added RENDERPATH_GLES1
[xonotic/darkplaces.git] / r_shadow.c
1
2 /*
3 Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
4 An extrusion of the lit faces, beginning at the original geometry and ending
5 further from the light source than the original geometry (presumably at least
6 as far as the light's radius, if the light has a radius at all), capped at
7 both front and back to avoid any problems (extrusion from dark faces also
8 works but has a different set of problems)
9
10 This is normally rendered using Carmack's Reverse technique, in which
11 backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
12 zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
13 where shadows did not intersect the visible geometry, suitable as a stencil
14 mask for rendering lighting everywhere but shadow.
15
16 In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
17 as decrement and the frontfaces as increment, and we redefine the DepthFunc to
18 GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
19 and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
20 additionally we clear stencil to 128 to avoid the need for the unclamped
21 incr/decr extension (not related to patent).
22
23 Patent warning:
24 This algorithm may be covered by Creative's patent (US Patent #6384822),
25 however that patent is quite specific about increment on backfaces and
26 decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
27 opposite this implementation and partially opposite Carmack's Reverse paper
28 (which uses GL_LESS, but increments on backfaces and decrements on frontfaces).
29
30
31
32 Terminology: Stencil Light Volume (sometimes called Light Volumes)
33 Similar to a Stencil Shadow Volume, but inverted; rather than containing the
34 areas in shadow it contains the areas in light, this can only be built
35 quickly for certain limited cases (such as portal visibility from a point),
36 but is quite useful for some effects (sunlight coming from sky polygons is
37 one possible example, translucent occluders is another example).
38
39
40
41 Terminology: Optimized Stencil Shadow Volume
42 A Stencil Shadow Volume that has been processed sufficiently to ensure it has
43 no duplicate coverage of areas (no need to shadow an area twice), often this
44 greatly improves performance but is an operation too costly to use on moving
45 lights (however completely optimal Stencil Light Volumes can be constructed
46 in some ideal cases).
47
48
49
50 Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
51 Per pixel evaluation of lighting equations, at a bare minimum this involves
52 DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
53 vector and surface normal, using a texture of the surface bumps, called a
54 NormalMap) if supported by hardware; in our case there is support for cards
55 which are incapable of DOT3, the quality is quite poor however.  Additionally
56 it is desirable to have specular evaluation per pixel, per vertex
57 normalization of specular halfangle vectors causes noticable distortion but
58 is unavoidable on hardware without GL_ARB_fragment_program or
59 GL_ARB_fragment_shader.
60
61
62
63 Terminology: Normalization CubeMap
64 A cubemap containing normalized dot3-encoded (vectors of length 1 or less
65 encoded as RGB colors) for any possible direction, this technique allows per
66 pixel calculation of incidence vector for per pixel lighting purposes, which
67 would not otherwise be possible per pixel without GL_ARB_fragment_program or
68 GL_ARB_fragment_shader.
69
70
71
72 Terminology: 2D+1D Attenuation Texturing
73 A very crude approximation of light attenuation with distance which results
74 in cylindrical light shapes which fade vertically as a streak (some games
75 such as Doom3 allow this to be rotated to be less noticable in specific
76 cases), the technique is simply modulating lighting by two 2D textures (which
77 can be the same) on different axes of projection (XY and Z, typically), this
78 is the second best technique available without 3D Attenuation Texturing,
79 GL_ARB_fragment_program or GL_ARB_fragment_shader technology.
80
81
82
83 Terminology: 2D+1D Inverse Attenuation Texturing
84 A clever method described in papers on the Abducted engine, this has a squared
85 distance texture (bright on the outside, black in the middle), which is used
86 twice using GL_ADD blending, the result of this is used in an inverse modulate
87 (GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
88 lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
89 texturing).
90
91
92
93 Terminology: 3D Attenuation Texturing
94 A slightly crude approximation of light attenuation with distance, its flaws
95 are limited radius and resolution (performance tradeoffs).
96
97
98
99 Terminology: 3D Attenuation-Normalization Texturing
100 A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
101 vectors shorter the lighting becomes darker, a very effective optimization of
102 diffuse lighting if 3D Attenuation Textures are already used.
103
104
105
106 Terminology: Light Cubemap Filtering
107 A technique for modeling non-uniform light distribution according to
108 direction, for example a lantern may use a cubemap to describe the light
109 emission pattern of the cage around the lantern (as well as soot buildup
110 discoloring the light in certain areas), often also used for softened grate
111 shadows and light shining through a stained glass window (done crudely by
112 texturing the lighting with a cubemap), another good example would be a disco
113 light.  This technique is used heavily in many games (Doom3 does not support
114 this however).
115
116
117
118 Terminology: Light Projection Filtering
119 A technique for modeling shadowing of light passing through translucent
120 surfaces, allowing stained glass windows and other effects to be done more
121 elegantly than possible with Light Cubemap Filtering by applying an occluder
122 texture to the lighting combined with a stencil light volume to limit the lit
123 area, this technique is used by Doom3 for spotlights and flashlights, among
124 other things, this can also be used more generally to render light passing
125 through multiple translucent occluders in a scene (using a light volume to
126 describe the area beyond the occluder, and thus mask off rendering of all
127 other areas).
128
129
130
131 Terminology: Doom3 Lighting
132 A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
133 CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
134 demonstrated by the game Doom3.
135 */
136
137 #include "quakedef.h"
138 #include "r_shadow.h"
139 #include "cl_collision.h"
140 #include "portals.h"
141 #include "image.h"
142 #include "dpsoftrast.h"
143
144 #ifdef SUPPORTD3D
145 #include <d3d9.h>
146 extern LPDIRECT3DDEVICE9 vid_d3d9dev;
147 #endif
148
149 extern void R_Shadow_EditLights_Init(void);
150
151 typedef enum r_shadow_rendermode_e
152 {
153         R_SHADOW_RENDERMODE_NONE,
154         R_SHADOW_RENDERMODE_ZPASS_STENCIL,
155         R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL,
156         R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE,
157         R_SHADOW_RENDERMODE_ZFAIL_STENCIL,
158         R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL,
159         R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE,
160         R_SHADOW_RENDERMODE_LIGHT_VERTEX,
161         R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN,
162         R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN,
163         R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN,
164         R_SHADOW_RENDERMODE_LIGHT_GLSL,
165         R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
166         R_SHADOW_RENDERMODE_VISIBLELIGHTING,
167         R_SHADOW_RENDERMODE_SHADOWMAP2D
168 }
169 r_shadow_rendermode_t;
170
171 typedef enum r_shadow_shadowmode_e
172 {
173     R_SHADOW_SHADOWMODE_STENCIL,
174     R_SHADOW_SHADOWMODE_SHADOWMAP2D
175 }
176 r_shadow_shadowmode_t;
177
178 r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
179 r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
180 r_shadow_rendermode_t r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_NONE;
181 r_shadow_rendermode_t r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_NONE;
182 qboolean r_shadow_usingshadowmap2d;
183 qboolean r_shadow_usingshadowmaportho;
184 int r_shadow_shadowmapside;
185 float r_shadow_shadowmap_texturescale[2];
186 float r_shadow_shadowmap_parameters[4];
187 #if 0
188 int r_shadow_drawbuffer;
189 int r_shadow_readbuffer;
190 #endif
191 int r_shadow_cullface_front, r_shadow_cullface_back;
192 GLuint r_shadow_fbo2d;
193 r_shadow_shadowmode_t r_shadow_shadowmode;
194 int r_shadow_shadowmapfilterquality;
195 int r_shadow_shadowmapdepthbits;
196 int r_shadow_shadowmapmaxsize;
197 qboolean r_shadow_shadowmapvsdct;
198 qboolean r_shadow_shadowmapsampler;
199 int r_shadow_shadowmappcf;
200 int r_shadow_shadowmapborder;
201 matrix4x4_t r_shadow_shadowmapmatrix;
202 int r_shadow_lightscissor[4];
203 qboolean r_shadow_usingdeferredprepass;
204
205 int maxshadowtriangles;
206 int *shadowelements;
207
208 int maxshadowvertices;
209 float *shadowvertex3f;
210
211 int maxshadowmark;
212 int numshadowmark;
213 int *shadowmark;
214 int *shadowmarklist;
215 int shadowmarkcount;
216
217 int maxshadowsides;
218 int numshadowsides;
219 unsigned char *shadowsides;
220 int *shadowsideslist;
221
222 int maxvertexupdate;
223 int *vertexupdate;
224 int *vertexremap;
225 int vertexupdatenum;
226
227 int r_shadow_buffer_numleafpvsbytes;
228 unsigned char *r_shadow_buffer_visitingleafpvs;
229 unsigned char *r_shadow_buffer_leafpvs;
230 int *r_shadow_buffer_leaflist;
231
232 int r_shadow_buffer_numsurfacepvsbytes;
233 unsigned char *r_shadow_buffer_surfacepvs;
234 int *r_shadow_buffer_surfacelist;
235 unsigned char *r_shadow_buffer_surfacesides;
236
237 int r_shadow_buffer_numshadowtrispvsbytes;
238 unsigned char *r_shadow_buffer_shadowtrispvs;
239 int r_shadow_buffer_numlighttrispvsbytes;
240 unsigned char *r_shadow_buffer_lighttrispvs;
241
242 rtexturepool_t *r_shadow_texturepool;
243 rtexture_t *r_shadow_attenuationgradienttexture;
244 rtexture_t *r_shadow_attenuation2dtexture;
245 rtexture_t *r_shadow_attenuation3dtexture;
246 skinframe_t *r_shadow_lightcorona;
247 rtexture_t *r_shadow_shadowmap2dtexture;
248 rtexture_t *r_shadow_shadowmap2dcolortexture;
249 rtexture_t *r_shadow_shadowmapvsdcttexture;
250 int r_shadow_shadowmapsize; // changes for each light based on distance
251 int r_shadow_shadowmaplod; // changes for each light based on distance
252
253 GLuint r_shadow_prepassgeometryfbo;
254 GLuint r_shadow_prepasslightingdiffusespecularfbo;
255 GLuint r_shadow_prepasslightingdiffusefbo;
256 int r_shadow_prepass_width;
257 int r_shadow_prepass_height;
258 rtexture_t *r_shadow_prepassgeometrydepthtexture;
259 rtexture_t *r_shadow_prepassgeometrydepthcolortexture;
260 rtexture_t *r_shadow_prepassgeometrynormalmaptexture;
261 rtexture_t *r_shadow_prepasslightingdiffusetexture;
262 rtexture_t *r_shadow_prepasslightingspeculartexture;
263
264 // lights are reloaded when this changes
265 char r_shadow_mapname[MAX_QPATH];
266
267 // used only for light filters (cubemaps)
268 rtexturepool_t *r_shadow_filters_texturepool;
269
270 static const GLenum r_shadow_prepasslightingdrawbuffers[2] = {GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT};
271
272 cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
273 cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
274 cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
275 cvar_t r_shadow_deferred = {CVAR_SAVE, "r_shadow_deferred", "0", "uses image-based lighting instead of geometry-based lighting, the method used renders a depth image and a normalmap image, renders lights into separate diffuse and specular images, and then combines this into the normal rendering, requires r_shadow_shadowmapping"};
276 cvar_t r_shadow_deferred_8bitrange = {CVAR_SAVE, "r_shadow_deferred_8bitrange", "4", "dynamic range of image-based lighting when using 32bit color (does not apply to fp)"};
277 //cvar_t r_shadow_deferred_fp = {CVAR_SAVE, "r_shadow_deferred_fp", "0", "use 16bit (1) or 32bit (2) floating point for accumulation of image-based lighting"};
278 cvar_t r_shadow_usebihculling = {0, "r_shadow_usebihculling", "1", "use BIH (Bounding Interval Hierarchy) for culling lit surfaces instead of BSP (Binary Space Partitioning)"};
279 cvar_t r_shadow_usenormalmap = {CVAR_SAVE, "r_shadow_usenormalmap", "1", "enables use of directional shading on lights"};
280 cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
281 cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.125", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
282 cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
283 cvar_t r_shadow_glossexponent = {0, "r_shadow_glossexponent", "32", "how 'sharp' the gloss should appear (specular power)"};
284 cvar_t r_shadow_gloss2exponent = {0, "r_shadow_gloss2exponent", "32", "same as r_shadow_glossexponent but for forced gloss (gloss 2) surfaces"};
285 cvar_t r_shadow_glossexact = {0, "r_shadow_glossexact", "0", "use exact reflection math for gloss (slightly slower, but should look a tad better)"};
286 cvar_t r_shadow_lightattenuationdividebias = {0, "r_shadow_lightattenuationdividebias", "1", "changes attenuation texture generation"};
287 cvar_t r_shadow_lightattenuationlinearscale = {0, "r_shadow_lightattenuationlinearscale", "2", "changes attenuation texture generation"};
288 cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
289 cvar_t r_shadow_lightradiusscale = {0, "r_shadow_lightradiusscale", "1", "renders all world lights larger or smaller"};
290 cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "0", "how far to cast shadows"};
291 cvar_t r_shadow_frontsidecasting = {0, "r_shadow_frontsidecasting", "1", "whether to cast shadows from illuminated triangles (front side of model) or unlit triangles (back side of model)"};
292 cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
293 cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
294 cvar_t r_shadow_realtime_dlight_svbspculling = {0, "r_shadow_realtime_dlight_svbspculling", "0", "enables svbsp optimization on dynamic lights (very slow!)"};
295 cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal optimization on dynamic lights (slow!)"};
296 cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
297 cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
298 cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
299 cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
300 cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
301 cvar_t r_shadow_realtime_world_compilesvbsp = {0, "r_shadow_realtime_world_compilesvbsp", "1", "enables svbsp optimization during compilation (slower than compileportalculling but more exact)"};
302 cvar_t r_shadow_realtime_world_compileportalculling = {0, "r_shadow_realtime_world_compileportalculling", "1", "enables portal-based culling optimization during compilation (overrides compilesvbsp)"};
303 cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
304 cvar_t r_shadow_shadowmapping = {CVAR_SAVE, "r_shadow_shadowmapping", "1", "enables use of shadowmapping (depth texture sampling) instead of stencil shadow volumes, requires gl_fbo 1"};
305 cvar_t r_shadow_shadowmapping_filterquality = {CVAR_SAVE, "r_shadow_shadowmapping_filterquality", "-1", "shadowmap filter modes: -1 = auto-select, 0 = no filtering, 1 = bilinear, 2 = bilinear 2x2 blur (fast), 3 = 3x3 blur (moderate), 4 = 4x4 blur (slow)"};
306 cvar_t r_shadow_shadowmapping_depthbits = {CVAR_SAVE, "r_shadow_shadowmapping_depthbits", "24", "requested minimum shadowmap texture depth bits"};
307 cvar_t r_shadow_shadowmapping_vsdct = {CVAR_SAVE, "r_shadow_shadowmapping_vsdct", "1", "enables use of virtual shadow depth cube texture"};
308 cvar_t r_shadow_shadowmapping_minsize = {CVAR_SAVE, "r_shadow_shadowmapping_minsize", "32", "shadowmap size limit"};
309 cvar_t r_shadow_shadowmapping_maxsize = {CVAR_SAVE, "r_shadow_shadowmapping_maxsize", "512", "shadowmap size limit"};
310 cvar_t r_shadow_shadowmapping_precision = {CVAR_SAVE, "r_shadow_shadowmapping_precision", "1", "makes shadowmaps have a maximum resolution of this number of pixels per light source radius unit such that, for example, at precision 0.5 a light with radius 200 will have a maximum resolution of 100 pixels"};
311 //cvar_t r_shadow_shadowmapping_lod_bias = {CVAR_SAVE, "r_shadow_shadowmapping_lod_bias", "16", "shadowmap size bias"};
312 //cvar_t r_shadow_shadowmapping_lod_scale = {CVAR_SAVE, "r_shadow_shadowmapping_lod_scale", "128", "shadowmap size scaling parameter"};
313 cvar_t r_shadow_shadowmapping_bordersize = {CVAR_SAVE, "r_shadow_shadowmapping_bordersize", "4", "shadowmap size bias for filtering"};
314 cvar_t r_shadow_shadowmapping_nearclip = {CVAR_SAVE, "r_shadow_shadowmapping_nearclip", "1", "shadowmap nearclip in world units"};
315 cvar_t r_shadow_shadowmapping_bias = {CVAR_SAVE, "r_shadow_shadowmapping_bias", "0.03", "shadowmap bias parameter (this is multiplied by nearclip * 1024 / lodsize)"};
316 cvar_t r_shadow_shadowmapping_polygonfactor = {CVAR_SAVE, "r_shadow_shadowmapping_polygonfactor", "2", "slope-dependent shadowmapping bias"};
317 cvar_t r_shadow_shadowmapping_polygonoffset = {CVAR_SAVE, "r_shadow_shadowmapping_polygonoffset", "0", "constant shadowmapping bias"};
318 cvar_t r_shadow_sortsurfaces = {0, "r_shadow_sortsurfaces", "1", "improve performance by sorting illuminated surfaces by texture"};
319 cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
320 cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
321 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect OpenGL 2.0 render path)"};
322 cvar_t r_shadow_bouncegrid = {CVAR_SAVE, "r_shadow_bouncegrid", "0", "perform particle tracing for indirect lighting (Global Illumination / radiosity) using a 3D texture covering the scene, only active on levels with realtime lights active (r_shadow_realtime_world is usually required for these)"};
323 cvar_t r_shadow_bouncegrid_airstepmax = {CVAR_SAVE, "r_shadow_bouncegrid_airstepmax", "1024", "maximum number of photon accumulation contributions for one photon"};
324 cvar_t r_shadow_bouncegrid_airstepsize = {CVAR_SAVE, "r_shadow_bouncegrid_airstepsize", "64", "maximum spacing of photon accumulation through the air"};
325 cvar_t r_shadow_bouncegrid_bounceanglediffuse = {CVAR_SAVE, "r_shadow_bouncegrid_bounceanglediffuse", "0", "use random bounce direction rather than true reflection, makes some corner areas dark"};
326 cvar_t r_shadow_bouncegrid_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_directionalshading", "0", "use diffuse shading rather than ambient, 3D texture becomes 8x as many pixels to hold the additional data"};
327 cvar_t r_shadow_bouncegrid_dlightparticlemultiplier = {CVAR_SAVE, "r_shadow_bouncegrid_dlightparticlemultiplier", "0", "if set to a high value like 16 this can make dlights look great, but 0 is recommended for performance reasons"};
328 cvar_t r_shadow_bouncegrid_hitmodels = {CVAR_SAVE, "r_shadow_bouncegrid_hitmodels", "0", "enables hitting character model geometry (SLOW)"};
329 cvar_t r_shadow_bouncegrid_includedirectlighting = {CVAR_SAVE, "r_shadow_bouncegrid_includedirectlighting", "0", "allows direct lighting to be recorded, not just indirect (gives an effect somewhat like r_shadow_realtime_world_lightmaps)"};
330 cvar_t r_shadow_bouncegrid_intensity = {CVAR_SAVE, "r_shadow_bouncegrid_intensity", "4", "overall brightness of bouncegrid texture"};
331 cvar_t r_shadow_bouncegrid_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_lightradiusscale", "10", "particles stop at this fraction of light radius (can be more than 1)"};
332 cvar_t r_shadow_bouncegrid_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_maxbounce", "5", "maximum number of bounces for a particle (minimum is 1)"};
333 cvar_t r_shadow_bouncegrid_particlebounceintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particlebounceintensity", "4", "amount of energy carried over after each bounce, this is a multiplier of texture color and the result is clamped to 1 or less, to prevent adding energy on each bounce"};
334 cvar_t r_shadow_bouncegrid_particleintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particleintensity", "1", "brightness of particles contributing to bouncegrid texture"};
335 cvar_t r_shadow_bouncegrid_photons = {CVAR_SAVE, "r_shadow_bouncegrid_photons", "2000", "total photons to shoot per update, divided proportionately between lights"};
336 cvar_t r_shadow_bouncegrid_spacingx = {CVAR_SAVE, "r_shadow_bouncegrid_spacingx", "64", "unit size of bouncegrid pixel on X axis"};
337 cvar_t r_shadow_bouncegrid_spacingy = {CVAR_SAVE, "r_shadow_bouncegrid_spacingy", "64", "unit size of bouncegrid pixel on Y axis"};
338 cvar_t r_shadow_bouncegrid_spacingz = {CVAR_SAVE, "r_shadow_bouncegrid_spacingz", "64", "unit size of bouncegrid pixel on Z axis"};
339 cvar_t r_shadow_bouncegrid_stablerandom = {CVAR_SAVE, "r_shadow_bouncegrid_stablerandom", "1", "make particle distribution consistent from frame to frame"};
340 cvar_t r_shadow_bouncegrid_static = {CVAR_SAVE, "r_shadow_bouncegrid_static", "1", "use static radiosity solution (high quality) rather than dynamic (splotchy)"};
341 cvar_t r_shadow_bouncegrid_static_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_static_directionalshading", "1", "whether to use directionalshading when in static mode"};
342 cvar_t r_shadow_bouncegrid_static_photons = {CVAR_SAVE, "r_shadow_bouncegrid_static_photons", "25000", "photons value to use when in static mode"};
343 cvar_t r_shadow_bouncegrid_updateinterval = {CVAR_SAVE, "r_shadow_bouncegrid_updateinterval", "0", "update bouncegrid texture once per this many seconds, useful values are 0, 0.05, or 1000000"};
344 cvar_t r_shadow_bouncegrid_x = {CVAR_SAVE, "r_shadow_bouncegrid_x", "64", "maximum texture size of bouncegrid on X axis"};
345 cvar_t r_shadow_bouncegrid_y = {CVAR_SAVE, "r_shadow_bouncegrid_y", "64", "maximum texture size of bouncegrid on Y axis"};
346 cvar_t r_shadow_bouncegrid_z = {CVAR_SAVE, "r_shadow_bouncegrid_z", "32", "maximum texture size of bouncegrid on Z axis"};
347 cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1", "brightness of corona flare effects around certain lights, 0 disables corona effects"};
348 cvar_t r_coronas_occlusionsizescale = {CVAR_SAVE, "r_coronas_occlusionsizescale", "0.1", "size of light source for corona occlusion checksum the proportion of hidden pixels controls corona intensity"};
349 cvar_t r_coronas_occlusionquery = {CVAR_SAVE, "r_coronas_occlusionquery", "1", "use GL_ARB_occlusion_query extension if supported (fades coronas according to visibility)"};
350 cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0", "render bright coronas for dynamic lights instead of actual lighting, fast but ugly"};
351 cvar_t gl_ext_separatestencil = {0, "gl_ext_separatestencil", "1", "make use of OpenGL 2.0 glStencilOpSeparate or GL_ATI_separate_stencil extension"};
352 cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
353 cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
354 cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
355 cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
356 cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
357 cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
358 cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
359
360 typedef struct r_shadow_bouncegrid_settings_s
361 {
362         qboolean staticmode;
363         qboolean bounceanglediffuse;
364         qboolean directionalshading;
365         qboolean includedirectlighting;
366         float dlightparticlemultiplier;
367         qboolean hitmodels;
368         float lightradiusscale;
369         int maxbounce;
370         float particlebounceintensity;
371         float particleintensity;
372         int photons;
373         float spacing[3];
374         int stablerandom;
375         float airstepmax;
376         float airstepsize;
377 }
378 r_shadow_bouncegrid_settings_t;
379
380 r_shadow_bouncegrid_settings_t r_shadow_bouncegridsettings;
381 rtexture_t *r_shadow_bouncegridtexture;
382 matrix4x4_t r_shadow_bouncegridmatrix;
383 vec_t r_shadow_bouncegridintensity;
384 qboolean r_shadow_bouncegriddirectional;
385 static double r_shadow_bouncegridtime;
386 static int r_shadow_bouncegridresolution[3];
387 static int r_shadow_bouncegridnumpixels;
388 static unsigned char *r_shadow_bouncegridpixels;
389 static float *r_shadow_bouncegridhighpixels;
390
391 // note the table actually includes one more value, just to avoid the need to clamp the distance index due to minor math error
392 #define ATTENTABLESIZE 256
393 // 1D gradient, 2D circle and 3D sphere attenuation textures
394 #define ATTEN1DSIZE 32
395 #define ATTEN2DSIZE 64
396 #define ATTEN3DSIZE 32
397
398 static float r_shadow_attendividebias; // r_shadow_lightattenuationdividebias
399 static float r_shadow_attenlinearscale; // r_shadow_lightattenuationlinearscale
400 static float r_shadow_attentable[ATTENTABLESIZE+1];
401
402 rtlight_t *r_shadow_compilingrtlight;
403 static memexpandablearray_t r_shadow_worldlightsarray;
404 dlight_t *r_shadow_selectedlight;
405 dlight_t r_shadow_bufferlight;
406 vec3_t r_editlights_cursorlocation;
407 qboolean r_editlights_lockcursor;
408
409 extern int con_vislines;
410
411 void R_Shadow_UncompileWorldLights(void);
412 void R_Shadow_ClearWorldLights(void);
413 void R_Shadow_SaveWorldLights(void);
414 void R_Shadow_LoadWorldLights(void);
415 void R_Shadow_LoadLightsFile(void);
416 void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
417 void R_Shadow_EditLights_Reload_f(void);
418 void R_Shadow_ValidateCvars(void);
419 static void R_Shadow_MakeTextures(void);
420
421 #define EDLIGHTSPRSIZE                  8
422 skinframe_t *r_editlights_sprcursor;
423 skinframe_t *r_editlights_sprlight;
424 skinframe_t *r_editlights_sprnoshadowlight;
425 skinframe_t *r_editlights_sprcubemaplight;
426 skinframe_t *r_editlights_sprcubemapnoshadowlight;
427 skinframe_t *r_editlights_sprselection;
428
429 void R_Shadow_SetShadowMode(void)
430 {
431         r_shadow_shadowmapmaxsize = bound(1, r_shadow_shadowmapping_maxsize.integer, (int)vid.maxtexturesize_2d / 4);
432         r_shadow_shadowmapvsdct = r_shadow_shadowmapping_vsdct.integer != 0 && vid.renderpath == RENDERPATH_GL20;
433         r_shadow_shadowmapfilterquality = r_shadow_shadowmapping_filterquality.integer;
434         r_shadow_shadowmapdepthbits = r_shadow_shadowmapping_depthbits.integer;
435         r_shadow_shadowmapborder = bound(0, r_shadow_shadowmapping_bordersize.integer, 16);
436         r_shadow_shadowmaplod = -1;
437         r_shadow_shadowmapsize = 0;
438         r_shadow_shadowmapsampler = false;
439         r_shadow_shadowmappcf = 0;
440         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
441         if ((r_shadow_shadowmapping.integer || r_shadow_deferred.integer) && vid.support.ext_framebuffer_object)
442         {
443                 switch(vid.renderpath)
444                 {
445                 case RENDERPATH_GL20:
446                         if(r_shadow_shadowmapfilterquality < 0)
447                         {
448                                 if(vid.support.amd_texture_texture4 || vid.support.arb_texture_gather)
449                                         r_shadow_shadowmappcf = 1;
450                                 else if(strstr(gl_vendor, "NVIDIA") || strstr(gl_renderer, "Radeon HD")) 
451                                 {
452                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
453                                         r_shadow_shadowmappcf = 1;
454                                 }
455                                 else if(strstr(gl_vendor, "ATI")) 
456                                         r_shadow_shadowmappcf = 1;
457                                 else 
458                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
459                         }
460                         else 
461                         {
462                                 switch (r_shadow_shadowmapfilterquality)
463                                 {
464                                 case 1:
465                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
466                                         break;
467                                 case 2:
468                                         r_shadow_shadowmapsampler = vid.support.arb_shadow;
469                                         r_shadow_shadowmappcf = 1;
470                                         break;
471                                 case 3:
472                                         r_shadow_shadowmappcf = 1;
473                                         break;
474                                 case 4:
475                                         r_shadow_shadowmappcf = 2;
476                                         break;
477                                 }
478                         }
479                         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
480                         break;
481                 case RENDERPATH_D3D9:
482                 case RENDERPATH_D3D10:
483                 case RENDERPATH_D3D11:
484                 case RENDERPATH_SOFT:
485                         r_shadow_shadowmapsampler = false;
486                         r_shadow_shadowmappcf = 1;
487                         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
488                         break;
489                 case RENDERPATH_GL11:
490                 case RENDERPATH_GL13:
491                 case RENDERPATH_GLES1:
492                 case RENDERPATH_GLES2:
493                         break;
494                 }
495         }
496 }
497
498 qboolean R_Shadow_ShadowMappingEnabled(void)
499 {
500         switch (r_shadow_shadowmode)
501         {
502         case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
503                 return true;
504         default:
505                 return false;
506         }
507 }
508
509 void R_Shadow_FreeShadowMaps(void)
510 {
511         R_Shadow_SetShadowMode();
512
513         R_Mesh_DestroyFramebufferObject(r_shadow_fbo2d);
514
515         r_shadow_fbo2d = 0;
516
517         if (r_shadow_shadowmap2dtexture)
518                 R_FreeTexture(r_shadow_shadowmap2dtexture);
519         r_shadow_shadowmap2dtexture = NULL;
520
521         if (r_shadow_shadowmap2dcolortexture)
522                 R_FreeTexture(r_shadow_shadowmap2dcolortexture);
523         r_shadow_shadowmap2dcolortexture = NULL;
524
525         if (r_shadow_shadowmapvsdcttexture)
526                 R_FreeTexture(r_shadow_shadowmapvsdcttexture);
527         r_shadow_shadowmapvsdcttexture = NULL;
528 }
529
530 void r_shadow_start(void)
531 {
532         // allocate vertex processing arrays
533         r_shadow_bouncegridpixels = NULL;
534         r_shadow_bouncegridhighpixels = NULL;
535         r_shadow_bouncegridnumpixels = 0;
536         r_shadow_bouncegridtexture = NULL;
537         r_shadow_bouncegriddirectional = false;
538         r_shadow_attenuationgradienttexture = NULL;
539         r_shadow_attenuation2dtexture = NULL;
540         r_shadow_attenuation3dtexture = NULL;
541         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
542         r_shadow_shadowmap2dtexture = NULL;
543         r_shadow_shadowmap2dcolortexture = NULL;
544         r_shadow_shadowmapvsdcttexture = NULL;
545         r_shadow_shadowmapmaxsize = 0;
546         r_shadow_shadowmapsize = 0;
547         r_shadow_shadowmaplod = 0;
548         r_shadow_shadowmapfilterquality = -1;
549         r_shadow_shadowmapdepthbits = 0;
550         r_shadow_shadowmapvsdct = false;
551         r_shadow_shadowmapsampler = false;
552         r_shadow_shadowmappcf = 0;
553         r_shadow_fbo2d = 0;
554
555         R_Shadow_FreeShadowMaps();
556
557         r_shadow_texturepool = NULL;
558         r_shadow_filters_texturepool = NULL;
559         R_Shadow_ValidateCvars();
560         R_Shadow_MakeTextures();
561         maxshadowtriangles = 0;
562         shadowelements = NULL;
563         maxshadowvertices = 0;
564         shadowvertex3f = NULL;
565         maxvertexupdate = 0;
566         vertexupdate = NULL;
567         vertexremap = NULL;
568         vertexupdatenum = 0;
569         maxshadowmark = 0;
570         numshadowmark = 0;
571         shadowmark = NULL;
572         shadowmarklist = NULL;
573         shadowmarkcount = 0;
574         maxshadowsides = 0;
575         numshadowsides = 0;
576         shadowsides = NULL;
577         shadowsideslist = NULL;
578         r_shadow_buffer_numleafpvsbytes = 0;
579         r_shadow_buffer_visitingleafpvs = NULL;
580         r_shadow_buffer_leafpvs = NULL;
581         r_shadow_buffer_leaflist = NULL;
582         r_shadow_buffer_numsurfacepvsbytes = 0;
583         r_shadow_buffer_surfacepvs = NULL;
584         r_shadow_buffer_surfacelist = NULL;
585         r_shadow_buffer_surfacesides = NULL;
586         r_shadow_buffer_numshadowtrispvsbytes = 0;
587         r_shadow_buffer_shadowtrispvs = NULL;
588         r_shadow_buffer_numlighttrispvsbytes = 0;
589         r_shadow_buffer_lighttrispvs = NULL;
590
591         r_shadow_usingdeferredprepass = false;
592         r_shadow_prepass_width = r_shadow_prepass_height = 0;
593 }
594
595 static void R_Shadow_FreeDeferred(void);
596 void r_shadow_shutdown(void)
597 {
598         CHECKGLERROR
599         R_Shadow_UncompileWorldLights();
600
601         R_Shadow_FreeShadowMaps();
602
603         r_shadow_usingdeferredprepass = false;
604         if (r_shadow_prepass_width)
605                 R_Shadow_FreeDeferred();
606         r_shadow_prepass_width = r_shadow_prepass_height = 0;
607
608         CHECKGLERROR
609         r_shadow_bouncegridtexture = NULL;
610         r_shadow_bouncegridpixels = NULL;
611         r_shadow_bouncegridhighpixels = NULL;
612         r_shadow_bouncegridnumpixels = 0;
613         r_shadow_bouncegriddirectional = false;
614         r_shadow_attenuationgradienttexture = NULL;
615         r_shadow_attenuation2dtexture = NULL;
616         r_shadow_attenuation3dtexture = NULL;
617         R_FreeTexturePool(&r_shadow_texturepool);
618         R_FreeTexturePool(&r_shadow_filters_texturepool);
619         maxshadowtriangles = 0;
620         if (shadowelements)
621                 Mem_Free(shadowelements);
622         shadowelements = NULL;
623         if (shadowvertex3f)
624                 Mem_Free(shadowvertex3f);
625         shadowvertex3f = NULL;
626         maxvertexupdate = 0;
627         if (vertexupdate)
628                 Mem_Free(vertexupdate);
629         vertexupdate = NULL;
630         if (vertexremap)
631                 Mem_Free(vertexremap);
632         vertexremap = NULL;
633         vertexupdatenum = 0;
634         maxshadowmark = 0;
635         numshadowmark = 0;
636         if (shadowmark)
637                 Mem_Free(shadowmark);
638         shadowmark = NULL;
639         if (shadowmarklist)
640                 Mem_Free(shadowmarklist);
641         shadowmarklist = NULL;
642         shadowmarkcount = 0;
643         maxshadowsides = 0;
644         numshadowsides = 0;
645         if (shadowsides)
646                 Mem_Free(shadowsides);
647         shadowsides = NULL;
648         if (shadowsideslist)
649                 Mem_Free(shadowsideslist);
650         shadowsideslist = NULL;
651         r_shadow_buffer_numleafpvsbytes = 0;
652         if (r_shadow_buffer_visitingleafpvs)
653                 Mem_Free(r_shadow_buffer_visitingleafpvs);
654         r_shadow_buffer_visitingleafpvs = NULL;
655         if (r_shadow_buffer_leafpvs)
656                 Mem_Free(r_shadow_buffer_leafpvs);
657         r_shadow_buffer_leafpvs = NULL;
658         if (r_shadow_buffer_leaflist)
659                 Mem_Free(r_shadow_buffer_leaflist);
660         r_shadow_buffer_leaflist = NULL;
661         r_shadow_buffer_numsurfacepvsbytes = 0;
662         if (r_shadow_buffer_surfacepvs)
663                 Mem_Free(r_shadow_buffer_surfacepvs);
664         r_shadow_buffer_surfacepvs = NULL;
665         if (r_shadow_buffer_surfacelist)
666                 Mem_Free(r_shadow_buffer_surfacelist);
667         r_shadow_buffer_surfacelist = NULL;
668         if (r_shadow_buffer_surfacesides)
669                 Mem_Free(r_shadow_buffer_surfacesides);
670         r_shadow_buffer_surfacesides = NULL;
671         r_shadow_buffer_numshadowtrispvsbytes = 0;
672         if (r_shadow_buffer_shadowtrispvs)
673                 Mem_Free(r_shadow_buffer_shadowtrispvs);
674         r_shadow_buffer_numlighttrispvsbytes = 0;
675         if (r_shadow_buffer_lighttrispvs)
676                 Mem_Free(r_shadow_buffer_lighttrispvs);
677 }
678
679 void r_shadow_newmap(void)
680 {
681         if (r_shadow_bouncegridtexture) R_FreeTexture(r_shadow_bouncegridtexture);r_shadow_bouncegridtexture = NULL;
682         if (r_shadow_lightcorona)                 R_SkinFrame_MarkUsed(r_shadow_lightcorona);
683         if (r_editlights_sprcursor)               R_SkinFrame_MarkUsed(r_editlights_sprcursor);
684         if (r_editlights_sprlight)                R_SkinFrame_MarkUsed(r_editlights_sprlight);
685         if (r_editlights_sprnoshadowlight)        R_SkinFrame_MarkUsed(r_editlights_sprnoshadowlight);
686         if (r_editlights_sprcubemaplight)         R_SkinFrame_MarkUsed(r_editlights_sprcubemaplight);
687         if (r_editlights_sprcubemapnoshadowlight) R_SkinFrame_MarkUsed(r_editlights_sprcubemapnoshadowlight);
688         if (r_editlights_sprselection)            R_SkinFrame_MarkUsed(r_editlights_sprselection);
689         if (strncmp(cl.worldname, r_shadow_mapname, sizeof(r_shadow_mapname)))
690                 R_Shadow_EditLights_Reload_f();
691 }
692
693 void R_Shadow_Init(void)
694 {
695         Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
696         Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
697         Cvar_RegisterVariable(&r_shadow_usebihculling);
698         Cvar_RegisterVariable(&r_shadow_usenormalmap);
699         Cvar_RegisterVariable(&r_shadow_debuglight);
700         Cvar_RegisterVariable(&r_shadow_deferred);
701         Cvar_RegisterVariable(&r_shadow_deferred_8bitrange);
702 //      Cvar_RegisterVariable(&r_shadow_deferred_fp);
703         Cvar_RegisterVariable(&r_shadow_gloss);
704         Cvar_RegisterVariable(&r_shadow_gloss2intensity);
705         Cvar_RegisterVariable(&r_shadow_glossintensity);
706         Cvar_RegisterVariable(&r_shadow_glossexponent);
707         Cvar_RegisterVariable(&r_shadow_gloss2exponent);
708         Cvar_RegisterVariable(&r_shadow_glossexact);
709         Cvar_RegisterVariable(&r_shadow_lightattenuationdividebias);
710         Cvar_RegisterVariable(&r_shadow_lightattenuationlinearscale);
711         Cvar_RegisterVariable(&r_shadow_lightintensityscale);
712         Cvar_RegisterVariable(&r_shadow_lightradiusscale);
713         Cvar_RegisterVariable(&r_shadow_projectdistance);
714         Cvar_RegisterVariable(&r_shadow_frontsidecasting);
715         Cvar_RegisterVariable(&r_shadow_realtime_dlight);
716         Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
717         Cvar_RegisterVariable(&r_shadow_realtime_dlight_svbspculling);
718         Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
719         Cvar_RegisterVariable(&r_shadow_realtime_world);
720         Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
721         Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
722         Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
723         Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
724         Cvar_RegisterVariable(&r_shadow_realtime_world_compilesvbsp);
725         Cvar_RegisterVariable(&r_shadow_realtime_world_compileportalculling);
726         Cvar_RegisterVariable(&r_shadow_scissor);
727         Cvar_RegisterVariable(&r_shadow_shadowmapping);
728         Cvar_RegisterVariable(&r_shadow_shadowmapping_vsdct);
729         Cvar_RegisterVariable(&r_shadow_shadowmapping_filterquality);
730         Cvar_RegisterVariable(&r_shadow_shadowmapping_depthbits);
731         Cvar_RegisterVariable(&r_shadow_shadowmapping_precision);
732         Cvar_RegisterVariable(&r_shadow_shadowmapping_maxsize);
733         Cvar_RegisterVariable(&r_shadow_shadowmapping_minsize);
734 //      Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_bias);
735 //      Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_scale);
736         Cvar_RegisterVariable(&r_shadow_shadowmapping_bordersize);
737         Cvar_RegisterVariable(&r_shadow_shadowmapping_nearclip);
738         Cvar_RegisterVariable(&r_shadow_shadowmapping_bias);
739         Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonfactor);
740         Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonoffset);
741         Cvar_RegisterVariable(&r_shadow_sortsurfaces);
742         Cvar_RegisterVariable(&r_shadow_polygonfactor);
743         Cvar_RegisterVariable(&r_shadow_polygonoffset);
744         Cvar_RegisterVariable(&r_shadow_texture3d);
745         Cvar_RegisterVariable(&r_shadow_bouncegrid);
746         Cvar_RegisterVariable(&r_shadow_bouncegrid_airstepmax);
747         Cvar_RegisterVariable(&r_shadow_bouncegrid_airstepsize);
748         Cvar_RegisterVariable(&r_shadow_bouncegrid_bounceanglediffuse);
749         Cvar_RegisterVariable(&r_shadow_bouncegrid_directionalshading);
750         Cvar_RegisterVariable(&r_shadow_bouncegrid_dlightparticlemultiplier);
751         Cvar_RegisterVariable(&r_shadow_bouncegrid_hitmodels);
752         Cvar_RegisterVariable(&r_shadow_bouncegrid_includedirectlighting);
753         Cvar_RegisterVariable(&r_shadow_bouncegrid_intensity);
754         Cvar_RegisterVariable(&r_shadow_bouncegrid_lightradiusscale);
755         Cvar_RegisterVariable(&r_shadow_bouncegrid_maxbounce);
756         Cvar_RegisterVariable(&r_shadow_bouncegrid_particlebounceintensity);
757         Cvar_RegisterVariable(&r_shadow_bouncegrid_particleintensity);
758         Cvar_RegisterVariable(&r_shadow_bouncegrid_photons);
759         Cvar_RegisterVariable(&r_shadow_bouncegrid_spacingx);
760         Cvar_RegisterVariable(&r_shadow_bouncegrid_spacingy);
761         Cvar_RegisterVariable(&r_shadow_bouncegrid_spacingz);
762         Cvar_RegisterVariable(&r_shadow_bouncegrid_stablerandom);
763         Cvar_RegisterVariable(&r_shadow_bouncegrid_static);
764         Cvar_RegisterVariable(&r_shadow_bouncegrid_static_directionalshading);
765         Cvar_RegisterVariable(&r_shadow_bouncegrid_static_photons);
766         Cvar_RegisterVariable(&r_shadow_bouncegrid_updateinterval);
767         Cvar_RegisterVariable(&r_shadow_bouncegrid_x);
768         Cvar_RegisterVariable(&r_shadow_bouncegrid_y);
769         Cvar_RegisterVariable(&r_shadow_bouncegrid_z);
770         Cvar_RegisterVariable(&r_coronas);
771         Cvar_RegisterVariable(&r_coronas_occlusionsizescale);
772         Cvar_RegisterVariable(&r_coronas_occlusionquery);
773         Cvar_RegisterVariable(&gl_flashblend);
774         Cvar_RegisterVariable(&gl_ext_separatestencil);
775         Cvar_RegisterVariable(&gl_ext_stenciltwoside);
776         R_Shadow_EditLights_Init();
777         Mem_ExpandableArray_NewArray(&r_shadow_worldlightsarray, r_main_mempool, sizeof(dlight_t), 128);
778         maxshadowtriangles = 0;
779         shadowelements = NULL;
780         maxshadowvertices = 0;
781         shadowvertex3f = NULL;
782         maxvertexupdate = 0;
783         vertexupdate = NULL;
784         vertexremap = NULL;
785         vertexupdatenum = 0;
786         maxshadowmark = 0;
787         numshadowmark = 0;
788         shadowmark = NULL;
789         shadowmarklist = NULL;
790         shadowmarkcount = 0;
791         maxshadowsides = 0;
792         numshadowsides = 0;
793         shadowsides = NULL;
794         shadowsideslist = NULL;
795         r_shadow_buffer_numleafpvsbytes = 0;
796         r_shadow_buffer_visitingleafpvs = NULL;
797         r_shadow_buffer_leafpvs = NULL;
798         r_shadow_buffer_leaflist = NULL;
799         r_shadow_buffer_numsurfacepvsbytes = 0;
800         r_shadow_buffer_surfacepvs = NULL;
801         r_shadow_buffer_surfacelist = NULL;
802         r_shadow_buffer_surfacesides = NULL;
803         r_shadow_buffer_shadowtrispvs = NULL;
804         r_shadow_buffer_lighttrispvs = NULL;
805         R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap, NULL, NULL);
806 }
807
808 matrix4x4_t matrix_attenuationxyz =
809 {
810         {
811                 {0.5, 0.0, 0.0, 0.5},
812                 {0.0, 0.5, 0.0, 0.5},
813                 {0.0, 0.0, 0.5, 0.5},
814                 {0.0, 0.0, 0.0, 1.0}
815         }
816 };
817
818 matrix4x4_t matrix_attenuationz =
819 {
820         {
821                 {0.0, 0.0, 0.5, 0.5},
822                 {0.0, 0.0, 0.0, 0.5},
823                 {0.0, 0.0, 0.0, 0.5},
824                 {0.0, 0.0, 0.0, 1.0}
825         }
826 };
827
828 void R_Shadow_ResizeShadowArrays(int numvertices, int numtriangles, int vertscale, int triscale)
829 {
830         numvertices = ((numvertices + 255) & ~255) * vertscale;
831         numtriangles = ((numtriangles + 255) & ~255) * triscale;
832         // make sure shadowelements is big enough for this volume
833         if (maxshadowtriangles < numtriangles)
834         {
835                 maxshadowtriangles = numtriangles;
836                 if (shadowelements)
837                         Mem_Free(shadowelements);
838                 shadowelements = (int *)Mem_Alloc(r_main_mempool, maxshadowtriangles * sizeof(int[3]));
839         }
840         // make sure shadowvertex3f is big enough for this volume
841         if (maxshadowvertices < numvertices)
842         {
843                 maxshadowvertices = numvertices;
844                 if (shadowvertex3f)
845                         Mem_Free(shadowvertex3f);
846                 shadowvertex3f = (float *)Mem_Alloc(r_main_mempool, maxshadowvertices * sizeof(float[3]));
847         }
848 }
849
850 static void R_Shadow_EnlargeLeafSurfaceTrisBuffer(int numleafs, int numsurfaces, int numshadowtriangles, int numlighttriangles)
851 {
852         int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
853         int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
854         int numshadowtrispvsbytes = (((numshadowtriangles + 7) >> 3) + 255) & ~255;
855         int numlighttrispvsbytes = (((numlighttriangles + 7) >> 3) + 255) & ~255;
856         if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
857         {
858                 if (r_shadow_buffer_visitingleafpvs)
859                         Mem_Free(r_shadow_buffer_visitingleafpvs);
860                 if (r_shadow_buffer_leafpvs)
861                         Mem_Free(r_shadow_buffer_leafpvs);
862                 if (r_shadow_buffer_leaflist)
863                         Mem_Free(r_shadow_buffer_leaflist);
864                 r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
865                 r_shadow_buffer_visitingleafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
866                 r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
867                 r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
868         }
869         if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
870         {
871                 if (r_shadow_buffer_surfacepvs)
872                         Mem_Free(r_shadow_buffer_surfacepvs);
873                 if (r_shadow_buffer_surfacelist)
874                         Mem_Free(r_shadow_buffer_surfacelist);
875                 if (r_shadow_buffer_surfacesides)
876                         Mem_Free(r_shadow_buffer_surfacesides);
877                 r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
878                 r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes);
879                 r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
880                 r_shadow_buffer_surfacesides = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
881         }
882         if (r_shadow_buffer_numshadowtrispvsbytes < numshadowtrispvsbytes)
883         {
884                 if (r_shadow_buffer_shadowtrispvs)
885                         Mem_Free(r_shadow_buffer_shadowtrispvs);
886                 r_shadow_buffer_numshadowtrispvsbytes = numshadowtrispvsbytes;
887                 r_shadow_buffer_shadowtrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numshadowtrispvsbytes);
888         }
889         if (r_shadow_buffer_numlighttrispvsbytes < numlighttrispvsbytes)
890         {
891                 if (r_shadow_buffer_lighttrispvs)
892                         Mem_Free(r_shadow_buffer_lighttrispvs);
893                 r_shadow_buffer_numlighttrispvsbytes = numlighttrispvsbytes;
894                 r_shadow_buffer_lighttrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numlighttrispvsbytes);
895         }
896 }
897
898 void R_Shadow_PrepareShadowMark(int numtris)
899 {
900         // make sure shadowmark is big enough for this volume
901         if (maxshadowmark < numtris)
902         {
903                 maxshadowmark = numtris;
904                 if (shadowmark)
905                         Mem_Free(shadowmark);
906                 if (shadowmarklist)
907                         Mem_Free(shadowmarklist);
908                 shadowmark = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmark));
909                 shadowmarklist = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmarklist));
910                 shadowmarkcount = 0;
911         }
912         shadowmarkcount++;
913         // if shadowmarkcount wrapped we clear the array and adjust accordingly
914         if (shadowmarkcount == 0)
915         {
916                 shadowmarkcount = 1;
917                 memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
918         }
919         numshadowmark = 0;
920 }
921
922 void R_Shadow_PrepareShadowSides(int numtris)
923 {
924     if (maxshadowsides < numtris)
925     {
926         maxshadowsides = numtris;
927         if (shadowsides)
928                         Mem_Free(shadowsides);
929                 if (shadowsideslist)
930                         Mem_Free(shadowsideslist);
931                 shadowsides = (unsigned char *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsides));
932                 shadowsideslist = (int *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsideslist));
933         }
934         numshadowsides = 0;
935 }
936
937 static int R_Shadow_ConstructShadowVolume_ZFail(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
938 {
939         int i, j;
940         int outtriangles = 0, outvertices = 0;
941         const int *element;
942         const float *vertex;
943         float ratio, direction[3], projectvector[3];
944
945         if (projectdirection)
946                 VectorScale(projectdirection, projectdistance, projectvector);
947         else
948                 VectorClear(projectvector);
949
950         // create the vertices
951         if (projectdirection)
952         {
953                 for (i = 0;i < numshadowmarktris;i++)
954                 {
955                         element = inelement3i + shadowmarktris[i] * 3;
956                         for (j = 0;j < 3;j++)
957                         {
958                                 if (vertexupdate[element[j]] != vertexupdatenum)
959                                 {
960                                         vertexupdate[element[j]] = vertexupdatenum;
961                                         vertexremap[element[j]] = outvertices;
962                                         vertex = invertex3f + element[j] * 3;
963                                         // project one copy of the vertex according to projectvector
964                                         VectorCopy(vertex, outvertex3f);
965                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
966                                         outvertex3f += 6;
967                                         outvertices += 2;
968                                 }
969                         }
970                 }
971         }
972         else
973         {
974                 for (i = 0;i < numshadowmarktris;i++)
975                 {
976                         element = inelement3i + shadowmarktris[i] * 3;
977                         for (j = 0;j < 3;j++)
978                         {
979                                 if (vertexupdate[element[j]] != vertexupdatenum)
980                                 {
981                                         vertexupdate[element[j]] = vertexupdatenum;
982                                         vertexremap[element[j]] = outvertices;
983                                         vertex = invertex3f + element[j] * 3;
984                                         // project one copy of the vertex to the sphere radius of the light
985                                         // (FIXME: would projecting it to the light box be better?)
986                                         VectorSubtract(vertex, projectorigin, direction);
987                                         ratio = projectdistance / VectorLength(direction);
988                                         VectorCopy(vertex, outvertex3f);
989                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
990                                         outvertex3f += 6;
991                                         outvertices += 2;
992                                 }
993                         }
994                 }
995         }
996
997         if (r_shadow_frontsidecasting.integer)
998         {
999                 for (i = 0;i < numshadowmarktris;i++)
1000                 {
1001                         int remappedelement[3];
1002                         int markindex;
1003                         const int *neighbortriangle;
1004
1005                         markindex = shadowmarktris[i] * 3;
1006                         element = inelement3i + markindex;
1007                         neighbortriangle = inneighbor3i + markindex;
1008                         // output the front and back triangles
1009                         outelement3i[0] = vertexremap[element[0]];
1010                         outelement3i[1] = vertexremap[element[1]];
1011                         outelement3i[2] = vertexremap[element[2]];
1012                         outelement3i[3] = vertexremap[element[2]] + 1;
1013                         outelement3i[4] = vertexremap[element[1]] + 1;
1014                         outelement3i[5] = vertexremap[element[0]] + 1;
1015
1016                         outelement3i += 6;
1017                         outtriangles += 2;
1018                         // output the sides (facing outward from this triangle)
1019                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
1020                         {
1021                                 remappedelement[0] = vertexremap[element[0]];
1022                                 remappedelement[1] = vertexremap[element[1]];
1023                                 outelement3i[0] = remappedelement[1];
1024                                 outelement3i[1] = remappedelement[0];
1025                                 outelement3i[2] = remappedelement[0] + 1;
1026                                 outelement3i[3] = remappedelement[1];
1027                                 outelement3i[4] = remappedelement[0] + 1;
1028                                 outelement3i[5] = remappedelement[1] + 1;
1029
1030                                 outelement3i += 6;
1031                                 outtriangles += 2;
1032                         }
1033                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
1034                         {
1035                                 remappedelement[1] = vertexremap[element[1]];
1036                                 remappedelement[2] = vertexremap[element[2]];
1037                                 outelement3i[0] = remappedelement[2];
1038                                 outelement3i[1] = remappedelement[1];
1039                                 outelement3i[2] = remappedelement[1] + 1;
1040                                 outelement3i[3] = remappedelement[2];
1041                                 outelement3i[4] = remappedelement[1] + 1;
1042                                 outelement3i[5] = remappedelement[2] + 1;
1043
1044                                 outelement3i += 6;
1045                                 outtriangles += 2;
1046                         }
1047                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
1048                         {
1049                                 remappedelement[0] = vertexremap[element[0]];
1050                                 remappedelement[2] = vertexremap[element[2]];
1051                                 outelement3i[0] = remappedelement[0];
1052                                 outelement3i[1] = remappedelement[2];
1053                                 outelement3i[2] = remappedelement[2] + 1;
1054                                 outelement3i[3] = remappedelement[0];
1055                                 outelement3i[4] = remappedelement[2] + 1;
1056                                 outelement3i[5] = remappedelement[0] + 1;
1057
1058                                 outelement3i += 6;
1059                                 outtriangles += 2;
1060                         }
1061                 }
1062         }
1063         else
1064         {
1065                 for (i = 0;i < numshadowmarktris;i++)
1066                 {
1067                         int remappedelement[3];
1068                         int markindex;
1069                         const int *neighbortriangle;
1070
1071                         markindex = shadowmarktris[i] * 3;
1072                         element = inelement3i + markindex;
1073                         neighbortriangle = inneighbor3i + markindex;
1074                         // output the front and back triangles
1075                         outelement3i[0] = vertexremap[element[2]];
1076                         outelement3i[1] = vertexremap[element[1]];
1077                         outelement3i[2] = vertexremap[element[0]];
1078                         outelement3i[3] = vertexremap[element[0]] + 1;
1079                         outelement3i[4] = vertexremap[element[1]] + 1;
1080                         outelement3i[5] = vertexremap[element[2]] + 1;
1081
1082                         outelement3i += 6;
1083                         outtriangles += 2;
1084                         // output the sides (facing outward from this triangle)
1085                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
1086                         {
1087                                 remappedelement[0] = vertexremap[element[0]];
1088                                 remappedelement[1] = vertexremap[element[1]];
1089                                 outelement3i[0] = remappedelement[0];
1090                                 outelement3i[1] = remappedelement[1];
1091                                 outelement3i[2] = remappedelement[1] + 1;
1092                                 outelement3i[3] = remappedelement[0];
1093                                 outelement3i[4] = remappedelement[1] + 1;
1094                                 outelement3i[5] = remappedelement[0] + 1;
1095
1096                                 outelement3i += 6;
1097                                 outtriangles += 2;
1098                         }
1099                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
1100                         {
1101                                 remappedelement[1] = vertexremap[element[1]];
1102                                 remappedelement[2] = vertexremap[element[2]];
1103                                 outelement3i[0] = remappedelement[1];
1104                                 outelement3i[1] = remappedelement[2];
1105                                 outelement3i[2] = remappedelement[2] + 1;
1106                                 outelement3i[3] = remappedelement[1];
1107                                 outelement3i[4] = remappedelement[2] + 1;
1108                                 outelement3i[5] = remappedelement[1] + 1;
1109
1110                                 outelement3i += 6;
1111                                 outtriangles += 2;
1112                         }
1113                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
1114                         {
1115                                 remappedelement[0] = vertexremap[element[0]];
1116                                 remappedelement[2] = vertexremap[element[2]];
1117                                 outelement3i[0] = remappedelement[2];
1118                                 outelement3i[1] = remappedelement[0];
1119                                 outelement3i[2] = remappedelement[0] + 1;
1120                                 outelement3i[3] = remappedelement[2];
1121                                 outelement3i[4] = remappedelement[0] + 1;
1122                                 outelement3i[5] = remappedelement[2] + 1;
1123
1124                                 outelement3i += 6;
1125                                 outtriangles += 2;
1126                         }
1127                 }
1128         }
1129         if (outnumvertices)
1130                 *outnumvertices = outvertices;
1131         return outtriangles;
1132 }
1133
1134 static int R_Shadow_ConstructShadowVolume_ZPass(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
1135 {
1136         int i, j, k;
1137         int outtriangles = 0, outvertices = 0;
1138         const int *element;
1139         const float *vertex;
1140         float ratio, direction[3], projectvector[3];
1141         qboolean side[4];
1142
1143         if (projectdirection)
1144                 VectorScale(projectdirection, projectdistance, projectvector);
1145         else
1146                 VectorClear(projectvector);
1147
1148         for (i = 0;i < numshadowmarktris;i++)
1149         {
1150                 int remappedelement[3];
1151                 int markindex;
1152                 const int *neighbortriangle;
1153
1154                 markindex = shadowmarktris[i] * 3;
1155                 neighbortriangle = inneighbor3i + markindex;
1156                 side[0] = shadowmark[neighbortriangle[0]] == shadowmarkcount;
1157                 side[1] = shadowmark[neighbortriangle[1]] == shadowmarkcount;
1158                 side[2] = shadowmark[neighbortriangle[2]] == shadowmarkcount;
1159                 if (side[0] + side[1] + side[2] == 0)
1160                         continue;
1161
1162                 side[3] = side[0];
1163                 element = inelement3i + markindex;
1164
1165                 // create the vertices
1166                 for (j = 0;j < 3;j++)
1167                 {
1168                         if (side[j] + side[j+1] == 0)
1169                                 continue;
1170                         k = element[j];
1171                         if (vertexupdate[k] != vertexupdatenum)
1172                         {
1173                                 vertexupdate[k] = vertexupdatenum;
1174                                 vertexremap[k] = outvertices;
1175                                 vertex = invertex3f + k * 3;
1176                                 VectorCopy(vertex, outvertex3f);
1177                                 if (projectdirection)
1178                                 {
1179                                         // project one copy of the vertex according to projectvector
1180                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
1181                                 }
1182                                 else
1183                                 {
1184                                         // project one copy of the vertex to the sphere radius of the light
1185                                         // (FIXME: would projecting it to the light box be better?)
1186                                         VectorSubtract(vertex, projectorigin, direction);
1187                                         ratio = projectdistance / VectorLength(direction);
1188                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
1189                                 }
1190                                 outvertex3f += 6;
1191                                 outvertices += 2;
1192                         }
1193                 }
1194
1195                 // output the sides (facing outward from this triangle)
1196                 if (!side[0])
1197                 {
1198                         remappedelement[0] = vertexremap[element[0]];
1199                         remappedelement[1] = vertexremap[element[1]];
1200                         outelement3i[0] = remappedelement[1];
1201                         outelement3i[1] = remappedelement[0];
1202                         outelement3i[2] = remappedelement[0] + 1;
1203                         outelement3i[3] = remappedelement[1];
1204                         outelement3i[4] = remappedelement[0] + 1;
1205                         outelement3i[5] = remappedelement[1] + 1;
1206
1207                         outelement3i += 6;
1208                         outtriangles += 2;
1209                 }
1210                 if (!side[1])
1211                 {
1212                         remappedelement[1] = vertexremap[element[1]];
1213                         remappedelement[2] = vertexremap[element[2]];
1214                         outelement3i[0] = remappedelement[2];
1215                         outelement3i[1] = remappedelement[1];
1216                         outelement3i[2] = remappedelement[1] + 1;
1217                         outelement3i[3] = remappedelement[2];
1218                         outelement3i[4] = remappedelement[1] + 1;
1219                         outelement3i[5] = remappedelement[2] + 1;
1220
1221                         outelement3i += 6;
1222                         outtriangles += 2;
1223                 }
1224                 if (!side[2])
1225                 {
1226                         remappedelement[0] = vertexremap[element[0]];
1227                         remappedelement[2] = vertexremap[element[2]];
1228                         outelement3i[0] = remappedelement[0];
1229                         outelement3i[1] = remappedelement[2];
1230                         outelement3i[2] = remappedelement[2] + 1;
1231                         outelement3i[3] = remappedelement[0];
1232                         outelement3i[4] = remappedelement[2] + 1;
1233                         outelement3i[5] = remappedelement[0] + 1;
1234
1235                         outelement3i += 6;
1236                         outtriangles += 2;
1237                 }
1238         }
1239         if (outnumvertices)
1240                 *outnumvertices = outvertices;
1241         return outtriangles;
1242 }
1243
1244 void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
1245 {
1246         int t, tend;
1247         const int *e;
1248         const float *v[3];
1249         float normal[3];
1250         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
1251                 return;
1252         tend = firsttriangle + numtris;
1253         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
1254         {
1255                 // surface box entirely inside light box, no box cull
1256                 if (projectdirection)
1257                 {
1258                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1259                         {
1260                                 TriangleNormal(invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3, normal);
1261                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
1262                                         shadowmarklist[numshadowmark++] = t;
1263                         }
1264                 }
1265                 else
1266                 {
1267                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1268                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
1269                                         shadowmarklist[numshadowmark++] = t;
1270                 }
1271         }
1272         else
1273         {
1274                 // surface box not entirely inside light box, cull each triangle
1275                 if (projectdirection)
1276                 {
1277                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1278                         {
1279                                 v[0] = invertex3f + e[0] * 3;
1280                                 v[1] = invertex3f + e[1] * 3;
1281                                 v[2] = invertex3f + e[2] * 3;
1282                                 TriangleNormal(v[0], v[1], v[2], normal);
1283                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
1284                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1285                                         shadowmarklist[numshadowmark++] = t;
1286                         }
1287                 }
1288                 else
1289                 {
1290                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1291                         {
1292                                 v[0] = invertex3f + e[0] * 3;
1293                                 v[1] = invertex3f + e[1] * 3;
1294                                 v[2] = invertex3f + e[2] * 3;
1295                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
1296                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1297                                         shadowmarklist[numshadowmark++] = t;
1298                         }
1299                 }
1300         }
1301 }
1302
1303 qboolean R_Shadow_UseZPass(vec3_t mins, vec3_t maxs)
1304 {
1305 #if 1
1306         return false;
1307 #else
1308         if (r_shadow_compilingrtlight || !r_shadow_frontsidecasting.integer || !r_shadow_usezpassifpossible.integer)
1309                 return false;
1310         // check if the shadow volume intersects the near plane
1311         //
1312         // a ray between the eye and light origin may intersect the caster,
1313         // indicating that the shadow may touch the eye location, however we must
1314         // test the near plane (a polygon), not merely the eye location, so it is
1315         // easiest to enlarge the caster bounding shape slightly for this.
1316         // TODO
1317         return true;
1318 #endif
1319 }
1320
1321 void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, const vec3_t projectdirection, float projectdistance, int nummarktris, const int *marktris, vec3_t trismins, vec3_t trismaxs)
1322 {
1323         int i, tris, outverts;
1324         if (projectdistance < 0.1)
1325         {
1326                 Con_Printf("R_Shadow_Volume: projectdistance %f\n", projectdistance);
1327                 return;
1328         }
1329         if (!numverts || !nummarktris)
1330                 return;
1331         // make sure shadowelements is big enough for this volume
1332         if (maxshadowtriangles < nummarktris*8 || maxshadowvertices < numverts*2)
1333                 R_Shadow_ResizeShadowArrays(numverts, nummarktris, 2, 8);
1334
1335         if (maxvertexupdate < numverts)
1336         {
1337                 maxvertexupdate = numverts;
1338                 if (vertexupdate)
1339                         Mem_Free(vertexupdate);
1340                 if (vertexremap)
1341                         Mem_Free(vertexremap);
1342                 vertexupdate = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
1343                 vertexremap = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
1344                 vertexupdatenum = 0;
1345         }
1346         vertexupdatenum++;
1347         if (vertexupdatenum == 0)
1348         {
1349                 vertexupdatenum = 1;
1350                 memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
1351                 memset(vertexremap, 0, maxvertexupdate * sizeof(int));
1352         }
1353
1354         for (i = 0;i < nummarktris;i++)
1355                 shadowmark[marktris[i]] = shadowmarkcount;
1356
1357         if (r_shadow_compilingrtlight)
1358         {
1359                 // if we're compiling an rtlight, capture the mesh
1360                 //tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1361                 //Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zpass, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
1362                 tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1363                 Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zfail, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
1364         }
1365         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_VISIBLEVOLUMES)
1366         {
1367                 tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1368                 R_Mesh_PrepareVertices_Vertex3f(outverts, shadowvertex3f, NULL);
1369                 R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1370         }
1371         else
1372         {
1373                 // decide which type of shadow to generate and set stencil mode
1374                 R_Shadow_RenderMode_StencilShadowVolumes(R_Shadow_UseZPass(trismins, trismaxs));
1375                 // generate the sides or a solid volume, depending on type
1376                 if (r_shadow_rendermode >= R_SHADOW_RENDERMODE_ZPASS_STENCIL && r_shadow_rendermode <= R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE)
1377                         tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1378                 else
1379                         tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1380                 r_refdef.stats.lights_dynamicshadowtriangles += tris;
1381                 r_refdef.stats.lights_shadowtriangles += tris;
1382                 if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZPASS_STENCIL)
1383                 {
1384                         // increment stencil if frontface is infront of depthbuffer
1385                         GL_CullFace(r_refdef.view.cullface_front);
1386                         R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, 128, 255);
1387                         R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1388                         // decrement stencil if backface is infront of depthbuffer
1389                         GL_CullFace(r_refdef.view.cullface_back);
1390                         R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_ALWAYS, 128, 255);
1391                 }
1392                 else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZFAIL_STENCIL)
1393                 {
1394                         // decrement stencil if backface is behind depthbuffer
1395                         GL_CullFace(r_refdef.view.cullface_front);
1396                         R_SetStencil(true, 255, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, 128, 255);
1397                         R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1398                         // increment stencil if frontface is behind depthbuffer
1399                         GL_CullFace(r_refdef.view.cullface_back);
1400                         R_SetStencil(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_ALWAYS, 128, 255);
1401                 }
1402                 R_Mesh_PrepareVertices_Vertex3f(outverts, shadowvertex3f, NULL);
1403                 R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1404         }
1405 }
1406
1407 int R_Shadow_CalcTriangleSideMask(const vec3_t p1, const vec3_t p2, const vec3_t p3, float bias)
1408 {
1409     // p1, p2, p3 are in the cubemap's local coordinate system
1410     // bias = border/(size - border)
1411         int mask = 0x3F;
1412
1413     float dp1 = p1[0] + p1[1], dn1 = p1[0] - p1[1], ap1 = fabs(dp1), an1 = fabs(dn1),
1414           dp2 = p2[0] + p2[1], dn2 = p2[0] - p2[1], ap2 = fabs(dp2), an2 = fabs(dn2),
1415           dp3 = p3[0] + p3[1], dn3 = p3[0] - p3[1], ap3 = fabs(dp3), an3 = fabs(dn3);
1416         if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1417         mask &= (3<<4)
1418                         | (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1419                         | (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1420                         | (dp3 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1421     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1422         mask &= (3<<4)
1423             | (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
1424             | (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))            
1425             | (dn3 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1426
1427     dp1 = p1[1] + p1[2], dn1 = p1[1] - p1[2], ap1 = fabs(dp1), an1 = fabs(dn1),
1428     dp2 = p2[1] + p2[2], dn2 = p2[1] - p2[2], ap2 = fabs(dp2), an2 = fabs(dn2),
1429     dp3 = p3[1] + p3[2], dn3 = p3[1] - p3[2], ap3 = fabs(dp3), an3 = fabs(dn3);
1430     if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1431         mask &= (3<<0)
1432             | (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
1433             | (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))            
1434             | (dp3 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1435     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1436         mask &= (3<<0)
1437             | (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1438             | (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1439             | (dn3 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1440
1441     dp1 = p1[2] + p1[0], dn1 = p1[2] - p1[0], ap1 = fabs(dp1), an1 = fabs(dn1),
1442     dp2 = p2[2] + p2[0], dn2 = p2[2] - p2[0], ap2 = fabs(dp2), an2 = fabs(dn2),
1443     dp3 = p3[2] + p3[0], dn3 = p3[2] - p3[0], ap3 = fabs(dp3), an3 = fabs(dn3);
1444     if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1445         mask &= (3<<2)
1446             | (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1447             | (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1448             | (dp3 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1449     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1450         mask &= (3<<2)
1451             | (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1452             | (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1453             | (dn3 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1454
1455         return mask;
1456 }
1457
1458 int R_Shadow_CalcBBoxSideMask(const vec3_t mins, const vec3_t maxs, const matrix4x4_t *worldtolight, const matrix4x4_t *radiustolight, float bias)
1459 {
1460         vec3_t center, radius, lightcenter, lightradius, pmin, pmax;
1461         float dp1, dn1, ap1, an1, dp2, dn2, ap2, an2;
1462         int mask = 0x3F;
1463
1464         VectorSubtract(maxs, mins, radius);
1465     VectorScale(radius, 0.5f, radius);
1466     VectorAdd(mins, radius, center);
1467     Matrix4x4_Transform(worldtolight, center, lightcenter);
1468         Matrix4x4_Transform3x3(radiustolight, radius, lightradius);
1469         VectorSubtract(lightcenter, lightradius, pmin);
1470         VectorAdd(lightcenter, lightradius, pmax);
1471
1472     dp1 = pmax[0] + pmax[1], dn1 = pmax[0] - pmin[1], ap1 = fabs(dp1), an1 = fabs(dn1),
1473     dp2 = pmin[0] + pmin[1], dn2 = pmin[0] - pmax[1], ap2 = fabs(dp2), an2 = fabs(dn2);
1474     if(ap1 > bias*an1 && ap2 > bias*an2)
1475         mask &= (3<<4)
1476             | (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1477             | (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1478     if(an1 > bias*ap1 && an2 > bias*ap2)
1479         mask &= (3<<4)
1480             | (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
1481             | (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1482
1483     dp1 = pmax[1] + pmax[2], dn1 = pmax[1] - pmin[2], ap1 = fabs(dp1), an1 = fabs(dn1),
1484     dp2 = pmin[1] + pmin[2], dn2 = pmin[1] - pmax[2], ap2 = fabs(dp2), an2 = fabs(dn2);
1485     if(ap1 > bias*an1 && ap2 > bias*an2)
1486         mask &= (3<<0)
1487             | (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
1488             | (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1489     if(an1 > bias*ap1 && an2 > bias*ap2)
1490         mask &= (3<<0)
1491             | (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1492             | (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1493
1494     dp1 = pmax[2] + pmax[0], dn1 = pmax[2] - pmin[0], ap1 = fabs(dp1), an1 = fabs(dn1),
1495     dp2 = pmin[2] + pmin[0], dn2 = pmin[2] - pmax[0], ap2 = fabs(dp2), an2 = fabs(dn2);
1496     if(ap1 > bias*an1 && ap2 > bias*an2)
1497         mask &= (3<<2)
1498             | (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1499             | (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1500     if(an1 > bias*ap1 && an2 > bias*ap2)
1501         mask &= (3<<2)
1502             | (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1503             | (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1504
1505     return mask;
1506 }
1507
1508 #define R_Shadow_CalcEntitySideMask(ent, worldtolight, radiustolight, bias) R_Shadow_CalcBBoxSideMask((ent)->mins, (ent)->maxs, worldtolight, radiustolight, bias)
1509
1510 int R_Shadow_CalcSphereSideMask(const vec3_t p, float radius, float bias)
1511 {
1512     // p is in the cubemap's local coordinate system
1513     // bias = border/(size - border)
1514     float dxyp = p[0] + p[1], dxyn = p[0] - p[1], axyp = fabs(dxyp), axyn = fabs(dxyn);
1515     float dyzp = p[1] + p[2], dyzn = p[1] - p[2], ayzp = fabs(dyzp), ayzn = fabs(dyzn);
1516     float dzxp = p[2] + p[0], dzxn = p[2] - p[0], azxp = fabs(dzxp), azxn = fabs(dzxn);
1517     int mask = 0x3F;
1518     if(axyp > bias*axyn + radius) mask &= dxyp < 0 ? ~((1<<0)|(1<<2)) : ~((2<<0)|(2<<2));
1519     if(axyn > bias*axyp + radius) mask &= dxyn < 0 ? ~((1<<0)|(2<<2)) : ~((2<<0)|(1<<2));
1520     if(ayzp > bias*ayzn + radius) mask &= dyzp < 0 ? ~((1<<2)|(1<<4)) : ~((2<<2)|(2<<4));
1521     if(ayzn > bias*ayzp + radius) mask &= dyzn < 0 ? ~((1<<2)|(2<<4)) : ~((2<<2)|(1<<4));
1522     if(azxp > bias*azxn + radius) mask &= dzxp < 0 ? ~((1<<4)|(1<<0)) : ~((2<<4)|(2<<0));
1523     if(azxn > bias*azxp + radius) mask &= dzxn < 0 ? ~((1<<4)|(2<<0)) : ~((2<<4)|(1<<0));
1524     return mask;
1525 }
1526
1527 int R_Shadow_CullFrustumSides(rtlight_t *rtlight, float size, float border)
1528 {
1529         int i;
1530         vec3_t p, n;
1531         int sides = 0x3F, masks[6] = { 3<<4, 3<<4, 3<<0, 3<<0, 3<<2, 3<<2 };
1532         float scale = (size - 2*border)/size, len;
1533         float bias = border / (float)(size - border), dp, dn, ap, an;
1534         // check if cone enclosing side would cross frustum plane 
1535         scale = 2 / (scale*scale + 2);
1536         for (i = 0;i < 5;i++)
1537         {
1538                 if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[i]) > -0.03125)
1539                         continue;
1540                 Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[i].normal, n);
1541                 len = scale*VectorLength2(n);
1542                 if(n[0]*n[0] > len) sides &= n[0] < 0 ? ~(1<<0) : ~(2 << 0);
1543                 if(n[1]*n[1] > len) sides &= n[1] < 0 ? ~(1<<2) : ~(2 << 2);
1544                 if(n[2]*n[2] > len) sides &= n[2] < 0 ? ~(1<<4) : ~(2 << 4);
1545         }
1546         if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[4]) >= r_refdef.farclip - r_refdef.nearclip + 0.03125)
1547         {
1548         Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[4].normal, n);
1549         len = scale*VectorLength(n);
1550                 if(n[0]*n[0] > len) sides &= n[0] >= 0 ? ~(1<<0) : ~(2 << 0);
1551                 if(n[1]*n[1] > len) sides &= n[1] >= 0 ? ~(1<<2) : ~(2 << 2);
1552                 if(n[2]*n[2] > len) sides &= n[2] >= 0 ? ~(1<<4) : ~(2 << 4);
1553         }
1554         // this next test usually clips off more sides than the former, but occasionally clips fewer/different ones, so do both and combine results
1555         // check if frustum corners/origin cross plane sides
1556 #if 1
1557     // infinite version, assumes frustum corners merely give direction and extend to infinite distance
1558     Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.origin, p);
1559     dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
1560     masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1561     masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1562     dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
1563     masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1564     masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1565     dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
1566     masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1567     masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1568     for (i = 0;i < 4;i++)
1569     {
1570         Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.frustumcorner[i], n);
1571         VectorSubtract(n, p, n);
1572         dp = n[0] + n[1], dn = n[0] - n[1], ap = fabs(dp), an = fabs(dn);
1573         if(ap > 0) masks[0] |= dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2);
1574         if(an > 0) masks[1] |= dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2);
1575         dp = n[1] + n[2], dn = n[1] - n[2], ap = fabs(dp), an = fabs(dn);
1576         if(ap > 0) masks[2] |= dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4);
1577         if(an > 0) masks[3] |= dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4);
1578         dp = n[2] + n[0], dn = n[2] - n[0], ap = fabs(dp), an = fabs(dn);
1579         if(ap > 0) masks[4] |= dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0);
1580         if(an > 0) masks[5] |= dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0);
1581     }
1582 #else
1583     // finite version, assumes corners are a finite distance from origin dependent on far plane
1584         for (i = 0;i < 5;i++)
1585         {
1586                 Matrix4x4_Transform(&rtlight->matrix_worldtolight, !i ? r_refdef.view.origin : r_refdef.view.frustumcorner[i-1], p);
1587                 dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
1588                 masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1589                 masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1590                 dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
1591                 masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1592                 masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1593                 dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
1594                 masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1595                 masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1596         }
1597 #endif
1598         return sides & masks[0] & masks[1] & masks[2] & masks[3] & masks[4] & masks[5];
1599 }
1600
1601 int R_Shadow_ChooseSidesFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const matrix4x4_t *worldtolight, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs, int *totals)
1602 {
1603         int t, tend;
1604         const int *e;
1605         const float *v[3];
1606         float normal[3];
1607         vec3_t p[3];
1608         float bias;
1609         int mask, surfacemask = 0;
1610         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
1611                 return 0;
1612         bias = r_shadow_shadowmapborder / (float)(r_shadow_shadowmapmaxsize - r_shadow_shadowmapborder);
1613         tend = firsttriangle + numtris;
1614         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
1615         {
1616                 // surface box entirely inside light box, no box cull
1617                 if (projectdirection)
1618                 {
1619                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1620                         {
1621                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
1622                                 TriangleNormal(v[0], v[1], v[2], normal);
1623                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
1624                                 {
1625                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1626                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1627                                         surfacemask |= mask;
1628                                         if(totals)
1629                                         {
1630                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1631                                                 shadowsides[numshadowsides] = mask;
1632                                                 shadowsideslist[numshadowsides++] = t;
1633                                         }
1634                                 }
1635                         }
1636                 }
1637                 else
1638                 {
1639                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1640                         {
1641                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,     v[2] = invertex3f + e[2] * 3;
1642                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2]))
1643                                 {
1644                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1645                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1646                                         surfacemask |= mask;
1647                                         if(totals)
1648                                         {
1649                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1650                                                 shadowsides[numshadowsides] = mask;
1651                                                 shadowsideslist[numshadowsides++] = t;
1652                                         }
1653                                 }
1654                         }
1655                 }
1656         }
1657         else
1658         {
1659                 // surface box not entirely inside light box, cull each triangle
1660                 if (projectdirection)
1661                 {
1662                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1663                         {
1664                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,     v[2] = invertex3f + e[2] * 3;
1665                                 TriangleNormal(v[0], v[1], v[2], normal);
1666                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
1667                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1668                                 {
1669                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1670                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1671                                         surfacemask |= mask;
1672                                         if(totals)
1673                                         {
1674                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1675                                                 shadowsides[numshadowsides] = mask;
1676                                                 shadowsideslist[numshadowsides++] = t;
1677                                         }
1678                                 }
1679                         }
1680                 }
1681                 else
1682                 {
1683                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1684                         {
1685                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
1686                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
1687                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1688                                 {
1689                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1690                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1691                                         surfacemask |= mask;
1692                                         if(totals)
1693                                         {
1694                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1695                                                 shadowsides[numshadowsides] = mask;
1696                                                 shadowsideslist[numshadowsides++] = t;
1697                                         }
1698                                 }
1699                         }
1700                 }
1701         }
1702         return surfacemask;
1703 }
1704
1705 void R_Shadow_ShadowMapFromList(int numverts, int numtris, const float *vertex3f, const int *elements, int numsidetris, const int *sidetotals, const unsigned char *sides, const int *sidetris)
1706 {
1707         int i, j, outtriangles = 0;
1708         int *outelement3i[6];
1709         if (!numverts || !numsidetris || !r_shadow_compilingrtlight)
1710                 return;
1711         outtriangles = sidetotals[0] + sidetotals[1] + sidetotals[2] + sidetotals[3] + sidetotals[4] + sidetotals[5];
1712         // make sure shadowelements is big enough for this mesh
1713         if (maxshadowtriangles < outtriangles)
1714                 R_Shadow_ResizeShadowArrays(0, outtriangles, 0, 1);
1715
1716         // compute the offset and size of the separate index lists for each cubemap side
1717         outtriangles = 0;
1718         for (i = 0;i < 6;i++)
1719         {
1720                 outelement3i[i] = shadowelements + outtriangles * 3;
1721                 r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sideoffsets[i] = outtriangles;
1722                 r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sidetotals[i] = sidetotals[i];
1723                 outtriangles += sidetotals[i];
1724         }
1725
1726         // gather up the (sparse) triangles into separate index lists for each cubemap side
1727         for (i = 0;i < numsidetris;i++)
1728         {
1729                 const int *element = elements + sidetris[i] * 3;
1730                 for (j = 0;j < 6;j++)
1731                 {
1732                         if (sides[i] & (1 << j))
1733                         {
1734                                 outelement3i[j][0] = element[0];
1735                                 outelement3i[j][1] = element[1];
1736                                 outelement3i[j][2] = element[2];
1737                                 outelement3i[j] += 3;
1738                         }
1739                 }
1740         }
1741                         
1742         Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, outtriangles, shadowelements);
1743 }
1744
1745 static void R_Shadow_MakeTextures_MakeCorona(void)
1746 {
1747         float dx, dy;
1748         int x, y, a;
1749         unsigned char pixels[32][32][4];
1750         for (y = 0;y < 32;y++)
1751         {
1752                 dy = (y - 15.5f) * (1.0f / 16.0f);
1753                 for (x = 0;x < 32;x++)
1754                 {
1755                         dx = (x - 15.5f) * (1.0f / 16.0f);
1756                         a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
1757                         a = bound(0, a, 255);
1758                         pixels[y][x][0] = a;
1759                         pixels[y][x][1] = a;
1760                         pixels[y][x][2] = a;
1761                         pixels[y][x][3] = 255;
1762                 }
1763         }
1764         r_shadow_lightcorona = R_SkinFrame_LoadInternalBGRA("lightcorona", TEXF_FORCELINEAR, &pixels[0][0][0], 32, 32, false);
1765 }
1766
1767 static unsigned int R_Shadow_MakeTextures_SamplePoint(float x, float y, float z)
1768 {
1769         float dist = sqrt(x*x+y*y+z*z);
1770         float intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
1771         // note this code could suffer byte order issues except that it is multiplying by an integer that reads the same both ways
1772         return (unsigned char)bound(0, intensity * 256.0f, 255) * 0x01010101;
1773 }
1774
1775 static void R_Shadow_MakeTextures(void)
1776 {
1777         int x, y, z;
1778         float intensity, dist;
1779         unsigned int *data;
1780         R_Shadow_FreeShadowMaps();
1781         R_FreeTexturePool(&r_shadow_texturepool);
1782         r_shadow_texturepool = R_AllocTexturePool();
1783         r_shadow_attenlinearscale = r_shadow_lightattenuationlinearscale.value;
1784         r_shadow_attendividebias = r_shadow_lightattenuationdividebias.value;
1785         data = (unsigned int *)Mem_Alloc(tempmempool, max(max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE, ATTEN2DSIZE*ATTEN2DSIZE), ATTEN1DSIZE) * 4);
1786         // the table includes one additional value to avoid the need to clamp indexing due to minor math errors
1787         for (x = 0;x <= ATTENTABLESIZE;x++)
1788         {
1789                 dist = (x + 0.5f) * (1.0f / ATTENTABLESIZE) * (1.0f / 0.9375);
1790                 intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
1791                 r_shadow_attentable[x] = bound(0, intensity, 1);
1792         }
1793         // 1D gradient texture
1794         for (x = 0;x < ATTEN1DSIZE;x++)
1795                 data[x] = R_Shadow_MakeTextures_SamplePoint((x + 0.5f) * (1.0f / ATTEN1DSIZE) * (1.0f / 0.9375), 0, 0);
1796         r_shadow_attenuationgradienttexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation1d", ATTEN1DSIZE, 1, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1797         // 2D circle texture
1798         for (y = 0;y < ATTEN2DSIZE;y++)
1799                 for (x = 0;x < ATTEN2DSIZE;x++)
1800                         data[y*ATTEN2DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), 0);
1801         r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1802         // 3D sphere texture
1803         if (r_shadow_texture3d.integer && vid.support.ext_texture_3d)
1804         {
1805                 for (z = 0;z < ATTEN3DSIZE;z++)
1806                         for (y = 0;y < ATTEN3DSIZE;y++)
1807                                 for (x = 0;x < ATTEN3DSIZE;x++)
1808                                         data[(z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375));
1809                 r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1810         }
1811         else
1812                 r_shadow_attenuation3dtexture = NULL;
1813         Mem_Free(data);
1814
1815         R_Shadow_MakeTextures_MakeCorona();
1816
1817         // Editor light sprites
1818         r_editlights_sprcursor = R_SkinFrame_LoadInternal8bit("gfx/editlights/cursor", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1819         "................"
1820         ".3............3."
1821         "..5...2332...5.."
1822         "...7.3....3.7..."
1823         "....7......7...."
1824         "...3.7....7.3..."
1825         "..2...7..7...2.."
1826         "..3..........3.."
1827         "..3..........3.."
1828         "..2...7..7...2.."
1829         "...3.7....7.3..."
1830         "....7......7...."
1831         "...7.3....3.7..."
1832         "..5...2332...5.."
1833         ".3............3."
1834         "................"
1835         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1836         r_editlights_sprlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/light", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1837         "................"
1838         "................"
1839         "......1111......"
1840         "....11233211...."
1841         "...1234554321..."
1842         "...1356776531..."
1843         "..124677776421.."
1844         "..135777777531.."
1845         "..135777777531.."
1846         "..124677776421.."
1847         "...1356776531..."
1848         "...1234554321..."
1849         "....11233211...."
1850         "......1111......"
1851         "................"
1852         "................"
1853         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1854         r_editlights_sprnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/noshadow", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1855         "................"
1856         "................"
1857         "......1111......"
1858         "....11233211...."
1859         "...1234554321..."
1860         "...1356226531..."
1861         "..12462..26421.."
1862         "..1352....2531.."
1863         "..1352....2531.."
1864         "..12462..26421.."
1865         "...1356226531..."
1866         "...1234554321..."
1867         "....11233211...."
1868         "......1111......"
1869         "................"
1870         "................"
1871         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1872         r_editlights_sprcubemaplight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemaplight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1873         "................"
1874         "................"
1875         "......2772......"
1876         "....27755772...."
1877         "..277533335772.."
1878         "..753333333357.."
1879         "..777533335777.."
1880         "..735775577537.."
1881         "..733357753337.."
1882         "..733337733337.."
1883         "..753337733357.."
1884         "..277537735772.."
1885         "....27777772...."
1886         "......2772......"
1887         "................"
1888         "................"
1889         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1890         r_editlights_sprcubemapnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemapnoshadowlight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1891         "................"
1892         "................"
1893         "......2772......"
1894         "....27722772...."
1895         "..2772....2772.."
1896         "..72........27.."
1897         "..7772....2777.."
1898         "..7.27722772.7.."
1899         "..7...2772...7.."
1900         "..7....77....7.."
1901         "..72...77...27.."
1902         "..2772.77.2772.."
1903         "....27777772...."
1904         "......2772......"
1905         "................"
1906         "................"
1907         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1908         r_editlights_sprselection = R_SkinFrame_LoadInternal8bit("gfx/editlights/selection", TEXF_ALPHA | TEXF_CLAMP, (unsigned char *)
1909         "................"
1910         ".777752..257777."
1911         ".742........247."
1912         ".72..........27."
1913         ".7............7."
1914         ".5............5."
1915         ".2............2."
1916         "................"
1917         "................"
1918         ".2............2."
1919         ".5............5."
1920         ".7............7."
1921         ".72..........27."
1922         ".742........247."
1923         ".777752..257777."
1924         "................"
1925         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1926 }
1927
1928 void R_Shadow_ValidateCvars(void)
1929 {
1930         if (r_shadow_texture3d.integer && !vid.support.ext_texture_3d)
1931                 Cvar_SetValueQuick(&r_shadow_texture3d, 0);
1932         if (gl_ext_separatestencil.integer && !vid.support.ati_separate_stencil)
1933                 Cvar_SetValueQuick(&gl_ext_separatestencil, 0);
1934         if (gl_ext_stenciltwoside.integer && !vid.support.ext_stencil_two_side)
1935                 Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
1936 }
1937
1938 void R_Shadow_RenderMode_Begin(void)
1939 {
1940 #if 0
1941         GLint drawbuffer;
1942         GLint readbuffer;
1943 #endif
1944         R_Shadow_ValidateCvars();
1945
1946         if (!r_shadow_attenuation2dtexture
1947          || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
1948          || r_shadow_lightattenuationdividebias.value != r_shadow_attendividebias
1949          || r_shadow_lightattenuationlinearscale.value != r_shadow_attenlinearscale)
1950                 R_Shadow_MakeTextures();
1951
1952         CHECKGLERROR
1953         R_Mesh_ResetTextureState();
1954         GL_BlendFunc(GL_ONE, GL_ZERO);
1955         GL_DepthRange(0, 1);
1956         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
1957         GL_DepthTest(true);
1958         GL_DepthMask(false);
1959         GL_Color(0, 0, 0, 1);
1960         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
1961
1962         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1963
1964         if (gl_ext_separatestencil.integer && vid.support.ati_separate_stencil)
1965         {
1966                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL;
1967                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL;
1968         }
1969         else if (gl_ext_stenciltwoside.integer && vid.support.ext_stencil_two_side)
1970         {
1971                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE;
1972                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE;
1973         }
1974         else
1975         {
1976                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCIL;
1977                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCIL;
1978         }
1979
1980         switch(vid.renderpath)
1981         {
1982         case RENDERPATH_GL20:
1983         case RENDERPATH_D3D9:
1984         case RENDERPATH_D3D10:
1985         case RENDERPATH_D3D11:
1986         case RENDERPATH_SOFT:
1987         case RENDERPATH_GLES2:
1988                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
1989                 break;
1990         case RENDERPATH_GL11:
1991         case RENDERPATH_GL13:
1992         case RENDERPATH_GLES1:
1993                 if (r_textureunits.integer >= 2 && vid.texunits >= 2 && r_shadow_texture3d.integer && r_shadow_attenuation3dtexture)
1994                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN;
1995                 else if (r_textureunits.integer >= 3 && vid.texunits >= 3)
1996                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN;
1997                 else if (r_textureunits.integer >= 2 && vid.texunits >= 2)
1998                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN;
1999                 else
2000                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
2001                 break;
2002         }
2003
2004         CHECKGLERROR
2005 #if 0
2006         qglGetIntegerv(GL_DRAW_BUFFER, &drawbuffer);CHECKGLERROR
2007         qglGetIntegerv(GL_READ_BUFFER, &readbuffer);CHECKGLERROR
2008         r_shadow_drawbuffer = drawbuffer;
2009         r_shadow_readbuffer = readbuffer;
2010 #endif
2011         r_shadow_cullface_front = r_refdef.view.cullface_front;
2012         r_shadow_cullface_back = r_refdef.view.cullface_back;
2013 }
2014
2015 void R_Shadow_RenderMode_ActiveLight(const rtlight_t *rtlight)
2016 {
2017         rsurface.rtlight = rtlight;
2018 }
2019
2020 void R_Shadow_RenderMode_Reset(void)
2021 {
2022         R_Mesh_SetMainRenderTargets();
2023         R_SetViewport(&r_refdef.view.viewport);
2024         GL_Scissor(r_shadow_lightscissor[0], r_shadow_lightscissor[1], r_shadow_lightscissor[2], r_shadow_lightscissor[3]);
2025         R_Mesh_ResetTextureState();
2026         GL_DepthRange(0, 1);
2027         GL_DepthTest(true);
2028         GL_DepthMask(false);
2029         GL_DepthFunc(GL_LEQUAL);
2030         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);CHECKGLERROR
2031         r_refdef.view.cullface_front = r_shadow_cullface_front;
2032         r_refdef.view.cullface_back = r_shadow_cullface_back;
2033         GL_CullFace(r_refdef.view.cullface_back);
2034         GL_Color(1, 1, 1, 1);
2035         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2036         GL_BlendFunc(GL_ONE, GL_ZERO);
2037         R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1);
2038         r_shadow_usingshadowmap2d = false;
2039         r_shadow_usingshadowmaportho = false;
2040         R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
2041 }
2042
2043 void R_Shadow_ClearStencil(void)
2044 {
2045         GL_Clear(GL_STENCIL_BUFFER_BIT, NULL, 1.0f, 128);
2046         r_refdef.stats.lights_clears++;
2047 }
2048
2049 void R_Shadow_RenderMode_StencilShadowVolumes(qboolean zpass)
2050 {
2051         r_shadow_rendermode_t mode = zpass ? r_shadow_shadowingrendermode_zpass : r_shadow_shadowingrendermode_zfail;
2052         if (r_shadow_rendermode == mode)
2053                 return;
2054         R_Shadow_RenderMode_Reset();
2055         GL_DepthFunc(GL_LESS);
2056         GL_ColorMask(0, 0, 0, 0);
2057         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
2058         GL_CullFace(GL_NONE);
2059         R_SetupShader_DepthOrShadow();
2060         r_shadow_rendermode = mode;
2061         switch(mode)
2062         {
2063         default:
2064                 break;
2065         case R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE:
2066         case R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL:
2067                 R_SetStencilSeparate(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, GL_ALWAYS, 128, 255);
2068                 break;
2069         case R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE:
2070         case R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL:
2071                 R_SetStencilSeparate(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, GL_ALWAYS, 128, 255);
2072                 break;
2073         }
2074 }
2075
2076 static void R_Shadow_MakeVSDCT(void)
2077 {
2078         // maps to a 2x3 texture rectangle with normalized coordinates
2079         // +-
2080         // XX
2081         // YY
2082         // ZZ
2083         // stores abs(dir.xy), offset.xy/2.5
2084         unsigned char data[4*6] =
2085         {
2086                 255, 0, 0x33, 0x33, // +X: <1, 0>, <0.5, 0.5>
2087                 255, 0, 0x99, 0x33, // -X: <1, 0>, <1.5, 0.5>
2088                 0, 255, 0x33, 0x99, // +Y: <0, 1>, <0.5, 1.5>
2089                 0, 255, 0x99, 0x99, // -Y: <0, 1>, <1.5, 1.5>
2090                 0,   0, 0x33, 0xFF, // +Z: <0, 0>, <0.5, 2.5>
2091                 0,   0, 0x99, 0xFF, // -Z: <0, 0>, <1.5, 2.5>
2092         };
2093         r_shadow_shadowmapvsdcttexture = R_LoadTextureCubeMap(r_shadow_texturepool, "shadowmapvsdct", 1, data, TEXTYPE_RGBA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
2094 }
2095
2096 static void R_Shadow_MakeShadowMap(int side, int size)
2097 {
2098         switch (r_shadow_shadowmode)
2099         {
2100         case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
2101                 if (r_shadow_shadowmap2dtexture) return;
2102                 r_shadow_shadowmap2dtexture = R_LoadTextureShadowMap2D(r_shadow_texturepool, "shadowmap", size*2, size*(vid.support.arb_texture_non_power_of_two ? 3 : 4), r_shadow_shadowmapdepthbits, r_shadow_shadowmapsampler);
2103                 r_shadow_shadowmap2dcolortexture = NULL;
2104                 switch(vid.renderpath)
2105                 {
2106 #ifdef SUPPORTD3D
2107                 case RENDERPATH_D3D9:
2108                         r_shadow_shadowmap2dcolortexture = R_LoadTexture2D(r_shadow_texturepool, "shadowmaprendertarget", size*2, size*(vid.support.arb_texture_non_power_of_two ? 3 : 4), NULL, TEXTYPE_BGRA, TEXF_RENDERTARGET | TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
2109                         r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2dtexture, r_shadow_shadowmap2dcolortexture, NULL, NULL, NULL);
2110                         break;
2111 #endif
2112                 default:
2113                         r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2dtexture, NULL, NULL, NULL, NULL);
2114                         break;
2115                 }
2116                 break;
2117         default:
2118                 return;
2119         }
2120
2121         // render depth into the fbo, do not render color at all
2122         // validate the fbo now
2123         if (qglDrawBuffer)
2124         {
2125                 int status;
2126                 qglDrawBuffer(GL_NONE);CHECKGLERROR
2127                 qglReadBuffer(GL_NONE);CHECKGLERROR
2128                 status = qglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);CHECKGLERROR
2129                 if (status != GL_FRAMEBUFFER_COMPLETE_EXT && (r_shadow_shadowmapping.integer || r_shadow_deferred.integer))
2130                 {
2131                         Con_Printf("R_Shadow_MakeShadowMap: glCheckFramebufferStatusEXT returned %i\n", status);
2132                         Cvar_SetValueQuick(&r_shadow_shadowmapping, 0);
2133                         Cvar_SetValueQuick(&r_shadow_deferred, 0);
2134                 }
2135         }
2136 }
2137
2138 void R_Shadow_RenderMode_ShadowMap(int side, int clear, int size)
2139 {
2140         float nearclip, farclip, bias;
2141         r_viewport_t viewport;
2142         int flipped;
2143         GLuint fbo = 0;
2144         float clearcolor[4];
2145         nearclip = r_shadow_shadowmapping_nearclip.value / rsurface.rtlight->radius;
2146         farclip = 1.0f;
2147         bias = r_shadow_shadowmapping_bias.value * nearclip * (1024.0f / size);// * rsurface.rtlight->radius;
2148         r_shadow_shadowmap_parameters[1] = -nearclip * farclip / (farclip - nearclip) - 0.5f * bias;
2149         r_shadow_shadowmap_parameters[3] = 0.5f + 0.5f * (farclip + nearclip) / (farclip - nearclip);
2150         r_shadow_shadowmapside = side;
2151         r_shadow_shadowmapsize = size;
2152
2153         r_shadow_shadowmap_parameters[0] = 0.5f * (size - r_shadow_shadowmapborder);
2154         r_shadow_shadowmap_parameters[2] = r_shadow_shadowmapvsdct ? 2.5f*size : size;
2155         R_Viewport_InitRectSideView(&viewport, &rsurface.rtlight->matrix_lighttoworld, side, size, r_shadow_shadowmapborder, nearclip, farclip, NULL);
2156         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_SHADOWMAP2D) goto init_done;
2157
2158         // complex unrolled cube approach (more flexible)
2159         if (r_shadow_shadowmapvsdct && !r_shadow_shadowmapvsdcttexture)
2160                 R_Shadow_MakeVSDCT();
2161         if (!r_shadow_shadowmap2dtexture)
2162                 R_Shadow_MakeShadowMap(side, r_shadow_shadowmapmaxsize);
2163         if (r_shadow_shadowmap2dtexture) fbo = r_shadow_fbo2d;
2164         r_shadow_shadowmap_texturescale[0] = 1.0f / R_TextureWidth(r_shadow_shadowmap2dtexture);
2165         r_shadow_shadowmap_texturescale[1] = 1.0f / R_TextureHeight(r_shadow_shadowmap2dtexture);
2166         r_shadow_rendermode = R_SHADOW_RENDERMODE_SHADOWMAP2D;
2167
2168         R_Mesh_ResetTextureState();
2169         R_Shadow_RenderMode_Reset();
2170         R_Mesh_SetRenderTargets(fbo, r_shadow_shadowmap2dtexture, r_shadow_shadowmap2dcolortexture, NULL, NULL, NULL);
2171         R_SetupShader_DepthOrShadow();
2172         GL_PolygonOffset(r_shadow_shadowmapping_polygonfactor.value, r_shadow_shadowmapping_polygonoffset.value);
2173         GL_DepthMask(true);
2174         GL_DepthTest(true);
2175
2176 init_done:
2177         R_SetViewport(&viewport);
2178         flipped = (side & 1) ^ (side >> 2);
2179         r_refdef.view.cullface_front = flipped ? r_shadow_cullface_back : r_shadow_cullface_front;
2180         r_refdef.view.cullface_back = flipped ? r_shadow_cullface_front : r_shadow_cullface_back;
2181         switch(vid.renderpath)
2182         {
2183         case RENDERPATH_GL11:
2184         case RENDERPATH_GL13:
2185         case RENDERPATH_GL20:
2186         case RENDERPATH_SOFT:
2187         case RENDERPATH_GLES1:
2188         case RENDERPATH_GLES2:
2189                 GL_CullFace(r_refdef.view.cullface_back);
2190                 // OpenGL lets us scissor larger than the viewport, so go ahead and clear all views at once
2191                 if ((clear & ((2 << side) - 1)) == (1 << side)) // only clear if the side is the first in the mask
2192                 {
2193                         // get tightest scissor rectangle that encloses all viewports in the clear mask
2194                         int x1 = clear & 0x15 ? 0 : size;
2195                         int x2 = clear & 0x2A ? 2 * size : size;
2196                         int y1 = clear & 0x03 ? 0 : (clear & 0xC ? size : 2 * size);
2197                         int y2 = clear & 0x30 ? 3 * size : (clear & 0xC ? 2 * size : size);
2198                         GL_Scissor(x1, y1, x2 - x1, y2 - y1);
2199                         GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0);
2200                 }
2201                 GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
2202                 break;
2203         case RENDERPATH_D3D9:
2204         case RENDERPATH_D3D10:
2205         case RENDERPATH_D3D11:
2206                 Vector4Set(clearcolor, 1,1,1,1);
2207                 // completely different meaning than in OpenGL path
2208                 r_shadow_shadowmap_parameters[1] = 0;
2209                 r_shadow_shadowmap_parameters[3] = -bias;
2210                 // we invert the cull mode because we flip the projection matrix
2211                 // NOTE: this actually does nothing because the DrawShadowMap code sets it to doublesided...
2212                 GL_CullFace(r_refdef.view.cullface_front);
2213                 // D3D considers it an error to use a scissor larger than the viewport...  clear just this view
2214                 GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
2215                 if (r_shadow_shadowmapsampler)
2216                 {
2217                         GL_ColorMask(0,0,0,0);
2218                         if (clear)
2219                                 GL_Clear(GL_DEPTH_BUFFER_BIT, clearcolor, 1.0f, 0);
2220                 }
2221                 else
2222                 {
2223                         GL_ColorMask(1,1,1,1);
2224                         if (clear)
2225                                 GL_Clear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT, clearcolor, 1.0f, 0);
2226                 }
2227                 break;
2228         }
2229 }
2230
2231 void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent, qboolean shadowmapping)
2232 {
2233         R_Mesh_ResetTextureState();
2234         R_Mesh_SetMainRenderTargets();
2235         if (transparent)
2236         {
2237                 r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
2238                 r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
2239                 r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
2240                 r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
2241         }
2242         R_Shadow_RenderMode_Reset();
2243         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2244         if (!transparent)
2245                 GL_DepthFunc(GL_EQUAL);
2246         // do global setup needed for the chosen lighting mode
2247         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2248                 GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 0);
2249         r_shadow_usingshadowmap2d = shadowmapping;
2250         r_shadow_rendermode = r_shadow_lightingrendermode;
2251         // only draw light where this geometry was already rendered AND the
2252         // stencil is 128 (values other than this mean shadow)
2253         if (stenciltest)
2254                 R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2255         else
2256                 R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
2257 }
2258
2259 static const unsigned short bboxelements[36] =
2260 {
2261         5, 1, 3, 5, 3, 7,
2262         6, 2, 0, 6, 0, 4,
2263         7, 3, 2, 7, 2, 6,
2264         4, 0, 1, 4, 1, 5,
2265         4, 5, 7, 4, 7, 6,
2266         1, 0, 2, 1, 2, 3,
2267 };
2268
2269 static const float bboxpoints[8][3] =
2270 {
2271         {-1,-1,-1},
2272         { 1,-1,-1},
2273         {-1, 1,-1},
2274         { 1, 1,-1},
2275         {-1,-1, 1},
2276         { 1,-1, 1},
2277         {-1, 1, 1},
2278         { 1, 1, 1},
2279 };
2280
2281 void R_Shadow_RenderMode_DrawDeferredLight(qboolean stenciltest, qboolean shadowmapping)
2282 {
2283         int i;
2284         float vertex3f[8*3];
2285         const matrix4x4_t *matrix = &rsurface.rtlight->matrix_lighttoworld;
2286 // do global setup needed for the chosen lighting mode
2287         R_Shadow_RenderMode_Reset();
2288         r_shadow_rendermode = r_shadow_lightingrendermode;
2289         R_EntityMatrix(&identitymatrix);
2290         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2291         // only draw light where this geometry was already rendered AND the
2292         // stencil is 128 (values other than this mean shadow)
2293         R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2294         if (rsurface.rtlight->specularscale > 0 && r_shadow_gloss.integer > 0)
2295                 R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
2296         else
2297                 R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusefbo, r_shadow_prepassgeometrydepthtexture, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);
2298
2299         r_shadow_usingshadowmap2d = shadowmapping;
2300
2301         // render the lighting
2302         R_SetupShader_DeferredLight(rsurface.rtlight);
2303         for (i = 0;i < 8;i++)
2304                 Matrix4x4_Transform(matrix, bboxpoints[i], vertex3f + i*3);
2305         GL_ColorMask(1,1,1,1);
2306         GL_DepthMask(false);
2307         GL_DepthRange(0, 1);
2308         GL_PolygonOffset(0, 0);
2309         GL_DepthTest(true);
2310         GL_DepthFunc(GL_GREATER);
2311         GL_CullFace(r_refdef.view.cullface_back);
2312         R_Mesh_PrepareVertices_Vertex3f(8, vertex3f, NULL);
2313         R_Mesh_Draw(0, 8, 0, 12, NULL, NULL, 0, bboxelements, NULL, 0);
2314 }
2315
2316 static void R_Shadow_UpdateBounceGridTexture(void)
2317 {
2318 #define MAXBOUNCEGRIDPARTICLESPERLIGHT 1048576
2319         dlight_t *light;
2320         int flag = r_refdef.scene.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
2321         int bouncecount;
2322         int hitsupercontentsmask;
2323         int maxbounce;
2324         int numpixels;
2325         int resolution[3];
2326         int shootparticles;
2327         int shotparticles;
2328         int photoncount;
2329         int tex[3];
2330         trace_t cliptrace;
2331         //trace_t cliptrace2;
2332         //trace_t cliptrace3;
2333         unsigned char *pixel;
2334         unsigned char *pixels;
2335         float *highpixel;
2336         float *highpixels;
2337         unsigned int lightindex;
2338         unsigned int range;
2339         unsigned int range1;
2340         unsigned int range2;
2341         unsigned int seed = (unsigned int)(realtime * 1000.0f);
2342         vec3_t shotcolor;
2343         vec3_t baseshotcolor;
2344         vec3_t surfcolor;
2345         vec3_t clipend;
2346         vec3_t clipstart;
2347         vec3_t clipdiff;
2348         vec3_t ispacing;
2349         vec3_t maxs;
2350         vec3_t mins;
2351         vec3_t size;
2352         vec3_t spacing;
2353         vec3_t lightcolor;
2354         vec3_t steppos;
2355         vec3_t stepdelta;
2356         vec_t radius;
2357         vec_t s;
2358         vec_t lightintensity;
2359         vec_t photonscaling;
2360         vec_t photonresidual;
2361         float m[16];
2362         float texlerp[2][3];
2363         float splatcolor[32];
2364         float pixelweight[8];
2365         float w;
2366         int c[4];
2367         int pixelindex[8];
2368         int corner;
2369         int pixelsperband;
2370         int pixelband;
2371         int pixelbands;
2372         int numsteps;
2373         int step;
2374         int x, y, z;
2375         rtlight_t *rtlight;
2376         r_shadow_bouncegrid_settings_t settings;
2377         qboolean enable = r_shadow_bouncegrid.integer != 0 && r_refdef.scene.worldmodel;
2378         qboolean allowdirectionalshading = false;
2379         switch(vid.renderpath)
2380         {
2381         case RENDERPATH_GL20:
2382                 allowdirectionalshading = true;
2383                 if (!vid.support.ext_texture_3d)
2384                         return;
2385                 break;
2386         case RENDERPATH_GLES2:
2387                 // for performance reasons, do not use directional shading on GLES devices
2388                 if (!vid.support.ext_texture_3d)
2389                         return;
2390                 break;
2391                 // these renderpaths do not currently have the code to display the bouncegrid, so disable it on them...
2392         case RENDERPATH_GL11:
2393         case RENDERPATH_GL13:
2394         case RENDERPATH_GLES1:
2395         case RENDERPATH_SOFT:
2396         case RENDERPATH_D3D9:
2397         case RENDERPATH_D3D10:
2398         case RENDERPATH_D3D11:
2399                 return;
2400         }
2401
2402         r_shadow_bouncegridintensity = r_shadow_bouncegrid_intensity.value;
2403
2404         // see if there are really any lights to render...
2405         if (enable && r_shadow_bouncegrid_static.integer)
2406         {
2407                 enable = false;
2408                 range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
2409                 for (lightindex = 0;lightindex < range;lightindex++)
2410                 {
2411                         light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2412                         if (!light || !(light->flags & flag))
2413                                 continue;
2414                         rtlight = &light->rtlight;
2415                         // when static, we skip styled lights because they tend to change...
2416                         if (rtlight->style > 0)
2417                                 continue;
2418                         VectorScale(rtlight->color, (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale), lightcolor);
2419                         if (!VectorLength2(lightcolor))
2420                                 continue;
2421                         enable = true;
2422                         break;
2423                 }
2424         }
2425
2426         if (!enable)
2427         {
2428                 if (r_shadow_bouncegridtexture)
2429                 {
2430                         R_FreeTexture(r_shadow_bouncegridtexture);
2431                         r_shadow_bouncegridtexture = NULL;
2432                 }
2433                 if (r_shadow_bouncegridpixels)
2434                         Mem_Free(r_shadow_bouncegridpixels);
2435                 r_shadow_bouncegridpixels = NULL;
2436                 if (r_shadow_bouncegridhighpixels)
2437                         Mem_Free(r_shadow_bouncegridhighpixels);
2438                 r_shadow_bouncegridhighpixels = NULL;
2439                 r_shadow_bouncegridnumpixels = 0;
2440                 r_shadow_bouncegriddirectional = false;
2441                 return;
2442         }
2443
2444         // build up a complete collection of the desired settings, so that memcmp can be used to compare parameters
2445         memset(&settings, 0, sizeof(settings));
2446         settings.staticmode                    = r_shadow_bouncegrid_static.integer != 0;
2447         settings.airstepmax                    = bound(1, r_shadow_bouncegrid_airstepmax.integer, 1048576);
2448         settings.airstepsize                   = bound(1.0f, r_shadow_bouncegrid_airstepsize.value, 1024.0f);
2449         settings.bounceanglediffuse            = r_shadow_bouncegrid_bounceanglediffuse.integer != 0;
2450         settings.directionalshading            = (r_shadow_bouncegrid_static.integer != 0 ? r_shadow_bouncegrid_static_directionalshading.integer != 0 : r_shadow_bouncegrid_directionalshading.integer != 0) && allowdirectionalshading;
2451         settings.dlightparticlemultiplier      = r_shadow_bouncegrid_dlightparticlemultiplier.value;
2452         settings.hitmodels                     = r_shadow_bouncegrid_hitmodels.integer != 0;
2453         settings.includedirectlighting         = r_shadow_bouncegrid_includedirectlighting.integer != 0;
2454         settings.lightradiusscale              = r_shadow_bouncegrid_lightradiusscale.value;
2455         settings.maxbounce                     = r_shadow_bouncegrid_maxbounce.integer;
2456         settings.particlebounceintensity       = r_shadow_bouncegrid_particlebounceintensity.value;
2457         settings.particleintensity             = r_shadow_bouncegrid_particleintensity.value;
2458         settings.photons                       = r_shadow_bouncegrid_static.integer ? r_shadow_bouncegrid_static_photons.integer : r_shadow_bouncegrid_photons.integer;
2459         settings.spacing[0]                    = r_shadow_bouncegrid_spacingx.value;
2460         settings.spacing[1]                    = r_shadow_bouncegrid_spacingy.value;
2461         settings.spacing[2]                    = r_shadow_bouncegrid_spacingz.value;
2462         settings.stablerandom                  = r_shadow_bouncegrid_stablerandom.integer;
2463
2464         // bound the values for sanity
2465         settings.photons = bound(1, settings.photons, 1048576);
2466         settings.lightradiusscale = bound(0.0001f, settings.lightradiusscale, 1024.0f);
2467         settings.maxbounce = bound(0, settings.maxbounce, 16);
2468         settings.spacing[0] = bound(1, settings.spacing[0], 512);
2469         settings.spacing[1] = bound(1, settings.spacing[1], 512);
2470         settings.spacing[2] = bound(1, settings.spacing[2], 512);
2471
2472         // get the spacing values
2473         spacing[0] = settings.spacing[0];
2474         spacing[1] = settings.spacing[1];
2475         spacing[2] = settings.spacing[2];
2476         ispacing[0] = 1.0f / spacing[0];
2477         ispacing[1] = 1.0f / spacing[1];
2478         ispacing[2] = 1.0f / spacing[2];
2479
2480         // calculate texture size enclosing entire world bounds at the spacing
2481         VectorMA(r_refdef.scene.worldmodel->normalmins, -2.0f, spacing, mins);
2482         VectorMA(r_refdef.scene.worldmodel->normalmaxs, 2.0f, spacing, maxs);
2483         VectorSubtract(maxs, mins, size);
2484         // now we can calculate the resolution we want
2485         c[0] = (int)floor(size[0] / spacing[0] + 0.5f);
2486         c[1] = (int)floor(size[1] / spacing[1] + 0.5f);
2487         c[2] = (int)floor(size[2] / spacing[2] + 0.5f);
2488         // figure out the exact texture size (honoring power of 2 if required)
2489         c[0] = bound(4, c[0], (int)vid.maxtexturesize_3d);
2490         c[1] = bound(4, c[1], (int)vid.maxtexturesize_3d);
2491         c[2] = bound(4, c[2], (int)vid.maxtexturesize_3d);
2492         if (vid.support.arb_texture_non_power_of_two)
2493         {
2494                 resolution[0] = c[0];
2495                 resolution[1] = c[1];
2496                 resolution[2] = c[2];
2497         }
2498         else
2499         {
2500                 for (resolution[0] = 4;resolution[0] < c[0];resolution[0]*=2) ;
2501                 for (resolution[1] = 4;resolution[1] < c[1];resolution[1]*=2) ;
2502                 for (resolution[2] = 4;resolution[2] < c[2];resolution[2]*=2) ;
2503         }
2504         size[0] = spacing[0] * resolution[0];
2505         size[1] = spacing[1] * resolution[1];
2506         size[2] = spacing[2] * resolution[2];
2507
2508         // if dynamic we may or may not want to use the world bounds
2509         // if the dynamic size is smaller than the world bounds, use it instead
2510         if (!settings.staticmode && (r_shadow_bouncegrid_x.integer * r_shadow_bouncegrid_y.integer * r_shadow_bouncegrid_z.integer < resolution[0] * resolution[1] * resolution[2]))
2511         {
2512                 // we know the resolution we want
2513                 c[0] = r_shadow_bouncegrid_x.integer;
2514                 c[1] = r_shadow_bouncegrid_y.integer;
2515                 c[2] = r_shadow_bouncegrid_z.integer;
2516                 // now we can calculate the texture size (power of 2 if required)
2517                 c[0] = bound(4, c[0], (int)vid.maxtexturesize_3d);
2518                 c[1] = bound(4, c[1], (int)vid.maxtexturesize_3d);
2519                 c[2] = bound(4, c[2], (int)vid.maxtexturesize_3d);
2520                 if (vid.support.arb_texture_non_power_of_two)
2521                 {
2522                         resolution[0] = c[0];
2523                         resolution[1] = c[1];
2524                         resolution[2] = c[2];
2525                 }
2526                 else
2527                 {
2528                         for (resolution[0] = 4;resolution[0] < c[0];resolution[0]*=2) ;
2529                         for (resolution[1] = 4;resolution[1] < c[1];resolution[1]*=2) ;
2530                         for (resolution[2] = 4;resolution[2] < c[2];resolution[2]*=2) ;
2531                 }
2532                 size[0] = spacing[0] * resolution[0];
2533                 size[1] = spacing[1] * resolution[1];
2534                 size[2] = spacing[2] * resolution[2];
2535                 // center the rendering on the view
2536                 mins[0] = floor(r_refdef.view.origin[0] * ispacing[0] + 0.5f) * spacing[0] - 0.5f * size[0];
2537                 mins[1] = floor(r_refdef.view.origin[1] * ispacing[1] + 0.5f) * spacing[1] - 0.5f * size[1];
2538                 mins[2] = floor(r_refdef.view.origin[2] * ispacing[2] + 0.5f) * spacing[2] - 0.5f * size[2];
2539         }
2540
2541         // recalculate the maxs in case the resolution was not satisfactory
2542         VectorAdd(mins, size, maxs);
2543
2544         // if all the settings seem identical to the previous update, return
2545         if (r_shadow_bouncegridtexture && (settings.staticmode || realtime < r_shadow_bouncegridtime + r_shadow_bouncegrid_updateinterval.value) && !memcmp(&r_shadow_bouncegridsettings, &settings, sizeof(settings)))
2546                 return;
2547
2548         // store the new settings
2549         r_shadow_bouncegridsettings = settings;
2550
2551         pixelbands = settings.directionalshading ? 8 : 1;
2552         pixelsperband = resolution[0]*resolution[1]*resolution[2];
2553         numpixels = pixelsperband*pixelbands;
2554
2555         // we're going to update the bouncegrid, update the matrix...
2556         memset(m, 0, sizeof(m));
2557         m[0] = 1.0f / size[0];
2558         m[3] = -mins[0] * m[0];
2559         m[5] = 1.0f / size[1];
2560         m[7] = -mins[1] * m[5];
2561         m[10] = 1.0f / size[2];
2562         m[11] = -mins[2] * m[10];
2563         m[15] = 1.0f;
2564         Matrix4x4_FromArrayFloatD3D(&r_shadow_bouncegridmatrix, m);
2565         // reallocate pixels for this update if needed...
2566         if (r_shadow_bouncegridnumpixels != numpixels || !r_shadow_bouncegridpixels || !r_shadow_bouncegridhighpixels)
2567         {
2568                 if (r_shadow_bouncegridtexture)
2569                 {
2570                         R_FreeTexture(r_shadow_bouncegridtexture);
2571                         r_shadow_bouncegridtexture = NULL;
2572                 }
2573                 r_shadow_bouncegridpixels = (unsigned char *)Mem_Realloc(r_main_mempool, r_shadow_bouncegridpixels, numpixels * sizeof(unsigned char[4]));
2574                 r_shadow_bouncegridhighpixels = (float *)Mem_Realloc(r_main_mempool, r_shadow_bouncegridhighpixels, numpixels * sizeof(float[4]));
2575         }
2576         r_shadow_bouncegridnumpixels = numpixels;
2577         pixels = r_shadow_bouncegridpixels;
2578         highpixels = r_shadow_bouncegridhighpixels;
2579         x = pixelsperband*4;
2580         for (pixelband = 0;pixelband < pixelbands;pixelband++)
2581         {
2582                 if (pixelband == 1)
2583                         memset(pixels + pixelband * x, 128, x);
2584                 else
2585                         memset(pixels + pixelband * x, 0, x);
2586         }
2587         memset(highpixels, 0, numpixels * sizeof(float[4]));
2588         // figure out what we want to interact with
2589         if (settings.hitmodels)
2590                 hitsupercontentsmask = SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY;// | SUPERCONTENTS_LIQUIDSMASK;
2591         else
2592                 hitsupercontentsmask = SUPERCONTENTS_SOLID;// | SUPERCONTENTS_LIQUIDSMASK;
2593         maxbounce = settings.maxbounce;
2594         // clear variables that produce warnings otherwise
2595         memset(splatcolor, 0, sizeof(splatcolor));
2596         // iterate world rtlights
2597         range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
2598         range1 = settings.staticmode ? 0 : r_refdef.scene.numlights;
2599         range2 = range + range1;
2600         photoncount = 0;
2601         for (lightindex = 0;lightindex < range2;lightindex++)
2602         {
2603                 if (settings.staticmode)
2604                 {
2605                         light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2606                         if (!light || !(light->flags & flag))
2607                                 continue;
2608                         rtlight = &light->rtlight;
2609                         // when static, we skip styled lights because they tend to change...
2610                         if (rtlight->style > 0)
2611                                 continue;
2612                         VectorScale(rtlight->color, (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale) * (rtlight->style >= 0 ? r_refdef.scene.rtlightstylevalue[rtlight->style] : 1), lightcolor);
2613                 }
2614                 else
2615                 {
2616                         if (lightindex < range)
2617                         {
2618                                 light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2619                                 rtlight = &light->rtlight;
2620                         }
2621                         else
2622                                 rtlight = r_refdef.scene.lights[lightindex - range];
2623                         // draw only visible lights (major speedup)
2624                         if (!rtlight->draw)
2625                                 continue;
2626                         VectorScale(rtlight->currentcolor, rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale, lightcolor);
2627                 }
2628                 if (!VectorLength2(lightcolor))
2629                         continue;
2630                 // shoot particles from this light
2631                 // use a calculation for the number of particles that will not
2632                 // vary with lightstyle, otherwise we get randomized particle
2633                 // distribution, the seeded random is only consistent for a
2634                 // consistent number of particles on this light...
2635                 radius = rtlight->radius * settings.lightradiusscale;
2636                 s = rtlight->radius;
2637                 lightintensity = VectorLength(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale);
2638                 if (lightindex >= range)
2639                         lightintensity *= settings.dlightparticlemultiplier;
2640                 photoncount += max(0.0f, lightintensity * s * s);
2641         }
2642         photonscaling = (float)settings.photons / max(1, photoncount);
2643         photonresidual = 0.0f;
2644         for (lightindex = 0;lightindex < range2;lightindex++)
2645         {
2646                 if (settings.staticmode)
2647                 {
2648                         light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2649                         if (!light || !(light->flags & flag))
2650                                 continue;
2651                         rtlight = &light->rtlight;
2652                         // when static, we skip styled lights because they tend to change...
2653                         if (rtlight->style > 0)
2654                                 continue;
2655                         VectorScale(rtlight->color, (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale) * (rtlight->style >= 0 ? r_refdef.scene.rtlightstylevalue[rtlight->style] : 1), lightcolor);
2656                 }
2657                 else
2658                 {
2659                         if (lightindex < range)
2660                         {
2661                                 light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2662                                 rtlight = &light->rtlight;
2663                         }
2664                         else
2665                                 rtlight = r_refdef.scene.lights[lightindex - range];
2666                         // draw only visible lights (major speedup)
2667                         if (!rtlight->draw)
2668                                 continue;
2669                         VectorScale(rtlight->currentcolor, rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale, lightcolor);
2670                 }
2671                 if (!VectorLength2(lightcolor))
2672                         continue;
2673                 // shoot particles from this light
2674                 // use a calculation for the number of particles that will not
2675                 // vary with lightstyle, otherwise we get randomized particle
2676                 // distribution, the seeded random is only consistent for a
2677                 // consistent number of particles on this light...
2678                 radius = rtlight->radius * settings.lightradiusscale;
2679                 s = rtlight->radius;
2680                 lightintensity = VectorLength(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale);
2681                 if (lightindex >= range)
2682                         lightintensity *= settings.dlightparticlemultiplier;
2683                 photonresidual += lightintensity * s * s * photonscaling;
2684                 shootparticles = (int)bound(0, photonresidual, MAXBOUNCEGRIDPARTICLESPERLIGHT);
2685                 if (!shootparticles)
2686                         continue;
2687                 photonresidual -= shootparticles;
2688                 s = settings.particleintensity / shootparticles;
2689                 VectorScale(lightcolor, s, baseshotcolor);
2690                 if (VectorLength2(baseshotcolor) == 0.0f)
2691                         break;
2692                 r_refdef.stats.bouncegrid_lights++;
2693                 r_refdef.stats.bouncegrid_particles += shootparticles;
2694                 for (shotparticles = 0;shotparticles < shootparticles;shotparticles++)
2695                 {
2696                         if (settings.stablerandom > 0)
2697                                 seed = lightindex * 11937 + shotparticles;
2698                         VectorCopy(baseshotcolor, shotcolor);
2699                         VectorCopy(rtlight->shadoworigin, clipstart);
2700                         if (settings.stablerandom < 0)
2701                                 VectorRandom(clipend);
2702                         else
2703                                 VectorCheeseRandom(clipend);
2704                         VectorMA(clipstart, radius, clipend, clipend);
2705                         for (bouncecount = 0;;bouncecount++)
2706                         {
2707                                 r_refdef.stats.bouncegrid_traces++;
2708                                 //r_refdef.scene.worldmodel->TraceLineAgainstSurfaces(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace, clipstart, clipend, hitsupercontentsmask);
2709                                 //r_refdef.scene.worldmodel->TraceLine(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace2, clipstart, clipend, hitsupercontentsmask);
2710                                 if (settings.staticmode)
2711                                         Collision_ClipLineToWorld(&cliptrace, cl.worldmodel, clipstart, clipend, hitsupercontentsmask, true);
2712                                 else
2713                                         cliptrace = CL_TraceLine(clipstart, clipend, settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS, NULL, hitsupercontentsmask, true, false, NULL, true, true);
2714                                 if (bouncecount > 0 || settings.includedirectlighting)
2715                                 {
2716                                         // calculate second order spherical harmonics values (average, slopeX, slopeY, slopeZ)
2717                                         // accumulate average shotcolor
2718                                         w = VectorLength(shotcolor);
2719                                         splatcolor[ 0] = shotcolor[0];
2720                                         splatcolor[ 1] = shotcolor[1];
2721                                         splatcolor[ 2] = shotcolor[2];
2722                                         splatcolor[ 3] = 0.0f;
2723                                         if (pixelbands > 1)
2724                                         {
2725                                                 VectorSubtract(clipstart, cliptrace.endpos, clipdiff);
2726                                                 VectorNormalize(clipdiff);
2727                                                 // store bentnormal in case the shader has a use for it
2728                                                 splatcolor[ 4] = clipdiff[0] * w;
2729                                                 splatcolor[ 5] = clipdiff[1] * w;
2730                                                 splatcolor[ 6] = clipdiff[2] * w;
2731                                                 splatcolor[ 7] = w;
2732                                                 // accumulate directional contributions (+X, +Y, +Z, -X, -Y, -Z)
2733                                                 splatcolor[ 8] = shotcolor[0] * max(0.0f, clipdiff[0]);
2734                                                 splatcolor[ 9] = shotcolor[0] * max(0.0f, clipdiff[1]);
2735                                                 splatcolor[10] = shotcolor[0] * max(0.0f, clipdiff[2]);
2736                                                 splatcolor[11] = 0.0f;
2737                                                 splatcolor[12] = shotcolor[1] * max(0.0f, clipdiff[0]);
2738                                                 splatcolor[13] = shotcolor[1] * max(0.0f, clipdiff[1]);
2739                                                 splatcolor[14] = shotcolor[1] * max(0.0f, clipdiff[2]);
2740                                                 splatcolor[15] = 0.0f;
2741                                                 splatcolor[16] = shotcolor[2] * max(0.0f, clipdiff[0]);
2742                                                 splatcolor[17] = shotcolor[2] * max(0.0f, clipdiff[1]);
2743                                                 splatcolor[18] = shotcolor[2] * max(0.0f, clipdiff[2]);
2744                                                 splatcolor[19] = 0.0f;
2745                                                 splatcolor[20] = shotcolor[0] * max(0.0f, -clipdiff[0]);
2746                                                 splatcolor[21] = shotcolor[0] * max(0.0f, -clipdiff[1]);
2747                                                 splatcolor[22] = shotcolor[0] * max(0.0f, -clipdiff[2]);
2748                                                 splatcolor[23] = 0.0f;
2749                                                 splatcolor[24] = shotcolor[1] * max(0.0f, -clipdiff[0]);
2750                                                 splatcolor[25] = shotcolor[1] * max(0.0f, -clipdiff[1]);
2751                                                 splatcolor[26] = shotcolor[1] * max(0.0f, -clipdiff[2]);
2752                                                 splatcolor[27] = 0.0f;
2753                                                 splatcolor[28] = shotcolor[2] * max(0.0f, -clipdiff[0]);
2754                                                 splatcolor[29] = shotcolor[2] * max(0.0f, -clipdiff[1]);
2755                                                 splatcolor[30] = shotcolor[2] * max(0.0f, -clipdiff[2]);
2756                                                 splatcolor[31] = 0.0f;
2757                                         }
2758                                         // calculate the number of steps we need to traverse this distance
2759                                         VectorSubtract(cliptrace.endpos, clipstart, stepdelta);
2760                                         numsteps = (int)(VectorLength(stepdelta) / settings.airstepsize);
2761                                         numsteps = bound(1, numsteps, settings.airstepmax);
2762                                         w = 1.0f / numsteps;
2763                                         VectorScale(stepdelta, w, stepdelta);
2764                                         VectorMA(clipstart, 0.5f, stepdelta, steppos);
2765                                         if (settings.airstepmax == 1)
2766                                                 VectorCopy(cliptrace.endpos, steppos);
2767                                         for (step = 0;step < numsteps;step++)
2768                                         {
2769                                                 r_refdef.stats.bouncegrid_splats++;
2770                                                 // figure out which texture pixel this is in
2771                                                 texlerp[1][0] = ((steppos[0] - mins[0]) * ispacing[0]);
2772                                                 texlerp[1][1] = ((steppos[1] - mins[1]) * ispacing[1]);
2773                                                 texlerp[1][2] = ((steppos[2] - mins[2]) * ispacing[2]);
2774                                                 tex[0] = (int)floor(texlerp[1][0]);
2775                                                 tex[1] = (int)floor(texlerp[1][1]);
2776                                                 tex[2] = (int)floor(texlerp[1][2]);
2777                                                 if (tex[0] >= 1 && tex[1] >= 1 && tex[2] >= 1 && tex[0] < resolution[0] - 2 && tex[1] < resolution[1] - 2 && tex[2] < resolution[2] - 2)
2778                                                 {
2779                                                         // it is within bounds...  do the real work now
2780                                                         // calculate the lerp factors
2781                                                         texlerp[1][0] -= tex[0];
2782                                                         texlerp[1][1] -= tex[1];
2783                                                         texlerp[1][2] -= tex[2];
2784                                                         texlerp[0][0] = 1.0f - texlerp[1][0];
2785                                                         texlerp[0][1] = 1.0f - texlerp[1][1];
2786                                                         texlerp[0][2] = 1.0f - texlerp[1][2];
2787                                                         // calculate individual pixel indexes and weights
2788                                                         pixelindex[0] = (((tex[2]  )*resolution[1]+tex[1]  )*resolution[0]+tex[0]  );pixelweight[0] = (texlerp[0][0]*texlerp[0][1]*texlerp[0][2]);
2789                                                         pixelindex[1] = (((tex[2]  )*resolution[1]+tex[1]  )*resolution[0]+tex[0]+1);pixelweight[1] = (texlerp[1][0]*texlerp[0][1]*texlerp[0][2]);
2790                                                         pixelindex[2] = (((tex[2]  )*resolution[1]+tex[1]+1)*resolution[0]+tex[0]  );pixelweight[2] = (texlerp[0][0]*texlerp[1][1]*texlerp[0][2]);
2791                                                         pixelindex[3] = (((tex[2]  )*resolution[1]+tex[1]+1)*resolution[0]+tex[0]+1);pixelweight[3] = (texlerp[1][0]*texlerp[1][1]*texlerp[0][2]);
2792                                                         pixelindex[4] = (((tex[2]+1)*resolution[1]+tex[1]  )*resolution[0]+tex[0]  );pixelweight[4] = (texlerp[0][0]*texlerp[0][1]*texlerp[1][2]);
2793                                                         pixelindex[5] = (((tex[2]+1)*resolution[1]+tex[1]  )*resolution[0]+tex[0]+1);pixelweight[5] = (texlerp[1][0]*texlerp[0][1]*texlerp[1][2]);
2794                                                         pixelindex[6] = (((tex[2]+1)*resolution[1]+tex[1]+1)*resolution[0]+tex[0]  );pixelweight[6] = (texlerp[0][0]*texlerp[1][1]*texlerp[1][2]);
2795                                                         pixelindex[7] = (((tex[2]+1)*resolution[1]+tex[1]+1)*resolution[0]+tex[0]+1);pixelweight[7] = (texlerp[1][0]*texlerp[1][1]*texlerp[1][2]);
2796                                                         // update the 8 pixels...
2797                                                         for (pixelband = 0;pixelband < pixelbands;pixelband++)
2798                                                         {
2799                                                                 for (corner = 0;corner < 8;corner++)
2800                                                                 {
2801                                                                         // calculate address for pixel
2802                                                                         w = pixelweight[corner];
2803                                                                         pixel = pixels + 4 * pixelindex[corner] + pixelband * pixelsperband * 4;
2804                                                                         highpixel = highpixels + 4 * pixelindex[corner] + pixelband * pixelsperband * 4;
2805                                                                         // add to the high precision pixel color
2806                                                                         highpixel[0] += (splatcolor[pixelband*4+0]*w);
2807                                                                         highpixel[1] += (splatcolor[pixelband*4+1]*w);
2808                                                                         highpixel[2] += (splatcolor[pixelband*4+2]*w);
2809                                                                         highpixel[3] += (splatcolor[pixelband*4+3]*w);
2810                                                                         // flag the low precision pixel as needing to be updated
2811                                                                         pixel[3] = 255;
2812                                                                         // advance to next band of coefficients
2813                                                                         //pixel += pixelsperband*4;
2814                                                                         //highpixel += pixelsperband*4;
2815                                                                 }
2816                                                         }
2817                                                 }
2818                                                 VectorAdd(steppos, stepdelta, steppos);
2819                                         }
2820                                 }
2821                                 if (cliptrace.fraction >= 1.0f)
2822                                         break;
2823                                 r_refdef.stats.bouncegrid_hits++;
2824                                 if (bouncecount >= maxbounce)
2825                                         break;
2826                                 // scale down shot color by bounce intensity and texture color (or 50% if no texture reported)
2827                                 // also clamp the resulting color to never add energy, even if the user requests extreme values
2828                                 if (cliptrace.hittexture && cliptrace.hittexture->currentskinframe)
2829                                         VectorCopy(cliptrace.hittexture->currentskinframe->avgcolor, surfcolor);
2830                                 else
2831                                         VectorSet(surfcolor, 0.5f, 0.5f, 0.5f);
2832                                 VectorScale(surfcolor, settings.particlebounceintensity, surfcolor);
2833                                 surfcolor[0] = min(surfcolor[0], 1.0f);
2834                                 surfcolor[1] = min(surfcolor[1], 1.0f);
2835                                 surfcolor[2] = min(surfcolor[2], 1.0f);
2836                                 VectorMultiply(shotcolor, surfcolor, shotcolor);
2837                                 if (VectorLength2(baseshotcolor) == 0.0f)
2838                                         break;
2839                                 r_refdef.stats.bouncegrid_bounces++;
2840                                 if (settings.bounceanglediffuse)
2841                                 {
2842                                         // random direction, primarily along plane normal
2843                                         s = VectorDistance(cliptrace.endpos, clipend);
2844                                         if (settings.stablerandom < 0)
2845                                                 VectorRandom(clipend);
2846                                         else
2847                                                 VectorCheeseRandom(clipend);
2848                                         VectorMA(cliptrace.plane.normal, 0.95f, clipend, clipend);
2849                                         VectorNormalize(clipend);
2850                                         VectorScale(clipend, s, clipend);
2851                                 }
2852                                 else
2853                                 {
2854                                         // reflect the remaining portion of the line across plane normal
2855                                         VectorSubtract(clipend, cliptrace.endpos, clipdiff);
2856                                         VectorReflect(clipdiff, 1.0, cliptrace.plane.normal, clipend);
2857                                 }
2858                                 // calculate the new line start and end
2859                                 VectorCopy(cliptrace.endpos, clipstart);
2860                                 VectorAdd(clipstart, clipend, clipend);
2861                         }
2862                 }
2863         }
2864         // generate pixels array from highpixels array
2865         // skip first and last columns, rows, and layers as these are blank
2866         // the pixel[3] value was written above, so we can use it to detect only pixels that need to be calculated
2867         for (pixelband = 0;pixelband < pixelbands;pixelband++)
2868         {
2869                 for (z = 1;z < resolution[2]-1;z++)
2870                 {
2871                         for (y = 1;y < resolution[1]-1;y++)
2872                         {
2873                                 for (x = 1, pixelindex[0] = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x, pixel = pixels + 4*pixelindex[0], highpixel = highpixels + 4*pixelindex[0];x < resolution[0]-1;x++, pixel += 4, highpixel += 4)
2874                                 {
2875                                         // only convert pixels that were hit by photons
2876                                         if (pixel[3] == 255)
2877                                         {
2878                                                 // normalize the bentnormal...
2879                                                 if (pixelband == 1)
2880                                                 {
2881                                                         VectorNormalize(highpixel);
2882                                                         c[0] = (int)(highpixel[0]*128.0f+128.0f);
2883                                                         c[1] = (int)(highpixel[1]*128.0f+128.0f);
2884                                                         c[2] = (int)(highpixel[2]*128.0f+128.0f);
2885                                                         c[3] = (int)(highpixel[3]*128.0f+128.0f);
2886                                                 }
2887                                                 else
2888                                                 {
2889                                                         c[0] = (int)(highpixel[0]*256.0f);
2890                                                         c[1] = (int)(highpixel[1]*256.0f);
2891                                                         c[2] = (int)(highpixel[2]*256.0f);
2892                                                         c[3] = (int)(highpixel[3]*256.0f);
2893                                                 }
2894                                                 pixel[2] = (unsigned char)bound(0, c[0], 255);
2895                                                 pixel[1] = (unsigned char)bound(0, c[1], 255);
2896                                                 pixel[0] = (unsigned char)bound(0, c[2], 255);
2897                                                 pixel[3] = (unsigned char)bound(0, c[3], 255);
2898                                         }
2899                                 }
2900                         }
2901                 }
2902         }
2903         if (r_shadow_bouncegridtexture && r_shadow_bouncegridresolution[0] == resolution[0] && r_shadow_bouncegridresolution[1] == resolution[1] && r_shadow_bouncegridresolution[2] == resolution[2] && r_shadow_bouncegriddirectional == settings.directionalshading)
2904                 R_UpdateTexture(r_shadow_bouncegridtexture, pixels, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
2905         else
2906         {
2907                 VectorCopy(resolution, r_shadow_bouncegridresolution);
2908                 r_shadow_bouncegriddirectional = settings.directionalshading;
2909                 if (r_shadow_bouncegridtexture)
2910                         R_FreeTexture(r_shadow_bouncegridtexture);
2911                 r_shadow_bouncegridtexture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, pixels, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
2912         }
2913         r_shadow_bouncegridtime = realtime;
2914 }
2915
2916 void R_Shadow_RenderMode_VisibleShadowVolumes(void)
2917 {
2918         R_Shadow_RenderMode_Reset();
2919         GL_BlendFunc(GL_ONE, GL_ONE);
2920         GL_DepthRange(0, 1);
2921         GL_DepthTest(r_showshadowvolumes.integer < 2);
2922         GL_Color(0.0, 0.0125 * r_refdef.view.colorscale, 0.1 * r_refdef.view.colorscale, 1);
2923         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
2924         GL_CullFace(GL_NONE);
2925         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
2926 }
2927
2928 void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
2929 {
2930         R_Shadow_RenderMode_Reset();
2931         GL_BlendFunc(GL_ONE, GL_ONE);
2932         GL_DepthRange(0, 1);
2933         GL_DepthTest(r_showlighting.integer < 2);
2934         GL_Color(0.1 * r_refdef.view.colorscale, 0.0125 * r_refdef.view.colorscale, 0, 1);
2935         if (!transparent)
2936                 GL_DepthFunc(GL_EQUAL);
2937         R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2938         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
2939 }
2940
2941 void R_Shadow_RenderMode_End(void)
2942 {
2943         R_Shadow_RenderMode_Reset();
2944         R_Shadow_RenderMode_ActiveLight(NULL);
2945         GL_DepthMask(true);
2946         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
2947         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
2948 }
2949
2950 int bboxedges[12][2] =
2951 {
2952         // top
2953         {0, 1}, // +X
2954         {0, 2}, // +Y
2955         {1, 3}, // Y, +X
2956         {2, 3}, // X, +Y
2957         // bottom
2958         {4, 5}, // +X
2959         {4, 6}, // +Y
2960         {5, 7}, // Y, +X
2961         {6, 7}, // X, +Y
2962         // verticals
2963         {0, 4}, // +Z
2964         {1, 5}, // X, +Z
2965         {2, 6}, // Y, +Z
2966         {3, 7}, // XY, +Z
2967 };
2968
2969 qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
2970 {
2971         if (!r_shadow_scissor.integer || r_shadow_usingdeferredprepass)
2972         {
2973                 r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
2974                 r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
2975                 r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
2976                 r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
2977                 return false;
2978         }
2979         if(R_ScissorForBBox(mins, maxs, r_shadow_lightscissor))
2980                 return true; // invisible
2981         if(r_shadow_lightscissor[0] != r_refdef.view.viewport.x
2982         || r_shadow_lightscissor[1] != r_refdef.view.viewport.y
2983         || r_shadow_lightscissor[2] != r_refdef.view.viewport.width
2984         || r_shadow_lightscissor[3] != r_refdef.view.viewport.height)
2985                 r_refdef.stats.lights_scissored++;
2986         return false;
2987 }
2988
2989 static void R_Shadow_RenderLighting_Light_Vertex_Shading(int firstvertex, int numverts, const float *diffusecolor, const float *ambientcolor)
2990 {
2991         int i;
2992         const float *vertex3f;
2993         const float *normal3f;
2994         float *color4f;
2995         float dist, dot, distintensity, shadeintensity, v[3], n[3];
2996         switch (r_shadow_rendermode)
2997         {
2998         case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
2999         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
3000                 if (VectorLength2(diffusecolor) > 0)
3001                 {
3002                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
3003                         {
3004                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
3005                                 Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
3006                                 if ((dot = DotProduct(n, v)) < 0)
3007                                 {
3008                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));