replaced Mod_LoadSkinFrame functions with R_SkinFrame system, this
[xonotic/darkplaces.git] / model_brush.c
1 /*
2 Copyright (C) 1996-1997 Id Software, Inc.
3
4 This program is free software; you can redistribute it and/or
5 modify it under the terms of the GNU General Public License
6 as published by the Free Software Foundation; either version 2
7 of the License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12
13 See the GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 */
20
21 #include "quakedef.h"
22 #include "image.h"
23 #include "r_shadow.h"
24 #include "polygon.h"
25 #include "curves.h"
26 #include "wad.h"
27
28
29 //cvar_t r_subdivide_size = {CVAR_SAVE, "r_subdivide_size", "128", "how large water polygons should be (smaller values produce more polygons which give better warping effects)"};
30 cvar_t halflifebsp = {0, "halflifebsp", "0", "indicates the current map is hlbsp format (useful to know because of different bounding box sizes)"};
31 cvar_t mcbsp = {0, "mcbsp", "0", "indicates the current map is mcbsp format (useful to know because of different bounding box sizes)"};
32 cvar_t r_novis = {0, "r_novis", "0", "draws whole level, see also sv_cullentities_pvs 0"};
33 cvar_t r_lightmaprgba = {0, "r_lightmaprgba", "1", "whether to use RGBA (32bit) or RGB (24bit) lightmaps"};
34 cvar_t r_nosurftextures = {0, "r_nosurftextures", "0", "pretends there was no texture lump found in the q1bsp/hlbsp loading (useful for debugging this rare case)"};
35 cvar_t r_subdivisions_tolerance = {0, "r_subdivisions_tolerance", "4", "maximum error tolerance on curve subdivision for rendering purposes (in other words, the curves will be given as many polygons as necessary to represent curves at this quality)"};
36 cvar_t r_subdivisions_mintess = {0, "r_subdivisions_mintess", "1", "minimum number of subdivisions (values above 1 will smooth curves that don't need it)"};
37 cvar_t r_subdivisions_maxtess = {0, "r_subdivisions_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"};
38 cvar_t r_subdivisions_maxvertices = {0, "r_subdivisions_maxvertices", "65536", "maximum vertices allowed per subdivided curve"};
39 cvar_t r_subdivisions_collision_tolerance = {0, "r_subdivisions_collision_tolerance", "15", "maximum error tolerance on curve subdivision for collision purposes (usually a larger error tolerance than for rendering)"};
40 cvar_t r_subdivisions_collision_mintess = {0, "r_subdivisions_collision_mintess", "1", "minimum number of subdivisions (values above 1 will smooth curves that don't need it)"};
41 cvar_t r_subdivisions_collision_maxtess = {0, "r_subdivisions_collision_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"};
42 cvar_t r_subdivisions_collision_maxvertices = {0, "r_subdivisions_collision_maxvertices", "4225", "maximum vertices allowed per subdivided curve"};
43 cvar_t mod_q3bsp_curves_collisions = {0, "mod_q3bsp_curves_collisions", "1", "enables collisions with curves (SLOW)"};
44 cvar_t mod_q3bsp_optimizedtraceline = {0, "mod_q3bsp_optimizedtraceline", "1", "whether to use optimized traceline code for line traces (as opposed to tracebox code)"};
45 cvar_t mod_q3bsp_debugtracebrush = {0, "mod_q3bsp_debugtracebrush", "0", "selects different tracebrush bsp recursion algorithms (for debugging purposes only)"};
46 cvar_t mod_q3bsp_lightmapmergepower = {CVAR_SAVE, "mod_q3bsp_lightmapmergepower", "4", "merges the quake3 128x128 lightmap textures into larger lightmap group textures to speed up rendering, 1 = 256x256, 2 = 512x512, 3 = 1024x1024, 4 = 2048x2048, 5 = 4096x4096, ..."};
47
48 static texture_t mod_q1bsp_texture_solid;
49 static texture_t mod_q1bsp_texture_sky;
50 static texture_t mod_q1bsp_texture_lava;
51 static texture_t mod_q1bsp_texture_slime;
52 static texture_t mod_q1bsp_texture_water;
53
54 void Mod_BrushInit(void)
55 {
56 //      Cvar_RegisterVariable(&r_subdivide_size);
57         Cvar_RegisterVariable(&halflifebsp);
58         Cvar_RegisterVariable(&mcbsp);
59         Cvar_RegisterVariable(&r_novis);
60         Cvar_RegisterVariable(&r_lightmaprgba);
61         Cvar_RegisterVariable(&r_nosurftextures);
62         Cvar_RegisterVariable(&r_subdivisions_tolerance);
63         Cvar_RegisterVariable(&r_subdivisions_mintess);
64         Cvar_RegisterVariable(&r_subdivisions_maxtess);
65         Cvar_RegisterVariable(&r_subdivisions_maxvertices);
66         Cvar_RegisterVariable(&r_subdivisions_collision_tolerance);
67         Cvar_RegisterVariable(&r_subdivisions_collision_mintess);
68         Cvar_RegisterVariable(&r_subdivisions_collision_maxtess);
69         Cvar_RegisterVariable(&r_subdivisions_collision_maxvertices);
70         Cvar_RegisterVariable(&mod_q3bsp_curves_collisions);
71         Cvar_RegisterVariable(&mod_q3bsp_optimizedtraceline);
72         Cvar_RegisterVariable(&mod_q3bsp_debugtracebrush);
73         Cvar_RegisterVariable(&mod_q3bsp_lightmapmergepower);
74
75         memset(&mod_q1bsp_texture_solid, 0, sizeof(mod_q1bsp_texture_solid));
76         strlcpy(mod_q1bsp_texture_solid.name, "solid" , sizeof(mod_q1bsp_texture_solid.name));
77         mod_q1bsp_texture_solid.surfaceflags = 0;
78         mod_q1bsp_texture_solid.supercontents = SUPERCONTENTS_SOLID;
79
80         mod_q1bsp_texture_sky = mod_q1bsp_texture_solid;
81         strlcpy(mod_q1bsp_texture_sky.name, "sky", sizeof(mod_q1bsp_texture_sky.name));
82         mod_q1bsp_texture_sky.surfaceflags = Q3SURFACEFLAG_SKY | Q3SURFACEFLAG_NOIMPACT | Q3SURFACEFLAG_NOMARKS | Q3SURFACEFLAG_NODLIGHT | Q3SURFACEFLAG_NOLIGHTMAP;
83         mod_q1bsp_texture_sky.supercontents = SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP;
84
85         mod_q1bsp_texture_lava = mod_q1bsp_texture_solid;
86         strlcpy(mod_q1bsp_texture_lava.name, "*lava", sizeof(mod_q1bsp_texture_lava.name));
87         mod_q1bsp_texture_lava.surfaceflags = Q3SURFACEFLAG_NOMARKS;
88         mod_q1bsp_texture_lava.supercontents = SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP;
89
90         mod_q1bsp_texture_slime = mod_q1bsp_texture_solid;
91         strlcpy(mod_q1bsp_texture_slime.name, "*slime", sizeof(mod_q1bsp_texture_slime.name));
92         mod_q1bsp_texture_slime.surfaceflags = Q3SURFACEFLAG_NOMARKS;
93         mod_q1bsp_texture_slime.supercontents = SUPERCONTENTS_SLIME;
94
95         mod_q1bsp_texture_water = mod_q1bsp_texture_solid;
96         strlcpy(mod_q1bsp_texture_water.name, "*water", sizeof(mod_q1bsp_texture_water.name));
97         mod_q1bsp_texture_water.surfaceflags = Q3SURFACEFLAG_NOMARKS;
98         mod_q1bsp_texture_water.supercontents = SUPERCONTENTS_WATER;
99 }
100
101 static mleaf_t *Mod_Q1BSP_PointInLeaf(model_t *model, const vec3_t p)
102 {
103         mnode_t *node;
104
105         if (model == NULL)
106                 return NULL;
107
108         // LordHavoc: modified to start at first clip node,
109         // in other words: first node of the (sub)model
110         node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
111         while (node->plane)
112                 node = node->children[(node->plane->type < 3 ? p[node->plane->type] : DotProduct(p,node->plane->normal)) < node->plane->dist];
113
114         return (mleaf_t *)node;
115 }
116
117 static void Mod_Q1BSP_AmbientSoundLevelsForPoint(model_t *model, const vec3_t p, unsigned char *out, int outsize)
118 {
119         int i;
120         mleaf_t *leaf;
121         leaf = Mod_Q1BSP_PointInLeaf(model, p);
122         if (leaf)
123         {
124                 i = min(outsize, (int)sizeof(leaf->ambient_sound_level));
125                 if (i)
126                 {
127                         memcpy(out, leaf->ambient_sound_level, i);
128                         out += i;
129                         outsize -= i;
130                 }
131         }
132         if (outsize)
133                 memset(out, 0, outsize);
134 }
135
136 static int Mod_Q1BSP_FindBoxClusters(model_t *model, const vec3_t mins, const vec3_t maxs, int maxclusters, int *clusterlist)
137 {
138         int numclusters = 0;
139         int nodestackindex = 0;
140         mnode_t *node, *nodestack[1024];
141         if (!model->brush.num_pvsclusters)
142                 return -1;
143         node = model->brush.data_nodes;
144         for (;;)
145         {
146 #if 1
147                 if (node->plane)
148                 {
149                         // node - recurse down the BSP tree
150                         int sides = BoxOnPlaneSide(mins, maxs, node->plane);
151                         if (sides < 3)
152                         {
153                                 if (sides == 0)
154                                         return -1; // ERROR: NAN bounding box!
155                                 // box is on one side of plane, take that path
156                                 node = node->children[sides-1];
157                         }
158                         else
159                         {
160                                 // box crosses plane, take one path and remember the other
161                                 if (nodestackindex < 1024)
162                                         nodestack[nodestackindex++] = node->children[0];
163                                 node = node->children[1];
164                         }
165                         continue;
166                 }
167                 else
168                 {
169                         // leaf - add clusterindex to list
170                         if (numclusters < maxclusters)
171                                 clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex;
172                         numclusters++;
173                 }
174 #else
175                 if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
176                 {
177                         if (node->plane)
178                         {
179                                 if (nodestackindex < 1024)
180                                         nodestack[nodestackindex++] = node->children[0];
181                                 node = node->children[1];
182                                 continue;
183                         }
184                         else
185                         {
186                                 // leaf - add clusterindex to list
187                                 if (numclusters < maxclusters)
188                                         clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex;
189                                 numclusters++;
190                         }
191                 }
192 #endif
193                 // try another path we didn't take earlier
194                 if (nodestackindex == 0)
195                         break;
196                 node = nodestack[--nodestackindex];
197         }
198         // return number of clusters found (even if more than the maxclusters)
199         return numclusters;
200 }
201
202 static int Mod_Q1BSP_BoxTouchingPVS(model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs)
203 {
204         int nodestackindex = 0;
205         mnode_t *node, *nodestack[1024];
206         if (!model->brush.num_pvsclusters)
207                 return true;
208         node = model->brush.data_nodes;
209         for (;;)
210         {
211 #if 1
212                 if (node->plane)
213                 {
214                         // node - recurse down the BSP tree
215                         int sides = BoxOnPlaneSide(mins, maxs, node->plane);
216                         if (sides < 3)
217                         {
218                                 if (sides == 0)
219                                         return -1; // ERROR: NAN bounding box!
220                                 // box is on one side of plane, take that path
221                                 node = node->children[sides-1];
222                         }
223                         else
224                         {
225                                 // box crosses plane, take one path and remember the other
226                                 if (nodestackindex < 1024)
227                                         nodestack[nodestackindex++] = node->children[0];
228                                 node = node->children[1];
229                         }
230                         continue;
231                 }
232                 else
233                 {
234                         // leaf - check cluster bit
235                         int clusterindex = ((mleaf_t *)node)->clusterindex;
236                         if (CHECKPVSBIT(pvs, clusterindex))
237                         {
238                                 // it is visible, return immediately with the news
239                                 return true;
240                         }
241                 }
242 #else
243                 if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
244                 {
245                         if (node->plane)
246                         {
247                                 if (nodestackindex < 1024)
248                                         nodestack[nodestackindex++] = node->children[0];
249                                 node = node->children[1];
250                                 continue;
251                         }
252                         else
253                         {
254                                 // leaf - check cluster bit
255                                 int clusterindex = ((mleaf_t *)node)->clusterindex;
256                                 if (CHECKPVSBIT(pvs, clusterindex))
257                                 {
258                                         // it is visible, return immediately with the news
259                                         return true;
260                                 }
261                         }
262                 }
263 #endif
264                 // nothing to see here, try another path we didn't take earlier
265                 if (nodestackindex == 0)
266                         break;
267                 node = nodestack[--nodestackindex];
268         }
269         // it is not visible
270         return false;
271 }
272
273 static int Mod_Q1BSP_BoxTouchingLeafPVS(model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs)
274 {
275         int nodestackindex = 0;
276         mnode_t *node, *nodestack[1024];
277         if (!model->brush.num_leafs)
278                 return true;
279         node = model->brush.data_nodes;
280         for (;;)
281         {
282 #if 1
283                 if (node->plane)
284                 {
285                         // node - recurse down the BSP tree
286                         int sides = BoxOnPlaneSide(mins, maxs, node->plane);
287                         if (sides < 3)
288                         {
289                                 if (sides == 0)
290                                         return -1; // ERROR: NAN bounding box!
291                                 // box is on one side of plane, take that path
292                                 node = node->children[sides-1];
293                         }
294                         else
295                         {
296                                 // box crosses plane, take one path and remember the other
297                                 if (nodestackindex < 1024)
298                                         nodestack[nodestackindex++] = node->children[0];
299                                 node = node->children[1];
300                         }
301                         continue;
302                 }
303                 else
304                 {
305                         // leaf - check cluster bit
306                         int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs;
307                         if (CHECKPVSBIT(pvs, clusterindex))
308                         {
309                                 // it is visible, return immediately with the news
310                                 return true;
311                         }
312                 }
313 #else
314                 if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
315                 {
316                         if (node->plane)
317                         {
318                                 if (nodestackindex < 1024)
319                                         nodestack[nodestackindex++] = node->children[0];
320                                 node = node->children[1];
321                                 continue;
322                         }
323                         else
324                         {
325                                 // leaf - check cluster bit
326                                 int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs;
327                                 if (CHECKPVSBIT(pvs, clusterindex))
328                                 {
329                                         // it is visible, return immediately with the news
330                                         return true;
331                                 }
332                         }
333                 }
334 #endif
335                 // nothing to see here, try another path we didn't take earlier
336                 if (nodestackindex == 0)
337                         break;
338                 node = nodestack[--nodestackindex];
339         }
340         // it is not visible
341         return false;
342 }
343
344 static int Mod_Q1BSP_BoxTouchingVisibleLeafs(model_t *model, const unsigned char *visibleleafs, const vec3_t mins, const vec3_t maxs)
345 {
346         int nodestackindex = 0;
347         mnode_t *node, *nodestack[1024];
348         if (!model->brush.num_leafs)
349                 return true;
350         node = model->brush.data_nodes;
351         for (;;)
352         {
353 #if 1
354                 if (node->plane)
355                 {
356                         // node - recurse down the BSP tree
357                         int sides = BoxOnPlaneSide(mins, maxs, node->plane);
358                         if (sides < 3)
359                         {
360                                 if (sides == 0)
361                                         return -1; // ERROR: NAN bounding box!
362                                 // box is on one side of plane, take that path
363                                 node = node->children[sides-1];
364                         }
365                         else
366                         {
367                                 // box crosses plane, take one path and remember the other
368                                 if (nodestackindex < 1024)
369                                         nodestack[nodestackindex++] = node->children[0];
370                                 node = node->children[1];
371                         }
372                         continue;
373                 }
374                 else
375                 {
376                         // leaf - check if it is visible
377                         if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs])
378                         {
379                                 // it is visible, return immediately with the news
380                                 return true;
381                         }
382                 }
383 #else
384                 if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
385                 {
386                         if (node->plane)
387                         {
388                                 if (nodestackindex < 1024)
389                                         nodestack[nodestackindex++] = node->children[0];
390                                 node = node->children[1];
391                                 continue;
392                         }
393                         else
394                         {
395                                 // leaf - check if it is visible
396                                 if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs])
397                                 {
398                                         // it is visible, return immediately with the news
399                                         return true;
400                                 }
401                         }
402                 }
403 #endif
404                 // nothing to see here, try another path we didn't take earlier
405                 if (nodestackindex == 0)
406                         break;
407                 node = nodestack[--nodestackindex];
408         }
409         // it is not visible
410         return false;
411 }
412
413 typedef struct findnonsolidlocationinfo_s
414 {
415         vec3_t center;
416         vec_t radius;
417         vec3_t nudge;
418         vec_t bestdist;
419         model_t *model;
420 }
421 findnonsolidlocationinfo_t;
422
423 static void Mod_Q1BSP_FindNonSolidLocation_r_Leaf(findnonsolidlocationinfo_t *info, mleaf_t *leaf)
424 {
425         int i, surfacenum, k, *tri, *mark;
426         float dist, f, vert[3][3], edge[3][3], facenormal[3], edgenormal[3][3], point[3];
427         msurface_t *surface;
428         for (surfacenum = 0, mark = leaf->firstleafsurface;surfacenum < leaf->numleafsurfaces;surfacenum++, mark++)
429         {
430                 surface = info->model->data_surfaces + *mark;
431                 if (surface->texture->supercontents & SUPERCONTENTS_SOLID)
432                 {
433                         for (k = 0;k < surface->num_triangles;k++)
434                         {
435                                 tri = (info->model->surfmesh.data_element3i + 3 * surface->num_firsttriangle) + k * 3;
436                                 VectorCopy((info->model->surfmesh.data_vertex3f + tri[0] * 3), vert[0]);
437                                 VectorCopy((info->model->surfmesh.data_vertex3f + tri[1] * 3), vert[1]);
438                                 VectorCopy((info->model->surfmesh.data_vertex3f + tri[2] * 3), vert[2]);
439                                 VectorSubtract(vert[1], vert[0], edge[0]);
440                                 VectorSubtract(vert[2], vert[1], edge[1]);
441                                 CrossProduct(edge[1], edge[0], facenormal);
442                                 if (facenormal[0] || facenormal[1] || facenormal[2])
443                                 {
444                                         VectorNormalize(facenormal);
445                                         f = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal);
446                                         if (f <= info->bestdist && f >= -info->bestdist)
447                                         {
448                                                 VectorSubtract(vert[0], vert[2], edge[2]);
449                                                 VectorNormalize(edge[0]);
450                                                 VectorNormalize(edge[1]);
451                                                 VectorNormalize(edge[2]);
452                                                 CrossProduct(facenormal, edge[0], edgenormal[0]);
453                                                 CrossProduct(facenormal, edge[1], edgenormal[1]);
454                                                 CrossProduct(facenormal, edge[2], edgenormal[2]);
455                                                 // face distance
456                                                 if (DotProduct(info->center, edgenormal[0]) < DotProduct(vert[0], edgenormal[0])
457                                                  && DotProduct(info->center, edgenormal[1]) < DotProduct(vert[1], edgenormal[1])
458                                                  && DotProduct(info->center, edgenormal[2]) < DotProduct(vert[2], edgenormal[2]))
459                                                 {
460                                                         // we got lucky, the center is within the face
461                                                         dist = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal);
462                                                         if (dist < 0)
463                                                         {
464                                                                 dist = -dist;
465                                                                 if (info->bestdist > dist)
466                                                                 {
467                                                                         info->bestdist = dist;
468                                                                         VectorScale(facenormal, (info->radius - -dist), info->nudge);
469                                                                 }
470                                                         }
471                                                         else
472                                                         {
473                                                                 if (info->bestdist > dist)
474                                                                 {
475                                                                         info->bestdist = dist;
476                                                                         VectorScale(facenormal, (info->radius - dist), info->nudge);
477                                                                 }
478                                                         }
479                                                 }
480                                                 else
481                                                 {
482                                                         // check which edge or vertex the center is nearest
483                                                         for (i = 0;i < 3;i++)
484                                                         {
485                                                                 f = DotProduct(info->center, edge[i]);
486                                                                 if (f >= DotProduct(vert[0], edge[i])
487                                                                  && f <= DotProduct(vert[1], edge[i]))
488                                                                 {
489                                                                         // on edge
490                                                                         VectorMA(info->center, -f, edge[i], point);
491                                                                         dist = sqrt(DotProduct(point, point));
492                                                                         if (info->bestdist > dist)
493                                                                         {
494                                                                                 info->bestdist = dist;
495                                                                                 VectorScale(point, (info->radius / dist), info->nudge);
496                                                                         }
497                                                                         // skip both vertex checks
498                                                                         // (both are further away than this edge)
499                                                                         i++;
500                                                                 }
501                                                                 else
502                                                                 {
503                                                                         // not on edge, check first vertex of edge
504                                                                         VectorSubtract(info->center, vert[i], point);
505                                                                         dist = sqrt(DotProduct(point, point));
506                                                                         if (info->bestdist > dist)
507                                                                         {
508                                                                                 info->bestdist = dist;
509                                                                                 VectorScale(point, (info->radius / dist), info->nudge);
510                                                                         }
511                                                                 }
512                                                         }
513                                                 }
514                                         }
515                                 }
516                         }
517                 }
518         }
519 }
520
521 static void Mod_Q1BSP_FindNonSolidLocation_r(findnonsolidlocationinfo_t *info, mnode_t *node)
522 {
523         if (node->plane)
524         {
525                 float f = PlaneDiff(info->center, node->plane);
526                 if (f >= -info->bestdist)
527                         Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[0]);
528                 if (f <= info->bestdist)
529                         Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[1]);
530         }
531         else
532         {
533                 if (((mleaf_t *)node)->numleafsurfaces)
534                         Mod_Q1BSP_FindNonSolidLocation_r_Leaf(info, (mleaf_t *)node);
535         }
536 }
537
538 static void Mod_Q1BSP_FindNonSolidLocation(model_t *model, const vec3_t in, vec3_t out, float radius)
539 {
540         int i;
541         findnonsolidlocationinfo_t info;
542         if (model == NULL)
543         {
544                 VectorCopy(in, out);
545                 return;
546         }
547         VectorCopy(in, info.center);
548         info.radius = radius;
549         info.model = model;
550         i = 0;
551         do
552         {
553                 VectorClear(info.nudge);
554                 info.bestdist = radius;
555                 Mod_Q1BSP_FindNonSolidLocation_r(&info, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode);
556                 VectorAdd(info.center, info.nudge, info.center);
557         }
558         while (info.bestdist < radius && ++i < 10);
559         VectorCopy(info.center, out);
560 }
561
562 int Mod_Q1BSP_SuperContentsFromNativeContents(model_t *model, int nativecontents)
563 {
564         switch(nativecontents)
565         {
566                 case CONTENTS_EMPTY:
567                         return 0;
568                 case CONTENTS_SOLID:
569                         return SUPERCONTENTS_SOLID;
570                 case CONTENTS_WATER:
571                         return SUPERCONTENTS_WATER;
572                 case CONTENTS_SLIME:
573                         return SUPERCONTENTS_SLIME;
574                 case CONTENTS_LAVA:
575                         return SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP;
576                 case CONTENTS_SKY:
577                         return SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP;
578         }
579         return 0;
580 }
581
582 int Mod_Q1BSP_NativeContentsFromSuperContents(model_t *model, int supercontents)
583 {
584         if (supercontents & (SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY))
585                 return CONTENTS_SOLID;
586         if (supercontents & SUPERCONTENTS_SKY)
587                 return CONTENTS_SKY;
588         if (supercontents & SUPERCONTENTS_LAVA)
589                 return CONTENTS_LAVA;
590         if (supercontents & SUPERCONTENTS_SLIME)
591                 return CONTENTS_SLIME;
592         if (supercontents & SUPERCONTENTS_WATER)
593                 return CONTENTS_WATER;
594         return CONTENTS_EMPTY;
595 }
596
597 typedef struct RecursiveHullCheckTraceInfo_s
598 {
599         // the hull we're tracing through
600         const hull_t *hull;
601
602         // the trace structure to fill in
603         trace_t *trace;
604
605         // start, end, and end - start (in model space)
606         double start[3];
607         double end[3];
608         double dist[3];
609 }
610 RecursiveHullCheckTraceInfo_t;
611
612 // 1/32 epsilon to keep floating point happy
613 #define DIST_EPSILON (0.03125)
614
615 #define HULLCHECKSTATE_EMPTY 0
616 #define HULLCHECKSTATE_SOLID 1
617 #define HULLCHECKSTATE_DONE 2
618
619 extern cvar_t collision_prefernudgedfraction;
620 static int Mod_Q1BSP_RecursiveHullCheck(RecursiveHullCheckTraceInfo_t *t, int num, double p1f, double p2f, double p1[3], double p2[3])
621 {
622         // status variables, these don't need to be saved on the stack when
623         // recursing...  but are because this should be thread-safe
624         // (note: tracing against a bbox is not thread-safe, yet)
625         int ret;
626         mplane_t *plane;
627         double t1, t2;
628
629         // variables that need to be stored on the stack when recursing
630         dclipnode_t *node;
631         int side;
632         double midf, mid[3];
633
634         // LordHavoc: a goto!  everyone flee in terror... :)
635 loc0:
636         // check for empty
637         if (num < 0)
638         {
639                 num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
640                 if (!t->trace->startfound)
641                 {
642                         t->trace->startfound = true;
643                         t->trace->startsupercontents |= num;
644                 }
645                 if (num & SUPERCONTENTS_LIQUIDSMASK)
646                         t->trace->inwater = true;
647                 if (num == 0)
648                         t->trace->inopen = true;
649                 if (num & SUPERCONTENTS_SOLID)
650                         t->trace->hittexture = &mod_q1bsp_texture_solid;
651                 else if (num & SUPERCONTENTS_SKY)
652                         t->trace->hittexture = &mod_q1bsp_texture_sky;
653                 else if (num & SUPERCONTENTS_LAVA)
654                         t->trace->hittexture = &mod_q1bsp_texture_lava;
655                 else if (num & SUPERCONTENTS_SLIME)
656                         t->trace->hittexture = &mod_q1bsp_texture_slime;
657                 else
658                         t->trace->hittexture = &mod_q1bsp_texture_water;
659                 t->trace->hitq3surfaceflags = t->trace->hittexture->surfaceflags;
660                 t->trace->hitsupercontents = num;
661                 if (num & t->trace->hitsupercontentsmask)
662                 {
663                         // if the first leaf is solid, set startsolid
664                         if (t->trace->allsolid)
665                                 t->trace->startsolid = true;
666 #if COLLISIONPARANOID >= 3
667                         Con_Print("S");
668 #endif
669                         return HULLCHECKSTATE_SOLID;
670                 }
671                 else
672                 {
673                         t->trace->allsolid = false;
674 #if COLLISIONPARANOID >= 3
675                         Con_Print("E");
676 #endif
677                         return HULLCHECKSTATE_EMPTY;
678                 }
679         }
680
681         // find the point distances
682         node = t->hull->clipnodes + num;
683
684         plane = t->hull->planes + node->planenum;
685         if (plane->type < 3)
686         {
687                 t1 = p1[plane->type] - plane->dist;
688                 t2 = p2[plane->type] - plane->dist;
689         }
690         else
691         {
692                 t1 = DotProduct (plane->normal, p1) - plane->dist;
693                 t2 = DotProduct (plane->normal, p2) - plane->dist;
694         }
695
696         if (t1 < 0)
697         {
698                 if (t2 < 0)
699                 {
700 #if COLLISIONPARANOID >= 3
701                         Con_Print("<");
702 #endif
703                         num = node->children[1];
704                         goto loc0;
705                 }
706                 side = 1;
707         }
708         else
709         {
710                 if (t2 >= 0)
711                 {
712 #if COLLISIONPARANOID >= 3
713                         Con_Print(">");
714 #endif
715                         num = node->children[0];
716                         goto loc0;
717                 }
718                 side = 0;
719         }
720
721         // the line intersects, find intersection point
722         // LordHavoc: this uses the original trace for maximum accuracy
723 #if COLLISIONPARANOID >= 3
724         Con_Print("M");
725 #endif
726         if (plane->type < 3)
727         {
728                 t1 = t->start[plane->type] - plane->dist;
729                 t2 = t->end[plane->type] - plane->dist;
730         }
731         else
732         {
733                 t1 = DotProduct (plane->normal, t->start) - plane->dist;
734                 t2 = DotProduct (plane->normal, t->end) - plane->dist;
735         }
736
737         midf = t1 / (t1 - t2);
738         midf = bound(p1f, midf, p2f);
739         VectorMA(t->start, midf, t->dist, mid);
740
741         // recurse both sides, front side first
742         ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side], p1f, midf, p1, mid);
743         // if this side is not empty, return what it is (solid or done)
744         if (ret != HULLCHECKSTATE_EMPTY)
745                 return ret;
746
747         ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side ^ 1], midf, p2f, mid, p2);
748         // if other side is not solid, return what it is (empty or done)
749         if (ret != HULLCHECKSTATE_SOLID)
750                 return ret;
751
752         // front is air and back is solid, this is the impact point...
753         if (side)
754         {
755                 t->trace->plane.dist = -plane->dist;
756                 VectorNegate (plane->normal, t->trace->plane.normal);
757         }
758         else
759         {
760                 t->trace->plane.dist = plane->dist;
761                 VectorCopy (plane->normal, t->trace->plane.normal);
762         }
763
764         // calculate the true fraction
765         t1 = DotProduct(t->trace->plane.normal, t->start) - t->trace->plane.dist;
766         t2 = DotProduct(t->trace->plane.normal, t->end) - t->trace->plane.dist;
767         midf = t1 / (t1 - t2);
768         t->trace->realfraction = bound(0, midf, 1);
769
770         // calculate the return fraction which is nudged off the surface a bit
771         midf = (t1 - DIST_EPSILON) / (t1 - t2);
772         t->trace->fraction = bound(0, midf, 1);
773
774         if (collision_prefernudgedfraction.integer)
775                 t->trace->realfraction = t->trace->fraction;
776
777 #if COLLISIONPARANOID >= 3
778         Con_Print("D");
779 #endif
780         return HULLCHECKSTATE_DONE;
781 }
782
783 //#if COLLISIONPARANOID < 2
784 static int Mod_Q1BSP_RecursiveHullCheckPoint(RecursiveHullCheckTraceInfo_t *t, int num)
785 {
786         while (num >= 0)
787                 num = t->hull->clipnodes[num].children[(t->hull->planes[t->hull->clipnodes[num].planenum].type < 3 ? t->start[t->hull->planes[t->hull->clipnodes[num].planenum].type] : DotProduct(t->hull->planes[t->hull->clipnodes[num].planenum].normal, t->start)) < t->hull->planes[t->hull->clipnodes[num].planenum].dist];
788         num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
789         t->trace->startsupercontents |= num;
790         if (num & SUPERCONTENTS_LIQUIDSMASK)
791                 t->trace->inwater = true;
792         if (num == 0)
793                 t->trace->inopen = true;
794         if (num & t->trace->hitsupercontentsmask)
795         {
796                 t->trace->allsolid = t->trace->startsolid = true;
797                 return HULLCHECKSTATE_SOLID;
798         }
799         else
800         {
801                 t->trace->allsolid = t->trace->startsolid = false;
802                 return HULLCHECKSTATE_EMPTY;
803         }
804 }
805 //#endif
806
807 static void Mod_Q1BSP_TraceBox(struct model_s *model, int frame, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask)
808 {
809         // this function currently only supports same size start and end
810         double boxsize[3];
811         RecursiveHullCheckTraceInfo_t rhc;
812
813         memset(&rhc, 0, sizeof(rhc));
814         memset(trace, 0, sizeof(trace_t));
815         rhc.trace = trace;
816         rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
817         rhc.trace->fraction = 1;
818         rhc.trace->realfraction = 1;
819         rhc.trace->allsolid = true;
820         VectorSubtract(boxmaxs, boxmins, boxsize);
821         if (boxsize[0] < 3)
822                 rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
823         else if (model->brush.ismcbsp)
824         {
825                 if (boxsize[2] < 48) // pick the nearest of 40 or 56
826                         rhc.hull = &model->brushq1.hulls[2]; // 16x16x40
827                 else
828                         rhc.hull = &model->brushq1.hulls[1]; // 16x16x56
829         }
830         else if (model->brush.ishlbsp)
831         {
832                 // LordHavoc: this has to have a minor tolerance (the .1) because of
833                 // minor float precision errors from the box being transformed around
834                 if (boxsize[0] < 32.1)
835                 {
836                         if (boxsize[2] < 54) // pick the nearest of 36 or 72
837                                 rhc.hull = &model->brushq1.hulls[3]; // 32x32x36
838                         else
839                                 rhc.hull = &model->brushq1.hulls[1]; // 32x32x72
840                 }
841                 else
842                         rhc.hull = &model->brushq1.hulls[2]; // 64x64x64
843         }
844         else
845         {
846                 // LordHavoc: this has to have a minor tolerance (the .1) because of
847                 // minor float precision errors from the box being transformed around
848                 if (boxsize[0] < 32.1)
849                         rhc.hull = &model->brushq1.hulls[1]; // 32x32x56
850                 else
851                         rhc.hull = &model->brushq1.hulls[2]; // 64x64x88
852         }
853         VectorMAMAM(1, start, 1, boxmins, -1, rhc.hull->clip_mins, rhc.start);
854         VectorMAMAM(1, end, 1, boxmins, -1, rhc.hull->clip_mins, rhc.end);
855         VectorSubtract(rhc.end, rhc.start, rhc.dist);
856 #if COLLISIONPARANOID >= 2
857         Con_Printf("t(%f %f %f,%f %f %f,%i %f %f %f)", rhc.start[0], rhc.start[1], rhc.start[2], rhc.end[0], rhc.end[1], rhc.end[2], rhc.hull - model->brushq1.hulls, rhc.hull->clip_mins[0], rhc.hull->clip_mins[1], rhc.hull->clip_mins[2]);
858         Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
859         {
860
861                 double test[3];
862                 trace_t testtrace;
863                 VectorLerp(rhc.start, rhc.trace->fraction, rhc.end, test);
864                 memset(&testtrace, 0, sizeof(trace_t));
865                 rhc.trace = &testtrace;
866                 rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
867                 rhc.trace->fraction = 1;
868                 rhc.trace->realfraction = 1;
869                 rhc.trace->allsolid = true;
870                 VectorCopy(test, rhc.start);
871                 VectorCopy(test, rhc.end);
872                 VectorClear(rhc.dist);
873                 Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
874                 //Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, test, test);
875                 if (!trace->startsolid && testtrace.startsolid)
876                         Con_Printf(" - ended in solid!\n");
877         }
878         Con_Print("\n");
879 #else
880         if (VectorLength2(rhc.dist))
881                 Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
882         else
883                 Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
884 #endif
885 }
886
887 void Collision_ClipTrace_Box(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask, int boxsupercontents, int boxq3surfaceflags, texture_t *boxtexture)
888 {
889 #if 1
890         colbrushf_t cbox;
891         colplanef_t cbox_planes[6];
892         cbox.supercontents = boxsupercontents;
893         cbox.numplanes = 6;
894         cbox.numpoints = 0;
895         cbox.numtriangles = 0;
896         cbox.planes = cbox_planes;
897         cbox.points = NULL;
898         cbox.elements = NULL;
899         cbox.markframe = 0;
900         cbox.mins[0] = 0;
901         cbox.mins[1] = 0;
902         cbox.mins[2] = 0;
903         cbox.maxs[0] = 0;
904         cbox.maxs[1] = 0;
905         cbox.maxs[2] = 0;
906         cbox_planes[0].normal[0] =  1;cbox_planes[0].normal[1] =  0;cbox_planes[0].normal[2] =  0;cbox_planes[0].dist = cmaxs[0] - mins[0];
907         cbox_planes[1].normal[0] = -1;cbox_planes[1].normal[1] =  0;cbox_planes[1].normal[2] =  0;cbox_planes[1].dist = maxs[0] - cmins[0];
908         cbox_planes[2].normal[0] =  0;cbox_planes[2].normal[1] =  1;cbox_planes[2].normal[2] =  0;cbox_planes[2].dist = cmaxs[1] - mins[1];
909         cbox_planes[3].normal[0] =  0;cbox_planes[3].normal[1] = -1;cbox_planes[3].normal[2] =  0;cbox_planes[3].dist = maxs[1] - cmins[1];
910         cbox_planes[4].normal[0] =  0;cbox_planes[4].normal[1] =  0;cbox_planes[4].normal[2] =  1;cbox_planes[4].dist = cmaxs[2] - mins[2];
911         cbox_planes[5].normal[0] =  0;cbox_planes[5].normal[1] =  0;cbox_planes[5].normal[2] = -1;cbox_planes[5].dist = maxs[2] - cmins[2];
912         cbox_planes[0].q3surfaceflags = boxq3surfaceflags;cbox_planes[0].texture = boxtexture;
913         cbox_planes[1].q3surfaceflags = boxq3surfaceflags;cbox_planes[1].texture = boxtexture;
914         cbox_planes[2].q3surfaceflags = boxq3surfaceflags;cbox_planes[2].texture = boxtexture;
915         cbox_planes[3].q3surfaceflags = boxq3surfaceflags;cbox_planes[3].texture = boxtexture;
916         cbox_planes[4].q3surfaceflags = boxq3surfaceflags;cbox_planes[4].texture = boxtexture;
917         cbox_planes[5].q3surfaceflags = boxq3surfaceflags;cbox_planes[5].texture = boxtexture;
918         memset(trace, 0, sizeof(trace_t));
919         trace->hitsupercontentsmask = hitsupercontentsmask;
920         trace->fraction = 1;
921         trace->realfraction = 1;
922         Collision_TraceLineBrushFloat(trace, start, end, &cbox, &cbox);
923 #else
924         RecursiveHullCheckTraceInfo_t rhc;
925         static hull_t box_hull;
926         static dclipnode_t box_clipnodes[6];
927         static mplane_t box_planes[6];
928         // fill in a default trace
929         memset(&rhc, 0, sizeof(rhc));
930         memset(trace, 0, sizeof(trace_t));
931         //To keep everything totally uniform, bounding boxes are turned into small
932         //BSP trees instead of being compared directly.
933         // create a temp hull from bounding box sizes
934         box_planes[0].dist = cmaxs[0] - mins[0];
935         box_planes[1].dist = cmins[0] - maxs[0];
936         box_planes[2].dist = cmaxs[1] - mins[1];
937         box_planes[3].dist = cmins[1] - maxs[1];
938         box_planes[4].dist = cmaxs[2] - mins[2];
939         box_planes[5].dist = cmins[2] - maxs[2];
940 #if COLLISIONPARANOID >= 3
941         Con_Printf("box_planes %f:%f %f:%f %f:%f\ncbox %f %f %f:%f %f %f\nbox %f %f %f:%f %f %f\n", box_planes[0].dist, box_planes[1].dist, box_planes[2].dist, box_planes[3].dist, box_planes[4].dist, box_planes[5].dist, cmins[0], cmins[1], cmins[2], cmaxs[0], cmaxs[1], cmaxs[2], mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2]);
942 #endif
943
944         if (box_hull.clipnodes == NULL)
945         {
946                 int i, side;
947
948                 //Set up the planes and clipnodes so that the six floats of a bounding box
949                 //can just be stored out and get a proper hull_t structure.
950
951                 box_hull.clipnodes = box_clipnodes;
952                 box_hull.planes = box_planes;
953                 box_hull.firstclipnode = 0;
954                 box_hull.lastclipnode = 5;
955
956                 for (i = 0;i < 6;i++)
957                 {
958                         box_clipnodes[i].planenum = i;
959
960                         side = i&1;
961
962                         box_clipnodes[i].children[side] = CONTENTS_EMPTY;
963                         if (i != 5)
964                                 box_clipnodes[i].children[side^1] = i + 1;
965                         else
966                                 box_clipnodes[i].children[side^1] = CONTENTS_SOLID;
967
968                         box_planes[i].type = i>>1;
969                         box_planes[i].normal[i>>1] = 1;
970                 }
971         }
972
973         // trace a line through the generated clipping hull
974         //rhc.boxsupercontents = boxsupercontents;
975         rhc.hull = &box_hull;
976         rhc.trace = trace;
977         rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
978         rhc.trace->fraction = 1;
979         rhc.trace->realfraction = 1;
980         rhc.trace->allsolid = true;
981         VectorCopy(start, rhc.start);
982         VectorCopy(end, rhc.end);
983         VectorSubtract(rhc.end, rhc.start, rhc.dist);
984         Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
985         //VectorMA(rhc.start, rhc.trace->fraction, rhc.dist, rhc.trace->endpos);
986         if (rhc.trace->startsupercontents)
987                 rhc.trace->startsupercontents = boxsupercontents;
988 #endif
989 }
990
991 static int Mod_Q1BSP_TraceLineOfSight_RecursiveNodeCheck(mnode_t *node, double p1[3], double p2[3])
992 {
993         double t1, t2;
994         double midf, mid[3];
995         int ret, side;
996
997         // check for empty
998         while (node->plane)
999         {
1000                 // find the point distances
1001                 mplane_t *plane = node->plane;
1002                 if (plane->type < 3)
1003                 {
1004                         t1 = p1[plane->type] - plane->dist;
1005                         t2 = p2[plane->type] - plane->dist;
1006                 }
1007                 else
1008                 {
1009                         t1 = DotProduct (plane->normal, p1) - plane->dist;
1010                         t2 = DotProduct (plane->normal, p2) - plane->dist;
1011                 }
1012
1013                 if (t1 < 0)
1014                 {
1015                         if (t2 < 0)
1016                         {
1017                                 node = node->children[1];
1018                                 continue;
1019                         }
1020                         side = 1;
1021                 }
1022                 else
1023                 {
1024                         if (t2 >= 0)
1025                         {
1026                                 node = node->children[0];
1027                                 continue;
1028                         }
1029                         side = 0;
1030                 }
1031
1032                 midf = t1 / (t1 - t2);
1033                 VectorLerp(p1, midf, p2, mid);
1034
1035                 // recurse both sides, front side first
1036                 // return 2 if empty is followed by solid (hit something)
1037                 // do not return 2 if both are solid or both empty,
1038                 // or if start is solid and end is empty
1039                 // as these degenerate cases usually indicate the eye is in solid and
1040                 // should see the target point anyway
1041                 ret = Mod_Q1BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side    ], p1, mid);
1042                 if (ret != 0)
1043                         return ret;
1044                 ret = Mod_Q1BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side ^ 1], mid, p2);
1045                 if (ret != 1)
1046                         return ret;
1047                 return 2;
1048         }
1049         return ((mleaf_t *)node)->clusterindex < 0;
1050 }
1051
1052 static qboolean Mod_Q1BSP_TraceLineOfSight(struct model_s *model, const vec3_t start, const vec3_t end)
1053 {
1054         // this function currently only supports same size start and end
1055         double tracestart[3], traceend[3];
1056         VectorCopy(start, tracestart);
1057         VectorCopy(end, traceend);
1058         return Mod_Q1BSP_TraceLineOfSight_RecursiveNodeCheck(model->brush.data_nodes, tracestart, traceend) != 2;
1059 }
1060
1061 static int Mod_Q1BSP_LightPoint_RecursiveBSPNode(model_t *model, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal, const mnode_t *node, float x, float y, float startz, float endz)
1062 {
1063         int side;
1064         float front, back;
1065         float mid, distz = endz - startz;
1066
1067 loc0:
1068         if (!node->plane)
1069                 return false;           // didn't hit anything
1070
1071         switch (node->plane->type)
1072         {
1073         case PLANE_X:
1074                 node = node->children[x < node->plane->dist];
1075                 goto loc0;
1076         case PLANE_Y:
1077                 node = node->children[y < node->plane->dist];
1078                 goto loc0;
1079         case PLANE_Z:
1080                 side = startz < node->plane->dist;
1081                 if ((endz < node->plane->dist) == side)
1082                 {
1083                         node = node->children[side];
1084                         goto loc0;
1085                 }
1086                 // found an intersection
1087                 mid = node->plane->dist;
1088                 break;
1089         default:
1090                 back = front = x * node->plane->normal[0] + y * node->plane->normal[1];
1091                 front += startz * node->plane->normal[2];
1092                 back += endz * node->plane->normal[2];
1093                 side = front < node->plane->dist;
1094                 if ((back < node->plane->dist) == side)
1095                 {
1096                         node = node->children[side];
1097                         goto loc0;
1098                 }
1099                 // found an intersection
1100                 mid = startz + distz * (front - node->plane->dist) / (front - back);
1101                 break;
1102         }
1103
1104         // go down front side
1105         if (node->children[side]->plane && Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, node->children[side], x, y, startz, mid))
1106                 return true;    // hit something
1107         else
1108         {
1109                 // check for impact on this node
1110                 if (node->numsurfaces)
1111                 {
1112                         int i, ds, dt;
1113                         msurface_t *surface;
1114
1115                         surface = model->data_surfaces + node->firstsurface;
1116                         for (i = 0;i < node->numsurfaces;i++, surface++)
1117                         {
1118                                 if (!(surface->texture->basematerialflags & MATERIALFLAG_WALL) || !surface->lightmapinfo->samples)
1119                                         continue;       // no lightmaps
1120
1121                                 ds = (int) (x * surface->lightmapinfo->texinfo->vecs[0][0] + y * surface->lightmapinfo->texinfo->vecs[0][1] + mid * surface->lightmapinfo->texinfo->vecs[0][2] + surface->lightmapinfo->texinfo->vecs[0][3]) - surface->lightmapinfo->texturemins[0];
1122                                 dt = (int) (x * surface->lightmapinfo->texinfo->vecs[1][0] + y * surface->lightmapinfo->texinfo->vecs[1][1] + mid * surface->lightmapinfo->texinfo->vecs[1][2] + surface->lightmapinfo->texinfo->vecs[1][3]) - surface->lightmapinfo->texturemins[1];
1123
1124                                 if (ds >= 0 && ds < surface->lightmapinfo->extents[0] && dt >= 0 && dt < surface->lightmapinfo->extents[1])
1125                                 {
1126                                         unsigned char *lightmap;
1127                                         int lmwidth, lmheight, maps, line3, size3, dsfrac = ds & 15, dtfrac = dt & 15, scale = 0, r00 = 0, g00 = 0, b00 = 0, r01 = 0, g01 = 0, b01 = 0, r10 = 0, g10 = 0, b10 = 0, r11 = 0, g11 = 0, b11 = 0;
1128                                         lmwidth = ((surface->lightmapinfo->extents[0]>>4)+1);
1129                                         lmheight = ((surface->lightmapinfo->extents[1]>>4)+1);
1130                                         line3 = lmwidth * 3; // LordHavoc: *3 for colored lighting
1131                                         size3 = lmwidth * lmheight * 3; // LordHavoc: *3 for colored lighting
1132
1133                                         lightmap = surface->lightmapinfo->samples + ((dt>>4) * lmwidth + (ds>>4))*3; // LordHavoc: *3 for colored lighting
1134
1135                                         for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++)
1136                                         {
1137                                                 scale = r_refdef.lightstylevalue[surface->lightmapinfo->styles[maps]];
1138                                                 r00 += lightmap[      0] * scale;g00 += lightmap[      1] * scale;b00 += lightmap[      2] * scale;
1139                                                 r01 += lightmap[      3] * scale;g01 += lightmap[      4] * scale;b01 += lightmap[      5] * scale;
1140                                                 r10 += lightmap[line3+0] * scale;g10 += lightmap[line3+1] * scale;b10 += lightmap[line3+2] * scale;
1141                                                 r11 += lightmap[line3+3] * scale;g11 += lightmap[line3+4] * scale;b11 += lightmap[line3+5] * scale;
1142                                                 lightmap += size3;
1143                                         }
1144
1145 /*
1146 LordHavoc: here's the readable version of the interpolation
1147 code, not quite as easy for the compiler to optimize...
1148
1149 dsfrac is the X position in the lightmap pixel, * 16
1150 dtfrac is the Y position in the lightmap pixel, * 16
1151 r00 is top left corner, r01 is top right corner
1152 r10 is bottom left corner, r11 is bottom right corner
1153 g and b are the same layout.
1154 r0 and r1 are the top and bottom intermediate results
1155
1156 first we interpolate the top two points, to get the top
1157 edge sample
1158
1159         r0 = (((r01-r00) * dsfrac) >> 4) + r00;
1160         g0 = (((g01-g00) * dsfrac) >> 4) + g00;
1161         b0 = (((b01-b00) * dsfrac) >> 4) + b00;
1162
1163 then we interpolate the bottom two points, to get the
1164 bottom edge sample
1165
1166         r1 = (((r11-r10) * dsfrac) >> 4) + r10;
1167         g1 = (((g11-g10) * dsfrac) >> 4) + g10;
1168         b1 = (((b11-b10) * dsfrac) >> 4) + b10;
1169
1170 then we interpolate the top and bottom samples to get the
1171 middle sample (the one which was requested)
1172
1173         r = (((r1-r0) * dtfrac) >> 4) + r0;
1174         g = (((g1-g0) * dtfrac) >> 4) + g0;
1175         b = (((b1-b0) * dtfrac) >> 4) + b0;
1176 */
1177
1178                                         ambientcolor[0] += (float) ((((((((r11-r10) * dsfrac) >> 4) + r10)-((((r01-r00) * dsfrac) >> 4) + r00)) * dtfrac) >> 4) + ((((r01-r00) * dsfrac) >> 4) + r00)) * (1.0f / 32768.0f);
1179                                         ambientcolor[1] += (float) ((((((((g11-g10) * dsfrac) >> 4) + g10)-((((g01-g00) * dsfrac) >> 4) + g00)) * dtfrac) >> 4) + ((((g01-g00) * dsfrac) >> 4) + g00)) * (1.0f / 32768.0f);
1180                                         ambientcolor[2] += (float) ((((((((b11-b10) * dsfrac) >> 4) + b10)-((((b01-b00) * dsfrac) >> 4) + b00)) * dtfrac) >> 4) + ((((b01-b00) * dsfrac) >> 4) + b00)) * (1.0f / 32768.0f);
1181                                         return true; // success
1182                                 }
1183                         }
1184                 }
1185
1186                 // go down back side
1187                 node = node->children[side ^ 1];
1188                 startz = mid;
1189                 distz = endz - startz;
1190                 goto loc0;
1191         }
1192 }
1193
1194 void Mod_Q1BSP_LightPoint(model_t *model, const vec3_t p, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal)
1195 {
1196         // pretend lighting is coming down from above (due to lack of a lightgrid to know primary lighting direction)
1197         VectorSet(diffusenormal, 0, 0, 1);
1198
1199         if (!model->brushq1.lightdata)
1200         {
1201                 VectorSet(ambientcolor, 1, 1, 1);
1202                 VectorSet(diffusecolor, 0, 0, 0);
1203                 return;
1204         }
1205
1206         Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, p[0], p[1], p[2] + 0.125, p[2] - 65536);
1207 }
1208
1209 static void Mod_Q1BSP_DecompressVis(const unsigned char *in, const unsigned char *inend, unsigned char *out, unsigned char *outend)
1210 {
1211         int c;
1212         unsigned char *outstart = out;
1213         while (out < outend)
1214         {
1215                 if (in == inend)
1216                 {
1217                         Con_Printf("Mod_Q1BSP_DecompressVis: input underrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
1218                         return;
1219                 }
1220                 c = *in++;
1221                 if (c)
1222                         *out++ = c;
1223                 else
1224                 {
1225                         if (in == inend)
1226                         {
1227                                 Con_Printf("Mod_Q1BSP_DecompressVis: input underrun (during zero-run) on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
1228                                 return;
1229                         }
1230                         for (c = *in++;c > 0;c--)
1231                         {
1232                                 if (out == outend)
1233                                 {
1234                                         Con_Printf("Mod_Q1BSP_DecompressVis: output overrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
1235                                         return;
1236                                 }
1237                                 *out++ = 0;
1238                         }
1239                 }
1240         }
1241 }
1242
1243 /*
1244 =============
1245 R_Q1BSP_LoadSplitSky
1246
1247 A sky texture is 256*128, with the right side being a masked overlay
1248 ==============
1249 */
1250 void R_Q1BSP_LoadSplitSky (unsigned char *src, int width, int height, int bytesperpixel)
1251 {
1252         int i, j;
1253         unsigned solidpixels[128*128], alphapixels[128*128];
1254
1255         // allocate a texture pool if we need it
1256         if (loadmodel->texturepool == NULL && cls.state != ca_dedicated)
1257                 loadmodel->texturepool = R_AllocTexturePool();
1258
1259         // if sky isn't the right size, just use it as a solid layer
1260         if (width != 256 || height != 128)
1261         {
1262                 loadmodel->brush.solidskytexture = R_LoadTexture2D(loadmodel->texturepool, "sky_solidtexture", width, height, src, bytesperpixel == 4 ? TEXTYPE_RGBA : TEXTYPE_PALETTE, TEXF_PRECACHE, bytesperpixel == 1 ? palette_complete : NULL);
1263                 loadmodel->brush.alphaskytexture = NULL;
1264                 return;
1265         }
1266
1267         if (bytesperpixel == 4)
1268         {
1269                 for (i = 0;i < 128;i++)
1270                 {
1271                         for (j = 0;j < 128;j++)
1272                         {
1273                                 solidpixels[(i*128) + j] = ((unsigned *)src)[i*256+j+128];
1274                                 alphapixels[(i*128) + j] = ((unsigned *)src)[i*256+j];
1275                         }
1276                 }
1277         }
1278         else
1279         {
1280                 // make an average value for the back to avoid
1281                 // a fringe on the top level
1282                 int p, r, g, b;
1283                 union
1284                 {
1285                         unsigned int i;
1286                         unsigned char b[4];
1287                 }
1288                 rgba;
1289                 r = g = b = 0;
1290                 for (i = 0;i < 128;i++)
1291                 {
1292                         for (j = 0;j < 128;j++)
1293                         {
1294                                 rgba.i = palette_complete[src[i*256 + j + 128]];
1295                                 r += rgba.b[0];
1296                                 g += rgba.b[1];
1297                                 b += rgba.b[2];
1298                         }
1299                 }
1300                 rgba.b[0] = r/(128*128);
1301                 rgba.b[1] = g/(128*128);
1302                 rgba.b[2] = b/(128*128);
1303                 rgba.b[3] = 0;
1304                 for (i = 0;i < 128;i++)
1305                 {
1306                         for (j = 0;j < 128;j++)
1307                         {
1308                                 solidpixels[(i*128) + j] = palette_complete[src[i*256 + j + 128]];
1309                                 alphapixels[(i*128) + j] = (p = src[i*256 + j]) ? palette_complete[p] : rgba.i;
1310                         }
1311                 }
1312         }
1313
1314         loadmodel->brush.solidskytexture = R_LoadTexture2D(loadmodel->texturepool, "sky_solidtexture", 128, 128, (unsigned char *) solidpixels, TEXTYPE_RGBA, TEXF_PRECACHE, NULL);
1315         loadmodel->brush.alphaskytexture = R_LoadTexture2D(loadmodel->texturepool, "sky_alphatexture", 128, 128, (unsigned char *) alphapixels, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL);
1316 }
1317
1318 static void Mod_Q1BSP_LoadTextures(lump_t *l)
1319 {
1320         int i, j, k, num, max, altmax, mtwidth, mtheight, *dofs, incomplete;
1321         skinframe_t *skinframe;
1322         miptex_t *dmiptex;
1323         texture_t *tx, *tx2, *anims[10], *altanims[10];
1324         dmiptexlump_t *m;
1325         unsigned char *data, *mtdata;
1326         const char *s;
1327         char mapname[MAX_QPATH], name[MAX_QPATH];
1328
1329         loadmodel->data_textures = NULL;
1330
1331         // add two slots for notexture walls and notexture liquids
1332         if (l->filelen)
1333         {
1334                 m = (dmiptexlump_t *)(mod_base + l->fileofs);
1335                 m->nummiptex = LittleLong (m->nummiptex);
1336                 loadmodel->num_textures = m->nummiptex + 2;
1337         }
1338         else
1339         {
1340                 m = NULL;
1341                 loadmodel->num_textures = 2;
1342         }
1343
1344         loadmodel->data_textures = (texture_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_textures * sizeof(texture_t));
1345
1346         // fill out all slots with notexture
1347         skinframe = R_SkinFrame_LoadMissing();
1348         for (i = 0, tx = loadmodel->data_textures;i < loadmodel->num_textures;i++, tx++)
1349         {
1350                 strlcpy(tx->name, "NO TEXTURE FOUND", sizeof(tx->name));
1351                 tx->width = 16;
1352                 tx->height = 16;
1353                 tx->numskinframes = 1;
1354                 tx->skinframerate = 1;
1355                 tx->skinframes[0] = skinframe;
1356                 tx->currentskinframe = tx->skinframes[0];
1357                 tx->basematerialflags = 0;
1358                 if (i == loadmodel->num_textures - 1)
1359                 {
1360                         tx->basematerialflags |= MATERIALFLAG_WATER | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW;
1361                         tx->supercontents = mod_q1bsp_texture_water.supercontents;
1362                         tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags;
1363                 }
1364                 else
1365                 {
1366                         tx->basematerialflags |= MATERIALFLAG_WALL;
1367                         tx->supercontents = mod_q1bsp_texture_solid.supercontents;
1368                         tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags;
1369                 }
1370                 tx->currentframe = tx;
1371         }
1372
1373         if (!m)
1374                 return;
1375
1376         s = loadmodel->name;
1377         if (!strncasecmp(s, "maps/", 5))
1378                 s += 5;
1379         FS_StripExtension(s, mapname, sizeof(mapname));
1380
1381         // just to work around bounds checking when debugging with it (array index out of bounds error thing)
1382         dofs = m->dataofs;
1383         // LordHavoc: mostly rewritten map texture loader
1384         for (i = 0;i < m->nummiptex;i++)
1385         {
1386                 dofs[i] = LittleLong(dofs[i]);
1387                 if (dofs[i] == -1 || r_nosurftextures.integer)
1388                         continue;
1389                 dmiptex = (miptex_t *)((unsigned char *)m + dofs[i]);
1390
1391                 // make sure name is no more than 15 characters
1392                 for (j = 0;dmiptex->name[j] && j < 15;j++)
1393                         name[j] = dmiptex->name[j];
1394                 name[j] = 0;
1395
1396                 mtwidth = LittleLong(dmiptex->width);
1397                 mtheight = LittleLong(dmiptex->height);
1398                 mtdata = NULL;
1399                 j = LittleLong(dmiptex->offsets[0]);
1400                 if (j)
1401                 {
1402                         // texture included
1403                         if (j < 40 || j + mtwidth * mtheight > l->filelen)
1404                         {
1405                                 Con_Printf("Texture \"%s\" in \"%s\"is corrupt or incomplete\n", dmiptex->name, loadmodel->name);
1406                                 continue;
1407                         }
1408                         mtdata = (unsigned char *)dmiptex + j;
1409                 }
1410
1411                 if ((mtwidth & 15) || (mtheight & 15))
1412                         Con_Printf("warning: texture \"%s\" in \"%s\" is not 16 aligned\n", dmiptex->name, loadmodel->name);
1413
1414                 // LordHavoc: force all names to lowercase
1415                 for (j = 0;name[j];j++)
1416                         if (name[j] >= 'A' && name[j] <= 'Z')
1417                                 name[j] += 'a' - 'A';
1418
1419                 tx = loadmodel->data_textures + i;
1420                 strlcpy(tx->name, name, sizeof(tx->name));
1421                 tx->width = mtwidth;
1422                 tx->height = mtheight;
1423
1424                 if (!tx->name[0])
1425                 {
1426                         sprintf(tx->name, "unnamed%i", i);
1427                         Con_Printf("warning: unnamed texture in %s, renaming to %s\n", loadmodel->name, tx->name);
1428                 }
1429
1430                 if (cls.state != ca_dedicated)
1431                 {
1432                         // LordHavoc: HL sky textures are entirely different than quake
1433                         if (!loadmodel->brush.ishlbsp && !strncmp(tx->name, "sky", 3) && mtwidth == 256 && mtheight == 128)
1434                         {
1435                                 if (loadmodel->isworldmodel)
1436                                 {
1437                                         data = loadimagepixels(tx->name, false, 0, 0);
1438                                         if (data)
1439                                         {
1440                                                 R_Q1BSP_LoadSplitSky(data, image_width, image_height, 4);
1441                                                 Mem_Free(data);
1442                                         }
1443                                         else if (mtdata != NULL)
1444                                                 R_Q1BSP_LoadSplitSky(mtdata, mtwidth, mtheight, 1);
1445                                 }
1446                         }
1447                         else
1448                         {
1449                                 skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s/%s", mapname, tx->name), TEXF_MIPMAP | TEXF_ALPHA | TEXF_PRECACHE | TEXF_PICMIP);
1450                                 if (!skinframe)
1451                                         skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s", tx->name), TEXF_MIPMAP | TEXF_ALPHA | TEXF_PRECACHE | TEXF_PICMIP);
1452                                 if (!skinframe)
1453                                 {
1454                                         // did not find external texture, load it from the bsp or wad3
1455                                         if (loadmodel->brush.ishlbsp)
1456                                         {
1457                                                 // internal texture overrides wad
1458                                                 unsigned char *pixels, *freepixels;
1459                                                 pixels = freepixels = NULL;
1460                                                 if (mtdata)
1461                                                         pixels = W_ConvertWAD3Texture(dmiptex);
1462                                                 if (pixels == NULL)
1463                                                         pixels = freepixels = W_GetTexture(tx->name);
1464                                                 if (pixels != NULL)
1465                                                 {
1466                                                         tx->width = image_width;
1467                                                         tx->height = image_height;
1468                                                         skinframe = R_SkinFrame_LoadInternal(tx->name, TEXF_MIPMAP | TEXF_ALPHA | TEXF_PRECACHE | TEXF_PICMIP, false, false, pixels, image_width, image_height, 32, NULL, NULL);
1469                                                 }
1470                                                 if (freepixels)
1471                                                         Mem_Free(freepixels);
1472                                         }
1473                                         else if (mtdata) // texture included
1474                                                 skinframe = R_SkinFrame_LoadInternal(tx->name, TEXF_MIPMAP | TEXF_PRECACHE | TEXF_PICMIP, false, r_fullbrights.integer, mtdata, tx->width, tx->height, 8, NULL, NULL);
1475                                 }
1476                                 // if skinframe is still NULL the "missing" texture will be used
1477                                 if (skinframe)
1478                                         tx->skinframes[0] = skinframe;
1479                         }
1480                 }
1481
1482                 tx->basematerialflags = 0;
1483                 if (tx->name[0] == '*')
1484                 {
1485                         // LordHavoc: some turbulent textures should not be affected by wateralpha
1486                         if (strncmp(tx->name,"*lava",5)
1487                          && strncmp(tx->name,"*teleport",9)
1488                          && strncmp(tx->name,"*rift",5)) // Scourge of Armagon texture
1489                                 tx->basematerialflags |= MATERIALFLAG_WATERALPHA | MATERIALFLAG_NOSHADOW;
1490                         if (!strncmp(tx->name, "*lava", 5))
1491                         {
1492                                 tx->supercontents = mod_q1bsp_texture_lava.supercontents;
1493                                 tx->surfaceflags = mod_q1bsp_texture_lava.surfaceflags;
1494                         }
1495                         else if (!strncmp(tx->name, "*slime", 6))
1496                         {
1497                                 tx->supercontents = mod_q1bsp_texture_slime.supercontents;
1498                                 tx->surfaceflags = mod_q1bsp_texture_slime.surfaceflags;
1499                         }
1500                         else
1501                         {
1502                                 tx->supercontents = mod_q1bsp_texture_water.supercontents;
1503                                 tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags;
1504                         }
1505                         tx->basematerialflags |= MATERIALFLAG_WATER | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW;
1506                 }
1507                 else if (tx->name[0] == 's' && tx->name[1] == 'k' && tx->name[2] == 'y')
1508                 {
1509                         tx->supercontents = mod_q1bsp_texture_sky.supercontents;
1510                         tx->surfaceflags = mod_q1bsp_texture_sky.surfaceflags;
1511                         tx->basematerialflags |= MATERIALFLAG_SKY | MATERIALFLAG_NOSHADOW;
1512                 }
1513                 else
1514                 {
1515                         tx->supercontents = mod_q1bsp_texture_solid.supercontents;
1516                         tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags;
1517                         tx->basematerialflags |= MATERIALFLAG_WALL;
1518                 }
1519                 if (tx->skinframes[0]->fog)
1520                         tx->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
1521
1522                 // start out with no animation
1523                 tx->currentframe = tx;
1524                 tx->currentskinframe = tx->skinframes[0];
1525         }
1526
1527         // sequence the animations
1528         for (i = 0;i < m->nummiptex;i++)
1529         {
1530                 tx = loadmodel->data_textures + i;
1531                 if (!tx || tx->name[0] != '+' || tx->name[1] == 0 || tx->name[2] == 0)
1532                         continue;
1533                 if (tx->anim_total[0] || tx->anim_total[1])
1534                         continue;       // already sequenced
1535
1536                 // find the number of frames in the animation
1537                 memset(anims, 0, sizeof(anims));
1538                 memset(altanims, 0, sizeof(altanims));
1539
1540                 for (j = i;j < m->nummiptex;j++)
1541                 {
1542                         tx2 = loadmodel->data_textures + j;
1543                         if (!tx2 || tx2->name[0] != '+' || strcmp(tx2->name+2, tx->name+2))
1544                                 continue;
1545
1546                         num = tx2->name[1];
1547                         if (num >= '0' && num <= '9')
1548                                 anims[num - '0'] = tx2;
1549                         else if (num >= 'a' && num <= 'j')
1550                                 altanims[num - 'a'] = tx2;
1551                         else
1552                                 Con_Printf("Bad animating texture %s\n", tx->name);
1553                 }
1554
1555                 max = altmax = 0;
1556                 for (j = 0;j < 10;j++)
1557                 {
1558                         if (anims[j])
1559                                 max = j + 1;
1560                         if (altanims[j])
1561                                 altmax = j + 1;
1562                 }
1563                 //Con_Printf("linking animation %s (%i:%i frames)\n\n", tx->name, max, altmax);
1564
1565                 incomplete = false;
1566                 for (j = 0;j < max;j++)
1567                 {
1568                         if (!anims[j])
1569                         {
1570                                 Con_Printf("Missing frame %i of %s\n", j, tx->name);
1571                                 incomplete = true;
1572                         }
1573                 }
1574                 for (j = 0;j < altmax;j++)
1575                 {
1576                         if (!altanims[j])
1577                         {
1578                                 Con_Printf("Missing altframe %i of %s\n", j, tx->name);
1579                                 incomplete = true;
1580                         }
1581                 }
1582                 if (incomplete)
1583                         continue;
1584
1585                 if (altmax < 1)
1586                 {
1587                         // if there is no alternate animation, duplicate the primary
1588                         // animation into the alternate
1589                         altmax = max;
1590                         for (k = 0;k < 10;k++)
1591                                 altanims[k] = anims[k];
1592                 }
1593
1594                 // link together the primary animation
1595                 for (j = 0;j < max;j++)
1596                 {
1597                         tx2 = anims[j];
1598                         tx2->animated = true;
1599                         tx2->anim_total[0] = max;
1600                         tx2->anim_total[1] = altmax;
1601                         for (k = 0;k < 10;k++)
1602                         {
1603                                 tx2->anim_frames[0][k] = anims[k];
1604                                 tx2->anim_frames[1][k] = altanims[k];
1605                         }
1606                 }
1607
1608                 // if there really is an alternate anim...
1609                 if (anims[0] != altanims[0])
1610                 {
1611                         // link together the alternate animation
1612                         for (j = 0;j < altmax;j++)
1613                         {
1614                                 tx2 = altanims[j];
1615                                 tx2->animated = true;
1616                                 // the primary/alternate are reversed here
1617                                 tx2->anim_total[0] = altmax;
1618                                 tx2->anim_total[1] = max;
1619                                 for (k = 0;k < 10;k++)
1620                                 {
1621                                         tx2->anim_frames[0][k] = altanims[k];
1622                                         tx2->anim_frames[1][k] = anims[k];
1623                                 }
1624                         }
1625                 }
1626         }
1627 }
1628
1629 static void Mod_Q1BSP_LoadLighting(lump_t *l)
1630 {
1631         int i;
1632         unsigned char *in, *out, *data, d;
1633         char litfilename[MAX_QPATH];
1634         char dlitfilename[MAX_QPATH];
1635         fs_offset_t filesize;
1636         if (loadmodel->brush.ishlbsp) // LordHavoc: load the colored lighting data straight
1637         {
1638                 loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen);
1639                 for (i=0; i<l->filelen; i++)
1640                         loadmodel->brushq1.lightdata[i] = mod_base[l->fileofs+i] >>= 1;
1641         }
1642         else if (loadmodel->brush.ismcbsp)
1643         {
1644                 loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen);
1645                 memcpy(loadmodel->brushq1.lightdata, mod_base + l->fileofs, l->filelen);
1646         }
1647         else // LordHavoc: bsp version 29 (normal white lighting)
1648         {
1649                 // LordHavoc: hope is not lost yet, check for a .lit file to load
1650                 strlcpy (litfilename, loadmodel->name, sizeof (litfilename));
1651                 FS_StripExtension (litfilename, litfilename, sizeof (litfilename));
1652                 strlcpy (dlitfilename, litfilename, sizeof (dlitfilename));
1653                 strlcat (litfilename, ".lit", sizeof (litfilename));
1654                 strlcat (dlitfilename, ".dlit", sizeof (dlitfilename));
1655                 data = (unsigned char*) FS_LoadFile(litfilename, tempmempool, false, &filesize);
1656                 if (data)
1657                 {
1658                         if (filesize == (fs_offset_t)(8 + l->filelen * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T')
1659                         {
1660                                 i = LittleLong(((int *)data)[1]);
1661                                 if (i == 1)
1662                                 {
1663                                         Con_DPrintf("loaded %s\n", litfilename);
1664                                         loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8);
1665                                         memcpy(loadmodel->brushq1.lightdata, data + 8, filesize - 8);
1666                                         Mem_Free(data);
1667                                         data = (unsigned char*) FS_LoadFile(dlitfilename, tempmempool, false, &filesize);
1668                                         if (data)
1669                                         {
1670                                                 if (filesize == (fs_offset_t)(8 + l->filelen * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T')
1671                                                 {
1672                                                         i = LittleLong(((int *)data)[1]);
1673                                                         if (i == 1)
1674                                                         {
1675                                                                 Con_DPrintf("loaded %s\n", dlitfilename);
1676                                                                 loadmodel->brushq1.nmaplightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8);
1677                                                                 memcpy(loadmodel->brushq1.nmaplightdata, data + 8, filesize - 8);
1678                                                                 loadmodel->brushq3.deluxemapping_modelspace = false;
1679                                                                 loadmodel->brushq3.deluxemapping = true;
1680                                                         }
1681                                                 }
1682                                                 Mem_Free(data);
1683                                                 data = NULL;
1684                                         }
1685                                         return;
1686                                 }
1687                                 else
1688                                         Con_Printf("Unknown .lit file version (%d)\n", i);
1689                         }
1690                         else if (filesize == 8)
1691                                 Con_Print("Empty .lit file, ignoring\n");
1692                         else
1693                                 Con_Printf("Corrupt .lit file (file size %i bytes, should be %i bytes), ignoring\n", (int) filesize, (int) (8 + l->filelen * 3));
1694                         if (data)
1695                         {
1696                                 Mem_Free(data);
1697                                 data = NULL;
1698                         }
1699                 }
1700                 // LordHavoc: oh well, expand the white lighting data
1701                 if (!l->filelen)
1702                         return;
1703                 loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen*3);
1704                 in = mod_base + l->fileofs;
1705                 out = loadmodel->brushq1.lightdata;
1706                 for (i = 0;i < l->filelen;i++)
1707                 {
1708                         d = *in++;
1709                         *out++ = d;
1710                         *out++ = d;
1711                         *out++ = d;
1712                 }
1713         }
1714 }
1715
1716 static void Mod_Q1BSP_LoadVisibility(lump_t *l)
1717 {
1718         loadmodel->brushq1.num_compressedpvs = 0;
1719         loadmodel->brushq1.data_compressedpvs = NULL;
1720         if (!l->filelen)
1721                 return;
1722         loadmodel->brushq1.num_compressedpvs = l->filelen;
1723         loadmodel->brushq1.data_compressedpvs = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen);
1724         memcpy(loadmodel->brushq1.data_compressedpvs, mod_base + l->fileofs, l->filelen);
1725 }
1726
1727 // used only for HalfLife maps
1728 static void Mod_Q1BSP_ParseWadsFromEntityLump(const char *data)
1729 {
1730         char key[128], value[4096];
1731         char wadname[128];
1732         int i, j, k;
1733         if (!data)
1734                 return;
1735         if (!COM_ParseTokenConsole(&data))
1736                 return; // error
1737         if (com_token[0] != '{')
1738                 return; // error
1739         while (1)
1740         {
1741                 if (!COM_ParseTokenConsole(&data))
1742                         return; // error
1743                 if (com_token[0] == '}')
1744                         break; // end of worldspawn
1745                 if (com_token[0] == '_')
1746                         strlcpy(key, com_token + 1, sizeof(key));
1747                 else
1748                         strlcpy(key, com_token, sizeof(key));
1749                 while (key[strlen(key)-1] == ' ') // remove trailing spaces
1750                         key[strlen(key)-1] = 0;
1751                 if (!COM_ParseTokenConsole(&data))
1752                         return; // error
1753                 dpsnprintf(value, sizeof(value), "%s", com_token);
1754                 if (!strcmp("wad", key)) // for HalfLife maps
1755                 {
1756                         if (loadmodel->brush.ishlbsp)
1757                         {
1758                                 j = 0;
1759                                 for (i = 0;i < (int)sizeof(value);i++)
1760                                         if (value[i] != ';' && value[i] != '\\' && value[i] != '/' && value[i] != ':')
1761                                                 break;
1762                                 if (value[i])
1763                                 {
1764                                         for (;i < (int)sizeof(value);i++)
1765                                         {
1766                                                 // ignore path - the \\ check is for HalfLife... stupid windoze 'programmers'...
1767                                                 if (value[i] == '\\' || value[i] == '/' || value[i] == ':')
1768                                                         j = i+1;
1769                                                 else if (value[i] == ';' || value[i] == 0)
1770                                                 {
1771                                                         k = value[i];
1772                                                         value[i] = 0;
1773                                                         strlcpy(wadname, "textures/", sizeof(wadname));
1774                                                         strlcat(wadname, &value[j], sizeof(wadname));
1775                                                         W_LoadTextureWadFile(wadname, false);
1776                                                         j = i+1;
1777                                                         if (!k)
1778                                                                 break;
1779                                                 }
1780                                         }
1781                                 }
1782                         }
1783                 }
1784         }
1785 }
1786
1787 static void Mod_Q1BSP_LoadEntities(lump_t *l)
1788 {
1789         loadmodel->brush.entities = NULL;
1790         if (!l->filelen)
1791                 return;
1792         loadmodel->brush.entities = (char *)Mem_Alloc(loadmodel->mempool, l->filelen);
1793         memcpy(loadmodel->brush.entities, mod_base + l->fileofs, l->filelen);
1794         if (loadmodel->brush.ishlbsp)
1795                 Mod_Q1BSP_ParseWadsFromEntityLump(loadmodel->brush.entities);
1796 }
1797
1798
1799 static void Mod_Q1BSP_LoadVertexes(lump_t *l)
1800 {
1801         dvertex_t       *in;
1802         mvertex_t       *out;
1803         int                     i, count;
1804
1805         in = (dvertex_t *)(mod_base + l->fileofs);
1806         if (l->filelen % sizeof(*in))
1807                 Host_Error("Mod_Q1BSP_LoadVertexes: funny lump size in %s",loadmodel->name);
1808         count = l->filelen / sizeof(*in);
1809         out = (mvertex_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
1810
1811         loadmodel->brushq1.vertexes = out;
1812         loadmodel->brushq1.numvertexes = count;
1813
1814         for ( i=0 ; i<count ; i++, in++, out++)
1815         {
1816                 out->position[0] = LittleFloat(in->point[0]);
1817                 out->position[1] = LittleFloat(in->point[1]);
1818                 out->position[2] = LittleFloat(in->point[2]);
1819         }
1820 }
1821
1822 // The following two functions should be removed and MSG_* or SZ_* function sets adjusted so they
1823 // can be used for this
1824 // REMOVEME
1825 int SB_ReadInt (unsigned char **buffer)
1826 {
1827         int     i;
1828         i = ((*buffer)[0]) + 256*((*buffer)[1]) + 65536*((*buffer)[2]) + 16777216*((*buffer)[3]);
1829         (*buffer) += 4;
1830         return i;
1831 }
1832
1833 // REMOVEME
1834 float SB_ReadFloat (unsigned char **buffer)
1835 {
1836         union
1837         {
1838                 int             i;
1839                 float   f;
1840         } u;
1841
1842         u.i = SB_ReadInt (buffer);
1843         return u.f;
1844 }
1845
1846 static void Mod_Q1BSP_LoadSubmodels(lump_t *l, hullinfo_t *hullinfo)
1847 {
1848         unsigned char           *index;
1849         dmodel_t        *out;
1850         int                     i, j, count;
1851
1852         index = (unsigned char *)(mod_base + l->fileofs);
1853         if (l->filelen % (48+4*hullinfo->filehulls))
1854                 Host_Error ("Mod_Q1BSP_LoadSubmodels: funny lump size in %s", loadmodel->name);
1855
1856         count = l->filelen / (48+4*hullinfo->filehulls);
1857         out = (dmodel_t *)Mem_Alloc (loadmodel->mempool, count*sizeof(*out));
1858
1859         loadmodel->brushq1.submodels = out;
1860         loadmodel->brush.numsubmodels = count;
1861
1862         for (i = 0; i < count; i++, out++)
1863         {
1864         // spread out the mins / maxs by a pixel
1865                 out->mins[0] = SB_ReadFloat (&index) - 1;
1866                 out->mins[1] = SB_ReadFloat (&index) - 1;
1867                 out->mins[2] = SB_ReadFloat (&index) - 1;
1868                 out->maxs[0] = SB_ReadFloat (&index) + 1;
1869                 out->maxs[1] = SB_ReadFloat (&index) + 1;
1870                 out->maxs[2] = SB_ReadFloat (&index) + 1;
1871                 out->origin[0] = SB_ReadFloat (&index);
1872                 out->origin[1] = SB_ReadFloat (&index);
1873                 out->origin[2] = SB_ReadFloat (&index);
1874                 for (j = 0; j < hullinfo->filehulls; j++)
1875                         out->headnode[j] = SB_ReadInt (&index);
1876                 out->visleafs = SB_ReadInt (&index);
1877                 out->firstface = SB_ReadInt (&index);
1878                 out->numfaces = SB_ReadInt (&index);
1879         }
1880 }
1881
1882 static void Mod_Q1BSP_LoadEdges(lump_t *l)
1883 {
1884         dedge_t *in;
1885         medge_t *out;
1886         int     i, count;
1887
1888         in = (dedge_t *)(mod_base + l->fileofs);
1889         if (l->filelen % sizeof(*in))
1890                 Host_Error("Mod_Q1BSP_LoadEdges: funny lump size in %s",loadmodel->name);
1891         count = l->filelen / sizeof(*in);
1892         out = (medge_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
1893
1894         loadmodel->brushq1.edges = out;
1895         loadmodel->brushq1.numedges = count;
1896
1897         for ( i=0 ; i<count ; i++, in++, out++)
1898         {
1899                 out->v[0] = (unsigned short)LittleShort(in->v[0]);
1900                 out->v[1] = (unsigned short)LittleShort(in->v[1]);
1901                 if (out->v[0] >= loadmodel->brushq1.numvertexes || out->v[1] >= loadmodel->brushq1.numvertexes)
1902                 {
1903                         Con_Printf("Mod_Q1BSP_LoadEdges: %s has invalid vertex indices in edge %i (vertices %i %i >= numvertices %i)\n", loadmodel->name, i, out->v[0], out->v[1], loadmodel->brushq1.numvertexes);
1904                         out->v[0] = 0;
1905                         out->v[1] = 0;
1906                 }
1907         }
1908 }
1909
1910 static void Mod_Q1BSP_LoadTexinfo(lump_t *l)
1911 {
1912         texinfo_t *in;
1913         mtexinfo_t *out;
1914         int i, j, k, count, miptex;
1915
1916         in = (texinfo_t *)(mod_base + l->fileofs);
1917         if (l->filelen % sizeof(*in))
1918                 Host_Error("Mod_Q1BSP_LoadTexinfo: funny lump size in %s",loadmodel->name);
1919         count = l->filelen / sizeof(*in);
1920         out = (mtexinfo_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
1921
1922         loadmodel->brushq1.texinfo = out;
1923         loadmodel->brushq1.numtexinfo = count;
1924
1925         for (i = 0;i < count;i++, in++, out++)
1926         {
1927                 for (k = 0;k < 2;k++)
1928                         for (j = 0;j < 4;j++)
1929                                 out->vecs[k][j] = LittleFloat(in->vecs[k][j]);
1930
1931                 miptex = LittleLong(in->miptex);
1932                 out->flags = LittleLong(in->flags);
1933
1934                 out->texture = NULL;
1935                 if (loadmodel->data_textures)
1936                 {
1937                         if ((unsigned int) miptex >= (unsigned int) loadmodel->num_textures)
1938                                 Con_Printf("error in model \"%s\": invalid miptex index %i(of %i)\n", loadmodel->name, miptex, loadmodel->num_textures);
1939                         else
1940                                 out->texture = loadmodel->data_textures + miptex;
1941                 }
1942                 if (out->flags & TEX_SPECIAL)
1943                 {
1944                         // if texture chosen is NULL or the shader needs a lightmap,
1945                         // force to notexture water shader
1946                         if (out->texture == NULL || out->texture->basematerialflags & MATERIALFLAG_WALL)
1947                                 out->texture = loadmodel->data_textures + (loadmodel->num_textures - 1);
1948                 }
1949                 else
1950                 {
1951                         // if texture chosen is NULL, force to notexture
1952                         if (out->texture == NULL)
1953                                 out->texture = loadmodel->data_textures + (loadmodel->num_textures - 2);
1954                 }
1955         }
1956 }
1957
1958 #if 0
1959 void BoundPoly(int numverts, float *verts, vec3_t mins, vec3_t maxs)
1960 {
1961         int             i, j;
1962         float   *v;
1963
1964         mins[0] = mins[1] = mins[2] = 9999;
1965         maxs[0] = maxs[1] = maxs[2] = -9999;
1966         v = verts;
1967         for (i = 0;i < numverts;i++)
1968         {
1969                 for (j = 0;j < 3;j++, v++)
1970                 {
1971                         if (*v < mins[j])
1972                                 mins[j] = *v;
1973                         if (*v > maxs[j])
1974                                 maxs[j] = *v;
1975                 }
1976         }
1977 }
1978
1979 #define MAX_SUBDIVPOLYTRIANGLES 4096
1980 #define MAX_SUBDIVPOLYVERTS(MAX_SUBDIVPOLYTRIANGLES * 3)
1981
1982 static int subdivpolyverts, subdivpolytriangles;
1983 static int subdivpolyindex[MAX_SUBDIVPOLYTRIANGLES][3];
1984 static float subdivpolyvert[MAX_SUBDIVPOLYVERTS][3];
1985
1986 static int subdivpolylookupvert(vec3_t v)
1987 {
1988         int i;
1989         for (i = 0;i < subdivpolyverts;i++)
1990                 if (subdivpolyvert[i][0] == v[0]
1991                  && subdivpolyvert[i][1] == v[1]
1992                  && subdivpolyvert[i][2] == v[2])
1993                         return i;
1994         if (subdivpolyverts >= MAX_SUBDIVPOLYVERTS)
1995                 Host_Error("SubDividePolygon: ran out of vertices in buffer, please increase your r_subdivide_size");
1996         VectorCopy(v, subdivpolyvert[subdivpolyverts]);
1997         return subdivpolyverts++;
1998 }
1999
2000 static void SubdividePolygon(int numverts, float *verts)
2001 {
2002         int             i, i1, i2, i3, f, b, c, p;
2003         vec3_t  mins, maxs, front[256], back[256];
2004         float   m, *pv, *cv, dist[256], frac;
2005
2006         if (numverts > 250)
2007                 Host_Error("SubdividePolygon: ran out of verts in buffer");
2008
2009         BoundPoly(numverts, verts, mins, maxs);
2010
2011         for (i = 0;i < 3;i++)
2012         {
2013                 m = (mins[i] + maxs[i]) * 0.5;
2014                 m = r_subdivide_size.value * floor(m/r_subdivide_size.value + 0.5);
2015                 if (maxs[i] - m < 8)
2016                         continue;
2017                 if (m - mins[i] < 8)
2018                         continue;
2019
2020                 // cut it
2021                 for (cv = verts, c = 0;c < numverts;c++, cv += 3)
2022                         dist[c] = cv[i] - m;
2023
2024                 f = b = 0;
2025                 for (p = numverts - 1, c = 0, pv = verts + p * 3, cv = verts;c < numverts;p = c, c++, pv = cv, cv += 3)
2026                 {
2027                         if (dist[p] >= 0)
2028                         {
2029                                 VectorCopy(pv, front[f]);
2030                                 f++;
2031                         }
2032                         if (dist[p] <= 0)
2033                         {
2034                                 VectorCopy(pv, back[b]);
2035                                 b++;
2036                         }
2037                         if (dist[p] == 0 || dist[c] == 0)
2038                                 continue;
2039                         if ((dist[p] > 0) != (dist[c] > 0) )
2040                         {
2041                                 // clip point
2042                                 frac = dist[p] / (dist[p] - dist[c]);
2043                                 front[f][0] = back[b][0] = pv[0] + frac * (cv[0] - pv[0]);
2044                                 front[f][1] = back[b][1] = pv[1] + frac * (cv[1] - pv[1]);
2045                                 front[f][2] = back[b][2] = pv[2] + frac * (cv[2] - pv[2]);
2046                                 f++;
2047                                 b++;
2048                         }
2049                 }
2050
2051                 SubdividePolygon(f, front[0]);
2052                 SubdividePolygon(b, back[0]);
2053                 return;
2054         }
2055
2056         i1 = subdivpolylookupvert(verts);
2057         i2 = subdivpolylookupvert(verts + 3);
2058         for (i = 2;i < numverts;i++)
2059         {
2060                 if (subdivpolytriangles >= MAX_SUBDIVPOLYTRIANGLES)
2061                 {
2062                         Con_Print("SubdividePolygon: ran out of triangles in buffer, please increase your r_subdivide_size\n");
2063                         return;
2064                 }
2065
2066                 i3 = subdivpolylookupvert(verts + i * 3);
2067                 subdivpolyindex[subdivpolytriangles][0] = i1;
2068                 subdivpolyindex[subdivpolytriangles][1] = i2;
2069                 subdivpolyindex[subdivpolytriangles][2] = i3;
2070                 i2 = i3;
2071                 subdivpolytriangles++;
2072         }
2073 }
2074
2075 //Breaks a polygon up along axial 64 unit
2076 //boundaries so that turbulent and sky warps
2077 //can be done reasonably.
2078 static void Mod_Q1BSP_GenerateWarpMesh(msurface_t *surface)
2079 {
2080         int i, j;
2081         surfvertex_t *v;
2082         surfmesh_t *mesh;
2083
2084         subdivpolytriangles = 0;
2085         subdivpolyverts = 0;
2086         SubdividePolygon(surface->num_vertices, (surface->mesh->data_vertex3f + 3 * surface->num_firstvertex));
2087         if (subdivpolytriangles < 1)
2088                 Host_Error("Mod_Q1BSP_GenerateWarpMesh: no triangles?");
2089
2090         surface->mesh = mesh = Mem_Alloc(loadmodel->mempool, sizeof(surfmesh_t) + subdivpolytriangles * sizeof(int[3]) + subdivpolyverts * sizeof(surfvertex_t));
2091         mesh->num_vertices = subdivpolyverts;
2092         mesh->num_triangles = subdivpolytriangles;
2093         mesh->vertex = (surfvertex_t *)(mesh + 1);
2094         mesh->index = (int *)(mesh->vertex + mesh->num_vertices);
2095         memset(mesh->vertex, 0, mesh->num_vertices * sizeof(surfvertex_t));
2096
2097         for (i = 0;i < mesh->num_triangles;i++)
2098                 for (j = 0;j < 3;j++)
2099                         mesh->index[i*3+j] = subdivpolyindex[i][j];
2100
2101         for (i = 0, v = mesh->vertex;i < subdivpolyverts;i++, v++)
2102         {
2103                 VectorCopy(subdivpolyvert[i], v->v);
2104                 v->st[0] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[0]);
2105                 v->st[1] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[1]);
2106         }
2107 }
2108 #endif
2109
2110 static qboolean Mod_Q1BSP_AllocLightmapBlock(int *lineused, int totalwidth, int totalheight, int blockwidth, int blockheight, int *outx, int *outy)
2111 {
2112         int y, x2, y2;
2113         int bestx = totalwidth, besty = 0;
2114         // find the left-most space we can find
2115         for (y = 0;y <= totalheight - blockheight;y++)
2116         {
2117                 x2 = 0;
2118                 for (y2 = 0;y2 < blockheight;y2++)
2119                         x2 = max(x2, lineused[y+y2]);
2120                 if (bestx > x2)
2121                 {
2122                         bestx = x2;
2123                         besty = y;
2124                 }
2125         }
2126         // if the best was not good enough, return failure
2127         if (bestx > totalwidth - blockwidth)
2128                 return false;
2129         // we found a good spot
2130         if (outx)
2131                 *outx = bestx;
2132         if (outy)
2133                 *outy = besty;
2134         // now mark the space used
2135         for (y2 = 0;y2 < blockheight;y2++)
2136                 lineused[besty+y2] = bestx + blockwidth;
2137         // return success
2138         return true;
2139 }
2140
2141 static void Mod_Q1BSP_LoadFaces(lump_t *l)
2142 {
2143         dface_t *in;
2144         msurface_t *surface;
2145         int i, j, count, surfacenum, planenum, smax, tmax, ssize, tsize, firstedge, numedges, totalverts, totaltris, lightmapnumber;
2146         float texmins[2], texmaxs[2], val, lightmaptexcoordscale;
2147 #define LIGHTMAPSIZE 256
2148         rtexture_t *lightmaptexture, *deluxemaptexture;
2149         int lightmap_lineused[LIGHTMAPSIZE];
2150
2151         in = (dface_t *)(mod_base + l->fileofs);
2152         if (l->filelen % sizeof(*in))
2153                 Host_Error("Mod_Q1BSP_LoadFaces: funny lump size in %s",loadmodel->name);
2154         count = l->filelen / sizeof(*in);
2155         loadmodel->data_surfaces = (msurface_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_t));
2156         loadmodel->data_surfaces_lightmapinfo = (msurface_lightmapinfo_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_lightmapinfo_t));
2157
2158         loadmodel->num_surfaces = count;
2159
2160         totalverts = 0;
2161         totaltris = 0;
2162         for (surfacenum = 0, in = (dface_t *)(mod_base + l->fileofs);surfacenum < count;surfacenum++, in++)
2163         {
2164                 numedges = LittleShort(in->numedges);
2165                 totalverts += numedges;
2166                 totaltris += numedges - 2;
2167         }
2168
2169         Mod_AllocSurfMesh(loadmodel->mempool, totalverts, totaltris, true, false, false);
2170
2171         lightmaptexture = NULL;
2172         deluxemaptexture = r_texture_blanknormalmap;
2173         lightmapnumber = 1;
2174         lightmaptexcoordscale = 1.0f / (float)LIGHTMAPSIZE;
2175
2176         totalverts = 0;
2177         totaltris = 0;
2178         for (surfacenum = 0, in = (dface_t *)(mod_base + l->fileofs), surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, in++, surface++)
2179         {
2180                 surface->lightmapinfo = loadmodel->data_surfaces_lightmapinfo + surfacenum;
2181
2182                 // FIXME: validate edges, texinfo, etc?
2183                 firstedge = LittleLong(in->firstedge);
2184                 numedges = LittleShort(in->numedges);
2185                 if ((unsigned int) firstedge > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) firstedge + (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges)
2186                         Host_Error("Mod_Q1BSP_LoadFaces: invalid edge range (firstedge %i, numedges %i, model edges %i)", firstedge, numedges, loadmodel->brushq1.numsurfedges);
2187                 i = LittleShort(in->texinfo);
2188                 if ((unsigned int) i >= (unsigned int) loadmodel->brushq1.numtexinfo)
2189                         Host_Error("Mod_Q1BSP_LoadFaces: invalid texinfo index %i(model has %i texinfos)", i, loadmodel->brushq1.numtexinfo);
2190                 surface->lightmapinfo->texinfo = loadmodel->brushq1.texinfo + i;
2191                 surface->texture = surface->lightmapinfo->texinfo->texture;
2192
2193                 planenum = LittleShort(in->planenum);
2194                 if ((unsigned int) planenum >= (unsigned int) loadmodel->brush.num_planes)
2195                         Host_Error("Mod_Q1BSP_LoadFaces: invalid plane index %i (model has %i planes)", planenum, loadmodel->brush.num_planes);
2196
2197                 //surface->flags = surface->texture->flags;
2198                 //if (LittleShort(in->side))
2199                 //      surface->flags |= SURF_PLANEBACK;
2200                 //surface->plane = loadmodel->brush.data_planes + planenum;
2201
2202                 surface->num_firstvertex = totalverts;
2203                 surface->num_vertices = numedges;
2204                 surface->num_firsttriangle = totaltris;
2205                 surface->num_triangles = numedges - 2;
2206                 totalverts += numedges;
2207                 totaltris += numedges - 2;
2208
2209                 // convert edges back to a normal polygon
2210                 for (i = 0;i < surface->num_vertices;i++)
2211                 {
2212                         int lindex = loadmodel->brushq1.surfedges[firstedge + i];
2213                         float s, t;
2214                         if (lindex > 0)
2215                                 VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[lindex].v[0]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3);
2216                         else
2217                                 VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[-lindex].v[1]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3);
2218                         s = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3];
2219                         t = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3];
2220                         (loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 0] = s / surface->texture->width;
2221                         (loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 1] = t / surface->texture->height;
2222                         (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = 0;
2223                         (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = 0;
2224                         (loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = 0;
2225                 }
2226
2227                 for (i = 0;i < surface->num_triangles;i++)
2228                 {
2229                         (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 0] = 0 + surface->num_firstvertex;
2230                         (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 1] = i + 1 + surface->num_firstvertex;
2231                         (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 2] = i + 2 + surface->num_firstvertex;
2232                 }
2233
2234                 // compile additional data about the surface geometry
2235                 Mod_BuildNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_normal3f, true);
2236                 Mod_BuildTextureVectorsFromNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, true);
2237                 BoxFromPoints(surface->mins, surface->maxs, surface->num_vertices, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex));
2238
2239                 // generate surface extents information
2240                 texmins[0] = texmaxs[0] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3];
2241                 texmins[1] = texmaxs[1] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3];
2242                 for (i = 1;i < surface->num_vertices;i++)
2243                 {
2244                         for (j = 0;j < 2;j++)
2245                         {
2246                                 val = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3, surface->lightmapinfo->texinfo->vecs[j]) + surface->lightmapinfo->texinfo->vecs[j][3];
2247                                 texmins[j] = min(texmins[j], val);
2248                                 texmaxs[j] = max(texmaxs[j], val);
2249                         }
2250                 }
2251                 for (i = 0;i < 2;i++)
2252                 {
2253                         surface->lightmapinfo->texturemins[i] = (int) floor(texmins[i] / 16.0) * 16;
2254                         surface->lightmapinfo->extents[i] = (int) ceil(texmaxs[i] / 16.0) * 16 - surface->lightmapinfo->texturemins[i];
2255                 }
2256
2257                 smax = surface->lightmapinfo->extents[0] >> 4;
2258                 tmax = surface->lightmapinfo->extents[1] >> 4;
2259                 ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
2260                 tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;
2261
2262                 // lighting info
2263                 for (i = 0;i < MAXLIGHTMAPS;i++)
2264                         surface->lightmapinfo->styles[i] = in->styles[i];
2265                 surface->lightmaptexture = NULL;
2266                 surface->deluxemaptexture = r_texture_blanknormalmap;
2267                 i = LittleLong(in->lightofs);
2268                 if (i == -1)
2269                 {
2270                         surface->lightmapinfo->samples = NULL;
2271                         // give non-lightmapped water a 1x white lightmap
2272                         if ((surface->texture->basematerialflags & MATERIALFLAG_WATER) && (surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) && ssize <= 256 && tsize <= 256)
2273                         {
2274                                 surface->lightmapinfo->samples = (unsigned char *)Mem_Alloc(loadmodel->mempool, ssize * tsize * 3);
2275                                 surface->lightmapinfo->styles[0] = 0;
2276                                 memset(surface->lightmapinfo->samples, 128, ssize * tsize * 3);
2277                         }
2278                 }
2279                 else if (loadmodel->brush.ishlbsp) // LordHavoc: HalfLife map (bsp version 30)
2280                         surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + i;
2281                 else // LordHavoc: white lighting (bsp version 29)
2282                 {
2283                         surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + (i * 3);
2284                         if (loadmodel->brushq1.nmaplightdata)
2285                                 surface->lightmapinfo->nmapsamples = loadmodel->brushq1.nmaplightdata + (i * 3);
2286                 }
2287
2288                 // check if we should apply a lightmap to this
2289                 if (!(surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) || surface->lightmapinfo->samples)
2290                 {
2291                         int i, iu, iv, lightmapx, lightmapy;
2292                         float u, v, ubase, vbase, uscale, vscale;
2293
2294                         if (ssize > 256 || tsize > 256)
2295                                 Host_Error("Bad surface extents");
2296                         // force lightmap upload on first time seeing the surface
2297                         surface->cached_dlight = true;
2298                         // stainmap for permanent marks on walls
2299                         surface->lightmapinfo->stainsamples = (unsigned char *)Mem_Alloc(loadmodel->mempool, ssize * tsize * 3);
2300                         // clear to white
2301                         memset(surface->lightmapinfo->stainsamples, 255, ssize * tsize * 3);
2302
2303                         // find a place for this lightmap
2304                         if (!lightmaptexture || !Mod_Q1BSP_AllocLightmapBlock(lightmap_lineused, LIGHTMAPSIZE, LIGHTMAPSIZE, ssize, tsize, &lightmapx, &lightmapy))
2305                         {
2306                                 // allocate a texture pool if we need it
2307                                 if (loadmodel->texturepool == NULL && cls.state != ca_dedicated)
2308                                         loadmodel->texturepool = R_AllocTexturePool();
2309                                 // could not find room, make a new lightmap
2310                                 lightmaptexture = R_LoadTexture2D(loadmodel->texturepool, va("lightmap%i", lightmapnumber), LIGHTMAPSIZE, LIGHTMAPSIZE, NULL, loadmodel->brushq1.lightmaprgba ? TEXTYPE_RGBA : TEXTYPE_RGB, TEXF_FORCELINEAR | TEXF_PRECACHE, NULL);
2311                                 if (loadmodel->brushq1.nmaplightdata)
2312                                         deluxemaptexture = R_LoadTexture2D(loadmodel->texturepool, va("deluxemap%i", lightmapnumber), LIGHTMAPSIZE, LIGHTMAPSIZE, NULL, loadmodel->brushq1.lightmaprgba ? TEXTYPE_RGBA : TEXTYPE_RGB, TEXF_FORCELINEAR | TEXF_PRECACHE, NULL);
2313                                 lightmapnumber++;
2314                                 memset(lightmap_lineused, 0, sizeof(lightmap_lineused));
2315                                 Mod_Q1BSP_AllocLightmapBlock(lightmap_lineused, LIGHTMAPSIZE, LIGHTMAPSIZE, ssize, tsize, &lightmapx, &lightmapy);
2316                         }
2317
2318                         surface->lightmaptexture = lightmaptexture;
2319                         surface->deluxemaptexture = deluxemaptexture;
2320                         surface->lightmapinfo->lightmaporigin[0] = lightmapx;
2321                         surface->lightmapinfo->lightmaporigin[1] = lightmapy;
2322
2323                         ubase = lightmapx * lightmaptexcoordscale;
2324                         vbase = lightmapy * lightmaptexcoordscale;
2325                         uscale = lightmaptexcoordscale;
2326                         vscale = lightmaptexcoordscale;
2327
2328                         for (i = 0;i < surface->num_vertices;i++)
2329                         {
2330                                 u = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3]) + 8 - surface->lightmapinfo->texturemins[0]) * (1.0 / 16.0);
2331                                 v = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3]) + 8 - surface->lightmapinfo->texturemins[1]) * (1.0 / 16.0);
2332                                 (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = u * uscale + ubase;
2333                                 (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = v * vscale + vbase;
2334                                 // LordHavoc: calc lightmap data offset for vertex lighting to use
2335                                 iu = (int) u;
2336                                 iv = (int) v;
2337                                 (loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = (bound(0, iv, tmax) * ssize + bound(0, iu, smax)) * 3;
2338                         }
2339                 }
2340         }
2341 }
2342
2343 static void Mod_Q1BSP_LoadNodes_RecursiveSetParent(mnode_t *node, mnode_t *parent)
2344 {
2345         //if (node->parent)
2346         //      Host_Error("Mod_Q1BSP_LoadNodes_RecursiveSetParent: runaway recursion");
2347         node->parent = parent;
2348         if (node->plane)
2349         {
2350                 // this is a node, recurse to children
2351                 Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[0], node);
2352                 Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[1], node);
2353                 // combine supercontents of children
2354                 node->combinedsupercontents = node->children[0]->combinedsupercontents | node->children[1]->combinedsupercontents;
2355         }
2356         else
2357         {
2358                 int j;
2359                 mleaf_t *leaf = (mleaf_t *)node;
2360                 // if this is a leaf, calculate supercontents mask from all collidable
2361                 // primitives in the leaf (brushes and collision surfaces)
2362                 // also flag if the leaf contains any collision surfaces
2363                 leaf->combinedsupercontents = 0;
2364                 // combine the supercontents values of all brushes in this leaf
2365                 for (j = 0;j < leaf->numleafbrushes;j++)
2366                         leaf->combinedsupercontents |= loadmodel->brush.data_brushes[leaf->firstleafbrush[j]].texture->supercontents;
2367                 // check if this leaf contains any collision surfaces (q3 patches)
2368                 for (j = 0;j < leaf->numleafsurfaces;j++)
2369                 {
2370                         msurface_t *surface = loadmodel->data_surfaces + leaf->firstleafsurface[j];
2371                         if (surface->num_collisiontriangles)
2372                         {
2373                                 leaf->containscollisionsurfaces = true;
2374                                 leaf->combinedsupercontents |= surface->texture->supercontents;
2375                         }
2376                 }
2377         }
2378 }
2379
2380 static void Mod_Q1BSP_LoadNodes(lump_t *l)
2381 {
2382         int                     i, j, count, p;
2383         dnode_t         *in;
2384         mnode_t         *out;
2385
2386         in = (dnode_t *)(mod_base + l->fileofs);
2387         if (l->filelen % sizeof(*in))
2388                 Host_Error("Mod_Q1BSP_LoadNodes: funny lump size in %s",loadmodel->name);
2389         count = l->filelen / sizeof(*in);
2390         out = (mnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
2391
2392         loadmodel->brush.data_nodes = out;
2393         loadmodel->brush.num_nodes = count;
2394
2395         for ( i=0 ; i<count ; i++, in++, out++)
2396         {
2397                 for (j=0 ; j<3 ; j++)
2398                 {
2399                         out->mins[j] = LittleShort(in->mins[j]);
2400                         out->maxs[j] = LittleShort(in->maxs[j]);
2401                 }
2402
2403                 p = LittleLong(in->planenum);
2404                 out->plane = loadmodel->brush.data_planes + p;
2405
2406                 out->firstsurface = LittleShort(in->firstface);
2407                 out->numsurfaces = LittleShort(in->numfaces);
2408
2409                 for (j=0 ; j<2 ; j++)
2410                 {
2411                         p = LittleShort(in->children[j]);
2412                         if (p >= 0)
2413                                 out->children[j] = loadmodel->brush.data_nodes + p;
2414                         else
2415                                 out->children[j] = (mnode_t *)(loadmodel->brush.data_leafs + (-1 - p));
2416                 }
2417         }
2418
2419         Mod_Q1BSP_LoadNodes_RecursiveSetParent(loadmodel->brush.data_nodes, NULL);      // sets nodes and leafs
2420 }
2421
2422 static void Mod_Q1BSP_LoadLeafs(lump_t *l)
2423 {
2424         dleaf_t *in;
2425         mleaf_t *out;
2426         int i, j, count, p;
2427
2428         in = (dleaf_t *)(mod_base + l->fileofs);
2429         if (l->filelen % sizeof(*in))
2430                 Host_Error("Mod_Q1BSP_LoadLeafs: funny lump size in %s",loadmodel->name);
2431         count = l->filelen / sizeof(*in);
2432         out = (mleaf_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
2433
2434         loadmodel->brush.data_leafs = out;
2435         loadmodel->brush.num_leafs = count;
2436         // get visleafs from the submodel data
2437         loadmodel->brush.num_pvsclusters = loadmodel->brushq1.submodels[0].visleafs;
2438         loadmodel->brush.num_pvsclusterbytes = (loadmodel->brush.num_pvsclusters+7)>>3;
2439         loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes);
2440         memset(loadmodel->brush.data_pvsclusters, 0xFF, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes);
2441
2442         for ( i=0 ; i<count ; i++, in++, out++)
2443         {
2444                 for (j=0 ; j<3 ; j++)
2445                 {
2446                         out->mins[j] = LittleShort(in->mins[j]);
2447                         out->maxs[j] = LittleShort(in->maxs[j]);
2448                 }
2449
2450                 // FIXME: this function could really benefit from some error checking
2451
2452                 out->contents = LittleLong(in->contents);
2453
2454                 out->firstleafsurface = loadmodel->brush.data_leafsurfaces + LittleShort(in->firstmarksurface);
2455                 out->numleafsurfaces = LittleShort(in->nummarksurfaces);
2456                 if (out->firstleafsurface < 0 || LittleShort(in->firstmarksurface) + out->numleafsurfaces > loadmodel->brush.num_leafsurfaces)
2457                 {
2458                         Con_Printf("Mod_Q1BSP_LoadLeafs: invalid leafsurface range %i:%i outside range %i:%i\n", (int)(out->firstleafsurface - loadmodel->brush.data_leafsurfaces), (int)(out->firstleafsurface + out->numleafsurfaces - loadmodel->brush.data_leafsurfaces), 0, loadmodel->brush.num_leafsurfaces);
2459                         out->firstleafsurface = NULL;
2460                         out->numleafsurfaces = 0;
2461                 }
2462
2463                 out->clusterindex = i - 1;
2464                 if (out->clusterindex >= loadmodel->brush.num_pvsclusters)
2465                         out->clusterindex = -1;
2466
2467                 p = LittleLong(in->visofs);
2468                 // ignore visofs errors on leaf 0 (solid)
2469                 if (p >= 0 && out->clusterindex >= 0)
2470                 {
2471                         if (p >= loadmodel->brushq1.num_compressedpvs)
2472                                 Con_Print("Mod_Q1BSP_LoadLeafs: invalid visofs\n");
2473                         else
2474                                 Mod_Q1BSP_DecompressVis(loadmodel->brushq1.data_compressedpvs + p, loadmodel->brushq1.data_compressedpvs + loadmodel->brushq1.num_compressedpvs, loadmodel->brush.data_pvsclusters + out->clusterindex * loadmodel->brush.num_pvsclusterbytes, loadmodel->brush.data_pvsclusters + (out->clusterindex + 1) * loadmodel->brush.num_pvsclusterbytes);
2475                 }
2476
2477                 for (j = 0;j < 4;j++)
2478                         out->ambient_sound_level[j] = in->ambient_level[j];
2479
2480                 // FIXME: Insert caustics here
2481         }
2482 }
2483
2484 qboolean Mod_Q1BSP_CheckWaterAlphaSupport(void)
2485 {
2486         int i, j;
2487         mleaf_t *leaf;
2488         const unsigned char *pvs;
2489         // check all liquid leafs to see if they can see into empty leafs, if any
2490         // can we can assume this map supports r_wateralpha
2491         for (i = 0, leaf = loadmodel->brush.data_leafs;i < loadmodel->brush.num_leafs;i++, leaf++)
2492         {
2493                 if ((leaf->contents == CONTENTS_WATER || leaf->contents == CONTENTS_SLIME) && (leaf->clusterindex >= 0 && loadmodel->brush.data_pvsclusters))
2494                 {
2495                         pvs = loadmodel->brush.data_pvsclusters + leaf->clusterindex * loadmodel->brush.num_pvsclusterbytes;
2496                         for (j = 0;j < loadmodel->brush.num_leafs;j++)
2497                                 if (CHECKPVSBIT(pvs, loadmodel->brush.data_leafs[j].clusterindex) && loadmodel->brush.data_leafs[j].contents == CONTENTS_EMPTY)
2498                                         return true;
2499                 }
2500         }
2501         return false;
2502 }
2503
2504 static void Mod_Q1BSP_LoadClipnodes(lump_t *l, hullinfo_t *hullinfo)
2505 {
2506         dclipnode_t *in, *out;
2507         int                     i, count;
2508         hull_t          *hull;
2509
2510         in = (dclipnode_t *)(mod_base + l->fileofs);
2511         if (l->filelen % sizeof(*in))
2512                 Host_Error("Mod_Q1BSP_LoadClipnodes: funny lump size in %s",loadmodel->name);
2513         count = l->filelen / sizeof(*in);
2514         out = (dclipnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
2515
2516         loadmodel->brushq1.clipnodes = out;
2517         loadmodel->brushq1.numclipnodes = count;
2518
2519         for (i = 1; i < hullinfo->numhulls; i++)
2520         {
2521                 hull = &loadmodel->brushq1.hulls[i];
2522                 hull->clipnodes = out;
2523                 hull->firstclipnode = 0;
2524                 hull->lastclipnode = count-1;
2525                 hull->planes = loadmodel->brush.data_planes;
2526                 hull->clip_mins[0] = hullinfo->hullsizes[i][0][0];
2527                 hull->clip_mins[1] = hullinfo->hullsizes[i][0][1];
2528                 hull->clip_mins[2] = hullinfo->hullsizes[i][0][2];
2529                 hull->clip_maxs[0] = hullinfo->hullsizes[i][1][0];
2530                 hull->clip_maxs[1] = hullinfo->hullsizes[i][1][1];
2531                 hull->clip_maxs[2] = hullinfo->hullsizes[i][1][2];
2532                 VectorSubtract(hull->clip_maxs, hull->clip_mins, hull->clip_size);
2533         }
2534
2535         for (i=0 ; i<count ; i++, out++, in++)
2536         {
2537                 out->planenum = LittleLong(in->planenum);
2538                 out->children[0] = LittleShort(in->children[0]);
2539                 out->children[1] = LittleShort(in->children[1]);
2540                 if (out->planenum < 0 || out->planenum >= loadmodel->brush.num_planes)
2541                         Host_Error("Corrupt clipping hull(out of range planenum)");
2542                 if (out->children[0] >= count || out->children[1] >= count)
2543                         Host_Error("Corrupt clipping hull(out of range child)");
2544         }
2545 }
2546
2547 //Duplicate the drawing hull structure as a clipping hull
2548 static void Mod_Q1BSP_MakeHull0(void)
2549 {
2550         mnode_t         *in;
2551         dclipnode_t *out;
2552         int                     i;
2553         hull_t          *hull;
2554
2555         hull = &loadmodel->brushq1.hulls[0];
2556
2557         in = loadmodel->brush.data_nodes;
2558         out = (dclipnode_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_nodes * sizeof(dclipnode_t));
2559
2560         hull->clipnodes = out;
2561         hull->firstclipnode = 0;
2562         hull->lastclipnode = loadmodel->brush.num_nodes - 1;
2563         hull->planes = loadmodel->brush.data_planes;
2564
2565         for (i = 0;i < loadmodel->brush.num_nodes;i++, out++, in++)
2566         {
2567                 out->planenum = in->plane - loadmodel->brush.data_planes;
2568                 out->children[0] = in->children[0]->plane ? in->children[0] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[0])->contents;
2569                 out->children[1] = in->children[1]->plane ? in->children[1] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[1])->contents;
2570         }
2571 }
2572
2573 static void Mod_Q1BSP_LoadLeaffaces(lump_t *l)
2574 {
2575         int i, j;
2576         short *in;
2577
2578         in = (short *)(mod_base + l->fileofs);
2579         if (l->filelen % sizeof(*in))
2580                 Host_Error("Mod_Q1BSP_LoadLeaffaces: funny lump size in %s",loadmodel->name);
2581         loadmodel->brush.num_leafsurfaces = l->filelen / sizeof(*in);
2582         loadmodel->brush.data_leafsurfaces = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafsurfaces * sizeof(int));
2583
2584         for (i = 0;i < loadmodel->brush.num_leafsurfaces;i++)
2585         {
2586                 j = (unsigned) LittleShort(in[i]);
2587                 if (j >= loadmodel->num_surfaces)
2588                         Host_Error("Mod_Q1BSP_LoadLeaffaces: bad surface number");
2589                 loadmodel->brush.data_leafsurfaces[i] = j;
2590         }
2591 }
2592
2593 static void Mod_Q1BSP_LoadSurfedges(lump_t *l)
2594 {
2595         int             i;
2596         int             *in;
2597
2598         in = (int *)(mod_base + l->fileofs);
2599         if (l->filelen % sizeof(*in))
2600                 Host_Error("Mod_Q1BSP_LoadSurfedges: funny lump size in %s",loadmodel->name);
2601         loadmodel->brushq1.numsurfedges = l->filelen / sizeof(*in);
2602         loadmodel->brushq1.surfedges = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brushq1.numsurfedges * sizeof(int));
2603
2604         for (i = 0;i < loadmodel->brushq1.numsurfedges;i++)
2605                 loadmodel->brushq1.surfedges[i] = LittleLong(in[i]);
2606 }
2607
2608
2609 static void Mod_Q1BSP_LoadPlanes(lump_t *l)
2610 {
2611         int                     i;
2612         mplane_t        *out;
2613         dplane_t        *in;
2614
2615         in = (dplane_t *)(mod_base + l->fileofs);
2616         if (l->filelen % sizeof(*in))
2617                 Host_Error("Mod_Q1BSP_LoadPlanes: funny lump size in %s", loadmodel->name);
2618
2619         loadmodel->brush.num_planes = l->filelen / sizeof(*in);
2620         loadmodel->brush.data_planes = out = (mplane_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_planes * sizeof(*out));
2621
2622         for (i = 0;i < loadmodel->brush.num_planes;i++, in++, out++)
2623         {
2624                 out->normal[0] = LittleFloat(in->normal[0]);
2625                 out->normal[1] = LittleFloat(in->normal[1]);
2626                 out->normal[2] = LittleFloat(in->normal[2]);
2627                 out->dist = LittleFloat(in->dist);
2628
2629                 PlaneClassify(out);
2630         }
2631 }
2632
2633 static void Mod_Q1BSP_LoadMapBrushes(void)
2634 {
2635 #if 0
2636 // unfinished
2637         int submodel, numbrushes;
2638         qboolean firstbrush;
2639         char *text, *maptext;
2640         char mapfilename[MAX_QPATH];
2641         FS_StripExtension (loadmodel->name, mapfilename, sizeof (mapfilename));
2642         strlcat (mapfilename, ".map", sizeof (mapfilename));
2643         maptext = (unsigned char*) FS_LoadFile(mapfilename, tempmempool, false, NULL);
2644         if (!maptext)
2645                 return;
2646         text = maptext;
2647         if (!COM_ParseTokenConsole(&data))
2648                 return; // error
2649         submodel = 0;
2650         for (;;)
2651         {
2652                 if (!COM_ParseTokenConsole(&data))
2653                         break;
2654                 if (com_token[0] != '{')
2655                         return; // error
2656                 // entity
2657                 firstbrush = true;
2658                 numbrushes = 0;
2659                 maxbrushes = 256;
2660                 brushes = Mem_Alloc(loadmodel->mempool, maxbrushes * sizeof(mbrush_t));
2661                 for (;;)
2662                 {
2663                         if (!COM_ParseTokenConsole(&data))
2664                                 return; // error
2665                         if (com_token[0] == '}')
2666                                 break; // end of entity
2667                         if (com_token[0] == '{')
2668                         {
2669                                 // brush
2670                                 if (firstbrush)
2671                                 {
2672                                         if (submodel)
2673                                         {
2674                                                 if (submodel > loadmodel->brush.numsubmodels)
2675                                                 {
2676                                                         Con_Printf("Mod_Q1BSP_LoadMapBrushes: .map has more submodels than .bsp!\n");
2677                                                         model = NULL;
2678                                                 }
2679                                                 else
2680                                                         model = loadmodel->brush.submodels[submodel];
2681                                         }
2682                                         else
2683                                                 model = loadmodel;
2684                                 }
2685                                 for (;;)
2686                                 {
2687                                         if (!COM_ParseTokenConsole(&data))
2688                                                 return; // error
2689                                         if (com_token[0] == '}')
2690                                                 break; // end of brush
2691                                         // each brush face should be this format:
2692                                         // ( x y z ) ( x y z ) ( x y z ) texture scroll_s scroll_t rotateangle scale_s scale_t
2693                                         // FIXME: support hl .map format
2694                                         for (pointnum = 0;pointnum < 3;pointnum++)
2695                                         {
2696                                                 COM_ParseTokenConsole(&data);
2697                                                 for (componentnum = 0;componentnum < 3;componentnum++)
2698                                                 {
2699                                                         COM_ParseTokenConsole(&data);
2700                                                         point[pointnum][componentnum] = atof(com_token);
2701                                                 }
2702                                                 COM_ParseTokenConsole(&data);
2703                                         }
2704                                         COM_ParseTokenConsole(&data);
2705                                         strlcpy(facetexture, com_token, sizeof(facetexture));
2706                                         COM_ParseTokenConsole(&data);
2707                                         //scroll_s = atof(com_token);
2708                                         COM_ParseTokenConsole(&data);
2709                                         //scroll_t = atof(com_token);
2710                                         COM_ParseTokenConsole(&data);
2711                                         //rotate = atof(com_token);
2712                                         COM_ParseTokenConsole(&data);
2713                                         //scale_s = atof(com_token);
2714                                         COM_ParseTokenConsole(&data);
2715                                         //scale_t = atof(com_token);
2716                                         TriangleNormal(point[0], point[1], point[2], planenormal);
2717                                         VectorNormalizeDouble(planenormal);
2718                                         planedist = DotProduct(point[0], planenormal);
2719                                         //ChooseTexturePlane(planenormal, texturevector[0], texturevector[1]);
2720                                 }
2721                                 continue;
2722                         }
2723                 }
2724         }
2725 #endif
2726 }
2727
2728
2729 #define MAX_PORTALPOINTS 64
2730
2731 typedef struct portal_s
2732 {
2733         mplane_t plane;
2734         mnode_t *nodes[2];              // [0] = front side of plane
2735         struct portal_s *next[2];
2736         int numpoints;
2737         double points[3*MAX_PORTALPOINTS];
2738         struct portal_s *chain; // all portals are linked into a list
2739 }
2740 portal_t;
2741
2742 static portal_t *portalchain;
2743
2744 /*
2745 ===========
2746 AllocPortal
2747 ===========
2748 */
2749 static portal_t *AllocPortal(void)
2750 {
2751         portal_t *p;
2752         p = (portal_t *)Mem_Alloc(loadmodel->mempool, sizeof(portal_t));
2753         p->chain = portalchain;
2754         portalchain = p;
2755         return p;
2756 }
2757
2758 static void FreePortal(portal_t *p)
2759 {
2760         Mem_Free(p);
2761 }
2762
2763 static void Mod_Q1BSP_RecursiveRecalcNodeBBox(mnode_t *node)
2764 {
2765         // process only nodes (leafs already had their box calculated)
2766         if (!node->plane)
2767                 return;
2768
2769         // calculate children first
2770         Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[0]);
2771         Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[1]);
2772
2773         // make combined bounding box from children
2774         node->mins[0] = min(node->children[0]->mins[0], node->children[1]->mins[0]);
2775         node->mins[1] = min(node->children[0]->mins[1], node->children[1]->mins[1]);
2776         node->mins[2] = min(node->children[0]->mins[2], node->children[1]->mins[2]);
2777         node->maxs[0] = max(node->children[0]->maxs[0], node->children[1]->maxs[0]);
2778         node->maxs[1] = max(node->children[0]->maxs[1], node->children[1]->maxs[1]);
2779         node->maxs[2] = max(node->children[0]->maxs[2], node->children[1]->maxs[2]);
2780 }
2781
2782 static void Mod_Q1BSP_FinalizePortals(void)
2783 {
2784         int i, j, numportals, numpoints;
2785         portal_t *p, *pnext;
2786         mportal_t *portal;
2787         mvertex_t *point;
2788         mleaf_t *leaf, *endleaf;
2789
2790         // tally up portal and point counts and recalculate bounding boxes for all
2791         // leafs (because qbsp is very sloppy)
2792         leaf = loadmodel->brush.data_leafs;
2793         endleaf = leaf + loadmodel->brush.num_leafs;
2794         for (;leaf < endleaf;leaf++)
2795         {
2796                 VectorSet(leaf->mins,  2000000000,  2000000000,  2000000000);
2797                 VectorSet(leaf->maxs, -2000000000, -2000000000, -2000000000);
2798         }
2799         p = portalchain;
2800         numportals = 0;
2801         numpoints = 0;
2802         while (p)
2803         {
2804                 // note: this check must match the one below or it will usually corrupt memory
2805                 // the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides
2806                 if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1] && ((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0)
2807                 {
2808                         numportals += 2;
2809                         numpoints += p->numpoints * 2;
2810                 }
2811                 p = p->chain;
2812         }
2813         loadmodel->brush.data_portals = (mportal_t *)Mem_Alloc(loadmodel->mempool, numportals * sizeof(mportal_t) + numpoints * sizeof(mvertex_t));
2814         loadmodel->brush.num_portals = numportals;
2815         loadmodel->brush.data_portalpoints = (mvertex_t *)((unsigned char *) loadmodel->brush.data_portals + numportals * sizeof(mportal_t));
2816         loadmodel->brush.num_portalpoints = numpoints;
2817         // clear all leaf portal chains
2818         for (i = 0;i < loadmodel->brush.num_leafs;i++)
2819                 loadmodel->brush.data_leafs[i].portals = NULL;
2820         // process all portals in the global portal chain, while freeing them
2821         portal = loadmodel->brush.data_portals;
2822         point = loadmodel->brush.data_portalpoints;
2823         p = portalchain;
2824         portalchain = NULL;
2825         while (p)
2826         {
2827                 pnext = p->chain;
2828
2829                 if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1])
2830                 {
2831                         // note: this check must match the one above or it will usually corrupt memory
2832                         // the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides
2833                         if (((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0)
2834                         {
2835                                 // first make the back to front portal(forward portal)
2836                                 portal->points = point;
2837                                 portal->numpoints = p->numpoints;
2838                                 portal->plane.dist = p->plane.dist;
2839                                 VectorCopy(p->plane.normal, portal->plane.normal);
2840                                 portal->here = (mleaf_t *)p->nodes[1];
2841                                 portal->past = (mleaf_t *)p->nodes[0];
2842                                 // copy points
2843                                 for (j = 0;j < portal->numpoints;j++)
2844                                 {
2845                                         VectorCopy(p->points + j*3, point->position);
2846                                         point++;
2847                                 }
2848                                 BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position);
2849                                 PlaneClassify(&portal->plane);
2850
2851                                 // link into leaf's portal chain
2852                                 portal->next = portal->here->portals;
2853                                 portal->here->portals = portal;
2854
2855                                 // advance to next portal
2856                                 portal++;
2857
2858                                 // then make the front to back portal(backward portal)
2859                                 portal->points = point;
2860                                 portal->numpoints = p->numpoints;
2861                                 portal->plane.dist = -p->plane.dist;
2862                                 VectorNegate(p->plane.normal, portal->plane.normal);
2863                                 portal->here = (mleaf_t *)p->nodes[0];
2864                                 portal->past = (mleaf_t *)p->nodes[1];
2865                                 // copy points
2866                                 for (j = portal->numpoints - 1;j >= 0;j--)
2867                                 {
2868                                         VectorCopy(p->points + j*3, point->position);
2869                                         point++;
2870                                 }
2871                                 BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position);
2872                                 PlaneClassify(&portal->plane);
2873
2874                                 // link into leaf's portal chain
2875                                 portal->next = portal->here->portals;
2876                                 portal->here->portals = portal;
2877
2878                                 // advance to next portal
2879                                 portal++;
2880                         }
2881                         // add the portal's polygon points to the leaf bounding boxes
2882                         for (i = 0;i < 2;i++)
2883                         {
2884                                 leaf = (mleaf_t *)p->nodes[i];
2885                                 for (j = 0;j < p->numpoints;j++)
2886                                 {
2887                                         if (leaf->mins[0] > p->points[j*3+0]) leaf->mins[0] = p->points[j*3+0];
2888                                         if (leaf->mins[1] > p->points[j*3+1]) leaf->mins[1] = p->points[j*3+1];
2889                                         if (leaf->mins[2] > p->points[j*3+2]) leaf->mins[2] = p->points[j*3+2];
2890                                         if (leaf->maxs[0] < p->points[j*3+0]) leaf->maxs[0] = p->points[j*3+0];
2891                                         if (leaf->maxs[1] < p->points[j*3+1]) leaf->maxs[1] = p->points[j*3+1];
2892                                         if (leaf->maxs[2] < p->points[j*3+2]) leaf->maxs[2] = p->points[j*3+2];
2893                                 }
2894                         }
2895                 }
2896                 FreePortal(p);
2897                 p = pnext;
2898         }
2899         // now recalculate the node bounding boxes from the leafs
2900         Mod_Q1BSP_RecursiveRecalcNodeBBox(loadmodel->brush.data_nodes);
2901 }
2902
2903 /*
2904 =============
2905 AddPortalToNodes
2906 =============
2907 */
2908 static void AddPortalToNodes(portal_t *p, mnode_t *front, mnode_t *back)
2909 {
2910         if (!front)
2911                 Host_Error("AddPortalToNodes: NULL front node");
2912         if (!back)
2913                 Host_Error("AddPortalToNodes: NULL back node");
2914         if (p->nodes[0] || p->nodes[1])
2915                 Host_Error("AddPortalToNodes: already included");
2916         // note: front == back is handled gracefully, because leaf 0 is the shared solid leaf, it can often have portals with the same leaf on both sides
2917
2918         p->nodes[0] = front;
2919         p->next[0] = (portal_t *)front->portals;
2920         front->portals = (mportal_t *)p;
2921
2922         p->nodes[1] = back;
2923         p->next[1] = (portal_t *)back->portals;
2924         back->portals = (mportal_t *)p;
2925 }
2926
2927 /*
2928 =============
2929 RemovePortalFromNode
2930 =============
2931 */
2932 static void RemovePortalFromNodes(portal_t *portal)
2933 {
2934         int i;
2935         mnode_t *node;
2936         void **portalpointer;
2937         portal_t *t;
2938         for (i = 0;i < 2;i++)
2939         {
2940                 node = portal->nodes[i];
2941
2942                 portalpointer = (void **) &a