]> de.git.xonotic.org Git - xonotic/darkplaces.git/blob - mod_skeletal_animatevertices_generic.c
fix Collision_ClipTrace_Line_Sphere calculation of impactdist (had a
[xonotic/darkplaces.git] / mod_skeletal_animatevertices_generic.c
1 #include "mod_skeletal_animatevertices_generic.h"
2
3 typedef struct
4 {
5         float f[12];
6 }
7 float12_t;
8
9 void Mod_Skeletal_AnimateVertices_Generic(const dp_model_t * RESTRICT model, const frameblend_t * RESTRICT frameblend, const skeleton_t *skeleton, float * RESTRICT vertex3f, float * RESTRICT normal3f, float * RESTRICT svector3f, float * RESTRICT tvector3f)
10 {
11         // vertex weighted skeletal
12         int i, k;
13         int blends;
14         float12_t *bonepose;
15         float12_t *boneposerelative;
16         float m[12];
17         const blendweights_t * RESTRICT weights;
18
19         //unsigned long long ts = rdtsc();
20         bonepose = (float12_t *) Mod_Skeletal_AnimateVertices_AllocBuffers(sizeof(float12_t) * (model->num_bones*2 + model->surfmesh.num_blends));
21         boneposerelative = bonepose + model->num_bones;
22
23         if (skeleton && !skeleton->relativetransforms)
24                 skeleton = NULL;
25
26         // interpolate matrices
27         if (skeleton)
28         {
29                 for (i = 0;i < model->num_bones;i++)
30                 {
31                         Matrix4x4_ToArray12FloatD3D(&skeleton->relativetransforms[i], m);
32                         if (model->data_bones[i].parent >= 0)
33                                 R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f);
34                         else
35                                 memcpy(bonepose[i].f, m, sizeof(m));
36
37                         // create a relative deformation matrix to describe displacement
38                         // from the base mesh, which is used by the actual weighting
39                         R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f);
40                 }
41         }
42         else
43         {
44                 float originscale = model->num_posescale;
45                 float x,y,z,w,lerp;
46                 const short * RESTRICT pose6s;
47
48                 for (i = 0;i < model->num_bones;i++)
49                 {
50                         memset(m, 0, sizeof(m));
51                         for (blends = 0;blends < MAX_FRAMEBLENDS && frameblend[blends].lerp > 0;blends++)
52                         {
53                                 pose6s = model->data_poses6s + 6 * (frameblend[blends].subframe * model->num_bones + i);
54                                 lerp = frameblend[blends].lerp;
55                                 x = pose6s[3] * (1.0f / 32767.0f);
56                                 y = pose6s[4] * (1.0f / 32767.0f);
57                                 z = pose6s[5] * (1.0f / 32767.0f);
58                                 w = 1.0f - (x*x+y*y+z*z);
59                                 w = w > 0.0f ? -sqrt(w) : 0.0f;
60                                 m[ 0] += (1-2*(y*y+z*z)) * lerp;
61                                 m[ 1] += (  2*(x*y-z*w)) * lerp;
62                                 m[ 2] += (  2*(x*z+y*w)) * lerp;
63                                 m[ 3] += (pose6s[0] * originscale) * lerp;
64                                 m[ 4] += (  2*(x*y+z*w)) * lerp;
65                                 m[ 5] += (1-2*(x*x+z*z)) * lerp;
66                                 m[ 6] += (  2*(y*z-x*w)) * lerp;
67                                 m[ 7] += (pose6s[1] * originscale) * lerp;
68                                 m[ 8] += (  2*(x*z-y*w)) * lerp;
69                                 m[ 9] += (  2*(y*z+x*w)) * lerp;
70                                 m[10] += (1-2*(x*x+y*y)) * lerp;
71                                 m[11] += (pose6s[2] * originscale) * lerp;
72                         }
73                         VectorNormalize(m       );
74                         VectorNormalize(m + 4);
75                         VectorNormalize(m + 8);
76                         if (i == r_skeletal_debugbone.integer)
77                                 m[r_skeletal_debugbonecomponent.integer % 12] += r_skeletal_debugbonevalue.value;
78                         m[3] *= r_skeletal_debugtranslatex.value;
79                         m[7] *= r_skeletal_debugtranslatey.value;
80                         m[11] *= r_skeletal_debugtranslatez.value;
81                         if (model->data_bones[i].parent >= 0)
82                                 R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f);
83                         else
84                                 memcpy(bonepose[i].f, m, sizeof(m));
85                         // create a relative deformation matrix to describe displacement
86                         // from the base mesh, which is used by the actual weighting
87                         R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f);
88                 }
89         }
90
91         // generate matrices for all blend combinations
92         weights = model->surfmesh.data_blendweights;
93         for (i = 0;i < model->surfmesh.num_blends;i++, weights++)
94         {
95                 float * RESTRICT b = boneposerelative[model->num_bones + i].f;
96                 const float * RESTRICT m = boneposerelative[weights->index[0]].f;
97                 float f = weights->influence[0] * (1.0f / 255.0f);
98                 b[ 0] = f*m[ 0]; b[ 1] = f*m[ 1]; b[ 2] = f*m[ 2]; b[ 3] = f*m[ 3];
99                 b[ 4] = f*m[ 4]; b[ 5] = f*m[ 5]; b[ 6] = f*m[ 6]; b[ 7] = f*m[ 7];
100                 b[ 8] = f*m[ 8]; b[ 9] = f*m[ 9]; b[10] = f*m[10]; b[11] = f*m[11];
101                 for (k = 1;k < 4 && weights->influence[k];k++)
102                 {
103                         m = boneposerelative[weights->index[k]].f;
104                         f = weights->influence[k] * (1.0f / 255.0f);
105                         b[ 0] += f*m[ 0]; b[ 1] += f*m[ 1]; b[ 2] += f*m[ 2]; b[ 3] += f*m[ 3];
106                         b[ 4] += f*m[ 4]; b[ 5] += f*m[ 5]; b[ 6] += f*m[ 6]; b[ 7] += f*m[ 7];
107                         b[ 8] += f*m[ 8]; b[ 9] += f*m[ 9]; b[10] += f*m[10]; b[11] += f*m[11];
108                 }
109         }
110
111 #define LOAD_MATRIX_SCALAR() const float * RESTRICT m = boneposerelative[*b].f
112
113 #define LOAD_MATRIX3() \
114         LOAD_MATRIX_SCALAR()
115 #define LOAD_MATRIX4() \
116         LOAD_MATRIX_SCALAR()
117
118 #define TRANSFORM_POSITION_SCALAR(in, out) \
119         (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2] + m[3]); \
120         (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6] + m[7]); \
121         (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10] + m[11]);
122 #define TRANSFORM_VECTOR_SCALAR(in, out) \
123         (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2]); \
124         (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6]); \
125         (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10]);
126
127 #define TRANSFORM_POSITION(in, out) \
128         TRANSFORM_POSITION_SCALAR(in, out)
129 #define TRANSFORM_VECTOR(in, out) \
130         TRANSFORM_VECTOR_SCALAR(in, out)
131
132         // transform vertex attributes by blended matrices
133         if (vertex3f)
134         {
135                 const float * RESTRICT v = model->surfmesh.data_vertex3f;
136                 const unsigned short * RESTRICT b = model->surfmesh.blends;
137                 // special case common combinations of attributes to avoid repeated loading of matrices
138                 if (normal3f)
139                 {
140                         const float * RESTRICT n = model->surfmesh.data_normal3f;
141                         if (svector3f && tvector3f)
142                         {
143                                 const float * RESTRICT sv = model->surfmesh.data_svector3f;
144                                 const float * RESTRICT tv = model->surfmesh.data_tvector3f;
145
146                                 // Note that for SSE each iteration stores one element past end, so we break one vertex short
147                                 // and handle that with scalars in that case
148                                 for (i = 0; i < model->surfmesh.num_vertices; i++, v += 3, n += 3, sv += 3, tv += 3, b++,
149                                                 vertex3f += 3, normal3f += 3, svector3f += 3, tvector3f += 3)
150                                 {
151                                         LOAD_MATRIX4();
152                                         TRANSFORM_POSITION(v, vertex3f);
153                                         TRANSFORM_VECTOR(n, normal3f);
154                                         TRANSFORM_VECTOR(sv, svector3f);
155                                         TRANSFORM_VECTOR(tv, tvector3f);
156                                 }
157
158                                 return;
159                         }
160
161                         for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, n += 3, b++, vertex3f += 3, normal3f += 3)
162                         {
163                                 LOAD_MATRIX4();
164                                 TRANSFORM_POSITION(v, vertex3f);
165                                 TRANSFORM_VECTOR(n, normal3f);
166                         }
167                 }
168                 else
169                 {
170                         for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, b++, vertex3f += 3)
171                         {
172                                 LOAD_MATRIX4();
173                                 TRANSFORM_POSITION(v, vertex3f);
174                         }
175                 }
176         }
177
178         else if (normal3f)
179         {
180                 const float * RESTRICT n = model->surfmesh.data_normal3f;
181                 const unsigned short * RESTRICT b = model->surfmesh.blends;
182                 for (i = 0; i < model->surfmesh.num_vertices; i++, n += 3, b++, normal3f += 3)
183                 {
184                         LOAD_MATRIX3();
185                         TRANSFORM_VECTOR(n, normal3f);
186                 }
187         }
188
189         if (svector3f)
190         {
191                 const float * RESTRICT sv = model->surfmesh.data_svector3f;
192                 const unsigned short * RESTRICT b = model->surfmesh.blends;
193                 for (i = 0; i < model->surfmesh.num_vertices; i++, sv += 3, b++, svector3f += 3)
194                 {
195                         LOAD_MATRIX3();
196                         TRANSFORM_VECTOR(sv, svector3f);
197                 }
198         }
199
200         if (tvector3f)
201         {
202                 const float * RESTRICT tv = model->surfmesh.data_tvector3f;
203                 const unsigned short * RESTRICT b = model->surfmesh.blends;
204                 for (i = 0; i < model->surfmesh.num_vertices; i++, tv += 3, b++, tvector3f += 3)
205                 {
206                         LOAD_MATRIX3();
207                         TRANSFORM_VECTOR(tv, tvector3f);
208                 }
209         }
210 }