // refract background and reflection (the material is rendered normally after this pass)
1103         SHADERMODE_COUNT
1104 }
1105 shadermode_t;
1106
1107 // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS!
1108 shadermodeinfo_t shadermodeinfo[SHADERMODE_COUNT] =
1109 {
1110         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_GENERIC\n", " generic"},
1111         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_POSTPROCESS\n", " postprocess"},
1112         {"glsl/default.glsl", NULL, NULL               , "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"},
1113         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_FLATCOLOR\n", " flatcolor"},
1114         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_VERTEXCOLOR\n", " vertexcolor"},
1115         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTMAP\n", " lightmap"},
1116         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"},
1117         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"},
1118         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTION\n", " lightdirection"},
1119         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTSOURCE\n", " lightsource"},
1120         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_REFRACTION\n", " refraction"},
1121         {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_WATER\n", " water"},
1122 };
1123
1124 typedef struct r_glsl_permutation_s
1125 {
1126         // indicates if we have tried compiling this permutation already
1127         qboolean compiled;
1128         // 0 if compilation failed
1129         int program;
1130         // locations of detected uniforms in program object, or -1 if not found
1131         int loc_Texture_First;
1132         int loc_Texture_Second;
1133         int loc_Texture_GammaRamps;
1134         int loc_Texture_Normal;
1135         int loc_Texture_Color;
1136         int loc_Texture_Gloss;
1137         int loc_Texture_Glow;
1138         int loc_Texture_SecondaryNormal;
1139         int loc_Texture_SecondaryColor;
1140         int loc_Texture_SecondaryGloss;
1141         int loc_Texture_SecondaryGlow;
1142         int loc_Texture_Pants;
1143         int loc_Texture_Shirt;
1144         int loc_Texture_FogMask;
1145         int loc_Texture_Lightmap;
1146         int loc_Texture_Deluxemap;
1147         int loc_Texture_Attenuation;
1148         int loc_Texture_Cube;
1149         int loc_Texture_Refraction;
1150         int loc_Texture_Reflection;
1151         int loc_FogColor;
1152         int loc_LightPosition;
1153         int loc_EyePosition;
1154         int loc_Color_Pants;
1155         int loc_Color_Shirt;
1156         int loc_FogRangeRecip;
1157         int loc_AmbientScale;
1158         int loc_DiffuseScale;
1159         int loc_SpecularScale;
1160         int loc_SpecularPower;
1161         int loc_GlowScale;
1162         int loc_SceneBrightness; // or: Scenebrightness * ContrastBoost
1163         int loc_OffsetMapping_Scale;
1164         int loc_TintColor;
1165         int loc_AmbientColor;
1166         int loc_DiffuseColor;
1167         int loc_SpecularColor;
1168         int loc_LightDir;
1169         int loc_ContrastBoostCoeff; // 1 - 1/ContrastBoost
1170         int loc_GammaCoeff; // 1 / gamma
1171         int loc_DistortScaleRefractReflect;
1172         int loc_ScreenScaleRefractReflect;
1173         int loc_ScreenCenterRefractReflect;
1174         int loc_RefractColor;
1175         int loc_ReflectColor;
1176         int loc_ReflectFactor;
1177         int loc_ReflectOffset;
1178         int loc_UserVec1;
1179         int loc_UserVec2;
1180         int loc_UserVec3;
1181         int loc_UserVec4;
1182         int loc_ClientTime;
1183         int loc_PixelSize;
1184 }
1185 r_glsl_permutation_t;
1186
1187 // information about each possible shader permutation
1188 r_glsl_permutation_t r_glsl_permutations[SHADERMODE_COUNT][SHADERPERMUTATION_LIMIT];
1189 // currently selected permutation
1190 r_glsl_permutation_t *r_glsl_permutation;
1191
1192 static char *R_GLSL_GetText(const char *filename, qboolean printfromdisknotice)
1193 {
1194         char *shaderstring;
1195         if (!filename || !filename[0])
1196                 return NULL;
1197         shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL);
1198         if (shaderstring)
1199         {
1200                 if (printfromdisknotice)
1201                         Con_DPrint("from disk... ");
1202                 return shaderstring;
1203         }
1204         else if (!strcmp(filename, "glsl/default.glsl"))
1205         {
1206                 shaderstring = Mem_Alloc(r_main_mempool, strlen(builtinshaderstring) + 1);
1207                 memcpy(shaderstring, builtinshaderstring, strlen(builtinshaderstring) + 1);
1208         }
1209         return shaderstring;
1210 }
1211
1212 static void R_GLSL_CompilePermutation(shadermode_t mode, shaderpermutation_t permutation)
1213 {
1214         int i;
1215         shadermodeinfo_t *modeinfo = shadermodeinfo + mode;
1216         r_glsl_permutation_t *p = &r_glsl_permutations[mode][permutation];
1217         int vertstrings_count = 0;
1218         int geomstrings_count = 0;
1219         int fragstrings_count = 0;
1220         char *vertexstring, *geometrystring, *fragmentstring;
1221         const char *vertstrings_list[32+3];
1222         const char *geomstrings_list[32+3];
1223         const char *fragstrings_list[32+3];
1224         char permutationname[256];
1225
1226         if (p->compiled)
1227                 return;
1228         p->compiled = true;
1229         p->program = 0;
1230
1231         permutationname[0] = 0;
1232         vertexstring   = R_GLSL_GetText(modeinfo->vertexfilename, true);
1233         geometrystring = R_GLSL_GetText(modeinfo->geometryfilename, false);
1234         fragmentstring = R_GLSL_GetText(modeinfo->fragmentfilename, false);
1235
1236         strlcat(permutationname, shadermodeinfo[mode].vertexfilename, sizeof(permutationname));
1237
1238         // the first pretext is which type of shader to compile as
1239         // (later these will all be bound together as a program object)
1240         vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n";
1241         geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n";
1242         fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n";
1243
1244         // the second pretext is the mode (for example a light source)
1245         vertstrings_list[vertstrings_count++] = shadermodeinfo[mode].pretext;
1246         geomstrings_list[geomstrings_count++] = shadermodeinfo[mode].pretext;
1247         fragstrings_list[fragstrings_count++] = shadermodeinfo[mode].pretext;
1248         strlcat(permutationname, modeinfo->name, sizeof(permutationname));
1249
1250         // now add all the permutation pretexts
1251         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1252         {
1253                 if (permutation & (1<<i))
1254                 {
1255                         vertstrings_list[vertstrings_count++] = shaderpermutationinfo[i].pretext;
1256                         geomstrings_list[geomstrings_count++] = shaderpermutationinfo[i].pretext;
1257                         fragstrings_list[fragstrings_count++] = shaderpermutationinfo[i].pretext;
1258                         strlcat(permutationname, shaderpermutationinfo[i].name, sizeof(permutationname));
1259                 }
1260                 else
1261                 {
1262                         // keep line numbers correct
1263                         vertstrings_list[vertstrings_count++] = "\n";
1264                         geomstrings_list[geomstrings_count++] = "\n";
1265                         fragstrings_list[fragstrings_count++] = "\n";
1266                 }
1267         }
1268
1269         // now append the shader text itself
1270         vertstrings_list[vertstrings_count++] = vertexstring;
1271         geomstrings_list[geomstrings_count++] = geometrystring;
1272         fragstrings_list[fragstrings_count++] = fragmentstring;
1273
1274         // if any sources were NULL, clear the respective list
1275         if (!vertexstring)
1276                 vertstrings_count = 0;
1277         if (!geometrystring)
1278                 geomstrings_count = 0;
1279         if (!fragmentstring)
1280                 fragstrings_count = 0;
1281
1282         // compile the shader program
1283         if (vertstrings_count + geomstrings_count + fragstrings_count)
1284                 p->program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list);
1285         if (p->program)
1286         {
1287                 CHECKGLERROR
1288                 qglUseProgramObjectARB(p->program);CHECKGLERROR
1289                 // look up all the uniform variable names we care about, so we don't
1290                 // have to look them up every time we set them
1291                 p->loc_Texture_First              = qglGetUniformLocationARB(p->program, "Texture_First");
1292                 p->loc_Texture_Second             = qglGetUniformLocationARB(p->program, "Texture_Second");
1293                 p->loc_Texture_GammaRamps         = qglGetUniformLocationARB(p->program, "Texture_GammaRamps");
1294                 p->loc_Texture_Normal             = qglGetUniformLocationARB(p->program, "Texture_Normal");
1295                 p->loc_Texture_Color              = qglGetUniformLocationARB(p->program, "Texture_Color");
1296                 p->loc_Texture_Gloss              = qglGetUniformLocationARB(p->program, "Texture_Gloss");
1297                 p->loc_Texture_Glow               = qglGetUniformLocationARB(p->program, "Texture_Glow");
1298                 p->loc_Texture_SecondaryNormal    = qglGetUniformLocationARB(p->program, "Texture_SecondaryNormal");
1299                 p->loc_Texture_SecondaryColor     = qglGetUniformLocationARB(p->program, "Texture_SecondaryColor");
1300                 p->loc_Texture_SecondaryGloss     = qglGetUniformLocationARB(p->program, "Texture_SecondaryGloss");
1301                 p->loc_Texture_SecondaryGlow      = qglGetUniformLocationARB(p->program, "Texture_SecondaryGlow");
1302                 p->loc_Texture_FogMask            = qglGetUniformLocationARB(p->program, "Texture_FogMask");
1303                 p->loc_Texture_Pants              = qglGetUniformLocationARB(p->program, "Texture_Pants");
1304                 p->loc_Texture_Shirt              = qglGetUniformLocationARB(p->program, "Texture_Shirt");
1305                 p->loc_Texture_Lightmap           = qglGetUniformLocationARB(p->program, "Texture_Lightmap");
1306                 p->loc_Texture_Deluxemap          = qglGetUniformLocationARB(p->program, "Texture_Deluxemap");
1307                 p->loc_Texture_Refraction         = qglGetUniformLocationARB(p->program, "Texture_Refraction");
1308                 p->loc_Texture_Reflection         = qglGetUniformLocationARB(p->program, "Texture_Reflection");
1309                 p->loc_Texture_Attenuation        = qglGetUniformLocationARB(p->program, "Texture_Attenuation");
1310                 p->loc_Texture_Cube               = qglGetUniformLocationARB(p->program, "Texture_Cube");
1311                 p->loc_FogColor                   = qglGetUniformLocationARB(p->program, "FogColor");
1312                 p->loc_LightPosition              = qglGetUniformLocationARB(p->program, "LightPosition");
1313                 p->loc_EyePosition                = qglGetUniformLocationARB(p->program, "EyePosition");
1314                 p->loc_Color_Pants                = qglGetUniformLocationARB(p->program, "Color_Pants");
1315                 p->loc_Color_Shirt                = qglGetUniformLocationARB(p->program, "Color_Shirt");
1316                 p->loc_FogRangeRecip              = qglGetUniformLocationARB(p->program, "FogRangeRecip");
1317                 p->loc_AmbientScale               = qglGetUniformLocationARB(p->program, "AmbientScale");
1318                 p->loc_DiffuseScale               = qglGetUniformLocationARB(p->program, "DiffuseScale");
1319                 p->loc_SpecularPower              = qglGetUniformLocationARB(p->program, "SpecularPower");
1320                 p->loc_SpecularScale              = qglGetUniformLocationARB(p->program, "SpecularScale");
1321                 p->loc_GlowScale                  = qglGetUniformLocationARB(p->program, "GlowScale");
1322                 p->loc_SceneBrightness            = qglGetUniformLocationARB(p->program, "SceneBrightness");
1323                 p->loc_OffsetMapping_Scale        = qglGetUniformLocationARB(p->program, "OffsetMapping_Scale");
1324                 p->loc_TintColor                  = qglGetUniformLocationARB(p->program, "TintColor");
1325                 p->loc_AmbientColor               = qglGetUniformLocationARB(p->program, "AmbientColor");
1326                 p->loc_DiffuseColor               = qglGetUniformLocationARB(p->program, "DiffuseColor");
1327                 p->loc_SpecularColor              = qglGetUniformLocationARB(p->program, "SpecularColor");
1328                 p->loc_LightDir                   = qglGetUniformLocationARB(p->program, "LightDir");
1329                 p->loc_ContrastBoostCoeff         = qglGetUniformLocationARB(p->program, "ContrastBoostCoeff");
1330                 p->loc_DistortScaleRefractReflect = qglGetUniformLocationARB(p->program, "DistortScaleRefractReflect");
1331                 p->loc_ScreenScaleRefractReflect  = qglGetUniformLocationARB(p->program, "ScreenScaleRefractReflect");
1332                 p->loc_ScreenCenterRefractReflect = qglGetUniformLocationARB(p->program, "ScreenCenterRefractReflect");
1333                 p->loc_RefractColor               = qglGetUniformLocationARB(p->program, "RefractColor");
1334                 p->loc_ReflectColor               = qglGetUniformLocationARB(p->program, "ReflectColor");
1335                 p->loc_ReflectFactor              = qglGetUniformLocationARB(p->program, "ReflectFactor");
1336                 p->loc_ReflectOffset              = qglGetUniformLocationARB(p->program, "ReflectOffset");
1337                 p->loc_GammaCoeff                 = qglGetUniformLocationARB(p->program, "GammaCoeff");
1338                 p->loc_UserVec1                   = qglGetUniformLocationARB(p->program, "UserVec1");
1339                 p->loc_UserVec2                   = qglGetUniformLocationARB(p->program, "UserVec2");
1340                 p->loc_UserVec3                   = qglGetUniformLocationARB(p->program, "UserVec3");
1341                 p->loc_UserVec4                   = qglGetUniformLocationARB(p->program, "UserVec4");
1342                 p->loc_ClientTime                 = qglGetUniformLocationARB(p->program, "ClientTime");
1343                 p->loc_PixelSize                  = qglGetUniformLocationARB(p->program, "PixelSize");
1344                 // initialize the samplers to refer to the texture units we use
1345                 if (p->loc_Texture_First           >= 0) qglUniform1iARB(p->loc_Texture_First          , GL20TU_FIRST);
1346                 if (p->loc_Texture_Second          >= 0) qglUniform1iARB(p->loc_Texture_Second         , GL20TU_SECOND);
1347                 if (p->loc_Texture_GammaRamps      >= 0) qglUniform1iARB(p->loc_Texture_GammaRamps     , GL20TU_GAMMARAMPS);
1348                 if (p->loc_Texture_Normal          >= 0) qglUniform1iARB(p->loc_Texture_Normal         , GL20TU_NORMAL);
1349                 if (p->loc_Texture_Color           >= 0) qglUniform1iARB(p->loc_Texture_Color          , GL20TU_COLOR);
1350                 if (p->loc_Texture_Gloss           >= 0) qglUniform1iARB(p->loc_Texture_Gloss          , GL20TU_GLOSS);
1351                 if (p->loc_Texture_Glow            >= 0) qglUniform1iARB(p->loc_Texture_Glow           , GL20TU_GLOW);
1352                 if (p->loc_Texture_SecondaryNormal >= 0) qglUniform1iARB(p->loc_Texture_SecondaryNormal, GL20TU_SECONDARY_NORMAL);
1353                 if (p->loc_Texture_SecondaryColor  >= 0) qglUniform1iARB(p->loc_Texture_SecondaryColor , GL20TU_SECONDARY_COLOR);
1354                 if (p->loc_Texture_SecondaryGloss  >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGloss , GL20TU_SECONDARY_GLOSS);
1355                 if (p->loc_Texture_SecondaryGlow   >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGlow  , GL20TU_SECONDARY_GLOW);
1356                 if (p->loc_Texture_Pants           >= 0) qglUniform1iARB(p->loc_Texture_Pants          , GL20TU_PANTS);
1357                 if (p->loc_Texture_Shirt           >= 0) qglUniform1iARB(p->loc_Texture_Shirt          , GL20TU_SHIRT);
1358                 if (p->loc_Texture_FogMask         >= 0) qglUniform1iARB(p->loc_Texture_FogMask        , GL20TU_FOGMASK);
1359                 if (p->loc_Texture_Lightmap        >= 0) qglUniform1iARB(p->loc_Texture_Lightmap       , GL20TU_LIGHTMAP);
1360                 if (p->loc_Texture_Deluxemap       >= 0) qglUniform1iARB(p->loc_Texture_Deluxemap      , GL20TU_DELUXEMAP);
1361                 if (p->loc_Texture_Attenuation     >= 0) qglUniform1iARB(p->loc_Texture_Attenuation    , GL20TU_ATTENUATION);
1362                 if (p->loc_Texture_Cube            >= 0) qglUniform1iARB(p->loc_Texture_Cube           , GL20TU_CUBE);
1363                 if (p->loc_Texture_Refraction      >= 0) qglUniform1iARB(p->loc_Texture_Refraction     , GL20TU_REFRACTION);
1364                 if (p->loc_Texture_Reflection      >= 0) qglUniform1iARB(p->loc_Texture_Reflection     , GL20TU_REFLECTION);
1365                 CHECKGLERROR
1366                 if (developer.integer)
1367                         Con_Printf("GLSL shader %s compiled.\n", permutationname);
1368         }
1369         else
1370                 Con_Printf("GLSL shader %s failed!  some features may not work properly.\n", permutationname);
1371
1372         // free the strings
1373         if (vertexstring)
1374                 Mem_Free(vertexstring);
1375         if (geometrystring)
1376                 Mem_Free(geometrystring);
1377         if (fragmentstring)
1378                 Mem_Free(fragmentstring);
1379 }
1380
1381 void R_GLSL_Restart_f(void)
1382 {
1383         shadermode_t mode;
1384         shaderpermutation_t permutation;
1385         for (mode = 0;mode < SHADERMODE_COUNT;mode++)
1386                 for (permutation = 0;permutation < SHADERPERMUTATION_LIMIT;permutation++)
1387                         if (r_glsl_permutations[mode][permutation].program)
1388                                 GL_Backend_FreeProgram(r_glsl_permutations[mode][permutation].program);
1389         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
1390 }
1391
1392 void R_GLSL_DumpShader_f(void)
1393 {
1394         int i;
1395
1396         qfile_t *file = FS_Open("glsl/default.glsl", "w", false, false);
1397         if(!file)
1398         {
1399                 Con_Printf("failed to write to glsl/default.glsl\n");
1400                 return;
1401         }
1402
1403         FS_Print(file, "// The engine may define the following macros:\n");
1404         FS_Print(file, "// #define VERTEX_SHADER\n// #define GEOMETRY_SHADER\n// #define FRAGMENT_SHADER\n");
1405         for (i = 0;i < SHADERMODE_COUNT;i++)
1406                 FS_Printf(file, "// %s", shadermodeinfo[i].pretext);
1407         for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1408                 FS_Printf(file, "// %s", shaderpermutationinfo[i].pretext);
1409         FS_Print(file, "\n");
1410         FS_Print(file, builtinshaderstring);
1411         FS_Close(file);
1412
1413         Con_Printf("glsl/default.glsl written\n");
1414 }
1415
1416 void R_SetupShader_SetPermutation(shadermode_t mode, unsigned int permutation)
1417 {
1418         r_glsl_permutation_t *perm = &r_glsl_permutations[mode][permutation];
1419         if (r_glsl_permutation != perm)
1420         {
1421                 r_glsl_permutation = perm;
1422                 if (!r_glsl_permutation->program)
1423                 {
1424                         if (!r_glsl_permutation->compiled)
1425                                 R_GLSL_CompilePermutation(mode, permutation);
1426                         if (!r_glsl_permutation->program)
1427                         {
1428                                 // remove features until we find a valid permutation
1429                                 int i;
1430                                 for (i = 0;i < SHADERPERMUTATION_COUNT;i++)
1431                                 {
1432                                         // reduce i more quickly whenever it would not remove any bits
1433                                         int j = 1<<(SHADERPERMUTATION_COUNT-1-i);
1434                                         if (!(permutation & j))
1435                                                 continue;
1436                                         permutation -= j;
1437                                         r_glsl_permutation = &r_glsl_permutations[mode][permutation];
1438                                         if (!r_glsl_permutation->compiled)
1439                                                 R_GLSL_CompilePermutation(mode, permutation);
1440                                         if (r_glsl_permutation->program)
1441                                                 break;
1442                                 }
1443                                 if (i >= SHADERPERMUTATION_COUNT)
1444                                 {
1445                                         Con_Printf("OpenGL 2.0 shaders disabled - unable to find a working shader permutation fallback on this driver (set r_glsl 1 if you want to try again)\n");
1446                                         Cvar_SetValueQuick(&r_glsl, 0);
1447                                         R_GLSL_Restart_f(); // unload shaders
1448                                         return; // no bit left to clear
1449                                 }
1450                         }
1451                 }
1452                 CHECKGLERROR
1453                 qglUseProgramObjectARB(r_glsl_permutation->program);CHECKGLERROR
1454         }
1455 }
1456
1457 void R_SetupGenericShader(qboolean usetexture)
1458 {
1459         if (gl_support_fragment_shader)
1460         {
1461                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1462                         R_SetupShader_SetPermutation(SHADERMODE_GENERIC, usetexture ? SHADERPERMUTATION_DIFFUSE : 0);
1463                 else if (r_glsl_permutation)
1464                 {
1465                         r_glsl_permutation = NULL;
1466                         qglUseProgramObjectARB(0);CHECKGLERROR
1467                 }
1468         }
1469 }
1470
1471 void R_SetupGenericTwoTextureShader(int texturemode)
1472 {
1473         if (gl_support_fragment_shader)
1474         {
1475                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1476                         R_SetupShader_SetPermutation(SHADERMODE_GENERIC, SHADERPERMUTATION_DIFFUSE | SHADERPERMUTATION_SPECULAR | (texturemode == GL_MODULATE ? SHADERPERMUTATION_COLORMAPPING : (texturemode == GL_ADD ? SHADERPERMUTATION_GLOW : (texturemode == GL_DECAL ? SHADERPERMUTATION_VERTEXTEXTUREBLEND : 0))));
1477                 else if (r_glsl_permutation)
1478                 {
1479                         r_glsl_permutation = NULL;
1480                         qglUseProgramObjectARB(0);CHECKGLERROR
1481                 }
1482         }
1483         if (!r_glsl_permutation)
1484         {
1485                 if (texturemode == GL_DECAL && gl_combine.integer)
1486                         texturemode = GL_INTERPOLATE_ARB;
1487                 R_Mesh_TexCombine(1, texturemode, texturemode, 1, 1);
1488         }
1489 }
1490
1491 void R_SetupDepthOrShadowShader(void)
1492 {
1493         if (gl_support_fragment_shader)
1494         {
1495                 if (r_glsl.integer && r_glsl_usegeneric.integer)
1496                         R_SetupShader_SetPermutation(SHADERMODE_DEPTH_OR_SHADOW, 0);
1497                 else if (r_glsl_permutation)
1498                 {
1499                         r_glsl_permutation = NULL;
1500                         qglUseProgramObjectARB(0);CHECKGLERROR
1501                 }
1502         }
1503 }
1504
1505 extern rtexture_t *r_shadow_attenuationgradienttexture;
1506 extern rtexture_t *r_shadow_attenuation2dtexture;
1507 extern rtexture_t *r_shadow_attenuation3dtexture;
1508 void R_SetupSurfaceShader(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass)
1509 {
1510         // select a permutation of the lighting shader appropriate to this
1511         // combination of texture, entity, light source, and fogging, only use the
1512         // minimum features necessary to avoid wasting rendering time in the
1513         // fragment shader on features that are not being used
1514         unsigned int permutation = 0;
1515         shadermode_t mode = 0;
1516         // TODO: implement geometry-shader based shadow volumes someday
1517         if (r_glsl_offsetmapping.integer)
1518         {
1519                 permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1520                 if (r_glsl_offsetmapping_reliefmapping.integer)
1521                         permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1522         }
1523         if (rsurfacepass == RSURFPASS_BACKGROUND)
1524         {
1525                 // distorted background
1526                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERSHADER)
1527                         mode = SHADERMODE_WATER;
1528                 else
1529                         mode = SHADERMODE_REFRACTION;
1530         }
1531         else if (rsurfacepass == RSURFPASS_RTLIGHT)
1532         {
1533                 // light source
1534                 mode = SHADERMODE_LIGHTSOURCE;
1535                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1536                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1537                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1538                         permutation |= SHADERPERMUTATION_CUBEFILTER;
1539                 if (diffusescale > 0)
1540                         permutation |= SHADERPERMUTATION_DIFFUSE;
1541                 if (specularscale > 0)
1542                         permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1543                 if (r_refdef.fogenabled)
1544                         permutation |= SHADERPERMUTATION_FOG;
1545                 if (rsurface.texture->colormapping)
1546                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1547                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1548                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1549         }
1550         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)
1551         {
1552                 // unshaded geometry (fullbright or ambient model lighting)
1553                 mode = SHADERMODE_FLATCOLOR;
1554                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1555                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1556                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1557                         permutation |= SHADERPERMUTATION_GLOW;
1558                 if (r_refdef.fogenabled)
1559                         permutation |= SHADERPERMUTATION_FOG;
1560                 if (rsurface.texture->colormapping)
1561                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1562                 if (r_glsl_offsetmapping.integer)
1563                 {
1564                         permutation |= SHADERPERMUTATION_OFFSETMAPPING;
1565                         if (r_glsl_offsetmapping_reliefmapping.integer)
1566                                 permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING;
1567                 }
1568                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1569                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1570                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1571                         permutation |= SHADERPERMUTATION_REFLECTION;
1572         }
1573         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT_DIRECTIONAL)
1574         {
1575                 // directional model lighting
1576                 mode = SHADERMODE_LIGHTDIRECTION;
1577                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1578                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1579                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1580                         permutation |= SHADERPERMUTATION_GLOW;
1581                 permutation |= SHADERPERMUTATION_DIFFUSE;
1582                 if (specularscale > 0)
1583                         permutation |= SHADERPERMUTATION_SPECULAR;
1584                 if (r_refdef.fogenabled)
1585                         permutation |= SHADERPERMUTATION_FOG;
1586                 if (rsurface.texture->colormapping)
1587                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1588                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1589                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1590                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1591                         permutation |= SHADERPERMUTATION_REFLECTION;
1592         }
1593         else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT)
1594         {
1595                 // ambient model lighting
1596                 mode = SHADERMODE_LIGHTDIRECTION;
1597                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1598                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1599                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1600                         permutation |= SHADERPERMUTATION_GLOW;
1601                 if (r_refdef.fogenabled)
1602                         permutation |= SHADERPERMUTATION_FOG;
1603                 if (rsurface.texture->colormapping)
1604                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1605                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1606                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1607                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1608                         permutation |= SHADERPERMUTATION_REFLECTION;
1609         }
1610         else
1611         {
1612                 // lightmapped wall
1613                 if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping)
1614                 {
1615                         // deluxemapping (light direction texture)
1616                         if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace)
1617                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE;
1618                         else
1619                                 mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1620                         permutation |= SHADERPERMUTATION_DIFFUSE;
1621                         if (specularscale > 0)
1622                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1623                 }
1624                 else if (r_glsl_deluxemapping.integer >= 2)
1625                 {
1626                         // fake deluxemapping (uniform light direction in tangentspace)
1627                         mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE;
1628                         permutation |= SHADERPERMUTATION_DIFFUSE;
1629                         if (specularscale > 0)
1630                                 permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE;
1631                 }
1632                 else if (rsurface.uselightmaptexture)
1633                 {
1634                         // ordinary lightmapping (q1bsp, q3bsp)
1635                         mode = SHADERMODE_LIGHTMAP;
1636                 }
1637                 else
1638                 {
1639                         // ordinary vertex coloring (q3bsp)
1640                         mode = SHADERMODE_VERTEXCOLOR;
1641                 }
1642                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND)
1643                         permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND;
1644                 if (rsurface.texture->currentskinframe->glow && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer)
1645                         permutation |= SHADERPERMUTATION_GLOW;
1646                 if (r_refdef.fogenabled)
1647                         permutation |= SHADERPERMUTATION_FOG;
1648                 if (rsurface.texture->colormapping)
1649                         permutation |= SHADERPERMUTATION_COLORMAPPING;
1650                 if(r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)
1651                         permutation |= SHADERPERMUTATION_CONTRASTBOOST;
1652                 if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)
1653                         permutation |= SHADERPERMUTATION_REFLECTION;
1654         }
1655         R_SetupShader_SetPermutation(mode, permutation);
1656         if (mode == SHADERMODE_LIGHTSOURCE)
1657         {
1658                 if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);
1659                 if (permutation & SHADERPERMUTATION_DIFFUSE)
1660                 {
1661                         if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2], rsurface.texture->lightmapcolor[3]);
1662                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, ambientscale);
1663                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, diffusescale);
1664                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, specularscale);
1665                 }
1666                 else
1667                 {
1668                         // ambient only is simpler
1669                         if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, lightcolorbase[0] * ambientscale, lightcolorbase[1] * ambientscale, lightcolorbase[2] * ambientscale, rsurface.texture->lightmapcolor[3]);
1670                         if (r_glsl_permutation->loc_AmbientScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, 1);
1671                         if (r_glsl_permutation->loc_DiffuseScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, 0);
1672                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, 0);
1673                 }
1674                 // additive passes are only darkened by fog, not tinted
1675                 if (r_glsl_permutation->loc_FogColor >= 0)
1676                         qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1677         }
1678         else
1679         {
1680                 if (mode == SHADERMODE_LIGHTDIRECTION)
1681                 {
1682                         if (r_glsl_permutation->loc_AmbientColor  >= 0) qglUniform3fARB(r_glsl_permutation->loc_AmbientColor , rsurface.modellight_ambient[0] * ambientscale  * 0.5f, rsurface.modellight_ambient[1] * ambientscale  * 0.5f, rsurface.modellight_ambient[2] * ambientscale  * 0.5f);
1683                         if (r_glsl_permutation->loc_DiffuseColor  >= 0) qglUniform3fARB(r_glsl_permutation->loc_DiffuseColor , rsurface.modellight_diffuse[0] * diffusescale  * 0.5f, rsurface.modellight_diffuse[1] * diffusescale  * 0.5f, rsurface.modellight_diffuse[2] * diffusescale  * 0.5f);
1684                         if (r_glsl_permutation->loc_SpecularColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_SpecularColor, rsurface.modellight_diffuse[0] * specularscale * 0.5f, rsurface.modellight_diffuse[1] * specularscale * 0.5f, rsurface.modellight_diffuse[2] * specularscale * 0.5f);
1685                         if (r_glsl_permutation->loc_LightDir      >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);
1686                 }
1687                 else
1688                 {
1689                         if (r_glsl_permutation->loc_AmbientScale  >= 0) qglUniform1fARB(r_glsl_permutation->loc_AmbientScale, r_refdef.scene.ambient * 1.0f / 128.0f);
1690                         if (r_glsl_permutation->loc_DiffuseScale  >= 0) qglUniform1fARB(r_glsl_permutation->loc_DiffuseScale, r_refdef.lightmapintensity);
1691                         if (r_glsl_permutation->loc_SpecularScale >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularScale, r_refdef.lightmapintensity * specularscale);
1692                 }
1693                 if (r_glsl_permutation->loc_TintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_TintColor, rsurface.texture->lightmapcolor[0], rsurface.texture->lightmapcolor[1], rsurface.texture->lightmapcolor[2], rsurface.texture->lightmapcolor[3]);
1694                 if (r_glsl_permutation->loc_GlowScale     >= 0) qglUniform1fARB(r_glsl_permutation->loc_GlowScale, r_hdr_glowintensity.value);
1695                 // additive passes are only darkened by fog, not tinted
1696                 if (r_glsl_permutation->loc_FogColor >= 0)
1697                 {
1698                         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD)
1699                                 qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0);
1700                         else
1701                                 qglUniform3fARB(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]);
1702                 }
1703                 if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor);
1704                 if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]);
1705                 if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]);
1706                 if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_RefractColor, 1, rsurface.texture->refractcolor4f);
1707                 if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4fvARB(r_glsl_permutation->loc_ReflectColor, 1, rsurface.texture->reflectcolor4f);
1708                 if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin);
1709                 if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectOffset, rsurface.texture->reflectmin);
1710         }
1711         if (r_glsl_permutation->loc_ContrastBoostCoeff >= 0)
1712         {
1713                 // The formula used is actually:
1714                 //   color.rgb *= ContrastBoost / ((ContrastBoost - 1) * color.rgb + 1);
1715                 //   color.rgb *= SceneBrightness;
1716                 // simplified:
1717                 //   color.rgb = [[SceneBrightness * ContrastBoost]] * color.rgb / ([[ContrastBoost - 1]] * color.rgb + 1);
1718                 // and do [[calculations]] here in the engine
1719                 qglUniform1fARB(r_glsl_permutation->loc_ContrastBoostCoeff, r_glsl_contrastboost.value - 1);
1720                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_refdef.view.colorscale * r_glsl_contrastboost.value);
1721         }
1722         else
1723                 if (r_glsl_permutation->loc_SceneBrightness >= 0) qglUniform1fARB(r_glsl_permutation->loc_SceneBrightness, r_refdef.view.colorscale);
1724         if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_EyePosition, rsurface.modelorg[0], rsurface.modelorg[1], rsurface.modelorg[2]);
1725         if (r_glsl_permutation->loc_Color_Pants >= 0)
1726         {
1727                 if (rsurface.texture->currentskinframe->pants)
1728                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]);
1729                 else
1730                         qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, 0, 0, 0);
1731         }
1732         if (r_glsl_permutation->loc_Color_Shirt >= 0)
1733         {
1734                 if (rsurface.texture->currentskinframe->shirt)
1735                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]);
1736                 else
1737                         qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0);
1738         }
1739         if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogRangeRecip, r_refdef.fograngerecip);
1740         if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower);
1741         if (r_glsl_permutation->loc_OffsetMapping_Scale >= 0) qglUniform1fARB(r_glsl_permutation->loc_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value);
1742         CHECKGLERROR
1743 }
1744
1745 #define SKINFRAME_HASH 1024
1746
1747 struct
1748 {
1749         int loadsequence; // incremented each level change
1750         memexpandablearray_t array;
1751         skinframe_t *hash[SKINFRAME_HASH];
1752 }
1753 r_skinframe;
1754
1755 void R_SkinFrame_PrepareForPurge(void)
1756 {
1757         r_skinframe.loadsequence++;
1758         // wrap it without hitting zero
1759         if (r_skinframe.loadsequence >= 200)
1760                 r_skinframe.loadsequence = 1;
1761 }
1762
1763 void R_SkinFrame_MarkUsed(skinframe_t *skinframe)
1764 {
1765         if (!skinframe)
1766                 return;
1767         // mark the skinframe as used for the purging code
1768         skinframe->loadsequence = r_skinframe.loadsequence;
1769 }
1770
1771 void R_SkinFrame_Purge(void)
1772 {
1773         int i;
1774         skinframe_t *s;
1775         for (i = 0;i < SKINFRAME_HASH;i++)
1776         {
1777                 for (s = r_skinframe.hash[i];s;s = s->next)
1778                 {
1779                         if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence)
1780                         {
1781                                 if (s->merged == s->base)
1782                                         s->merged = NULL;
1783                                 // FIXME: maybe pass a pointer to the pointer to R_PurgeTexture and reset it to NULL inside? [11/29/2007 Black]
1784                                 R_PurgeTexture(s->stain );s->stain  = NULL;
1785                                 R_PurgeTexture(s->merged);s->merged = NULL;
1786                                 R_PurgeTexture(s->base  );s->base   = NULL;
1787                                 R_PurgeTexture(s->pants );s->pants  = NULL;
1788                                 R_PurgeTexture(s->shirt );s->shirt  = NULL;
1789                                 R_PurgeTexture(s->nmap  );s->nmap   = NULL;
1790                                 R_PurgeTexture(s->gloss );s->gloss  = NULL;
1791                                 R_PurgeTexture(s->glow  );s->glow   = NULL;
1792                                 R_PurgeTexture(s->fog   );s->fog    = NULL;
1793                                 s->loadsequence = 0;
1794                         }
1795                 }
1796         }
1797 }
1798
1799 skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) {
1800         skinframe_t *item;
1801         char basename[MAX_QPATH];
1802
1803         Image_StripImageExtension(name, basename, sizeof(basename));
1804
1805         if( last == NULL ) {
1806                 int hashindex;
1807                 hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1808                 item = r_skinframe.hash[hashindex];
1809         } else {
1810                 item = last->next;
1811         }
1812
1813         // linearly search through the hash bucket
1814         for( ; item ; item = item->next ) {
1815                 if( !strcmp( item->basename, basename ) ) {
1816                         return item;
1817                 }
1818         }
1819         return NULL;
1820 }
1821
1822 skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add)
1823 {
1824         skinframe_t *item;
1825         int hashindex;
1826         char basename[MAX_QPATH];
1827
1828         Image_StripImageExtension(name, basename, sizeof(basename));
1829
1830         hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1);
1831         for (item = r_skinframe.hash[hashindex];item;item = item->next)
1832                 if (!strcmp(item->basename, basename) && item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc)
1833                         break;
1834
1835         if (!item) {
1836                 rtexture_t *dyntexture;
1837                 // check whether its a dynamic texture
1838                 dyntexture = CL_GetDynTexture( basename );
1839                 if (!add && !dyntexture)
1840                         return NULL;
1841                 item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array);
1842                 memset(item, 0, sizeof(*item));
1843                 strlcpy(item->basename, basename, sizeof(item->basename));
1844                 item->base = dyntexture; // either NULL or dyntexture handle
1845                 item->textureflags = textureflags;
1846                 item->comparewidth = comparewidth;
1847                 item->compareheight = compareheight;
1848                 item->comparecrc = comparecrc;
1849                 item->next = r_skinframe.hash[hashindex];
1850                 r_skinframe.hash[hashindex] = item;
1851         }
1852         else if( item->base == NULL )
1853         {
1854                 rtexture_t *dyntexture;
1855                 // check whether its a dynamic texture
1856                 // this only needs to be done because Purge doesnt delete skinframes - only sets the texture pointers to NULL and we need to restore it before returing.. [11/29/2007 Black]
1857                 dyntexture = CL_GetDynTexture( basename );
1858                 item->base = dyntexture; // either NULL or dyntexture handle
1859         }
1860
1861         R_SkinFrame_MarkUsed(item);
1862         return item;
1863 }
1864
1865 skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain)
1866 {
1867         // FIXME: it should be possible to disable loading various layers using
1868         // cvars, to prevent wasted loading time and memory usage if the user does
1869         // not want them
1870         qboolean loadnormalmap = true;
1871         qboolean loadgloss = true;
1872         qboolean loadpantsandshirt = true;
1873         qboolean loadglow = true;
1874         int j;
1875         unsigned char *pixels;
1876         unsigned char *bumppixels;
1877         unsigned char *basepixels = NULL;
1878         int basepixels_width;
1879         int basepixels_height;
1880         skinframe_t *skinframe;
1881
1882         if (cls.state == ca_dedicated)
1883                 return NULL;
1884
1885         // return an existing skinframe if already loaded
1886         // if loading of the first image fails, don't make a new skinframe as it
1887         // would cause all future lookups of this to be missing
1888         skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false);
1889         if (skinframe && skinframe->base)
1890                 return skinframe;
1891
1892         basepixels = loadimagepixelsbgra(name, complain, true);
1893         if (basepixels == NULL)
1894                 return NULL;
1895
1896         if (developer_loading.integer)
1897                 Con_Printf("loading skin \"%s\"\n", name);
1898
1899         // we've got some pixels to store, so really allocate this new texture now
1900         if (!skinframe)
1901                 skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true);
1902         skinframe->stain = NULL;
1903         skinframe->merged = NULL;
1904         skinframe->base = r_texture_notexture;
1905         skinframe->pants = NULL;
1906         skinframe->shirt = NULL;
1907         skinframe->nmap = r_texture_blanknormalmap;
1908         skinframe->gloss = NULL;
1909         skinframe->glow = NULL;
1910         skinframe->fog = NULL;
1911
1912         basepixels_width = image_width;
1913         basepixels_height = image_height;
1914         skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1915
1916         if (textureflags & TEXF_ALPHA)
1917         {
1918                 for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4)
1919                         if (basepixels[j] < 255)
1920                                 break;
1921                 if (j < basepixels_width * basepixels_height * 4)
1922                 {
1923                         // has transparent pixels
1924                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1925                         for (j = 0;j < image_width * image_height * 4;j += 4)
1926                         {
1927                                 pixels[j+0] = 255;
1928                                 pixels[j+1] = 255;
1929                                 pixels[j+2] = 255;
1930                                 pixels[j+3] = basepixels[j+3];
1931                         }
1932                         skinframe->fog = R_LoadTexture2D (r_main_texturepool, va("%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1933                         Mem_Free(pixels);
1934                 }
1935         }
1936
1937         // _norm is the name used by tenebrae and has been adopted as standard
1938         if (loadnormalmap)
1939         {
1940                 if ((pixels = loadimagepixelsbgra(va("%s_norm", skinframe->basename), false, false)) != NULL)
1941                 {
1942                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1943                         Mem_Free(pixels);
1944                         pixels = NULL;
1945                 }
1946                 else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va("%s_bump", skinframe->basename), false, false)) != NULL)
1947                 {
1948                         pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
1949                         Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value);
1950                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1951                         Mem_Free(pixels);
1952                         Mem_Free(bumppixels);
1953                 }
1954                 else if (r_shadow_bumpscale_basetexture.value > 0)
1955                 {
1956                         pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4);
1957                         Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value);
1958                         skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), NULL);
1959                         Mem_Free(pixels);
1960                 }
1961         }
1962         // _luma is supported for tenebrae compatibility
1963         // (I think it's a very stupid name, but oh well)
1964         // _glow is the preferred name
1965         if (loadglow          && ((pixels = loadimagepixelsbgra(va("%s_glow", skinframe->basename), false, false)) != NULL || (pixels = loadimagepixelsbgra(va("%s_luma", skinframe->basename), false, false)) != NULL)) {skinframe->glow = R_LoadTexture2D (r_main_texturepool, va("%s_glow", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_glow.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1966         if (loadgloss         && (pixels = loadimagepixelsbgra(va("%s_gloss", skinframe->basename), false, false)) != NULL) {skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va("%s_gloss", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_gloss.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1967         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_pants", skinframe->basename), false, false)) != NULL) {skinframe->pants = R_LoadTexture2D (r_main_texturepool, va("%s_pants", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1968         if (loadpantsandshirt && (pixels = loadimagepixelsbgra(va("%s_shirt", skinframe->basename), false, false)) != NULL) {skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va("%s_shirt", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, skinframe->textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), NULL);Mem_Free(pixels);pixels = NULL;}
1969
1970         if (basepixels)
1971                 Mem_Free(basepixels);
1972
1973         return skinframe;
1974 }
1975
1976 static rtexture_t *R_SkinFrame_TextureForSkinLayer(const unsigned char *in, int width, int height, const char *name, const unsigned int *palette, int textureflags, qboolean force)
1977 {
1978         int i;
1979         if (!force)
1980         {
1981                 for (i = 0;i < width*height;i++)
1982                         if (((unsigned char *)&palette[in[i]])[3] > 0)
1983                                 break;
1984                 if (i == width*height)
1985                         return NULL;
1986         }
1987         return R_LoadTexture2D (r_main_texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette);
1988 }
1989
1990 // this is only used by .spr32 sprites, HL .spr files, HL .bsp files
1991 skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height)
1992 {
1993         int i;
1994         unsigned char *temp1, *temp2;
1995         skinframe_t *skinframe;
1996
1997         if (cls.state == ca_dedicated)
1998                 return NULL;
1999
2000         // if already loaded just return it, otherwise make a new skinframe
2001         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height*4) : 0, true);
2002         if (skinframe && skinframe->base)
2003                 return skinframe;
2004
2005         skinframe->stain = NULL;
2006         skinframe->merged = NULL;
2007         skinframe->base = r_texture_notexture;
2008         skinframe->pants = NULL;
2009         skinframe->shirt = NULL;
2010         skinframe->nmap = r_texture_blanknormalmap;
2011         skinframe->gloss = NULL;
2012         skinframe->glow = NULL;
2013         skinframe->fog = NULL;
2014
2015         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2016         if (!skindata)
2017                 return NULL;
2018
2019         if (developer_loading.integer)
2020                 Con_Printf("loading 32bit skin \"%s\"\n", name);
2021
2022         if (r_shadow_bumpscale_basetexture.value > 0)
2023         {
2024                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2025                 temp2 = temp1 + width * height * 4;
2026                 Image_HeightmapToNormalmap_BGRA(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
2027                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
2028                 Mem_Free(temp1);
2029         }
2030         skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_BGRA, skinframe->textureflags, NULL);
2031         if (textureflags & TEXF_ALPHA)
2032         {
2033                 for (i = 3;i < width * height * 4;i += 4)
2034                         if (skindata[i] < 255)
2035                                 break;
2036                 if (i < width * height * 4)
2037                 {
2038                         unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4);
2039                         memcpy(fogpixels, skindata, width * height * 4);
2040                         for (i = 0;i < width * height * 4;i += 4)
2041                                 fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255;
2042                         skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, skinframe->textureflags, NULL);
2043                         Mem_Free(fogpixels);
2044                 }
2045         }
2046
2047         return skinframe;
2048 }
2049
2050 skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height)
2051 {
2052         int i;
2053         unsigned char *temp1, *temp2;
2054         skinframe_t *skinframe;
2055
2056         if (cls.state == ca_dedicated)
2057                 return NULL;
2058
2059         // if already loaded just return it, otherwise make a new skinframe
2060         skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true);
2061         if (skinframe && skinframe->base)
2062                 return skinframe;
2063
2064         skinframe->stain = NULL;
2065         skinframe->merged = NULL;
2066         skinframe->base = r_texture_notexture;
2067         skinframe->pants = NULL;
2068         skinframe->shirt = NULL;
2069         skinframe->nmap = r_texture_blanknormalmap;
2070         skinframe->gloss = NULL;
2071         skinframe->glow = NULL;
2072         skinframe->fog = NULL;
2073
2074         // if no data was provided, then clearly the caller wanted to get a blank skinframe
2075         if (!skindata)
2076                 return NULL;
2077
2078         if (developer_loading.integer)
2079                 Con_Printf("loading quake skin \"%s\"\n", name);
2080
2081         if (r_shadow_bumpscale_basetexture.value > 0)
2082         {
2083                 temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8);
2084                 temp2 = temp1 + width * height * 4;
2085                 // use either a custom palette or the quake palette
2086                 Image_Copy8bitBGRA(skindata, temp1, width * height, palette_bgra_complete);
2087                 Image_HeightmapToNormalmap_BGRA(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value);
2088                 skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, skinframe->textureflags | TEXF_ALPHA, NULL);
2089                 Mem_Free(temp1);
2090         }
2091         // use either a custom palette, or the quake palette
2092         skinframe->base = skinframe->merged = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_merged", skinframe->basename), (loadglowtexture ? palette_bgra_nofullbrights : ((skinframe->textureflags & TEXF_ALPHA) ? palette_bgra_transparent : palette_bgra_complete)), skinframe->textureflags, true); // all
2093         if (loadglowtexture)
2094                 skinframe->glow = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_glow", skinframe->basename), palette_bgra_onlyfullbrights, skinframe->textureflags, false); // glow
2095         if (loadpantsandshirt)
2096         {
2097                 skinframe->pants = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_pants", skinframe->basename), palette_bgra_pantsaswhite, skinframe->textureflags, false); // pants
2098                 skinframe->shirt = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_shirt", skinframe->basename), palette_bgra_shirtaswhite, skinframe->textureflags, false); // shirt
2099         }
2100         if (skinframe->pants || skinframe->shirt)
2101                 skinframe->base = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", skinframe->basename), loadglowtexture ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap, skinframe->textureflags, false); // no special colors
2102         if (textureflags & TEXF_ALPHA)
2103         {
2104                 for (i = 0;i < width * height;i++)
2105                         if (((unsigned char *)palette_bgra_alpha)[skindata[i]*4+3] < 255)
2106                                 break;
2107                 if (i < width * height)
2108                         skinframe->fog = R_SkinFrame_TextureForSkinLayer(skindata, width, height, va("%s_fog", skinframe->basename), palette_bgra_alpha, skinframe->textureflags, true); // fog mask
2109         }
2110
2111         return skinframe;
2112 }
2113
2114 skinframe_t *R_SkinFrame_LoadMissing(void)
2115 {
2116         skinframe_t *skinframe;
2117
2118         if (cls.state == ca_dedicated)
2119                 return NULL;
2120
2121         skinframe = R_SkinFrame_Find("missing", TEXF_PRECACHE, 0, 0, 0, true);
2122         skinframe->stain = NULL;
2123         skinframe->merged = NULL;
2124         skinframe->base = r_texture_notexture;
2125         skinframe->pants = NULL;
2126         skinframe->shirt = NULL;
2127         skinframe->nmap = r_texture_blanknormalmap;
2128         skinframe->gloss = NULL;
2129         skinframe->glow = NULL;
2130         skinframe->fog = NULL;
2131
2132         return skinframe;
2133 }
2134
2135 void gl_main_start(void)
2136 {
2137         memset(r_qwskincache, 0, sizeof(r_qwskincache));
2138         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
2139
2140         // set up r_skinframe loading system for textures
2141         memset(&r_skinframe, 0, sizeof(r_skinframe));
2142         r_skinframe.loadsequence = 1;
2143         Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256);
2144
2145         r_main_texturepool = R_AllocTexturePool();
2146         R_BuildBlankTextures();
2147         R_BuildNoTexture();
2148         if (gl_texturecubemap)
2149         {
2150                 R_BuildWhiteCube();
2151                 R_BuildNormalizationCube();
2152         }
2153         r_texture_fogattenuation = NULL;
2154         r_texture_gammaramps = NULL;
2155         //r_texture_fogintensity = NULL;
2156         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2157         memset(&r_waterstate, 0, sizeof(r_waterstate));
2158         memset(r_glsl_permutations, 0, sizeof(r_glsl_permutations));
2159         memset(&r_svbsp, 0, sizeof (r_svbsp));
2160
2161         r_refdef.fogmasktable_density = 0;
2162 }
2163
2164 void gl_main_shutdown(void)
2165 {
2166         memset(r_qwskincache, 0, sizeof(r_qwskincache));
2167         memset(r_qwskincache_skinframe, 0, sizeof(r_qwskincache_skinframe));
2168
2169         // clear out the r_skinframe state
2170         Mem_ExpandableArray_FreeArray(&r_skinframe.array);
2171         memset(&r_skinframe, 0, sizeof(r_skinframe));
2172
2173         if (r_svbsp.nodes)
2174                 Mem_Free(r_svbsp.nodes);
2175         memset(&r_svbsp, 0, sizeof (r_svbsp));
2176         R_FreeTexturePool(&r_main_texturepool);
2177         r_texture_blanknormalmap = NULL;
2178         r_texture_white = NULL;
2179         r_texture_grey128 = NULL;
2180         r_texture_black = NULL;
2181         r_texture_whitecube = NULL;
2182         r_texture_normalizationcube = NULL;
2183         r_texture_fogattenuation = NULL;
2184         r_texture_gammaramps = NULL;
2185         //r_texture_fogintensity = NULL;
2186         memset(&r_bloomstate, 0, sizeof(r_bloomstate));
2187         memset(&r_waterstate, 0, sizeof(r_waterstate));
2188         R_GLSL_Restart_f();
2189 }
2190
2191 extern void CL_ParseEntityLump(char *entitystring);
2192 void gl_main_newmap(void)
2193 {
2194         // FIXME: move this code to client
2195         int l;
2196         char *entities, entname[MAX_QPATH];
2197         if (cl.worldmodel)
2198         {
2199                 strlcpy(entname, cl.worldmodel->name, sizeof(entname));
2200                 l = (int)strlen(entname) - 4;
2201                 if (l >= 0 && !strcmp(entname + l, ".bsp"))
2202                 {
2203                         memcpy(entname + l, ".ent", 5);
2204                         if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL)))
2205                         {
2206                                 CL_ParseEntityLump(entities);
2207                                 Mem_Free(entities);
2208                                 return;
2209                         }
2210                 }
2211                 if (cl.worldmodel->brush.entities)
2212                         CL_ParseEntityLump(cl.worldmodel->brush.entities);
2213         }
2214 }
2215
2216 void GL_Main_Init(void)
2217 {
2218         r_main_mempool = Mem_AllocPool("Renderer", 0, NULL);
2219
2220         Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed");
2221         Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl");
2222         // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable
2223         if (gamemode == GAME_NEHAHRA)
2224         {
2225                 Cvar_RegisterVariable (&gl_fogenable);
2226                 Cvar_RegisterVariable (&gl_fogdensity);
2227                 Cvar_RegisterVariable (&gl_fogred);
2228                 Cvar_RegisterVariable (&gl_foggreen);
2229                 Cvar_RegisterVariable (&gl_fogblue);
2230                 Cvar_RegisterVariable (&gl_fogstart);
2231                 Cvar_RegisterVariable (&gl_fogend);
2232                 Cvar_RegisterVariable (&gl_skyclip);
2233         }
2234         Cvar_RegisterVariable(&r_depthfirst);
2235         Cvar_RegisterVariable(&r_useinfinitefarclip);
2236         Cvar_RegisterVariable(&r_nearclip);
2237         Cvar_RegisterVariable(&r_showbboxes);
2238         Cvar_RegisterVariable(&r_showsurfaces);
2239         Cvar_RegisterVariable(&r_showtris);
2240         Cvar_RegisterVariable(&r_shownormals);
2241         Cvar_RegisterVariable(&r_showlighting);
2242         Cvar_RegisterVariable(&r_showshadowvolumes);
2243         Cvar_RegisterVariable(&r_showcollisionbrushes);
2244         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor);
2245         Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset);
2246         Cvar_RegisterVariable(&r_showdisabledepthtest);
2247         Cvar_RegisterVariable(&r_drawportals);
2248         Cvar_RegisterVariable(&r_drawentities);
2249         Cvar_RegisterVariable(&r_cullentities_trace);
2250         Cvar_RegisterVariable(&r_cullentities_trace_samples);
2251         Cvar_RegisterVariable(&r_cullentities_trace_enlarge);
2252         Cvar_RegisterVariable(&r_cullentities_trace_delay);
2253         Cvar_RegisterVariable(&r_drawviewmodel);
2254         Cvar_RegisterVariable(&r_speeds);
2255         Cvar_RegisterVariable(&r_fullbrights);
2256         Cvar_RegisterVariable(&r_wateralpha);
2257         Cvar_RegisterVariable(&r_dynamic);
2258         Cvar_RegisterVariable(&r_fullbright);
2259         Cvar_RegisterVariable(&r_shadows);
2260         Cvar_RegisterVariable(&r_shadows_throwdistance);
2261         Cvar_RegisterVariable(&r_q1bsp_skymasking);
2262         Cvar_RegisterVariable(&r_polygonoffset_submodel_factor);
2263         Cvar_RegisterVariable(&r_polygonoffset_submodel_offset);
2264         Cvar_RegisterVariable(&r_fog_exp2);
2265         Cvar_RegisterVariable(&r_drawfog);
2266         Cvar_RegisterVariable(&r_textureunits);
2267         Cvar_RegisterVariable(&r_glsl);
2268         Cvar_RegisterVariable(&r_glsl_contrastboost);
2269         Cvar_RegisterVariable(&r_glsl_deluxemapping);
2270         Cvar_RegisterVariable(&r_glsl_offsetmapping);
2271         Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping);
2272         Cvar_RegisterVariable(&r_glsl_offsetmapping_scale);
2273         Cvar_RegisterVariable(&r_glsl_postprocess);
2274         Cvar_RegisterVariable(&r_glsl_postprocess_uservec1);
2275         Cvar_RegisterVariable(&r_glsl_postprocess_uservec2);
2276         Cvar_RegisterVariable(&r_glsl_postprocess_uservec3);
2277         Cvar_RegisterVariable(&r_glsl_postprocess_uservec4);
2278         Cvar_RegisterVariable(&r_glsl_usegeneric);
2279         Cvar_RegisterVariable(&r_water);
2280         Cvar_RegisterVariable(&r_water_resolutionmultiplier);
2281         Cvar_RegisterVariable(&r_water_clippingplanebias);
2282         Cvar_RegisterVariable(&r_water_refractdistort);
2283         Cvar_RegisterVariable(&r_water_reflectdistort);
2284         Cvar_RegisterVariable(&r_lerpsprites);
2285         Cvar_RegisterVariable(&r_lerpmodels);
2286         Cvar_RegisterVariable(&r_lerplightstyles);
2287         Cvar_RegisterVariable(&r_waterscroll);
2288         Cvar_RegisterVariable(&r_bloom);
2289         Cvar_RegisterVariable(&r_bloom_colorscale);
2290         Cvar_RegisterVariable(&r_bloom_brighten);
2291         Cvar_RegisterVariable(&r_bloom_blur);
2292         Cvar_RegisterVariable(&r_bloom_resolution);
2293         Cvar_RegisterVariable(&r_bloom_colorexponent);
2294         Cvar_RegisterVariable(&r_bloom_colorsubtract);
2295         Cvar_RegisterVariable(&r_hdr);
2296         Cvar_RegisterVariable(&r_hdr_scenebrightness);
2297         Cvar_RegisterVariable(&r_hdr_glowintensity);
2298         Cvar_RegisterVariable(&r_hdr_range);
2299         Cvar_RegisterVariable(&r_smoothnormals_areaweighting);
2300         Cvar_RegisterVariable(&developer_texturelogging);
2301         Cvar_RegisterVariable(&gl_lightmaps);
2302         Cvar_RegisterVariable(&r_test);
2303         Cvar_RegisterVariable(&r_batchmode);
2304         if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE)
2305                 Cvar_SetValue("r_fullbrights", 0);
2306         R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap);
2307
2308         Cvar_RegisterVariable(&r_track_sprites);
2309         Cvar_RegisterVariable(&r_track_sprites_flags);
2310         Cvar_RegisterVariable(&r_track_sprites_scalew);
2311         Cvar_RegisterVariable(&r_track_sprites_scaleh);
2312 }
2313
2314 extern void R_Textures_Init(void);
2315 extern void GL_Draw_Init(void);
2316 extern void GL_Main_Init(void);
2317 extern void R_Shadow_Init(void);
2318 extern void R_Sky_Init(void);
2319 extern void GL_Surf_Init(void);
2320 extern void R_Particles_Init(void);
2321 extern void R_Explosion_Init(void);
2322 extern void gl_backend_init(void);
2323 extern void Sbar_Init(void);
2324 extern void R_LightningBeams_Init(void);
2325 extern void Mod_RenderInit(void);
2326
2327 void Render_Init(void)
2328 {
2329         gl_backend_init();
2330         R_Textures_Init();
2331         GL_Main_Init();
2332         GL_Draw_Init();
2333         R_Shadow_Init();
2334         R_Sky_Init();
2335         GL_Surf_Init();
2336         Sbar_Init();
2337         R_Particles_Init();
2338         R_Explosion_Init();
2339         R_LightningBeams_Init();
2340         Mod_RenderInit();
2341 }
2342
2343 /*
2344 ===============
2345 GL_Init
2346 ===============
2347 */
2348 extern char *ENGINE_EXTENSIONS;
2349 void GL_Init (void)
2350 {
2351         VID_CheckExtensions();
2352
2353         // LordHavoc: report supported extensions
2354         Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions );
2355
2356         // clear to black (loading plaque will be seen over this)
2357         CHECKGLERROR
2358         qglClearColor(0,0,0,1);CHECKGLERROR
2359         qglClear(GL_COLOR_BUFFER_BIT);CHECKGLERROR
2360 }
2361
2362 int R_CullBox(const vec3_t mins, const vec3_t maxs)
2363 {
2364         int i;
2365         mplane_t *p;
2366         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
2367         {
2368                 // skip nearclip plane, it often culls portals when you are very close, and is almost never useful
2369                 if (i == 4)
2370                         continue;
2371                 p = r_refdef.view.frustum + i;
2372                 switch(p->signbits)
2373                 {
2374                 default:
2375                 case 0:
2376                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2377                                 return true;
2378                         break;
2379                 case 1:
2380                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2381                                 return true;
2382                         break;
2383                 case 2:
2384                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2385                                 return true;
2386                         break;
2387                 case 3:
2388                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2389                                 return true;
2390                         break;
2391                 case 4:
2392                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2393                                 return true;
2394                         break;
2395                 case 5:
2396                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2397                                 return true;
2398                         break;
2399                 case 6:
2400                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2401                                 return true;
2402                         break;
2403                 case 7:
2404                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2405                                 return true;
2406                         break;
2407                 }
2408         }
2409         return false;
2410 }
2411
2412 int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes)
2413 {
2414         int i;
2415         const mplane_t *p;
2416         for (i = 0;i < numplanes;i++)
2417         {
2418                 p = planes + i;
2419                 switch(p->signbits)
2420                 {
2421                 default:
2422                 case 0:
2423                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2424                                 return true;
2425                         break;
2426                 case 1:
2427                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist)
2428                                 return true;
2429                         break;
2430                 case 2:
2431                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2432                                 return true;
2433                         break;
2434                 case 3:
2435                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist)
2436                                 return true;
2437                         break;
2438                 case 4:
2439                         if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2440                                 return true;
2441                         break;
2442                 case 5:
2443                         if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist)
2444                                 return true;
2445                         break;
2446                 case 6:
2447                         if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2448                                 return true;
2449                         break;
2450                 case 7:
2451                         if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist)
2452                                 return true;
2453                         break;
2454                 }
2455         }
2456         return false;
2457 }
2458
2459 //==================================================================================
2460
2461 static void R_View_UpdateEntityVisible (void)
2462 {
2463         int i, renderimask;
2464         entity_render_t *ent;
2465
2466         if (!r_drawentities.integer)
2467                 return;
2468
2469         renderimask = r_refdef.envmap ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : ((chase_active.integer || r_waterstate.renderingscene) ? RENDER_VIEWMODEL : RENDER_EXTERIORMODEL);
2470         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs)
2471         {
2472                 // worldmodel can check visibility
2473                 for (i = 0;i < r_refdef.scene.numentities;i++)
2474                 {
2475                         ent = r_refdef.scene.entities[i];
2476                         r_refdef.viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs)) && ((ent->effects & EF_NODEPTHTEST) || (ent->flags & RENDER_VIEWMODEL) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs));
2477
2478                 }
2479                 if(r_cullentities_trace.integer && r_refdef.scene.worldmodel->brush.TraceLineOfSight)
2480                 {
2481                         for (i = 0;i < r_refdef.scene.numentities;i++)
2482                         {
2483                                 ent = r_refdef.scene.entities[i];
2484                                 if(r_refdef.viewcache.entityvisible[i] && !(ent->effects & EF_NODEPTHTEST) && !(ent->flags & RENDER_VIEWMODEL) && !(ent->model && (ent->model->name[0] == '*')))
2485                                 {
2486                                         if(Mod_CanSeeBox_Trace(r_cullentities_trace_samples.integer, r_cullentities_trace_enlarge.value, r_refdef.scene.worldmodel, r_refdef.view.origin, ent->mins, ent->maxs))
2487                                                 ent->last_trace_visibility = realtime;
2488                                         if(ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value)
2489                                                 r_refdef.viewcache.entityvisible[i] = 0;
2490                                 }
2491                         }
2492                 }
2493         }
2494         else
2495         {
2496                 // no worldmodel or it can't check visibility
2497                 for (i = 0;i < r_refdef.scene.numentities;i++)
2498                 {
2499                         ent = r_refdef.scene.entities[i];
2500                         r_refdef.viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs));
2501                 }
2502         }
2503 }
2504
2505 // only used if skyrendermasked, and normally returns false
2506 int R_DrawBrushModelsSky (void)
2507 {
2508         int i, sky;
2509         entity_render_t *ent;
2510
2511         if (!r_drawentities.integer)
2512                 return false;
2513
2514         sky = false;
2515         for (i = 0;i < r_refdef.scene.numentities;i++)
2516         {
2517                 if (!r_refdef.viewcache.entityvisible[i])
2518                         continue;
2519                 ent = r_refdef.scene.entities[i];
2520                 if (!ent->model || !ent->model->DrawSky)
2521                         continue;
2522                 ent->model->DrawSky(ent);
2523                 sky = true;
2524         }
2525         return sky;
2526 }
2527
2528 static void R_DrawNoModel(entity_render_t *ent);
2529 static void R_DrawModels(void)
2530 {
2531         int i;
2532         entity_render_t *ent;
2533
2534         if (!r_drawentities.integer)
2535                 return;
2536
2537         for (i = 0;i < r_refdef.scene.numentities;i++)
2538         {
2539                 if (!r_refdef.viewcache.entityvisible[i])
2540                         continue;
2541                 ent = r_refdef.scene.entities[i];
2542                 r_refdef.stats.entities++;
2543                 if (ent->model && ent->model->Draw != NULL)
2544                         ent->model->Draw(ent);
2545                 else
2546                         R_DrawNoModel(ent);
2547         }
2548 }
2549
2550 static void R_DrawModelsDepth(void)
2551 {
2552         int i;
2553         entity_render_t *ent;
2554
2555         if (!r_drawentities.integer)
2556                 return;
2557
2558         for (i = 0;i < r_refdef.scene.numentities;i++)
2559         {
2560                 if (!r_refdef.viewcache.entityvisible[i])
2561                         continue;
2562                 ent = r_refdef.scene.entities[i];
2563                 if (ent->model && ent->model->DrawDepth != NULL)
2564                         ent->model->DrawDepth(ent);
2565         }
2566 }
2567
2568 static void R_DrawModelsDebug(void)
2569 {
2570         int i;
2571         entity_render_t *ent;
2572
2573         if (!r_drawentities.integer)
2574                 return;
2575
2576         for (i = 0;i < r_refdef.scene.numentities;i++)
2577         {
2578                 if (!r_refdef.viewcache.entityvisible[i])
2579                         continue;
2580                 ent = r_refdef.scene.entities[i];
2581                 if (ent->model && ent->model->DrawDebug != NULL)
2582                         ent->model->DrawDebug(ent);
2583         }
2584 }
2585
2586 static void R_DrawModelsAddWaterPlanes(void)
2587 {
2588         int i;
2589         entity_render_t *ent;
2590
2591         if (!r_drawentities.integer)
2592                 return;
2593
2594         for (i = 0;i < r_refdef.scene.numentities;i++)
2595         {
2596                 if (!r_refdef.viewcache.entityvisible[i])
2597                         continue;
2598                 ent = r_refdef.scene.entities[i];
2599                 if (ent->model && ent->model->DrawAddWaterPlanes != NULL)
2600                         ent->model->DrawAddWaterPlanes(ent);
2601         }
2602 }
2603
2604 static void R_View_SetFrustum(void)
2605 {
2606         int i;
2607         double slopex, slopey;
2608         vec3_t forward, left, up, origin;
2609
2610         // we can't trust r_refdef.view.forward and friends in reflected scenes
2611         Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin);
2612
2613 #if 0
2614         r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x;
2615         r_refdef.view.frustum[0].normal[1] = 0 - 0;
2616         r_refdef.view.frustum[0].normal[2] = -1 - 0;
2617         r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x;
2618         r_refdef.view.frustum[1].normal[1] = 0 + 0;
2619         r_refdef.view.frustum[1].normal[2] = -1 + 0;
2620         r_refdef.view.frustum[2].normal[0] = 0 - 0;
2621         r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y;
2622         r_refdef.view.frustum[2].normal[2] = -1 - 0;
2623         r_refdef.view.frustum[3].normal[0] = 0 + 0;
2624         r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y;
2625         r_refdef.view.frustum[3].normal[2] = -1 + 0;
2626 #endif
2627
2628 #if 0
2629         zNear = r_refdef.nearclip;
2630         nudge = 1.0 - 1.0 / (1<<23);
2631         r_refdef.view.frustum[4].normal[0] = 0 - 0;
2632         r_refdef.view.frustum[4].normal[1] = 0 - 0;
2633         r_refdef.view.frustum[4].normal[2] = -1 - -nudge;
2634         r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge;
2635         r_refdef.view.frustum[5].normal[0] = 0 + 0;
2636         r_refdef.view.frustum[5].normal[1] = 0 + 0;
2637         r_refdef.view.frustum[5].normal[2] = -1 + -nudge;
2638         r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge;
2639 #endif
2640
2641
2642
2643 #if 0
2644         r_refdef.view.frustum[0].normal[0] = m[3] - m[0];
2645         r_refdef.view.frustum[0].normal[1] = m[7] - m[4];
2646         r_refdef.view.frustum[0].normal[2] = m[11] - m[8];
2647         r_refdef.view.frustum[0].dist = m[15] - m[12];
2648
2649         r_refdef.view.frustum[1].normal[0] = m[3] + m[0];
2650         r_refdef.view.frustum[1].normal[1] = m[7] + m[4];
2651         r_refdef.view.frustum[1].normal[2] = m[11] + m[8];
2652         r_refdef.view.frustum[1].dist = m[15] + m[12];
2653
2654         r_refdef.view.frustum[2].normal[0] = m[3] - m[1];
2655         r_refdef.view.frustum[2].normal[1] = m[7] - m[5];
2656         r_refdef.view.frustum[2].normal[2] = m[11] - m[9];
2657         r_refdef.view.frustum[2].dist = m[15] - m[13];
2658
2659         r_refdef.view.frustum[3].normal[0] = m[3] + m[1];
2660         r_refdef.view.frustum[3].normal[1] = m[7] + m[5];
2661         r_refdef.view.frustum[3].normal[2] = m[11] + m[9];
2662         r_refdef.view.frustum[3].dist = m[15] + m[13];
2663
2664         r_refdef.view.frustum[4].normal[0] = m[3] - m[2];
2665         r_refdef.view.frustum[4].normal[1] = m[7] - m[6];
2666         r_refdef.view.frustum[4].normal[2] = m[11] - m[10];
2667         r_refdef.view.frustum[4].dist = m[15] - m[14];
2668
2669         r_refdef.view.frustum[5].normal[0] = m[3] + m[2];
2670         r_refdef.view.frustum[5].normal[1] = m[7] + m[6];
2671         r_refdef.view.frustum[5].normal[2] = m[11] + m[10];
2672         r_refdef.view.frustum[5].dist = m[15] + m[14];
2673 #endif
2674
2675         if (r_refdef.view.useperspective)
2676         {
2677                 slopex = 1.0 / r_refdef.view.frustum_x;
2678                 slopey = 1.0 / r_refdef.view.frustum_y;
2679                 VectorMA(forward, -slopex, left, r_refdef.view.frustum[0].normal);
2680                 VectorMA(forward,  slopex, left, r_refdef.view.frustum[1].normal);
2681                 VectorMA(forward, -slopey, up  , r_refdef.view.frustum[2].normal);
2682                 VectorMA(forward,  slopey, up  , r_refdef.view.frustum[3].normal);
2683                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
2684
2685                 // Leaving those out was a mistake, those were in the old code, and they
2686                 // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix
2687                 // I couldn't reproduce it after adding those normalizations. --blub
2688                 VectorNormalize(r_refdef.view.frustum[0].normal);
2689                 VectorNormalize(r_refdef.view.frustum[1].normal);
2690                 VectorNormalize(r_refdef.view.frustum[2].normal);
2691                 VectorNormalize(r_refdef.view.frustum[3].normal);
2692
2693                 // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling
2694                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward, -1024 * slopex, left, -1024 * slopey, up, r_refdef.view.frustumcorner[0]);
2695                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward,  1024 * slopex, left, -1024 * slopey, up, r_refdef.view.frustumcorner[1]);
2696                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward, -1024 * slopex, left,  1024 * slopey, up, r_refdef.view.frustumcorner[2]);
2697                 VectorMAMAMAM(1, r_refdef.view.origin, 1024, forward,  1024 * slopex, left,  1024 * slopey, up, r_refdef.view.frustumcorner[3]);
2698
2699                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal);
2700                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal);
2701                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal);
2702                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal);
2703                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
2704         }
2705         else
2706         {
2707                 VectorScale(left, -r_refdef.view.ortho_x, r_refdef.view.frustum[0].normal);
2708                 VectorScale(left,  r_refdef.view.ortho_x, r_refdef.view.frustum[1].normal);
2709                 VectorScale(up, -r_refdef.view.ortho_y, r_refdef.view.frustum[2].normal);
2710                 VectorScale(up,  r_refdef.view.ortho_y, r_refdef.view.frustum[3].normal);
2711                 VectorCopy(forward, r_refdef.view.frustum[4].normal);
2712                 r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) + r_refdef.view.ortho_x;
2713                 r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) + r_refdef.view.ortho_x;
2714                 r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) + r_refdef.view.ortho_y;
2715                 r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) + r_refdef.view.ortho_y;
2716                 r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip;
2717         }
2718         r_refdef.view.numfrustumplanes = 5;
2719
2720         if (r_refdef.view.useclipplane)
2721         {
2722                 r_refdef.view.numfrustumplanes = 6;
2723                 r_refdef.view.frustum[5] = r_refdef.view.clipplane;
2724         }
2725
2726         for (i = 0;i < r_refdef.view.numfrustumplanes;i++)
2727                 PlaneClassify(r_refdef.view.frustum + i);
2728
2729         // LordHavoc: note to all quake engine coders, Quake had a special case
2730         // for 90 degrees which assumed a square view (wrong), so I removed it,
2731         // Quake2 has it disabled as well.
2732
2733         // rotate R_VIEWFORWARD right by FOV_X/2 degrees
2734         //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2));
2735         //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal);
2736         //PlaneClassify(&frustum[0]);
2737
2738         // rotate R_VIEWFORWARD left by FOV_X/2 degrees
2739         //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2));
2740         //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal);
2741         //PlaneClassify(&frustum[1]);
2742
2743         // rotate R_VIEWFORWARD up by FOV_X/2 degrees
2744         //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2));
2745         //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal);
2746         //PlaneClassify(&frustum[2]);
2747
2748         // rotate R_VIEWFORWARD down by FOV_X/2 degrees
2749         //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2));
2750         //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal);
2751         //PlaneClassify(&frustum[3]);
2752
2753         // nearclip plane
2754         //VectorCopy(forward, r_refdef.view.frustum[4].normal);
2755         //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value;
2756         //PlaneClassify(&frustum[4]);
2757 }
2758
2759 void R_View_Update(void)
2760 {
2761         R_View_SetFrustum();
2762         R_View_WorldVisibility(r_refdef.view.useclipplane);
2763         R_View_UpdateEntityVisible();
2764 }
2765
2766 void R_SetupView(qboolean allowwaterclippingplane)
2767 {
2768         if (!r_refdef.view.useperspective)
2769                 GL_SetupView_Mode_Ortho(-r_refdef.view.ortho_x, -r_refdef.view.ortho_y, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip);
2770         else if (gl_stencil && r_useinfinitefarclip.integer)
2771                 GL_SetupView_Mode_PerspectiveInfiniteFarClip(r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip);
2772         else
2773                 GL_SetupView_Mode_Perspective(r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip);
2774
2775         GL_SetupView_Orientation_FromEntity(&r_refdef.view.matrix);
2776
2777         if (r_refdef.view.useclipplane && allowwaterclippingplane)
2778         {
2779                 // LordHavoc: couldn't figure out how to make this approach the
2780                 vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value;
2781                 vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal);
2782                 if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value)
2783                         dist = r_refdef.view.clipplane.dist;
2784                 GL_SetupView_ApplyCustomNearClipPlane(r_refdef.view.clipplane.normal[0], r_refdef.view.clipplane.normal[1], r_refdef.view.clipplane.normal[2], dist);
2785         }
2786 }
2787
2788 void R_ResetViewRendering2D(void)
2789 {
2790         DrawQ_Finish();
2791
2792         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
2793         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
2794         GL_SetupView_Mode_Ortho(0, 0, 1, 1, -10, 100);
2795         GL_Scissor(r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
2796         GL_Color(1, 1, 1, 1);
2797         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2798         GL_BlendFunc(GL_ONE, GL_ZERO);
2799         GL_AlphaTest(false);
2800         GL_ScissorTest(false);
2801         GL_DepthMask(false);
2802         GL_DepthRange(0, 1);
2803         GL_DepthTest(false);
2804         R_Mesh_Matrix(&identitymatrix);
2805         R_Mesh_ResetTextureState();
2806         GL_PolygonOffset(0, 0);
2807         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2808         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2809         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2810         qglStencilMask(~0);CHECKGLERROR
2811         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2812         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2813         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2814         R_SetupGenericShader(true);
2815 }
2816
2817 void R_ResetViewRendering3D(void)
2818 {
2819         DrawQ_Finish();
2820
2821         // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom
2822         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
2823         R_SetupView(true);
2824         GL_Scissor(r_refdef.view.x, r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
2825         GL_Color(1, 1, 1, 1);
2826         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2827         GL_BlendFunc(GL_ONE, GL_ZERO);
2828         GL_AlphaTest(false);
2829         GL_ScissorTest(true);
2830         GL_DepthMask(true);
2831         GL_DepthRange(0, 1);
2832         GL_DepthTest(true);
2833         R_Mesh_Matrix(&identitymatrix);
2834         R_Mesh_ResetTextureState();
2835         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
2836         qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR
2837         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
2838         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
2839         qglStencilMask(~0);CHECKGLERROR
2840         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
2841         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
2842         GL_CullFace(r_refdef.view.cullface_back);
2843         R_SetupGenericShader(true);
2844 }
2845
2846 void R_RenderScene(qboolean addwaterplanes);
2847
2848 static void R_Water_StartFrame(void)
2849 {
2850         int i;
2851         int waterwidth, waterheight, texturewidth, textureheight;
2852         r_waterstate_waterplane_t *p;
2853
2854         // set waterwidth and waterheight to the water resolution that will be
2855         // used (often less than the screen resolution for faster rendering)
2856         waterwidth = (int)bound(1, r_refdef.view.width * r_water_resolutionmultiplier.value, r_refdef.view.width);
2857         waterheight = (int)bound(1, r_refdef.view.height * r_water_resolutionmultiplier.value, r_refdef.view.height);
2858
2859         // calculate desired texture sizes
2860         // can't use water if the card does not support the texture size
2861         if (!r_water.integer || !r_glsl.integer || !gl_support_fragment_shader || waterwidth > gl_max_texture_size || waterheight > gl_max_texture_size)
2862                 texturewidth = textureheight = waterwidth = waterheight = 0;
2863         else if (gl_support_arb_texture_non_power_of_two)
2864         {
2865                 texturewidth = waterwidth;
2866                 textureheight = waterheight;
2867         }
2868         else
2869         {
2870                 for (texturewidth   = 1;texturewidth   < waterwidth ;texturewidth   *= 2);
2871                 for (textureheight  = 1;textureheight  < waterheight;textureheight  *= 2);
2872         }
2873
2874         // allocate textures as needed
2875         if (r_waterstate.waterwidth != waterwidth || r_waterstate.waterheight != waterheight || r_waterstate.texturewidth != texturewidth || r_waterstate.textureheight != textureheight)
2876         {
2877                 r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2878                 for (i = 0, p = r_waterstate.waterplanes;i < r_waterstate.maxwaterplanes;i++, p++)
2879                 {
2880                         if (p->texture_refraction)
2881                                 R_FreeTexture(p->texture_refraction);
2882                         p->texture_refraction = NULL;
2883                         if (p->texture_reflection)
2884                                 R_FreeTexture(p->texture_reflection);
2885                         p->texture_reflection = NULL;
2886                 }
2887                 memset(&r_waterstate, 0, sizeof(r_waterstate));
2888                 r_waterstate.waterwidth = waterwidth;
2889                 r_waterstate.waterheight = waterheight;
2890                 r_waterstate.texturewidth = texturewidth;
2891                 r_waterstate.textureheight = textureheight;
2892         }
2893
2894         if (r_waterstate.waterwidth)
2895         {
2896                 r_waterstate.enabled = true;
2897
2898                 // set up variables that will be used in shader setup
2899                 r_waterstate.screenscale[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2900                 r_waterstate.screenscale[1] = 0.5f * (float)waterheight / (float)textureheight;
2901                 r_waterstate.screencenter[0] = 0.5f * (float)waterwidth / (float)texturewidth;
2902                 r_waterstate.screencenter[1] = 0.5f * (float)waterheight / (float)textureheight;
2903         }
2904
2905         r_waterstate.maxwaterplanes = MAX_WATERPLANES;
2906         r_waterstate.numwaterplanes = 0;
2907 }
2908
2909 static void R_Water_AddWaterPlane(msurface_t *surface)
2910 {
2911         int triangleindex, planeindex;
2912         const int *e;
2913         vec3_t vert[3];
2914         vec3_t normal;
2915         vec3_t center;
2916         mplane_t plane;
2917         r_waterstate_waterplane_t *p;
2918         // just use the first triangle with a valid normal for any decisions
2919         VectorClear(normal);
2920         for (triangleindex = 0, e = rsurface.modelelement3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
2921         {
2922                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[0]*3, vert[0]);
2923                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[1]*3, vert[1]);
2924                 Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[2]*3, vert[2]);
2925                 TriangleNormal(vert[0], vert[1], vert[2], normal);
2926                 if (VectorLength2(normal) >= 0.001)
2927                         break;
2928         }
2929
2930         VectorCopy(normal, plane.normal);
2931         VectorNormalize(plane.normal);
2932         plane.dist = DotProduct(vert[0], plane.normal);
2933         PlaneClassify(&plane);
2934         if (PlaneDiff(r_refdef.view.origin, &plane) < 0)
2935         {
2936                 // skip backfaces (except if nocullface is set)
2937                 if (!(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOCULLFACE))
2938                         return;
2939                 VectorNegate(plane.normal, plane.normal);
2940                 plane.dist *= -1;
2941                 PlaneClassify(&plane);
2942         }
2943
2944
2945         // find a matching plane if there is one
2946         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2947                 if (fabs(PlaneDiff(vert[0], &p->plane)) < 1 && fabs(PlaneDiff(vert[1], &p->plane)) < 1 && fabs(PlaneDiff(vert[2], &p->plane)) < 1)
2948                         break;
2949         if (planeindex >= r_waterstate.maxwaterplanes)
2950                 return; // nothing we can do, out of planes
2951
2952         // if this triangle does not fit any known plane rendered this frame, add one
2953         if (planeindex >= r_waterstate.numwaterplanes)
2954         {
2955                 // store the new plane
2956                 r_waterstate.numwaterplanes++;
2957                 p->plane = plane;
2958                 // clear materialflags and pvs
2959                 p->materialflags = 0;
2960                 p->pvsvalid = false;
2961         }
2962         // merge this surface's materialflags into the waterplane
2963         p->materialflags |= surface->texture->currentframe->currentmaterialflags;
2964         // merge this surface's PVS into the waterplane
2965         VectorMAM(0.5f, surface->mins, 0.5f, surface->maxs, center);
2966         if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS
2967          && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0)
2968         {
2969                 r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid);
2970                 p->pvsvalid = true;
2971         }
2972 }
2973
2974 static void R_Water_ProcessPlanes(void)
2975 {
2976         r_refdef_view_t originalview;
2977         int planeindex;
2978         r_waterstate_waterplane_t *p;
2979
2980         originalview = r_refdef.view;
2981
2982         // make sure enough textures are allocated
2983         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
2984         {
2985                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
2986                 {
2987                         if (!p->texture_refraction)
2988                                 p->texture_refraction = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_refraction", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2989                         if (!p->texture_refraction)
2990                                 goto error;
2991                 }
2992
2993                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
2994                 {
2995                         if (!p->texture_reflection)
2996                                 p->texture_reflection = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_reflection", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
2997                         if (!p->texture_reflection)
2998                                 goto error;
2999                 }
3000         }
3001
3002         // render views
3003         for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++)
3004         {
3005                 r_refdef.view.showdebug = false;
3006                 r_refdef.view.width = r_waterstate.waterwidth;
3007                 r_refdef.view.height = r_waterstate.waterheight;
3008                 r_refdef.view.useclipplane = true;
3009                 r_waterstate.renderingscene = true;
3010
3011                 // render the normal view scene and copy into texture
3012                 // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted)
3013                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION))
3014                 {
3015                         r_refdef.view.clipplane = p->plane;
3016                         VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal);
3017                         r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist;
3018                         PlaneClassify(&r_refdef.view.clipplane);
3019
3020                         R_RenderScene(false);
3021
3022                         // copy view into the screen texture
3023                         R_Mesh_TexBind(0, R_GetTexture(p->texture_refraction));
3024                         GL_ActiveTexture(0);
3025                         CHECKGLERROR
3026                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
3027                 }
3028
3029                 if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))
3030                 {
3031                         // render reflected scene and copy into texture
3032                         Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2);
3033                         // update the r_refdef.view.origin because otherwise the sky renders at the wrong location (amongst other problems)
3034                         Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin);
3035                         r_refdef.view.clipplane = p->plane;
3036                         // reverse the cullface settings for this render
3037                         r_refdef.view.cullface_front = GL_FRONT;
3038                         r_refdef.view.cullface_back = GL_BACK;
3039                         if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes)
3040                         {
3041                                 r_refdef.view.usecustompvs = true;
3042                                 if (p->pvsvalid)
3043                                         memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
3044                                 else
3045                                         memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes);
3046                         }
3047
3048                         R_ResetViewRendering3D();
3049                         R_ClearScreen(r_refdef.fogenabled);
3050                         if (r_timereport_active)
3051                                 R_TimeReport("viewclear");
3052
3053                         R_RenderScene(false);
3054
3055                         R_Mesh_TexBind(0, R_GetTexture(p->texture_reflection));
3056                         GL_ActiveTexture(0);
3057                         CHECKGLERROR
3058                         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
3059
3060                         R_ResetViewRendering3D();
3061                         R_ClearScreen(r_refdef.fogenabled);
3062                         if (r_timereport_active)
3063                                 R_TimeReport("viewclear");
3064                 }
3065
3066                 r_refdef.view = originalview;
3067                 r_refdef.view.clear = true;
3068                 r_waterstate.renderingscene = false;
3069         }
3070         return;
3071 error:
3072         r_refdef.view = originalview;
3073         r_waterstate.renderingscene = false;
3074         Cvar_SetValueQuick(&r_water, 0);
3075         Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed!  Turned off r_water.\n");
3076         return;
3077 }
3078
3079 void R_Bloom_StartFrame(void)
3080 {
3081         int bloomtexturewidth, bloomtextureheight, screentexturewidth, screentextureheight;
3082
3083         // set bloomwidth and bloomheight to the bloom resolution that will be
3084         // used (often less than the screen resolution for faster rendering)
3085         r_bloomstate.bloomwidth = bound(1, r_bloom_resolution.integer, r_refdef.view.width);
3086         r_bloomstate.bloomheight = r_bloomstate.bloomwidth * r_refdef.view.height / r_refdef.view.width;
3087         r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, r_refdef.view.height);
3088         r_bloomstate.bloomwidth = min(r_bloomstate.bloomwidth, gl_max_texture_size);
3089         r_bloomstate.bloomheight = min(r_bloomstate.bloomheight, gl_max_texture_size);
3090
3091         // calculate desired texture sizes
3092         if (gl_support_arb_texture_non_power_of_two)
3093         {
3094                 screentexturewidth = r_refdef.view.width;
3095                 screentextureheight = r_refdef.view.height;
3096                 bloomtexturewidth = r_bloomstate.bloomwidth;
3097                 bloomtextureheight = r_bloomstate.bloomheight;
3098         }
3099         else
3100         {
3101                 for (screentexturewidth  = 1;screentexturewidth  < vid.width               ;screentexturewidth  *= 2);
3102                 for (screentextureheight = 1;screentextureheight < vid.height              ;screentextureheight *= 2);
3103                 for (bloomtexturewidth   = 1;bloomtexturewidth   < r_bloomstate.bloomwidth ;bloomtexturewidth   *= 2);
3104                 for (bloomtextureheight  = 1;bloomtextureheight  < r_bloomstate.bloomheight;bloomtextureheight  *= 2);
3105         }
3106
3107         if ((r_hdr.integer || r_bloom.integer) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > gl_max_texture_size || r_refdef.view.height > gl_max_texture_size))
3108         {
3109                 Cvar_SetValueQuick(&r_hdr, 0);
3110                 Cvar_SetValueQuick(&r_bloom, 0);
3111         }
3112
3113         if (!(r_glsl.integer && (r_glsl_postprocess.integer || (v_glslgamma.integer && !vid_gammatables_trivial) || r_bloom.integer || r_hdr.integer)) && !r_bloom.integer)
3114                 screentexturewidth = screentextureheight = 0;
3115         if (!r_hdr.integer && !r_bloom.integer)
3116                 bloomtexturewidth = bloomtextureheight = 0;
3117
3118         // allocate textures as needed
3119         if (r_bloomstate.screentexturewidth != screentexturewidth || r_bloomstate.screentextureheight != screentextureheight)
3120         {
3121                 if (r_bloomstate.texture_screen)
3122                         R_FreeTexture(r_bloomstate.texture_screen);
3123                 r_bloomstate.texture_screen = NULL;
3124                 r_bloomstate.screentexturewidth = screentexturewidth;
3125                 r_bloomstate.screentextureheight = screentextureheight;
3126                 if (r_bloomstate.screentexturewidth && r_bloomstate.screentextureheight)
3127                         r_bloomstate.texture_screen = R_LoadTexture2D(r_main_texturepool, "screen", r_bloomstate.screentexturewidth, r_bloomstate.screentextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
3128         }
3129         if (r_bloomstate.bloomtexturewidth != bloomtexturewidth || r_bloomstate.bloomtextureheight != bloomtextureheight)
3130         {
3131                 if (r_bloomstate.texture_bloom)
3132                         R_FreeTexture(r_bloomstate.texture_bloom);
3133                 r_bloomstate.texture_bloom = NULL;
3134                 r_bloomstate.bloomtexturewidth = bloomtexturewidth;
3135                 r_bloomstate.bloomtextureheight = bloomtextureheight;
3136                 if (r_bloomstate.bloomtexturewidth && r_bloomstate.bloomtextureheight)
3137                         r_bloomstate.texture_bloom = R_LoadTexture2D(r_main_texturepool, "bloom", r_bloomstate.bloomtexturewidth, r_bloomstate.bloomtextureheight, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_ALWAYSPRECACHE, NULL);
3138         }
3139
3140         // set up a texcoord array for the full resolution screen image
3141         // (we have to keep this around to copy back during final render)
3142         r_bloomstate.screentexcoord2f[0] = 0;
3143         r_bloomstate.screentexcoord2f[1] = (float)r_refdef.view.height    / (float)r_bloomstate.screentextureheight;
3144         r_bloomstate.screentexcoord2f[2] = (float)r_refdef.view.width     / (float)r_bloomstate.screentexturewidth;
3145         r_bloomstate.screentexcoord2f[3] = (float)r_refdef.view.height    / (float)r_bloomstate.screentextureheight;
3146         r_bloomstate.screentexcoord2f[4] = (float)r_refdef.view.width     / (float)r_bloomstate.screentexturewidth;
3147         r_bloomstate.screentexcoord2f[5] = 0;
3148         r_bloomstate.screentexcoord2f[6] = 0;
3149         r_bloomstate.screentexcoord2f[7] = 0;
3150
3151         // set up a texcoord array for the reduced resolution bloom image
3152         // (which will be additive blended over the screen image)
3153         r_bloomstate.bloomtexcoord2f[0] = 0;
3154         r_bloomstate.bloomtexcoord2f[1] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3155         r_bloomstate.bloomtexcoord2f[2] = (float)r_bloomstate.bloomwidth  / (float)r_bloomstate.bloomtexturewidth;
3156         r_bloomstate.bloomtexcoord2f[3] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3157         r_bloomstate.bloomtexcoord2f[4] = (float)r_bloomstate.bloomwidth  / (float)r_bloomstate.bloomtexturewidth;
3158         r_bloomstate.bloomtexcoord2f[5] = 0;
3159         r_bloomstate.bloomtexcoord2f[6] = 0;
3160         r_bloomstate.bloomtexcoord2f[7] = 0;
3161
3162         if (r_hdr.integer || r_bloom.integer)
3163         {
3164                 r_bloomstate.enabled = true;
3165                 r_bloomstate.hdr = r_hdr.integer != 0;
3166         }
3167 }
3168
3169 void R_Bloom_CopyBloomTexture(float colorscale)
3170 {
3171         r_refdef.stats.bloom++;
3172
3173         // scale down screen texture to the bloom texture size
3174         CHECKGLERROR
3175         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3176         GL_BlendFunc(GL_ONE, GL_ZERO);
3177         GL_Color(colorscale, colorscale, colorscale, 1);
3178         // TODO: optimize with multitexture or GLSL
3179         R_SetupGenericShader(true);
3180         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
3181         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3182         R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3183         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3184
3185         // we now have a bloom image in the framebuffer
3186         // copy it into the bloom image texture for later processing
3187         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3188         GL_ActiveTexture(0);
3189         CHECKGLERROR
3190         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3191         r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3192 }
3193
3194 void R_Bloom_CopyHDRTexture(void)
3195 {
3196         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3197         GL_ActiveTexture(0);
3198         CHECKGLERROR
3199         qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
3200         r_refdef.stats.bloom_copypixels += r_refdef.view.width * r_refdef.view.height;
3201 }
3202
3203 void R_Bloom_MakeTexture(void)
3204 {
3205         int x, range, dir;
3206         float xoffset, yoffset, r, brighten;
3207
3208         r_refdef.stats.bloom++;
3209
3210         R_ResetViewRendering2D();
3211         R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3212         R_Mesh_ColorPointer(NULL, 0, 0);
3213         R_SetupGenericShader(true);
3214
3215         // we have a bloom image in the framebuffer
3216         CHECKGLERROR
3217         qglViewport(r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3218
3219         for (x = 1;x < min(r_bloom_colorexponent.value, 32);)
3220         {
3221                 x *= 2;
3222                 r = bound(0, r_bloom_colorexponent.value / x, 1);
3223                 GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR);
3224                 GL_Color(r, r, r, 1);
3225                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3226                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3227                 R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3228                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3229
3230                 // copy the vertically blurred bloom view to a texture
3231                 GL_ActiveTexture(0);
3232                 CHECKGLERROR
3233                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3234                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3235         }
3236
3237         range = r_bloom_blur.integer * r_bloomstate.bloomwidth / 320;
3238         brighten = r_bloom_brighten.value;
3239         if (r_hdr.integer)
3240                 brighten *= r_hdr_range.value;
3241         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3242         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.offsettexcoord2f, 0, 0);
3243
3244         for (dir = 0;dir < 2;dir++)
3245         {
3246                 // blend on at multiple vertical offsets to achieve a vertical blur
3247                 // TODO: do offset blends using GLSL
3248                 GL_BlendFunc(GL_ONE, GL_ZERO);
3249                 for (x = -range;x <= range;x++)
3250                 {
3251                         if (!dir){xoffset = 0;yoffset = x;}
3252                         else {xoffset = x;yoffset = 0;}
3253                         xoffset /= (float)r_bloomstate.bloomtexturewidth;
3254                         yoffset /= (float)r_bloomstate.bloomtextureheight;
3255                         // compute a texcoord array with the specified x and y offset
3256                         r_bloomstate.offsettexcoord2f[0] = xoffset+0;
3257                         r_bloomstate.offsettexcoord2f[1] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3258                         r_bloomstate.offsettexcoord2f[2] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3259                         r_bloomstate.offsettexcoord2f[3] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight;
3260                         r_bloomstate.offsettexcoord2f[4] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth;
3261                         r_bloomstate.offsettexcoord2f[5] = yoffset+0;
3262                         r_bloomstate.offsettexcoord2f[6] = xoffset+0;
3263                         r_bloomstate.offsettexcoord2f[7] = yoffset+0;
3264                         // this r value looks like a 'dot' particle, fading sharply to
3265                         // black at the edges
3266                         // (probably not realistic but looks good enough)
3267                         //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1);
3268                         //r = (dir ? 1.0f : brighten)/(range*2+1);
3269                         r = (dir ? 1.0f : brighten)/(range*2+1)*(1 - x*x/(float)(range*range));
3270                         GL_Color(r, r, r, 1);
3271                         R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3272                         r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3273                         GL_BlendFunc(GL_ONE, GL_ONE);
3274                 }
3275
3276                 // copy the vertically blurred bloom view to a texture
3277                 GL_ActiveTexture(0);
3278                 CHECKGLERROR
3279                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3280                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3281         }
3282
3283         // apply subtract last
3284         // (just like it would be in a GLSL shader)
3285         if (r_bloom_colorsubtract.value > 0 && gl_support_ext_blend_subtract)
3286         {
3287                 GL_BlendFunc(GL_ONE, GL_ZERO);
3288                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3289                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3290                 GL_Color(1, 1, 1, 1);
3291                 R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3292                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3293
3294                 GL_BlendFunc(GL_ONE, GL_ONE);
3295                 qglBlendEquationEXT(GL_FUNC_REVERSE_SUBTRACT_EXT);
3296                 R_Mesh_TexBind(0, R_GetTexture(r_texture_white));
3297                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3298                 GL_Color(r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 1);
3299                 R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3300                 r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3301                 qglBlendEquationEXT(GL_FUNC_ADD_EXT);
3302
3303                 // copy the darkened bloom view to a texture
3304                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3305                 GL_ActiveTexture(0);
3306                 CHECKGLERROR
3307                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_bloomstate.bloomheight), r_bloomstate.bloomwidth, r_bloomstate.bloomheight);CHECKGLERROR
3308                 r_refdef.stats.bloom_copypixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight;
3309         }
3310 }
3311
3312 void R_HDR_RenderBloomTexture(void)
3313 {
3314         int oldwidth, oldheight;
3315         float oldcolorscale;
3316
3317         oldcolorscale = r_refdef.view.colorscale;
3318         oldwidth = r_refdef.view.width;
3319         oldheight = r_refdef.view.height;
3320         r_refdef.view.width = r_bloomstate.bloomwidth;
3321         r_refdef.view.height = r_bloomstate.bloomheight;
3322
3323         // TODO: support GL_EXT_framebuffer_object rather than reusing the framebuffer?  it might improve SLI performance.
3324         // TODO: add exposure compensation features
3325         // TODO: add fp16 framebuffer support
3326
3327         r_refdef.view.showdebug = false;
3328         r_refdef.view.colorscale *= r_bloom_colorscale.value / bound(1, r_hdr_range.value, 16);
3329
3330         R_ClearScreen(r_refdef.fogenabled);
3331         if (r_timereport_active)
3332                 R_TimeReport("HDRclear");
3333
3334         r_waterstate.numwaterplanes = 0;
3335         R_RenderScene(r_waterstate.enabled);
3336         r_refdef.view.showdebug = true;
3337
3338         R_ResetViewRendering2D();
3339
3340         R_Bloom_CopyHDRTexture();
3341         R_Bloom_MakeTexture();
3342
3343         // restore the view settings
3344         r_refdef.view.width = oldwidth;
3345         r_refdef.view.height = oldheight;
3346         r_refdef.view.colorscale = oldcolorscale;
3347
3348         R_ResetViewRendering3D();
3349
3350         R_ClearScreen(r_refdef.fogenabled);
3351         if (r_timereport_active)
3352                 R_TimeReport("viewclear");
3353 }
3354
3355 static void R_BlendView(void)
3356 {
3357         if (r_bloomstate.texture_screen)
3358         {
3359                 // copy view into the screen texture
3360                 R_ResetViewRendering2D();
3361                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3362                 R_Mesh_ColorPointer(NULL, 0, 0);
3363                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3364                 GL_ActiveTexture(0);CHECKGLERROR
3365                 qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, r_refdef.view.x, vid.height - (r_refdef.view.y + r_refdef.view.height), r_refdef.view.width, r_refdef.view.height);CHECKGLERROR
3366                 r_refdef.stats.bloom_copypixels += r_refdef.view.width * r_refdef.view.height;
3367         }
3368
3369         if (r_glsl.integer && gl_support_fragment_shader && (r_bloomstate.texture_screen || r_bloomstate.texture_bloom))
3370         {
3371                 unsigned int permutation =
3372                           (r_bloomstate.texture_bloom ? SHADERPERMUTATION_GLOW : 0)
3373                         | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VERTEXTEXTUREBLEND : 0)
3374                         | ((v_glslgamma.value && !vid_gammatables_trivial) ? SHADERPERMUTATION_GAMMARAMPS : 0)
3375                         | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0);
3376
3377                 if (r_bloomstate.texture_bloom && !r_bloomstate.hdr)
3378                 {
3379                         // render simple bloom effect
3380                         // copy the screen and shrink it and darken it for the bloom process
3381                         R_Bloom_CopyBloomTexture(r_bloom_colorscale.value);
3382                         // make the bloom texture
3383                         R_Bloom_MakeTexture();
3384                 }
3385
3386                 R_ResetViewRendering2D();
3387                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3388                 R_Mesh_ColorPointer(NULL, 0, 0);
3389                 GL_Color(1, 1, 1, 1);
3390                 GL_BlendFunc(GL_ONE, GL_ZERO);
3391                 R_SetupShader_SetPermutation(SHADERMODE_POSTPROCESS, permutation);
3392                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3393                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
3394                 R_Mesh_TexBind(1, R_GetTexture(r_bloomstate.texture_bloom));
3395                 R_Mesh_TexCoordPointer(1, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3396                 if (r_glsl_permutation->loc_Texture_GammaRamps >= 0)
3397                         R_Mesh_TexBind(GL20TU_GAMMARAMPS, R_GetTexture(r_texture_gammaramps));
3398                 if (r_glsl_permutation->loc_TintColor >= 0)
3399                         qglUniform4fARB(r_glsl_permutation->loc_TintColor, r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
3400                 if (r_glsl_permutation->loc_ClientTime >= 0)
3401                         qglUniform1fARB(r_glsl_permutation->loc_ClientTime, cl.time);
3402                 if (r_glsl_permutation->loc_PixelSize >= 0)
3403                         qglUniform2fARB(r_glsl_permutation->loc_PixelSize, 1.0/r_bloomstate.screentexturewidth, 1.0/r_bloomstate.screentextureheight);
3404                 if (r_glsl_permutation->loc_UserVec1 >= 0)
3405                 {
3406                         float a=0, b=0, c=0, d=0;
3407                         sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &a, &b, &c, &d);
3408                         qglUniform4fARB(r_glsl_permutation->loc_UserVec1, a, b, c, d);
3409                 }
3410                 if (r_glsl_permutation->loc_UserVec2 >= 0)
3411                 {
3412                         float a=0, b=0, c=0, d=0;
3413                         sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &a, &b, &c, &d);
3414                         qglUniform4fARB(r_glsl_permutation->loc_UserVec2, a, b, c, d);
3415                 }
3416                 if (r_glsl_permutation->loc_UserVec3 >= 0)
3417                 {
3418                         float a=0, b=0, c=0, d=0;
3419                         sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &a, &b, &c, &d);
3420                         qglUniform4fARB(r_glsl_permutation->loc_UserVec3, a, b, c, d);
3421                 }
3422                 if (r_glsl_permutation->loc_UserVec4 >= 0)
3423                 {
3424                         float a=0, b=0, c=0, d=0;
3425                         sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &a, &b, &c, &d);
3426                         qglUniform4fARB(r_glsl_permutation->loc_UserVec4, a, b, c, d);
3427                 }
3428                 R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3429                 r_refdef.stats.bloom_drawpixels += r_refdef.view.width * r_refdef.view.height;
3430                 return;
3431         }
3432
3433
3434
3435         if (r_bloomstate.texture_bloom && r_bloomstate.hdr)
3436         {
3437                 // render high dynamic range bloom effect
3438                 // the bloom texture was made earlier this render, so we just need to
3439                 // blend it onto the screen...
3440                 R_ResetViewRendering2D();
3441                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3442                 R_Mesh_ColorPointer(NULL, 0, 0);
3443                 R_SetupGenericShader(true);
3444                 GL_Color(1, 1, 1, 1);
3445                 GL_BlendFunc(GL_ONE, GL_ONE);
3446                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3447                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3448                 R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3449                 r_refdef.stats.bloom_drawpixels += r_refdef.view.width * r_refdef.view.height;
3450         }
3451         else if (r_bloomstate.texture_bloom)
3452         {
3453                 // render simple bloom effect
3454                 // copy the screen and shrink it and darken it for the bloom process
3455                 R_Bloom_CopyBloomTexture(r_bloom_colorscale.value);
3456                 // make the bloom texture
3457                 R_Bloom_MakeTexture();
3458                 // put the original screen image back in place and blend the bloom
3459                 // texture on it
3460                 R_ResetViewRendering2D();
3461                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3462                 R_Mesh_ColorPointer(NULL, 0, 0);
3463                 GL_Color(1, 1, 1, 1);
3464                 GL_BlendFunc(GL_ONE, GL_ZERO);
3465                 // do both in one pass if possible
3466                 R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_bloom));
3467                 R_Mesh_TexCoordPointer(0, 2, r_bloomstate.bloomtexcoord2f, 0, 0);
3468                 if (r_textureunits.integer >= 2 && gl_combine.integer)
3469                 {
3470                         R_SetupGenericTwoTextureShader(GL_ADD);
3471                         R_Mesh_TexBind(1, R_GetTexture(r_bloomstate.texture_screen));
3472                         R_Mesh_TexCoordPointer(1, 2, r_bloomstate.screentexcoord2f, 0, 0);
3473                 }
3474                 else
3475                 {
3476                         R_SetupGenericShader(true);
3477                         R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3478                         r_refdef.stats.bloom_drawpixels += r_refdef.view.width * r_refdef.view.height;
3479                         // now blend on the bloom texture
3480                         GL_BlendFunc(GL_ONE, GL_ONE);
3481                         R_Mesh_TexBind(0, R_GetTexture(r_bloomstate.texture_screen));
3482                         R_Mesh_TexCoordPointer(0, 2, r_bloomstate.screentexcoord2f, 0, 0);
3483                 }
3484                 R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3485                 r_refdef.stats.bloom_drawpixels += r_refdef.view.width * r_refdef.view.height;
3486         }
3487         if (r_refdef.viewblend[3] >= (1.0f / 256.0f))
3488         {
3489                 // apply a color tint to the whole view
3490                 R_ResetViewRendering2D();
3491                 R_Mesh_VertexPointer(r_screenvertex3f, 0, 0);
3492                 R_Mesh_ColorPointer(NULL, 0, 0);
3493                 R_SetupGenericShader(false);
3494                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
3495                 GL_Color(r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);
3496                 R_Mesh_Draw(0, 4, 0, 2, NULL, polygonelements, 0, 0);
3497         }
3498 }
3499
3500 void R_RenderScene(qboolean addwaterplanes);
3501
3502 matrix4x4_t r_waterscrollmatrix;
3503
3504 void R_UpdateFogColor(void) // needs to be called before HDR subrender too, as that changes colorscale!
3505 {
3506         if (r_refdef.fog_density)
3507         {
3508                 r_refdef.fogcolor[0] = r_refdef.fog_red;
3509                 r_refdef.fogcolor[1] = r_refdef.fog_green;
3510                 r_refdef.fogcolor[2] = r_refdef.fog_blue;
3511
3512                 {
3513                         vec3_t fogvec;
3514                         VectorCopy(r_refdef.fogcolor, fogvec);
3515                         if(r_glsl.integer && (r_glsl_contrastboost.value > 1 || r_glsl_contrastboost.value < 0)) // need to support contrast boost
3516                         {
3517                                 //   color.rgb /= ((ContrastBoost - 1) * color.rgb + 1);
3518                                 fogvec[0] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[0] + 1);
3519                                 fogvec[1] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[1] + 1);
3520                                 fogvec[2] *= r_glsl_contrastboost.value / ((r_glsl_contrastboost.value - 1) * fogvec[2] + 1);
3521                         }
3522                         //   color.rgb *= ContrastBoost * SceneBrightness;
3523                         VectorScale(fogvec, r_refdef.view.colorscale, fogvec);
3524                         r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f);
3525                         r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f);
3526                         r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f);
3527                 }
3528         }
3529 }
3530
3531 void R_UpdateVariables(void)
3532 {
3533         R_Textures_Frame();
3534
3535         r_refdef.scene.ambient = r_ambient.value;
3536
3537         r_refdef.farclip = 4096;
3538         if (r_refdef.scene.worldmodel)
3539                 r_refdef.farclip += r_refdef.scene.worldmodel->radius * 2;
3540         r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f);
3541
3542         if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1)
3543                 Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1);
3544         r_refdef.polygonfactor = 0;
3545         r_refdef.polygonoffset = 0;
3546         r_refdef.shadowpolygonfactor = r_refdef.polygonfactor + r_shadow_polygonfactor.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3547         r_refdef.shadowpolygonoffset = r_refdef.polygonoffset + r_shadow_polygonoffset.value * (r_shadow_frontsidecasting.integer ? 1 : -1);
3548
3549         r_refdef.scene.rtworld = r_shadow_realtime_world.integer;
3550         r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && gl_stencil;
3551         r_refdef.scene.rtdlight = (r_shadow_realtime_world.integer || r_shadow_realtime_dlight.integer) && !gl_flashblend.integer && r_dynamic.integer;
3552         r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && gl_stencil;
3553         r_refdef.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1;
3554         if (r_showsurfaces.integer)
3555         {
3556                 r_refdef.scene.rtworld = false;
3557                 r_refdef.scene.rtworldshadows = false;
3558                 r_refdef.scene.rtdlight = false;
3559                 r_refdef.scene.rtdlightshadows = false;
3560                 r_refdef.lightmapintensity = 0;
3561         }
3562
3563         if (gamemode == GAME_NEHAHRA)
3564         {
3565                 if (gl_fogenable.integer)
3566                 {
3567                         r_refdef.oldgl_fogenable = true;
3568                         r_refdef.fog_density = gl_fogdensity.value;
3569                         r_refdef.fog_red = gl_fogred.value;
3570                         r_refdef.fog_green = gl_foggreen.value;
3571                         r_refdef.fog_blue = gl_fogblue.value;
3572                         r_refdef.fog_alpha = 1;
3573                         r_refdef.fog_start = 0;
3574                         r_refdef.fog_end = gl_skyclip.value;
3575                 }
3576                 else if (r_refdef.oldgl_fogenable)
3577                 {
3578                         r_refdef.oldgl_fogenable = false;
3579                         r_refdef.fog_density = 0;
3580                         r_refdef.fog_red = 0;
3581                         r_refdef.fog_green = 0;
3582                         r_refdef.fog_blue = 0;
3583                         r_refdef.fog_alpha = 0;
3584                         r_refdef.fog_start = 0;
3585                         r_refdef.fog_end = 0;
3586                 }
3587         }
3588
3589         r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1);
3590         r_refdef.fog_start = max(0, r_refdef.fog_start);
3591         r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end);
3592
3593         // R_UpdateFogColor(); // why? R_RenderScene does it anyway
3594
3595         if (r_refdef.fog_density && r_drawfog.integer)
3596         {
3597                 r_refdef.fogenabled = true;
3598                 // this is the point where the fog reaches 0.9986 alpha, which we
3599                 // consider a good enough cutoff point for the texture
3600                 // (0.9986 * 256 == 255.6)
3601                 if (r_fog_exp2.integer)
3602                         r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start;
3603                 else
3604                         r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start;
3605                 r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end);
3606                 r_refdef.fograngerecip = 1.0f / r_refdef.fogrange;
3607                 r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip;
3608                 // fog color was already set
3609                 // update the fog texture
3610                 if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange)
3611                         R_BuildFogTexture();
3612         }
3613         else
3614                 r_refdef.fogenabled = false;
3615
3616         if(r_glsl.integer && v_glslgamma.integer && !vid_gammatables_trivial)
3617         {
3618                 if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial)
3619                 {
3620                         // build GLSL gamma texture
3621 #define RAMPWIDTH 256
3622                         unsigned short ramp[RAMPWIDTH * 3];
3623                         unsigned char ramprgb[RAMPWIDTH][4];
3624                         int i;
3625
3626                         r_texture_gammaramps_serial = vid_gammatables_serial;
3627
3628                         VID_BuildGammaTables(&ramp[0], RAMPWIDTH);
3629                         for(i = 0; i < RAMPWIDTH; ++i)
3630                         {
3631                                 ramprgb[i][0] = ramp[i] >> 8;
3632                                 ramprgb[i][1] = ramp[i + RAMPWIDTH] >> 8;
3633                                 ramprgb[i][2] = ramp[i + 2 * RAMPWIDTH] >> 8;
3634                                 ramprgb[i][3] = 0;
3635                         }
3636                         if (r_texture_gammaramps)
3637                         {
3638                                 R_UpdateTexture(r_texture_gammaramps, &ramprgb[0][0], 0, 0, RAMPWIDTH, 1);
3639                         }
3640                         else
3641                         {
3642                                 r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &ramprgb[0][0], TEXTYPE_BGRA, TEXF_PRECACHE | TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, NULL);
3643                         }
3644                 }
3645         }
3646         else
3647         {
3648                 // remove GLSL gamma texture
3649         }
3650 }
3651
3652 static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT;
3653 static r_refdef_scene_t r_scenes_store[ RST_COUNT ];
3654 /*
3655 ================
3656 R_SelectScene
3657 ================
3658 */
3659 void R_SelectScene( r_refdef_scene_type_t scenetype ) {
3660         if( scenetype != r_currentscenetype ) {
3661                 // store the old scenetype
3662                 r_scenes_store[ r_currentscenetype ] = r_refdef.scene;
3663                 r_currentscenetype = scenetype;
3664                 // move in the new scene
3665                 r_refdef.scene = r_scenes_store[ r_currentscenetype ];
3666         }
3667 }
3668
3669 /*
3670 ================
3671 R_GetScenePointer
3672 ================
3673 */
3674 r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype )
3675 {
3676         // of course, we could also add a qboolean that provides a lock state and a ReleaseScenePointer function..
3677         if( scenetype == r_currentscenetype ) {
3678                 return &r_refdef.scene;
3679         } else {
3680                 return &r_scenes_store[ scenetype ];
3681         }
3682 }
3683
3684 /*
3685 ================
3686 R_RenderView
3687 ================
3688 */
3689 void R_RenderView(void)
3690 {
3691         if (r_refdef.view.isoverlay)
3692         {
3693                 // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas]
3694                 GL_Clear( GL_DEPTH_BUFFER_BIT );
3695                 R_TimeReport("depthclear");