1073aa3f12192ae6e89a48adc45f19b52e5eda84
[xonotic/darkplaces.git] / r_shadow.c
1
2 /*
3 Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
4 An extrusion of the lit faces, beginning at the original geometry and ending
5 further from the light source than the original geometry (presumably at least
6 as far as the light's radius, if the light has a radius at all), capped at
7 both front and back to avoid any problems (extrusion from dark faces also
8 works but has a different set of problems)
9
10 This is normally rendered using Carmack's Reverse technique, in which
11 backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
12 zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
13 where shadows did not intersect the visible geometry, suitable as a stencil
14 mask for rendering lighting everywhere but shadow.
15
16 In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
17 as decrement and the frontfaces as increment, and we redefine the DepthFunc to
18 GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
19 and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
20 additionally we clear stencil to 128 to avoid the need for the unclamped
21 incr/decr extension (not related to patent).
22
23 Patent warning:
24 This algorithm may be covered by Creative's patent (US Patent #6384822),
25 however that patent is quite specific about increment on backfaces and
26 decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
27 opposite this implementation and partially opposite Carmack's Reverse paper
28 (which uses GL_LESS, but increments on backfaces and decrements on frontfaces).
29
30
31
32 Terminology: Stencil Light Volume (sometimes called Light Volumes)
33 Similar to a Stencil Shadow Volume, but inverted; rather than containing the
34 areas in shadow it contains the areas in light, this can only be built
35 quickly for certain limited cases (such as portal visibility from a point),
36 but is quite useful for some effects (sunlight coming from sky polygons is
37 one possible example, translucent occluders is another example).
38
39
40
41 Terminology: Optimized Stencil Shadow Volume
42 A Stencil Shadow Volume that has been processed sufficiently to ensure it has
43 no duplicate coverage of areas (no need to shadow an area twice), often this
44 greatly improves performance but is an operation too costly to use on moving
45 lights (however completely optimal Stencil Light Volumes can be constructed
46 in some ideal cases).
47
48
49
50 Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
51 Per pixel evaluation of lighting equations, at a bare minimum this involves
52 DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
53 vector and surface normal, using a texture of the surface bumps, called a
54 NormalMap) if supported by hardware; in our case there is support for cards
55 which are incapable of DOT3, the quality is quite poor however.  Additionally
56 it is desirable to have specular evaluation per pixel, per vertex
57 normalization of specular halfangle vectors causes noticable distortion but
58 is unavoidable on hardware without GL_ARB_fragment_program or
59 GL_ARB_fragment_shader.
60
61
62
63 Terminology: Normalization CubeMap
64 A cubemap containing normalized dot3-encoded (vectors of length 1 or less
65 encoded as RGB colors) for any possible direction, this technique allows per
66 pixel calculation of incidence vector for per pixel lighting purposes, which
67 would not otherwise be possible per pixel without GL_ARB_fragment_program or
68 GL_ARB_fragment_shader.
69
70
71
72 Terminology: 2D+1D Attenuation Texturing
73 A very crude approximation of light attenuation with distance which results
74 in cylindrical light shapes which fade vertically as a streak (some games
75 such as Doom3 allow this to be rotated to be less noticable in specific
76 cases), the technique is simply modulating lighting by two 2D textures (which
77 can be the same) on different axes of projection (XY and Z, typically), this
78 is the second best technique available without 3D Attenuation Texturing,
79 GL_ARB_fragment_program or GL_ARB_fragment_shader technology.
80
81
82
83 Terminology: 2D+1D Inverse Attenuation Texturing
84 A clever method described in papers on the Abducted engine, this has a squared
85 distance texture (bright on the outside, black in the middle), which is used
86 twice using GL_ADD blending, the result of this is used in an inverse modulate
87 (GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
88 lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
89 texturing).
90
91
92
93 Terminology: 3D Attenuation Texturing
94 A slightly crude approximation of light attenuation with distance, its flaws
95 are limited radius and resolution (performance tradeoffs).
96
97
98
99 Terminology: 3D Attenuation-Normalization Texturing
100 A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
101 vectors shorter the lighting becomes darker, a very effective optimization of
102 diffuse lighting if 3D Attenuation Textures are already used.
103
104
105
106 Terminology: Light Cubemap Filtering
107 A technique for modeling non-uniform light distribution according to
108 direction, for example a lantern may use a cubemap to describe the light
109 emission pattern of the cage around the lantern (as well as soot buildup
110 discoloring the light in certain areas), often also used for softened grate
111 shadows and light shining through a stained glass window (done crudely by
112 texturing the lighting with a cubemap), another good example would be a disco
113 light.  This technique is used heavily in many games (Doom3 does not support
114 this however).
115
116
117
118 Terminology: Light Projection Filtering
119 A technique for modeling shadowing of light passing through translucent
120 surfaces, allowing stained glass windows and other effects to be done more
121 elegantly than possible with Light Cubemap Filtering by applying an occluder
122 texture to the lighting combined with a stencil light volume to limit the lit
123 area, this technique is used by Doom3 for spotlights and flashlights, among
124 other things, this can also be used more generally to render light passing
125 through multiple translucent occluders in a scene (using a light volume to
126 describe the area beyond the occluder, and thus mask off rendering of all
127 other areas).
128
129
130
131 Terminology: Doom3 Lighting
132 A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
133 CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
134 demonstrated by the game Doom3.
135 */
136
137 #include "quakedef.h"
138 #include "r_shadow.h"
139 #include "cl_collision.h"
140 #include "portals.h"
141 #include "image.h"
142 #include "dpsoftrast.h"
143
144 #ifdef SUPPORTD3D
145 #include <d3d9.h>
146 extern LPDIRECT3DDEVICE9 vid_d3d9dev;
147 #endif
148
149 static void R_Shadow_EditLights_Init(void);
150
151 typedef enum r_shadow_rendermode_e
152 {
153         R_SHADOW_RENDERMODE_NONE,
154         R_SHADOW_RENDERMODE_ZPASS_STENCIL,
155         R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL,
156         R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE,
157         R_SHADOW_RENDERMODE_ZFAIL_STENCIL,
158         R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL,
159         R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE,
160         R_SHADOW_RENDERMODE_LIGHT_VERTEX,
161         R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN,
162         R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN,
163         R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN,
164         R_SHADOW_RENDERMODE_LIGHT_GLSL,
165         R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
166         R_SHADOW_RENDERMODE_VISIBLELIGHTING,
167         R_SHADOW_RENDERMODE_SHADOWMAP2D
168 }
169 r_shadow_rendermode_t;
170
171 typedef enum r_shadow_shadowmode_e
172 {
173     R_SHADOW_SHADOWMODE_STENCIL,
174     R_SHADOW_SHADOWMODE_SHADOWMAP2D
175 }
176 r_shadow_shadowmode_t;
177
178 r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
179 r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
180 r_shadow_rendermode_t r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_NONE;
181 r_shadow_rendermode_t r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_NONE;
182 qboolean r_shadow_usingshadowmap2d;
183 qboolean r_shadow_usingshadowmaportho;
184 int r_shadow_shadowmapside;
185 float r_shadow_shadowmap_texturescale[2];
186 float r_shadow_shadowmap_parameters[4];
187 #if 0
188 int r_shadow_drawbuffer;
189 int r_shadow_readbuffer;
190 #endif
191 int r_shadow_cullface_front, r_shadow_cullface_back;
192 GLuint r_shadow_fbo2d;
193 r_shadow_shadowmode_t r_shadow_shadowmode;
194 int r_shadow_shadowmapfilterquality;
195 int r_shadow_shadowmapdepthbits;
196 int r_shadow_shadowmapmaxsize;
197 qboolean r_shadow_shadowmapvsdct;
198 qboolean r_shadow_shadowmapsampler;
199 qboolean r_shadow_shadowmapshadowsampler;
200 int r_shadow_shadowmappcf;
201 int r_shadow_shadowmapborder;
202 matrix4x4_t r_shadow_shadowmapmatrix;
203 int r_shadow_lightscissor[4];
204 qboolean r_shadow_usingdeferredprepass;
205
206 int maxshadowtriangles;
207 int *shadowelements;
208
209 int maxshadowvertices;
210 float *shadowvertex3f;
211
212 int maxshadowmark;
213 int numshadowmark;
214 int *shadowmark;
215 int *shadowmarklist;
216 int shadowmarkcount;
217
218 int maxshadowsides;
219 int numshadowsides;
220 unsigned char *shadowsides;
221 int *shadowsideslist;
222
223 int maxvertexupdate;
224 int *vertexupdate;
225 int *vertexremap;
226 int vertexupdatenum;
227
228 int r_shadow_buffer_numleafpvsbytes;
229 unsigned char *r_shadow_buffer_visitingleafpvs;
230 unsigned char *r_shadow_buffer_leafpvs;
231 int *r_shadow_buffer_leaflist;
232
233 int r_shadow_buffer_numsurfacepvsbytes;
234 unsigned char *r_shadow_buffer_surfacepvs;
235 int *r_shadow_buffer_surfacelist;
236 unsigned char *r_shadow_buffer_surfacesides;
237
238 int r_shadow_buffer_numshadowtrispvsbytes;
239 unsigned char *r_shadow_buffer_shadowtrispvs;
240 int r_shadow_buffer_numlighttrispvsbytes;
241 unsigned char *r_shadow_buffer_lighttrispvs;
242
243 rtexturepool_t *r_shadow_texturepool;
244 rtexture_t *r_shadow_attenuationgradienttexture;
245 rtexture_t *r_shadow_attenuation2dtexture;
246 rtexture_t *r_shadow_attenuation3dtexture;
247 skinframe_t *r_shadow_lightcorona;
248 rtexture_t *r_shadow_shadowmap2ddepthbuffer;
249 rtexture_t *r_shadow_shadowmap2ddepthtexture;
250 rtexture_t *r_shadow_shadowmapvsdcttexture;
251 int r_shadow_shadowmapsize; // changes for each light based on distance
252 int r_shadow_shadowmaplod; // changes for each light based on distance
253
254 GLuint r_shadow_prepassgeometryfbo;
255 GLuint r_shadow_prepasslightingdiffusespecularfbo;
256 GLuint r_shadow_prepasslightingdiffusefbo;
257 int r_shadow_prepass_width;
258 int r_shadow_prepass_height;
259 rtexture_t *r_shadow_prepassgeometrydepthbuffer;
260 rtexture_t *r_shadow_prepassgeometrynormalmaptexture;
261 rtexture_t *r_shadow_prepasslightingdiffusetexture;
262 rtexture_t *r_shadow_prepasslightingspeculartexture;
263
264 // keep track of the provided framebuffer info
265 static int r_shadow_fb_fbo;
266 static rtexture_t *r_shadow_fb_depthtexture;
267 static rtexture_t *r_shadow_fb_colortexture;
268
269 // lights are reloaded when this changes
270 char r_shadow_mapname[MAX_QPATH];
271
272 // used only for light filters (cubemaps)
273 rtexturepool_t *r_shadow_filters_texturepool;
274
275 cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
276 cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
277 cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
278 cvar_t r_shadow_deferred = {CVAR_SAVE, "r_shadow_deferred", "0", "uses image-based lighting instead of geometry-based lighting, the method used renders a depth image and a normalmap image, renders lights into separate diffuse and specular images, and then combines this into the normal rendering, requires r_shadow_shadowmapping"};
279 cvar_t r_shadow_usebihculling = {0, "r_shadow_usebihculling", "1", "use BIH (Bounding Interval Hierarchy) for culling lit surfaces instead of BSP (Binary Space Partitioning)"};
280 cvar_t r_shadow_usenormalmap = {CVAR_SAVE, "r_shadow_usenormalmap", "1", "enables use of directional shading on lights"};
281 cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
282 cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.125", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
283 cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
284 cvar_t r_shadow_glossexponent = {0, "r_shadow_glossexponent", "32", "how 'sharp' the gloss should appear (specular power)"};
285 cvar_t r_shadow_gloss2exponent = {0, "r_shadow_gloss2exponent", "32", "same as r_shadow_glossexponent but for forced gloss (gloss 2) surfaces"};
286 cvar_t r_shadow_glossexact = {0, "r_shadow_glossexact", "0", "use exact reflection math for gloss (slightly slower, but should look a tad better)"};
287 cvar_t r_shadow_lightattenuationdividebias = {0, "r_shadow_lightattenuationdividebias", "1", "changes attenuation texture generation"};
288 cvar_t r_shadow_lightattenuationlinearscale = {0, "r_shadow_lightattenuationlinearscale", "2", "changes attenuation texture generation"};
289 cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
290 cvar_t r_shadow_lightradiusscale = {0, "r_shadow_lightradiusscale", "1", "renders all world lights larger or smaller"};
291 cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "0", "how far to cast shadows"};
292 cvar_t r_shadow_frontsidecasting = {0, "r_shadow_frontsidecasting", "1", "whether to cast shadows from illuminated triangles (front side of model) or unlit triangles (back side of model)"};
293 cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
294 cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
295 cvar_t r_shadow_realtime_dlight_svbspculling = {0, "r_shadow_realtime_dlight_svbspculling", "0", "enables svbsp optimization on dynamic lights (very slow!)"};
296 cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal optimization on dynamic lights (slow!)"};
297 cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
298 cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
299 cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
300 cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
301 cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
302 cvar_t r_shadow_realtime_world_compilesvbsp = {0, "r_shadow_realtime_world_compilesvbsp", "1", "enables svbsp optimization during compilation (slower than compileportalculling but more exact)"};
303 cvar_t r_shadow_realtime_world_compileportalculling = {0, "r_shadow_realtime_world_compileportalculling", "1", "enables portal-based culling optimization during compilation (overrides compilesvbsp)"};
304 cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
305 cvar_t r_shadow_shadowmapping = {CVAR_SAVE, "r_shadow_shadowmapping", "1", "enables use of shadowmapping (depth texture sampling) instead of stencil shadow volumes, requires gl_fbo 1"};
306 cvar_t r_shadow_shadowmapping_filterquality = {CVAR_SAVE, "r_shadow_shadowmapping_filterquality", "-1", "shadowmap filter modes: -1 = auto-select, 0 = no filtering, 1 = bilinear, 2 = bilinear 2x2 blur (fast), 3 = 3x3 blur (moderate), 4 = 4x4 blur (slow)"};
307 cvar_t r_shadow_shadowmapping_useshadowsampler = {CVAR_SAVE, "r_shadow_shadowmapping_useshadowsampler", "1", "whether to use sampler2DShadow if available"};
308 cvar_t r_shadow_shadowmapping_depthbits = {CVAR_SAVE, "r_shadow_shadowmapping_depthbits", "24", "requested minimum shadowmap texture depth bits"};
309 cvar_t r_shadow_shadowmapping_vsdct = {CVAR_SAVE, "r_shadow_shadowmapping_vsdct", "1", "enables use of virtual shadow depth cube texture"};
310 cvar_t r_shadow_shadowmapping_minsize = {CVAR_SAVE, "r_shadow_shadowmapping_minsize", "32", "shadowmap size limit"};
311 cvar_t r_shadow_shadowmapping_maxsize = {CVAR_SAVE, "r_shadow_shadowmapping_maxsize", "512", "shadowmap size limit"};
312 cvar_t r_shadow_shadowmapping_precision = {CVAR_SAVE, "r_shadow_shadowmapping_precision", "1", "makes shadowmaps have a maximum resolution of this number of pixels per light source radius unit such that, for example, at precision 0.5 a light with radius 200 will have a maximum resolution of 100 pixels"};
313 //cvar_t r_shadow_shadowmapping_lod_bias = {CVAR_SAVE, "r_shadow_shadowmapping_lod_bias", "16", "shadowmap size bias"};
314 //cvar_t r_shadow_shadowmapping_lod_scale = {CVAR_SAVE, "r_shadow_shadowmapping_lod_scale", "128", "shadowmap size scaling parameter"};
315 cvar_t r_shadow_shadowmapping_bordersize = {CVAR_SAVE, "r_shadow_shadowmapping_bordersize", "4", "shadowmap size bias for filtering"};
316 cvar_t r_shadow_shadowmapping_nearclip = {CVAR_SAVE, "r_shadow_shadowmapping_nearclip", "1", "shadowmap nearclip in world units"};
317 cvar_t r_shadow_shadowmapping_bias = {CVAR_SAVE, "r_shadow_shadowmapping_bias", "0.03", "shadowmap bias parameter (this is multiplied by nearclip * 1024 / lodsize)"};
318 cvar_t r_shadow_shadowmapping_polygonfactor = {CVAR_SAVE, "r_shadow_shadowmapping_polygonfactor", "2", "slope-dependent shadowmapping bias"};
319 cvar_t r_shadow_shadowmapping_polygonoffset = {CVAR_SAVE, "r_shadow_shadowmapping_polygonoffset", "0", "constant shadowmapping bias"};
320 cvar_t r_shadow_sortsurfaces = {0, "r_shadow_sortsurfaces", "1", "improve performance by sorting illuminated surfaces by texture"};
321 cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
322 cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
323 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect OpenGL 2.0 render path)"};
324 cvar_t r_shadow_bouncegrid = {CVAR_SAVE, "r_shadow_bouncegrid", "0", "perform particle tracing for indirect lighting (Global Illumination / radiosity) using a 3D texture covering the scene, only active on levels with realtime lights active (r_shadow_realtime_world is usually required for these)"};
325 cvar_t r_shadow_bouncegrid_bounceanglediffuse = {CVAR_SAVE, "r_shadow_bouncegrid_bounceanglediffuse", "0", "use random bounce direction rather than true reflection, makes some corner areas dark"};
326 cvar_t r_shadow_bouncegrid_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_directionalshading", "0", "use diffuse shading rather than ambient, 3D texture becomes 8x as many pixels to hold the additional data"};
327 cvar_t r_shadow_bouncegrid_dlightparticlemultiplier = {CVAR_SAVE, "r_shadow_bouncegrid_dlightparticlemultiplier", "0", "if set to a high value like 16 this can make dlights look great, but 0 is recommended for performance reasons"};
328 cvar_t r_shadow_bouncegrid_hitmodels = {CVAR_SAVE, "r_shadow_bouncegrid_hitmodels", "0", "enables hitting character model geometry (SLOW)"};
329 cvar_t r_shadow_bouncegrid_includedirectlighting = {CVAR_SAVE, "r_shadow_bouncegrid_includedirectlighting", "0", "allows direct lighting to be recorded, not just indirect (gives an effect somewhat like r_shadow_realtime_world_lightmaps)"};
330 cvar_t r_shadow_bouncegrid_intensity = {CVAR_SAVE, "r_shadow_bouncegrid_intensity", "4", "overall brightness of bouncegrid texture"};
331 cvar_t r_shadow_bouncegrid_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_lightradiusscale", "4", "particles stop at this fraction of light radius (can be more than 1)"};
332 cvar_t r_shadow_bouncegrid_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_maxbounce", "2", "maximum number of bounces for a particle (minimum is 0)"};
333 cvar_t r_shadow_bouncegrid_particlebounceintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particlebounceintensity", "1", "amount of energy carried over after each bounce, this is a multiplier of texture color and the result is clamped to 1 or less, to prevent adding energy on each bounce"};
334 cvar_t r_shadow_bouncegrid_particleintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particleintensity", "1", "brightness of particles contributing to bouncegrid texture"};
335 cvar_t r_shadow_bouncegrid_photons = {CVAR_SAVE, "r_shadow_bouncegrid_photons", "2000", "total photons to shoot per update, divided proportionately between lights"};
336 cvar_t r_shadow_bouncegrid_spacing = {CVAR_SAVE, "r_shadow_bouncegrid_spacing", "64", "unit size of bouncegrid pixel"};
337 cvar_t r_shadow_bouncegrid_stablerandom = {CVAR_SAVE, "r_shadow_bouncegrid_stablerandom", "1", "make particle distribution consistent from frame to frame"};
338 cvar_t r_shadow_bouncegrid_static = {CVAR_SAVE, "r_shadow_bouncegrid_static", "1", "use static radiosity solution (high quality) rather than dynamic (splotchy)"};
339 cvar_t r_shadow_bouncegrid_static_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_static_directionalshading", "1", "whether to use directionalshading when in static mode"};
340 cvar_t r_shadow_bouncegrid_static_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_static_lightradiusscale", "10", "particles stop at this fraction of light radius (can be more than 1) when in static mode"};
341 cvar_t r_shadow_bouncegrid_static_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_static_maxbounce", "5", "maximum number of bounces for a particle (minimum is 0) in static mode"};
342 cvar_t r_shadow_bouncegrid_static_photons = {CVAR_SAVE, "r_shadow_bouncegrid_static_photons", "25000", "photons value to use when in static mode"};
343 cvar_t r_shadow_bouncegrid_updateinterval = {CVAR_SAVE, "r_shadow_bouncegrid_updateinterval", "0", "update bouncegrid texture once per this many seconds, useful values are 0, 0.05, or 1000000"};
344 cvar_t r_shadow_bouncegrid_x = {CVAR_SAVE, "r_shadow_bouncegrid_x", "64", "maximum texture size of bouncegrid on X axis"};
345 cvar_t r_shadow_bouncegrid_y = {CVAR_SAVE, "r_shadow_bouncegrid_y", "64", "maximum texture size of bouncegrid on Y axis"};
346 cvar_t r_shadow_bouncegrid_z = {CVAR_SAVE, "r_shadow_bouncegrid_z", "32", "maximum texture size of bouncegrid on Z axis"};
347 cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1", "brightness of corona flare effects around certain lights, 0 disables corona effects"};
348 cvar_t r_coronas_occlusionsizescale = {CVAR_SAVE, "r_coronas_occlusionsizescale", "0.1", "size of light source for corona occlusion checksum the proportion of hidden pixels controls corona intensity"};
349 cvar_t r_coronas_occlusionquery = {CVAR_SAVE, "r_coronas_occlusionquery", "1", "use GL_ARB_occlusion_query extension if supported (fades coronas according to visibility)"};
350 cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0", "render bright coronas for dynamic lights instead of actual lighting, fast but ugly"};
351 cvar_t gl_ext_separatestencil = {0, "gl_ext_separatestencil", "1", "make use of OpenGL 2.0 glStencilOpSeparate or GL_ATI_separate_stencil extension"};
352 cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
353 cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
354 cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
355 cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
356 cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
357 cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
358 cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
359 cvar_t r_editlights_drawproperties = {0, "r_editlights_drawproperties", "1", "draw properties of currently selected light"};
360 cvar_t r_editlights_current_origin = {0, "r_editlights_current_origin", "0 0 0", "origin of selected light"};
361 cvar_t r_editlights_current_angles = {0, "r_editlights_current_angles", "0 0 0", "angles of selected light"};
362 cvar_t r_editlights_current_color = {0, "r_editlights_current_color", "1 1 1", "color of selected light"};
363 cvar_t r_editlights_current_radius = {0, "r_editlights_current_radius", "0", "radius of selected light"};
364 cvar_t r_editlights_current_corona = {0, "r_editlights_current_corona", "0", "corona intensity of selected light"};
365 cvar_t r_editlights_current_coronasize = {0, "r_editlights_current_coronasize", "0", "corona size of selected light"};
366 cvar_t r_editlights_current_style = {0, "r_editlights_current_style", "0", "style of selected light"};
367 cvar_t r_editlights_current_shadows = {0, "r_editlights_current_shadows", "0", "shadows flag of selected light"};
368 cvar_t r_editlights_current_cubemap = {0, "r_editlights_current_cubemap", "0", "cubemap of selected light"};
369 cvar_t r_editlights_current_ambient = {0, "r_editlights_current_ambient", "0", "ambient intensity of selected light"};
370 cvar_t r_editlights_current_diffuse = {0, "r_editlights_current_diffuse", "1", "diffuse intensity of selected light"};
371 cvar_t r_editlights_current_specular = {0, "r_editlights_current_specular", "1", "specular intensity of selected light"};
372 cvar_t r_editlights_current_normalmode = {0, "r_editlights_current_normalmode", "0", "normalmode flag of selected light"};
373 cvar_t r_editlights_current_realtimemode = {0, "r_editlights_current_realtimemode", "0", "realtimemode flag of selected light"};
374
375
376 typedef struct r_shadow_bouncegrid_settings_s
377 {
378         qboolean staticmode;
379         qboolean bounceanglediffuse;
380         qboolean directionalshading;
381         qboolean includedirectlighting;
382         float dlightparticlemultiplier;
383         qboolean hitmodels;
384         float lightradiusscale;
385         int maxbounce;
386         float particlebounceintensity;
387         float particleintensity;
388         int photons;
389         float spacing[3];
390         int stablerandom;
391 }
392 r_shadow_bouncegrid_settings_t;
393
394 r_shadow_bouncegrid_settings_t r_shadow_bouncegridsettings;
395 rtexture_t *r_shadow_bouncegridtexture;
396 matrix4x4_t r_shadow_bouncegridmatrix;
397 vec_t r_shadow_bouncegridintensity;
398 qboolean r_shadow_bouncegriddirectional;
399 static double r_shadow_bouncegridtime;
400 static int r_shadow_bouncegridresolution[3];
401 static int r_shadow_bouncegridnumpixels;
402 static unsigned char *r_shadow_bouncegridpixels;
403 static float *r_shadow_bouncegridhighpixels;
404
405 // note the table actually includes one more value, just to avoid the need to clamp the distance index due to minor math error
406 #define ATTENTABLESIZE 256
407 // 1D gradient, 2D circle and 3D sphere attenuation textures
408 #define ATTEN1DSIZE 32
409 #define ATTEN2DSIZE 64
410 #define ATTEN3DSIZE 32
411
412 static float r_shadow_attendividebias; // r_shadow_lightattenuationdividebias
413 static float r_shadow_attenlinearscale; // r_shadow_lightattenuationlinearscale
414 static float r_shadow_attentable[ATTENTABLESIZE+1];
415
416 rtlight_t *r_shadow_compilingrtlight;
417 static memexpandablearray_t r_shadow_worldlightsarray;
418 dlight_t *r_shadow_selectedlight;
419 dlight_t r_shadow_bufferlight;
420 vec3_t r_editlights_cursorlocation;
421 qboolean r_editlights_lockcursor;
422
423 extern int con_vislines;
424
425 void R_Shadow_UncompileWorldLights(void);
426 void R_Shadow_ClearWorldLights(void);
427 void R_Shadow_SaveWorldLights(void);
428 void R_Shadow_LoadWorldLights(void);
429 void R_Shadow_LoadLightsFile(void);
430 void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
431 void R_Shadow_EditLights_Reload_f(void);
432 void R_Shadow_ValidateCvars(void);
433 static void R_Shadow_MakeTextures(void);
434
435 #define EDLIGHTSPRSIZE                  8
436 skinframe_t *r_editlights_sprcursor;
437 skinframe_t *r_editlights_sprlight;
438 skinframe_t *r_editlights_sprnoshadowlight;
439 skinframe_t *r_editlights_sprcubemaplight;
440 skinframe_t *r_editlights_sprcubemapnoshadowlight;
441 skinframe_t *r_editlights_sprselection;
442
443 static void R_Shadow_SetShadowMode(void)
444 {
445         r_shadow_shadowmapmaxsize = bound(1, r_shadow_shadowmapping_maxsize.integer, (int)vid.maxtexturesize_2d / 4);
446         r_shadow_shadowmapvsdct = r_shadow_shadowmapping_vsdct.integer != 0 && vid.renderpath == RENDERPATH_GL20;
447         r_shadow_shadowmapfilterquality = r_shadow_shadowmapping_filterquality.integer;
448         r_shadow_shadowmapshadowsampler = r_shadow_shadowmapping_useshadowsampler.integer != 0;
449         r_shadow_shadowmapdepthbits = r_shadow_shadowmapping_depthbits.integer;
450         r_shadow_shadowmapborder = bound(0, r_shadow_shadowmapping_bordersize.integer, 16);
451         r_shadow_shadowmaplod = -1;
452         r_shadow_shadowmapsize = 0;
453         r_shadow_shadowmapsampler = false;
454         r_shadow_shadowmappcf = 0;
455         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
456         if ((r_shadow_shadowmapping.integer || r_shadow_deferred.integer) && vid.support.ext_framebuffer_object)
457         {
458                 switch(vid.renderpath)
459                 {
460                 case RENDERPATH_GL20:
461                         if(r_shadow_shadowmapfilterquality < 0)
462                         {
463                                 if (!r_fb.usedepthtextures)
464                                         r_shadow_shadowmappcf = 1;
465                                 else if(vid.support.amd_texture_texture4 || vid.support.arb_texture_gather)
466                                         r_shadow_shadowmappcf = 1;
467                                 else if(strstr(gl_vendor, "NVIDIA") || strstr(gl_renderer, "Radeon HD")) 
468                                 {
469                                         r_shadow_shadowmapsampler = vid.support.arb_shadow && r_shadow_shadowmapshadowsampler;
470                                         r_shadow_shadowmappcf = 1;
471                                 }
472                                 else if((strstr(gl_vendor, "ATI") || strstr(gl_vendor, "Advanced Micro Devices")) && !strstr(gl_renderer, "Mesa") && !strstr(gl_version, "Mesa")) 
473                                         r_shadow_shadowmappcf = 1;
474                                 else 
475                                         r_shadow_shadowmapsampler = vid.support.arb_shadow && r_shadow_shadowmapshadowsampler;
476                         }
477                         else 
478                         {
479                                 switch (r_shadow_shadowmapfilterquality)
480                                 {
481                                 case 1:
482                                         r_shadow_shadowmapsampler = vid.support.arb_shadow && r_shadow_shadowmapshadowsampler;
483                                         break;
484                                 case 2:
485                                         r_shadow_shadowmapsampler = vid.support.arb_shadow && r_shadow_shadowmapshadowsampler;
486                                         r_shadow_shadowmappcf = 1;
487                                         break;
488                                 case 3:
489                                         r_shadow_shadowmappcf = 1;
490                                         break;
491                                 case 4:
492                                         r_shadow_shadowmappcf = 2;
493                                         break;
494                                 }
495                         }
496                         if (!r_fb.usedepthtextures)
497                                 r_shadow_shadowmapsampler = false;
498                         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
499                         break;
500                 case RENDERPATH_D3D9:
501                 case RENDERPATH_D3D10:
502                 case RENDERPATH_D3D11:
503                 case RENDERPATH_SOFT:
504                         r_shadow_shadowmapsampler = false;
505                         r_shadow_shadowmappcf = 1;
506                         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
507                         break;
508                 case RENDERPATH_GL11:
509                 case RENDERPATH_GL13:
510                 case RENDERPATH_GLES1:
511                 case RENDERPATH_GLES2:
512                         break;
513                 }
514         }
515
516         if(R_CompileShader_CheckStaticParms())
517                 R_GLSL_Restart_f();
518 }
519
520 qboolean R_Shadow_ShadowMappingEnabled(void)
521 {
522         switch (r_shadow_shadowmode)
523         {
524         case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
525                 return true;
526         default:
527                 return false;
528         }
529 }
530
531 static void R_Shadow_FreeShadowMaps(void)
532 {
533         R_Shadow_SetShadowMode();
534
535         R_Mesh_DestroyFramebufferObject(r_shadow_fbo2d);
536
537         r_shadow_fbo2d = 0;
538
539         if (r_shadow_shadowmap2ddepthtexture)
540                 R_FreeTexture(r_shadow_shadowmap2ddepthtexture);
541         r_shadow_shadowmap2ddepthtexture = NULL;
542
543         if (r_shadow_shadowmap2ddepthbuffer)
544                 R_FreeTexture(r_shadow_shadowmap2ddepthbuffer);
545         r_shadow_shadowmap2ddepthbuffer = NULL;
546
547         if (r_shadow_shadowmapvsdcttexture)
548                 R_FreeTexture(r_shadow_shadowmapvsdcttexture);
549         r_shadow_shadowmapvsdcttexture = NULL;
550 }
551
552 static void r_shadow_start(void)
553 {
554         // allocate vertex processing arrays
555         r_shadow_bouncegridpixels = NULL;
556         r_shadow_bouncegridhighpixels = NULL;
557         r_shadow_bouncegridnumpixels = 0;
558         r_shadow_bouncegridtexture = NULL;
559         r_shadow_bouncegriddirectional = false;
560         r_shadow_attenuationgradienttexture = NULL;
561         r_shadow_attenuation2dtexture = NULL;
562         r_shadow_attenuation3dtexture = NULL;
563         r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
564         r_shadow_shadowmap2ddepthtexture = NULL;
565         r_shadow_shadowmap2ddepthbuffer = NULL;
566         r_shadow_shadowmapvsdcttexture = NULL;
567         r_shadow_shadowmapmaxsize = 0;
568         r_shadow_shadowmapsize = 0;
569         r_shadow_shadowmaplod = 0;
570         r_shadow_shadowmapfilterquality = -1;
571         r_shadow_shadowmapdepthbits = 0;
572         r_shadow_shadowmapvsdct = false;
573         r_shadow_shadowmapsampler = false;
574         r_shadow_shadowmappcf = 0;
575         r_shadow_fbo2d = 0;
576
577         R_Shadow_FreeShadowMaps();
578
579         r_shadow_texturepool = NULL;
580         r_shadow_filters_texturepool = NULL;
581         R_Shadow_ValidateCvars();
582         R_Shadow_MakeTextures();
583         maxshadowtriangles = 0;
584         shadowelements = NULL;
585         maxshadowvertices = 0;
586         shadowvertex3f = NULL;
587         maxvertexupdate = 0;
588         vertexupdate = NULL;
589         vertexremap = NULL;
590         vertexupdatenum = 0;
591         maxshadowmark = 0;
592         numshadowmark = 0;
593         shadowmark = NULL;
594         shadowmarklist = NULL;
595         shadowmarkcount = 0;
596         maxshadowsides = 0;
597         numshadowsides = 0;
598         shadowsides = NULL;
599         shadowsideslist = NULL;
600         r_shadow_buffer_numleafpvsbytes = 0;
601         r_shadow_buffer_visitingleafpvs = NULL;
602         r_shadow_buffer_leafpvs = NULL;
603         r_shadow_buffer_leaflist = NULL;
604         r_shadow_buffer_numsurfacepvsbytes = 0;
605         r_shadow_buffer_surfacepvs = NULL;
606         r_shadow_buffer_surfacelist = NULL;
607         r_shadow_buffer_surfacesides = NULL;
608         r_shadow_buffer_numshadowtrispvsbytes = 0;
609         r_shadow_buffer_shadowtrispvs = NULL;
610         r_shadow_buffer_numlighttrispvsbytes = 0;
611         r_shadow_buffer_lighttrispvs = NULL;
612
613         r_shadow_usingdeferredprepass = false;
614         r_shadow_prepass_width = r_shadow_prepass_height = 0;
615 }
616
617 static void R_Shadow_FreeDeferred(void);
618 static void r_shadow_shutdown(void)
619 {
620         CHECKGLERROR
621         R_Shadow_UncompileWorldLights();
622
623         R_Shadow_FreeShadowMaps();
624
625         r_shadow_usingdeferredprepass = false;
626         if (r_shadow_prepass_width)
627                 R_Shadow_FreeDeferred();
628         r_shadow_prepass_width = r_shadow_prepass_height = 0;
629
630         CHECKGLERROR
631         r_shadow_bouncegridtexture = NULL;
632         r_shadow_bouncegridpixels = NULL;
633         r_shadow_bouncegridhighpixels = NULL;
634         r_shadow_bouncegridnumpixels = 0;
635         r_shadow_bouncegriddirectional = false;
636         r_shadow_attenuationgradienttexture = NULL;
637         r_shadow_attenuation2dtexture = NULL;
638         r_shadow_attenuation3dtexture = NULL;
639         R_FreeTexturePool(&r_shadow_texturepool);
640         R_FreeTexturePool(&r_shadow_filters_texturepool);
641         maxshadowtriangles = 0;
642         if (shadowelements)
643                 Mem_Free(shadowelements);
644         shadowelements = NULL;
645         if (shadowvertex3f)
646                 Mem_Free(shadowvertex3f);
647         shadowvertex3f = NULL;
648         maxvertexupdate = 0;
649         if (vertexupdate)
650                 Mem_Free(vertexupdate);
651         vertexupdate = NULL;
652         if (vertexremap)
653                 Mem_Free(vertexremap);
654         vertexremap = NULL;
655         vertexupdatenum = 0;
656         maxshadowmark = 0;
657         numshadowmark = 0;
658         if (shadowmark)
659                 Mem_Free(shadowmark);
660         shadowmark = NULL;
661         if (shadowmarklist)
662                 Mem_Free(shadowmarklist);
663         shadowmarklist = NULL;
664         shadowmarkcount = 0;
665         maxshadowsides = 0;
666         numshadowsides = 0;
667         if (shadowsides)
668                 Mem_Free(shadowsides);
669         shadowsides = NULL;
670         if (shadowsideslist)
671                 Mem_Free(shadowsideslist);
672         shadowsideslist = NULL;
673         r_shadow_buffer_numleafpvsbytes = 0;
674         if (r_shadow_buffer_visitingleafpvs)
675                 Mem_Free(r_shadow_buffer_visitingleafpvs);
676         r_shadow_buffer_visitingleafpvs = NULL;
677         if (r_shadow_buffer_leafpvs)
678                 Mem_Free(r_shadow_buffer_leafpvs);
679         r_shadow_buffer_leafpvs = NULL;
680         if (r_shadow_buffer_leaflist)
681                 Mem_Free(r_shadow_buffer_leaflist);
682         r_shadow_buffer_leaflist = NULL;
683         r_shadow_buffer_numsurfacepvsbytes = 0;
684         if (r_shadow_buffer_surfacepvs)
685                 Mem_Free(r_shadow_buffer_surfacepvs);
686         r_shadow_buffer_surfacepvs = NULL;
687         if (r_shadow_buffer_surfacelist)
688                 Mem_Free(r_shadow_buffer_surfacelist);
689         r_shadow_buffer_surfacelist = NULL;
690         if (r_shadow_buffer_surfacesides)
691                 Mem_Free(r_shadow_buffer_surfacesides);
692         r_shadow_buffer_surfacesides = NULL;
693         r_shadow_buffer_numshadowtrispvsbytes = 0;
694         if (r_shadow_buffer_shadowtrispvs)
695                 Mem_Free(r_shadow_buffer_shadowtrispvs);
696         r_shadow_buffer_numlighttrispvsbytes = 0;
697         if (r_shadow_buffer_lighttrispvs)
698                 Mem_Free(r_shadow_buffer_lighttrispvs);
699 }
700
701 static void r_shadow_newmap(void)
702 {
703         if (r_shadow_bouncegridtexture) R_FreeTexture(r_shadow_bouncegridtexture);r_shadow_bouncegridtexture = NULL;
704         if (r_shadow_lightcorona)                 R_SkinFrame_MarkUsed(r_shadow_lightcorona);
705         if (r_editlights_sprcursor)               R_SkinFrame_MarkUsed(r_editlights_sprcursor);
706         if (r_editlights_sprlight)                R_SkinFrame_MarkUsed(r_editlights_sprlight);
707         if (r_editlights_sprnoshadowlight)        R_SkinFrame_MarkUsed(r_editlights_sprnoshadowlight);
708         if (r_editlights_sprcubemaplight)         R_SkinFrame_MarkUsed(r_editlights_sprcubemaplight);
709         if (r_editlights_sprcubemapnoshadowlight) R_SkinFrame_MarkUsed(r_editlights_sprcubemapnoshadowlight);
710         if (r_editlights_sprselection)            R_SkinFrame_MarkUsed(r_editlights_sprselection);
711         if (strncmp(cl.worldname, r_shadow_mapname, sizeof(r_shadow_mapname)))
712                 R_Shadow_EditLights_Reload_f();
713 }
714
715 void R_Shadow_Init(void)
716 {
717         Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
718         Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
719         Cvar_RegisterVariable(&r_shadow_usebihculling);
720         Cvar_RegisterVariable(&r_shadow_usenormalmap);
721         Cvar_RegisterVariable(&r_shadow_debuglight);
722         Cvar_RegisterVariable(&r_shadow_deferred);
723         Cvar_RegisterVariable(&r_shadow_gloss);
724         Cvar_RegisterVariable(&r_shadow_gloss2intensity);
725         Cvar_RegisterVariable(&r_shadow_glossintensity);
726         Cvar_RegisterVariable(&r_shadow_glossexponent);
727         Cvar_RegisterVariable(&r_shadow_gloss2exponent);
728         Cvar_RegisterVariable(&r_shadow_glossexact);
729         Cvar_RegisterVariable(&r_shadow_lightattenuationdividebias);
730         Cvar_RegisterVariable(&r_shadow_lightattenuationlinearscale);
731         Cvar_RegisterVariable(&r_shadow_lightintensityscale);
732         Cvar_RegisterVariable(&r_shadow_lightradiusscale);
733         Cvar_RegisterVariable(&r_shadow_projectdistance);
734         Cvar_RegisterVariable(&r_shadow_frontsidecasting);
735         Cvar_RegisterVariable(&r_shadow_realtime_dlight);
736         Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
737         Cvar_RegisterVariable(&r_shadow_realtime_dlight_svbspculling);
738         Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
739         Cvar_RegisterVariable(&r_shadow_realtime_world);
740         Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
741         Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
742         Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
743         Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
744         Cvar_RegisterVariable(&r_shadow_realtime_world_compilesvbsp);
745         Cvar_RegisterVariable(&r_shadow_realtime_world_compileportalculling);
746         Cvar_RegisterVariable(&r_shadow_scissor);
747         Cvar_RegisterVariable(&r_shadow_shadowmapping);
748         Cvar_RegisterVariable(&r_shadow_shadowmapping_vsdct);
749         Cvar_RegisterVariable(&r_shadow_shadowmapping_filterquality);
750         Cvar_RegisterVariable(&r_shadow_shadowmapping_useshadowsampler);
751         Cvar_RegisterVariable(&r_shadow_shadowmapping_depthbits);
752         Cvar_RegisterVariable(&r_shadow_shadowmapping_precision);
753         Cvar_RegisterVariable(&r_shadow_shadowmapping_maxsize);
754         Cvar_RegisterVariable(&r_shadow_shadowmapping_minsize);
755 //      Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_bias);
756 //      Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_scale);
757         Cvar_RegisterVariable(&r_shadow_shadowmapping_bordersize);
758         Cvar_RegisterVariable(&r_shadow_shadowmapping_nearclip);
759         Cvar_RegisterVariable(&r_shadow_shadowmapping_bias);
760         Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonfactor);
761         Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonoffset);
762         Cvar_RegisterVariable(&r_shadow_sortsurfaces);
763         Cvar_RegisterVariable(&r_shadow_polygonfactor);
764         Cvar_RegisterVariable(&r_shadow_polygonoffset);
765         Cvar_RegisterVariable(&r_shadow_texture3d);
766         Cvar_RegisterVariable(&r_shadow_bouncegrid);
767         Cvar_RegisterVariable(&r_shadow_bouncegrid_bounceanglediffuse);
768         Cvar_RegisterVariable(&r_shadow_bouncegrid_directionalshading);
769         Cvar_RegisterVariable(&r_shadow_bouncegrid_dlightparticlemultiplier);
770         Cvar_RegisterVariable(&r_shadow_bouncegrid_hitmodels);
771         Cvar_RegisterVariable(&r_shadow_bouncegrid_includedirectlighting);
772         Cvar_RegisterVariable(&r_shadow_bouncegrid_intensity);
773         Cvar_RegisterVariable(&r_shadow_bouncegrid_lightradiusscale);
774         Cvar_RegisterVariable(&r_shadow_bouncegrid_maxbounce);
775         Cvar_RegisterVariable(&r_shadow_bouncegrid_particlebounceintensity);
776         Cvar_RegisterVariable(&r_shadow_bouncegrid_particleintensity);
777         Cvar_RegisterVariable(&r_shadow_bouncegrid_photons);
778         Cvar_RegisterVariable(&r_shadow_bouncegrid_spacing);
779         Cvar_RegisterVariable(&r_shadow_bouncegrid_stablerandom);
780         Cvar_RegisterVariable(&r_shadow_bouncegrid_static);
781         Cvar_RegisterVariable(&r_shadow_bouncegrid_static_directionalshading);
782         Cvar_RegisterVariable(&r_shadow_bouncegrid_static_lightradiusscale);
783         Cvar_RegisterVariable(&r_shadow_bouncegrid_static_maxbounce);
784         Cvar_RegisterVariable(&r_shadow_bouncegrid_static_photons);
785         Cvar_RegisterVariable(&r_shadow_bouncegrid_updateinterval);
786         Cvar_RegisterVariable(&r_shadow_bouncegrid_x);
787         Cvar_RegisterVariable(&r_shadow_bouncegrid_y);
788         Cvar_RegisterVariable(&r_shadow_bouncegrid_z);
789         Cvar_RegisterVariable(&r_coronas);
790         Cvar_RegisterVariable(&r_coronas_occlusionsizescale);
791         Cvar_RegisterVariable(&r_coronas_occlusionquery);
792         Cvar_RegisterVariable(&gl_flashblend);
793         Cvar_RegisterVariable(&gl_ext_separatestencil);
794         Cvar_RegisterVariable(&gl_ext_stenciltwoside);
795         R_Shadow_EditLights_Init();
796         Mem_ExpandableArray_NewArray(&r_shadow_worldlightsarray, r_main_mempool, sizeof(dlight_t), 128);
797         maxshadowtriangles = 0;
798         shadowelements = NULL;
799         maxshadowvertices = 0;
800         shadowvertex3f = NULL;
801         maxvertexupdate = 0;
802         vertexupdate = NULL;
803         vertexremap = NULL;
804         vertexupdatenum = 0;
805         maxshadowmark = 0;
806         numshadowmark = 0;
807         shadowmark = NULL;
808         shadowmarklist = NULL;
809         shadowmarkcount = 0;
810         maxshadowsides = 0;
811         numshadowsides = 0;
812         shadowsides = NULL;
813         shadowsideslist = NULL;
814         r_shadow_buffer_numleafpvsbytes = 0;
815         r_shadow_buffer_visitingleafpvs = NULL;
816         r_shadow_buffer_leafpvs = NULL;
817         r_shadow_buffer_leaflist = NULL;
818         r_shadow_buffer_numsurfacepvsbytes = 0;
819         r_shadow_buffer_surfacepvs = NULL;
820         r_shadow_buffer_surfacelist = NULL;
821         r_shadow_buffer_surfacesides = NULL;
822         r_shadow_buffer_shadowtrispvs = NULL;
823         r_shadow_buffer_lighttrispvs = NULL;
824         R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap, NULL, NULL);
825 }
826
827 matrix4x4_t matrix_attenuationxyz =
828 {
829         {
830                 {0.5, 0.0, 0.0, 0.5},
831                 {0.0, 0.5, 0.0, 0.5},
832                 {0.0, 0.0, 0.5, 0.5},
833                 {0.0, 0.0, 0.0, 1.0}
834         }
835 };
836
837 matrix4x4_t matrix_attenuationz =
838 {
839         {
840                 {0.0, 0.0, 0.5, 0.5},
841                 {0.0, 0.0, 0.0, 0.5},
842                 {0.0, 0.0, 0.0, 0.5},
843                 {0.0, 0.0, 0.0, 1.0}
844         }
845 };
846
847 static void R_Shadow_ResizeShadowArrays(int numvertices, int numtriangles, int vertscale, int triscale)
848 {
849         numvertices = ((numvertices + 255) & ~255) * vertscale;
850         numtriangles = ((numtriangles + 255) & ~255) * triscale;
851         // make sure shadowelements is big enough for this volume
852         if (maxshadowtriangles < numtriangles)
853         {
854                 maxshadowtriangles = numtriangles;
855                 if (shadowelements)
856                         Mem_Free(shadowelements);
857                 shadowelements = (int *)Mem_Alloc(r_main_mempool, maxshadowtriangles * sizeof(int[3]));
858         }
859         // make sure shadowvertex3f is big enough for this volume
860         if (maxshadowvertices < numvertices)
861         {
862                 maxshadowvertices = numvertices;
863                 if (shadowvertex3f)
864                         Mem_Free(shadowvertex3f);
865                 shadowvertex3f = (float *)Mem_Alloc(r_main_mempool, maxshadowvertices * sizeof(float[3]));
866         }
867 }
868
869 static void R_Shadow_EnlargeLeafSurfaceTrisBuffer(int numleafs, int numsurfaces, int numshadowtriangles, int numlighttriangles)
870 {
871         int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
872         int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
873         int numshadowtrispvsbytes = (((numshadowtriangles + 7) >> 3) + 255) & ~255;
874         int numlighttrispvsbytes = (((numlighttriangles + 7) >> 3) + 255) & ~255;
875         if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
876         {
877                 if (r_shadow_buffer_visitingleafpvs)
878                         Mem_Free(r_shadow_buffer_visitingleafpvs);
879                 if (r_shadow_buffer_leafpvs)
880                         Mem_Free(r_shadow_buffer_leafpvs);
881                 if (r_shadow_buffer_leaflist)
882                         Mem_Free(r_shadow_buffer_leaflist);
883                 r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
884                 r_shadow_buffer_visitingleafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
885                 r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
886                 r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
887         }
888         if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
889         {
890                 if (r_shadow_buffer_surfacepvs)
891                         Mem_Free(r_shadow_buffer_surfacepvs);
892                 if (r_shadow_buffer_surfacelist)
893                         Mem_Free(r_shadow_buffer_surfacelist);
894                 if (r_shadow_buffer_surfacesides)
895                         Mem_Free(r_shadow_buffer_surfacesides);
896                 r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
897                 r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes);
898                 r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
899                 r_shadow_buffer_surfacesides = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
900         }
901         if (r_shadow_buffer_numshadowtrispvsbytes < numshadowtrispvsbytes)
902         {
903                 if (r_shadow_buffer_shadowtrispvs)
904                         Mem_Free(r_shadow_buffer_shadowtrispvs);
905                 r_shadow_buffer_numshadowtrispvsbytes = numshadowtrispvsbytes;
906                 r_shadow_buffer_shadowtrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numshadowtrispvsbytes);
907         }
908         if (r_shadow_buffer_numlighttrispvsbytes < numlighttrispvsbytes)
909         {
910                 if (r_shadow_buffer_lighttrispvs)
911                         Mem_Free(r_shadow_buffer_lighttrispvs);
912                 r_shadow_buffer_numlighttrispvsbytes = numlighttrispvsbytes;
913                 r_shadow_buffer_lighttrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numlighttrispvsbytes);
914         }
915 }
916
917 void R_Shadow_PrepareShadowMark(int numtris)
918 {
919         // make sure shadowmark is big enough for this volume
920         if (maxshadowmark < numtris)
921         {
922                 maxshadowmark = numtris;
923                 if (shadowmark)
924                         Mem_Free(shadowmark);
925                 if (shadowmarklist)
926                         Mem_Free(shadowmarklist);
927                 shadowmark = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmark));
928                 shadowmarklist = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmarklist));
929                 shadowmarkcount = 0;
930         }
931         shadowmarkcount++;
932         // if shadowmarkcount wrapped we clear the array and adjust accordingly
933         if (shadowmarkcount == 0)
934         {
935                 shadowmarkcount = 1;
936                 memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
937         }
938         numshadowmark = 0;
939 }
940
941 void R_Shadow_PrepareShadowSides(int numtris)
942 {
943     if (maxshadowsides < numtris)
944     {
945         maxshadowsides = numtris;
946         if (shadowsides)
947                         Mem_Free(shadowsides);
948                 if (shadowsideslist)
949                         Mem_Free(shadowsideslist);
950                 shadowsides = (unsigned char *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsides));
951                 shadowsideslist = (int *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsideslist));
952         }
953         numshadowsides = 0;
954 }
955
956 static int R_Shadow_ConstructShadowVolume_ZFail(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
957 {
958         int i, j;
959         int outtriangles = 0, outvertices = 0;
960         const int *element;
961         const float *vertex;
962         float ratio, direction[3], projectvector[3];
963
964         if (projectdirection)
965                 VectorScale(projectdirection, projectdistance, projectvector);
966         else
967                 VectorClear(projectvector);
968
969         // create the vertices
970         if (projectdirection)
971         {
972                 for (i = 0;i < numshadowmarktris;i++)
973                 {
974                         element = inelement3i + shadowmarktris[i] * 3;
975                         for (j = 0;j < 3;j++)
976                         {
977                                 if (vertexupdate[element[j]] != vertexupdatenum)
978                                 {
979                                         vertexupdate[element[j]] = vertexupdatenum;
980                                         vertexremap[element[j]] = outvertices;
981                                         vertex = invertex3f + element[j] * 3;
982                                         // project one copy of the vertex according to projectvector
983                                         VectorCopy(vertex, outvertex3f);
984                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
985                                         outvertex3f += 6;
986                                         outvertices += 2;
987                                 }
988                         }
989                 }
990         }
991         else
992         {
993                 for (i = 0;i < numshadowmarktris;i++)
994                 {
995                         element = inelement3i + shadowmarktris[i] * 3;
996                         for (j = 0;j < 3;j++)
997                         {
998                                 if (vertexupdate[element[j]] != vertexupdatenum)
999                                 {
1000                                         vertexupdate[element[j]] = vertexupdatenum;
1001                                         vertexremap[element[j]] = outvertices;
1002                                         vertex = invertex3f + element[j] * 3;
1003                                         // project one copy of the vertex to the sphere radius of the light
1004                                         // (FIXME: would projecting it to the light box be better?)
1005                                         VectorSubtract(vertex, projectorigin, direction);
1006                                         ratio = projectdistance / VectorLength(direction);
1007                                         VectorCopy(vertex, outvertex3f);
1008                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
1009                                         outvertex3f += 6;
1010                                         outvertices += 2;
1011                                 }
1012                         }
1013                 }
1014         }
1015
1016         if (r_shadow_frontsidecasting.integer)
1017         {
1018                 for (i = 0;i < numshadowmarktris;i++)
1019                 {
1020                         int remappedelement[3];
1021                         int markindex;
1022                         const int *neighbortriangle;
1023
1024                         markindex = shadowmarktris[i] * 3;
1025                         element = inelement3i + markindex;
1026                         neighbortriangle = inneighbor3i + markindex;
1027                         // output the front and back triangles
1028                         outelement3i[0] = vertexremap[element[0]];
1029                         outelement3i[1] = vertexremap[element[1]];
1030                         outelement3i[2] = vertexremap[element[2]];
1031                         outelement3i[3] = vertexremap[element[2]] + 1;
1032                         outelement3i[4] = vertexremap[element[1]] + 1;
1033                         outelement3i[5] = vertexremap[element[0]] + 1;
1034
1035                         outelement3i += 6;
1036                         outtriangles += 2;
1037                         // output the sides (facing outward from this triangle)
1038                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
1039                         {
1040                                 remappedelement[0] = vertexremap[element[0]];
1041                                 remappedelement[1] = vertexremap[element[1]];
1042                                 outelement3i[0] = remappedelement[1];
1043                                 outelement3i[1] = remappedelement[0];
1044                                 outelement3i[2] = remappedelement[0] + 1;
1045                                 outelement3i[3] = remappedelement[1];
1046                                 outelement3i[4] = remappedelement[0] + 1;
1047                                 outelement3i[5] = remappedelement[1] + 1;
1048
1049                                 outelement3i += 6;
1050                                 outtriangles += 2;
1051                         }
1052                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
1053                         {
1054                                 remappedelement[1] = vertexremap[element[1]];
1055                                 remappedelement[2] = vertexremap[element[2]];
1056                                 outelement3i[0] = remappedelement[2];
1057                                 outelement3i[1] = remappedelement[1];
1058                                 outelement3i[2] = remappedelement[1] + 1;
1059                                 outelement3i[3] = remappedelement[2];
1060                                 outelement3i[4] = remappedelement[1] + 1;
1061                                 outelement3i[5] = remappedelement[2] + 1;
1062
1063                                 outelement3i += 6;
1064                                 outtriangles += 2;
1065                         }
1066                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
1067                         {
1068                                 remappedelement[0] = vertexremap[element[0]];
1069                                 remappedelement[2] = vertexremap[element[2]];
1070                                 outelement3i[0] = remappedelement[0];
1071                                 outelement3i[1] = remappedelement[2];
1072                                 outelement3i[2] = remappedelement[2] + 1;
1073                                 outelement3i[3] = remappedelement[0];
1074                                 outelement3i[4] = remappedelement[2] + 1;
1075                                 outelement3i[5] = remappedelement[0] + 1;
1076
1077                                 outelement3i += 6;
1078                                 outtriangles += 2;
1079                         }
1080                 }
1081         }
1082         else
1083         {
1084                 for (i = 0;i < numshadowmarktris;i++)
1085                 {
1086                         int remappedelement[3];
1087                         int markindex;
1088                         const int *neighbortriangle;
1089
1090                         markindex = shadowmarktris[i] * 3;
1091                         element = inelement3i + markindex;
1092                         neighbortriangle = inneighbor3i + markindex;
1093                         // output the front and back triangles
1094                         outelement3i[0] = vertexremap[element[2]];
1095                         outelement3i[1] = vertexremap[element[1]];
1096                         outelement3i[2] = vertexremap[element[0]];
1097                         outelement3i[3] = vertexremap[element[0]] + 1;
1098                         outelement3i[4] = vertexremap[element[1]] + 1;
1099                         outelement3i[5] = vertexremap[element[2]] + 1;
1100
1101                         outelement3i += 6;
1102                         outtriangles += 2;
1103                         // output the sides (facing outward from this triangle)
1104                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
1105                         {
1106                                 remappedelement[0] = vertexremap[element[0]];
1107                                 remappedelement[1] = vertexremap[element[1]];
1108                                 outelement3i[0] = remappedelement[0];
1109                                 outelement3i[1] = remappedelement[1];
1110                                 outelement3i[2] = remappedelement[1] + 1;
1111                                 outelement3i[3] = remappedelement[0];
1112                                 outelement3i[4] = remappedelement[1] + 1;
1113                                 outelement3i[5] = remappedelement[0] + 1;
1114
1115                                 outelement3i += 6;
1116                                 outtriangles += 2;
1117                         }
1118                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
1119                         {
1120                                 remappedelement[1] = vertexremap[element[1]];
1121                                 remappedelement[2] = vertexremap[element[2]];
1122                                 outelement3i[0] = remappedelement[1];
1123                                 outelement3i[1] = remappedelement[2];
1124                                 outelement3i[2] = remappedelement[2] + 1;
1125                                 outelement3i[3] = remappedelement[1];
1126                                 outelement3i[4] = remappedelement[2] + 1;
1127                                 outelement3i[5] = remappedelement[1] + 1;
1128
1129                                 outelement3i += 6;
1130                                 outtriangles += 2;
1131                         }
1132                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
1133                         {
1134                                 remappedelement[0] = vertexremap[element[0]];
1135                                 remappedelement[2] = vertexremap[element[2]];
1136                                 outelement3i[0] = remappedelement[2];
1137                                 outelement3i[1] = remappedelement[0];
1138                                 outelement3i[2] = remappedelement[0] + 1;
1139                                 outelement3i[3] = remappedelement[2];
1140                                 outelement3i[4] = remappedelement[0] + 1;
1141                                 outelement3i[5] = remappedelement[2] + 1;
1142
1143                                 outelement3i += 6;
1144                                 outtriangles += 2;
1145                         }
1146                 }
1147         }
1148         if (outnumvertices)
1149                 *outnumvertices = outvertices;
1150         return outtriangles;
1151 }
1152
1153 static int R_Shadow_ConstructShadowVolume_ZPass(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
1154 {
1155         int i, j, k;
1156         int outtriangles = 0, outvertices = 0;
1157         const int *element;
1158         const float *vertex;
1159         float ratio, direction[3], projectvector[3];
1160         qboolean side[4];
1161
1162         if (projectdirection)
1163                 VectorScale(projectdirection, projectdistance, projectvector);
1164         else
1165                 VectorClear(projectvector);
1166
1167         for (i = 0;i < numshadowmarktris;i++)
1168         {
1169                 int remappedelement[3];
1170                 int markindex;
1171                 const int *neighbortriangle;
1172
1173                 markindex = shadowmarktris[i] * 3;
1174                 neighbortriangle = inneighbor3i + markindex;
1175                 side[0] = shadowmark[neighbortriangle[0]] == shadowmarkcount;
1176                 side[1] = shadowmark[neighbortriangle[1]] == shadowmarkcount;
1177                 side[2] = shadowmark[neighbortriangle[2]] == shadowmarkcount;
1178                 if (side[0] + side[1] + side[2] == 0)
1179                         continue;
1180
1181                 side[3] = side[0];
1182                 element = inelement3i + markindex;
1183
1184                 // create the vertices
1185                 for (j = 0;j < 3;j++)
1186                 {
1187                         if (side[j] + side[j+1] == 0)
1188                                 continue;
1189                         k = element[j];
1190                         if (vertexupdate[k] != vertexupdatenum)
1191                         {
1192                                 vertexupdate[k] = vertexupdatenum;
1193                                 vertexremap[k] = outvertices;
1194                                 vertex = invertex3f + k * 3;
1195                                 VectorCopy(vertex, outvertex3f);
1196                                 if (projectdirection)
1197                                 {
1198                                         // project one copy of the vertex according to projectvector
1199                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
1200                                 }
1201                                 else
1202                                 {
1203                                         // project one copy of the vertex to the sphere radius of the light
1204                                         // (FIXME: would projecting it to the light box be better?)
1205                                         VectorSubtract(vertex, projectorigin, direction);
1206                                         ratio = projectdistance / VectorLength(direction);
1207                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
1208                                 }
1209                                 outvertex3f += 6;
1210                                 outvertices += 2;
1211                         }
1212                 }
1213
1214                 // output the sides (facing outward from this triangle)
1215                 if (!side[0])
1216                 {
1217                         remappedelement[0] = vertexremap[element[0]];
1218                         remappedelement[1] = vertexremap[element[1]];
1219                         outelement3i[0] = remappedelement[1];
1220                         outelement3i[1] = remappedelement[0];
1221                         outelement3i[2] = remappedelement[0] + 1;
1222                         outelement3i[3] = remappedelement[1];
1223                         outelement3i[4] = remappedelement[0] + 1;
1224                         outelement3i[5] = remappedelement[1] + 1;
1225
1226                         outelement3i += 6;
1227                         outtriangles += 2;
1228                 }
1229                 if (!side[1])
1230                 {
1231                         remappedelement[1] = vertexremap[element[1]];
1232                         remappedelement[2] = vertexremap[element[2]];
1233                         outelement3i[0] = remappedelement[2];
1234                         outelement3i[1] = remappedelement[1];
1235                         outelement3i[2] = remappedelement[1] + 1;
1236                         outelement3i[3] = remappedelement[2];
1237                         outelement3i[4] = remappedelement[1] + 1;
1238                         outelement3i[5] = remappedelement[2] + 1;
1239
1240                         outelement3i += 6;
1241                         outtriangles += 2;
1242                 }
1243                 if (!side[2])
1244                 {
1245                         remappedelement[0] = vertexremap[element[0]];
1246                         remappedelement[2] = vertexremap[element[2]];
1247                         outelement3i[0] = remappedelement[0];
1248                         outelement3i[1] = remappedelement[2];
1249                         outelement3i[2] = remappedelement[2] + 1;
1250                         outelement3i[3] = remappedelement[0];
1251                         outelement3i[4] = remappedelement[2] + 1;
1252                         outelement3i[5] = remappedelement[0] + 1;
1253
1254                         outelement3i += 6;
1255                         outtriangles += 2;
1256                 }
1257         }
1258         if (outnumvertices)
1259                 *outnumvertices = outvertices;
1260         return outtriangles;
1261 }
1262
1263 void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
1264 {
1265         int t, tend;
1266         const int *e;
1267         const float *v[3];
1268         float normal[3];
1269         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
1270                 return;
1271         tend = firsttriangle + numtris;
1272         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
1273         {
1274                 // surface box entirely inside light box, no box cull
1275                 if (projectdirection)
1276                 {
1277                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1278                         {
1279                                 TriangleNormal(invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3, normal);
1280                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
1281                                         shadowmarklist[numshadowmark++] = t;
1282                         }
1283                 }
1284                 else
1285                 {
1286                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1287                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
1288                                         shadowmarklist[numshadowmark++] = t;
1289                 }
1290         }
1291         else
1292         {
1293                 // surface box not entirely inside light box, cull each triangle
1294                 if (projectdirection)
1295                 {
1296                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1297                         {
1298                                 v[0] = invertex3f + e[0] * 3;
1299                                 v[1] = invertex3f + e[1] * 3;
1300                                 v[2] = invertex3f + e[2] * 3;
1301                                 TriangleNormal(v[0], v[1], v[2], normal);
1302                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
1303                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1304                                         shadowmarklist[numshadowmark++] = t;
1305                         }
1306                 }
1307                 else
1308                 {
1309                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1310                         {
1311                                 v[0] = invertex3f + e[0] * 3;
1312                                 v[1] = invertex3f + e[1] * 3;
1313                                 v[2] = invertex3f + e[2] * 3;
1314                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
1315                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1316                                         shadowmarklist[numshadowmark++] = t;
1317                         }
1318                 }
1319         }
1320 }
1321
1322 static qboolean R_Shadow_UseZPass(vec3_t mins, vec3_t maxs)
1323 {
1324 #if 1
1325         return false;
1326 #else
1327         if (r_shadow_compilingrtlight || !r_shadow_frontsidecasting.integer || !r_shadow_usezpassifpossible.integer)
1328                 return false;
1329         // check if the shadow volume intersects the near plane
1330         //
1331         // a ray between the eye and light origin may intersect the caster,
1332         // indicating that the shadow may touch the eye location, however we must
1333         // test the near plane (a polygon), not merely the eye location, so it is
1334         // easiest to enlarge the caster bounding shape slightly for this.
1335         // TODO
1336         return true;
1337 #endif
1338 }
1339
1340 void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, const vec3_t projectdirection, float projectdistance, int nummarktris, const int *marktris, vec3_t trismins, vec3_t trismaxs)
1341 {
1342         int i, tris, outverts;
1343         if (projectdistance < 0.1)
1344         {
1345                 Con_Printf("R_Shadow_Volume: projectdistance %f\n", projectdistance);
1346                 return;
1347         }
1348         if (!numverts || !nummarktris)
1349                 return;
1350         // make sure shadowelements is big enough for this volume
1351         if (maxshadowtriangles < nummarktris*8 || maxshadowvertices < numverts*2)
1352                 R_Shadow_ResizeShadowArrays(numverts, nummarktris, 2, 8);
1353
1354         if (maxvertexupdate < numverts)
1355         {
1356                 maxvertexupdate = numverts;
1357                 if (vertexupdate)
1358                         Mem_Free(vertexupdate);
1359                 if (vertexremap)
1360                         Mem_Free(vertexremap);
1361                 vertexupdate = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
1362                 vertexremap = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
1363                 vertexupdatenum = 0;
1364         }
1365         vertexupdatenum++;
1366         if (vertexupdatenum == 0)
1367         {
1368                 vertexupdatenum = 1;
1369                 memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
1370                 memset(vertexremap, 0, maxvertexupdate * sizeof(int));
1371         }
1372
1373         for (i = 0;i < nummarktris;i++)
1374                 shadowmark[marktris[i]] = shadowmarkcount;
1375
1376         if (r_shadow_compilingrtlight)
1377         {
1378                 // if we're compiling an rtlight, capture the mesh
1379                 //tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1380                 //Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zpass, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
1381                 tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1382                 Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zfail, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
1383         }
1384         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_VISIBLEVOLUMES)
1385         {
1386                 tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1387                 R_Mesh_PrepareVertices_Vertex3f(outverts, shadowvertex3f, NULL);
1388                 R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1389         }
1390         else
1391         {
1392                 // decide which type of shadow to generate and set stencil mode
1393                 R_Shadow_RenderMode_StencilShadowVolumes(R_Shadow_UseZPass(trismins, trismaxs));
1394                 // generate the sides or a solid volume, depending on type
1395                 if (r_shadow_rendermode >= R_SHADOW_RENDERMODE_ZPASS_STENCIL && r_shadow_rendermode <= R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE)
1396                         tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1397                 else
1398                         tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
1399                 r_refdef.stats.lights_dynamicshadowtriangles += tris;
1400                 r_refdef.stats.lights_shadowtriangles += tris;
1401                 if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZPASS_STENCIL)
1402                 {
1403                         // increment stencil if frontface is infront of depthbuffer
1404                         GL_CullFace(r_refdef.view.cullface_front);
1405                         R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, 128, 255);
1406                         R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1407                         // decrement stencil if backface is infront of depthbuffer
1408                         GL_CullFace(r_refdef.view.cullface_back);
1409                         R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_ALWAYS, 128, 255);
1410                 }
1411                 else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZFAIL_STENCIL)
1412                 {
1413                         // decrement stencil if backface is behind depthbuffer
1414                         GL_CullFace(r_refdef.view.cullface_front);
1415                         R_SetStencil(true, 255, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, 128, 255);
1416                         R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1417                         // increment stencil if frontface is behind depthbuffer
1418                         GL_CullFace(r_refdef.view.cullface_back);
1419                         R_SetStencil(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_ALWAYS, 128, 255);
1420                 }
1421                 R_Mesh_PrepareVertices_Vertex3f(outverts, shadowvertex3f, NULL);
1422                 R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
1423         }
1424 }
1425
1426 int R_Shadow_CalcTriangleSideMask(const vec3_t p1, const vec3_t p2, const vec3_t p3, float bias)
1427 {
1428     // p1, p2, p3 are in the cubemap's local coordinate system
1429     // bias = border/(size - border)
1430         int mask = 0x3F;
1431
1432     float dp1 = p1[0] + p1[1], dn1 = p1[0] - p1[1], ap1 = fabs(dp1), an1 = fabs(dn1),
1433           dp2 = p2[0] + p2[1], dn2 = p2[0] - p2[1], ap2 = fabs(dp2), an2 = fabs(dn2),
1434           dp3 = p3[0] + p3[1], dn3 = p3[0] - p3[1], ap3 = fabs(dp3), an3 = fabs(dn3);
1435         if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1436         mask &= (3<<4)
1437                         | (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1438                         | (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1439                         | (dp3 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1440     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1441         mask &= (3<<4)
1442             | (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
1443             | (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))            
1444             | (dn3 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1445
1446     dp1 = p1[1] + p1[2], dn1 = p1[1] - p1[2], ap1 = fabs(dp1), an1 = fabs(dn1),
1447     dp2 = p2[1] + p2[2], dn2 = p2[1] - p2[2], ap2 = fabs(dp2), an2 = fabs(dn2),
1448     dp3 = p3[1] + p3[2], dn3 = p3[1] - p3[2], ap3 = fabs(dp3), an3 = fabs(dn3);
1449     if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1450         mask &= (3<<0)
1451             | (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
1452             | (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))            
1453             | (dp3 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1454     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1455         mask &= (3<<0)
1456             | (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1457             | (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1458             | (dn3 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1459
1460     dp1 = p1[2] + p1[0], dn1 = p1[2] - p1[0], ap1 = fabs(dp1), an1 = fabs(dn1),
1461     dp2 = p2[2] + p2[0], dn2 = p2[2] - p2[0], ap2 = fabs(dp2), an2 = fabs(dn2),
1462     dp3 = p3[2] + p3[0], dn3 = p3[2] - p3[0], ap3 = fabs(dp3), an3 = fabs(dn3);
1463     if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
1464         mask &= (3<<2)
1465             | (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1466             | (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1467             | (dp3 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1468     if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
1469         mask &= (3<<2)
1470             | (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1471             | (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1472             | (dn3 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1473
1474         return mask;
1475 }
1476
1477 static int R_Shadow_CalcBBoxSideMask(const vec3_t mins, const vec3_t maxs, const matrix4x4_t *worldtolight, const matrix4x4_t *radiustolight, float bias)
1478 {
1479         vec3_t center, radius, lightcenter, lightradius, pmin, pmax;
1480         float dp1, dn1, ap1, an1, dp2, dn2, ap2, an2;
1481         int mask = 0x3F;
1482
1483         VectorSubtract(maxs, mins, radius);
1484     VectorScale(radius, 0.5f, radius);
1485     VectorAdd(mins, radius, center);
1486     Matrix4x4_Transform(worldtolight, center, lightcenter);
1487         Matrix4x4_Transform3x3(radiustolight, radius, lightradius);
1488         VectorSubtract(lightcenter, lightradius, pmin);
1489         VectorAdd(lightcenter, lightradius, pmax);
1490
1491     dp1 = pmax[0] + pmax[1], dn1 = pmax[0] - pmin[1], ap1 = fabs(dp1), an1 = fabs(dn1),
1492     dp2 = pmin[0] + pmin[1], dn2 = pmin[0] - pmax[1], ap2 = fabs(dp2), an2 = fabs(dn2);
1493     if(ap1 > bias*an1 && ap2 > bias*an2)
1494         mask &= (3<<4)
1495             | (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
1496             | (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1497     if(an1 > bias*ap1 && an2 > bias*ap2)
1498         mask &= (3<<4)
1499             | (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
1500             | (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1501
1502     dp1 = pmax[1] + pmax[2], dn1 = pmax[1] - pmin[2], ap1 = fabs(dp1), an1 = fabs(dn1),
1503     dp2 = pmin[1] + pmin[2], dn2 = pmin[1] - pmax[2], ap2 = fabs(dp2), an2 = fabs(dn2);
1504     if(ap1 > bias*an1 && ap2 > bias*an2)
1505         mask &= (3<<0)
1506             | (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
1507             | (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1508     if(an1 > bias*ap1 && an2 > bias*ap2)
1509         mask &= (3<<0)
1510             | (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
1511             | (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1512
1513     dp1 = pmax[2] + pmax[0], dn1 = pmax[2] - pmin[0], ap1 = fabs(dp1), an1 = fabs(dn1),
1514     dp2 = pmin[2] + pmin[0], dn2 = pmin[2] - pmax[0], ap2 = fabs(dp2), an2 = fabs(dn2);
1515     if(ap1 > bias*an1 && ap2 > bias*an2)
1516         mask &= (3<<2)
1517             | (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
1518             | (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1519     if(an1 > bias*ap1 && an2 > bias*ap2)
1520         mask &= (3<<2)
1521             | (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
1522             | (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1523
1524     return mask;
1525 }
1526
1527 #define R_Shadow_CalcEntitySideMask(ent, worldtolight, radiustolight, bias) R_Shadow_CalcBBoxSideMask((ent)->mins, (ent)->maxs, worldtolight, radiustolight, bias)
1528
1529 int R_Shadow_CalcSphereSideMask(const vec3_t p, float radius, float bias)
1530 {
1531     // p is in the cubemap's local coordinate system
1532     // bias = border/(size - border)
1533     float dxyp = p[0] + p[1], dxyn = p[0] - p[1], axyp = fabs(dxyp), axyn = fabs(dxyn);
1534     float dyzp = p[1] + p[2], dyzn = p[1] - p[2], ayzp = fabs(dyzp), ayzn = fabs(dyzn);
1535     float dzxp = p[2] + p[0], dzxn = p[2] - p[0], azxp = fabs(dzxp), azxn = fabs(dzxn);
1536     int mask = 0x3F;
1537     if(axyp > bias*axyn + radius) mask &= dxyp < 0 ? ~((1<<0)|(1<<2)) : ~((2<<0)|(2<<2));
1538     if(axyn > bias*axyp + radius) mask &= dxyn < 0 ? ~((1<<0)|(2<<2)) : ~((2<<0)|(1<<2));
1539     if(ayzp > bias*ayzn + radius) mask &= dyzp < 0 ? ~((1<<2)|(1<<4)) : ~((2<<2)|(2<<4));
1540     if(ayzn > bias*ayzp + radius) mask &= dyzn < 0 ? ~((1<<2)|(2<<4)) : ~((2<<2)|(1<<4));
1541     if(azxp > bias*azxn + radius) mask &= dzxp < 0 ? ~((1<<4)|(1<<0)) : ~((2<<4)|(2<<0));
1542     if(azxn > bias*azxp + radius) mask &= dzxn < 0 ? ~((1<<4)|(2<<0)) : ~((2<<4)|(1<<0));
1543     return mask;
1544 }
1545
1546 static int R_Shadow_CullFrustumSides(rtlight_t *rtlight, float size, float border)
1547 {
1548         int i;
1549         vec3_t o, p, n;
1550         int sides = 0x3F, masks[6] = { 3<<4, 3<<4, 3<<0, 3<<0, 3<<2, 3<<2 };
1551         float scale = (size - 2*border)/size, len;
1552         float bias = border / (float)(size - border), dp, dn, ap, an;
1553         // check if cone enclosing side would cross frustum plane 
1554         scale = 2 / (scale*scale + 2);
1555         Matrix4x4_OriginFromMatrix(&rtlight->matrix_lighttoworld, o);
1556         for (i = 0;i < 5;i++)
1557         {
1558                 if (PlaneDiff(o, &r_refdef.view.frustum[i]) > -0.03125)
1559                         continue;
1560                 Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[i].normal, n);
1561                 len = scale*VectorLength2(n);
1562                 if(n[0]*n[0] > len) sides &= n[0] < 0 ? ~(1<<0) : ~(2 << 0);
1563                 if(n[1]*n[1] > len) sides &= n[1] < 0 ? ~(1<<2) : ~(2 << 2);
1564                 if(n[2]*n[2] > len) sides &= n[2] < 0 ? ~(1<<4) : ~(2 << 4);
1565         }
1566         if (PlaneDiff(o, &r_refdef.view.frustum[4]) >= r_refdef.farclip - r_refdef.nearclip + 0.03125)
1567         {
1568         Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[4].normal, n);
1569         len = scale*VectorLength2(n);
1570                 if(n[0]*n[0] > len) sides &= n[0] >= 0 ? ~(1<<0) : ~(2 << 0);
1571                 if(n[1]*n[1] > len) sides &= n[1] >= 0 ? ~(1<<2) : ~(2 << 2);
1572                 if(n[2]*n[2] > len) sides &= n[2] >= 0 ? ~(1<<4) : ~(2 << 4);
1573         }
1574         // this next test usually clips off more sides than the former, but occasionally clips fewer/different ones, so do both and combine results
1575         // check if frustum corners/origin cross plane sides
1576 #if 1
1577     // infinite version, assumes frustum corners merely give direction and extend to infinite distance
1578     Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.origin, p);
1579     dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
1580     masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1581     masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1582     dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
1583     masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1584     masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1585     dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
1586     masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1587     masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1588     for (i = 0;i < 4;i++)
1589     {
1590         Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.frustumcorner[i], n);
1591         VectorSubtract(n, p, n);
1592         dp = n[0] + n[1], dn = n[0] - n[1], ap = fabs(dp), an = fabs(dn);
1593         if(ap > 0) masks[0] |= dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2);
1594         if(an > 0) masks[1] |= dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2);
1595         dp = n[1] + n[2], dn = n[1] - n[2], ap = fabs(dp), an = fabs(dn);
1596         if(ap > 0) masks[2] |= dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4);
1597         if(an > 0) masks[3] |= dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4);
1598         dp = n[2] + n[0], dn = n[2] - n[0], ap = fabs(dp), an = fabs(dn);
1599         if(ap > 0) masks[4] |= dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0);
1600         if(an > 0) masks[5] |= dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0);
1601     }
1602 #else
1603     // finite version, assumes corners are a finite distance from origin dependent on far plane
1604         for (i = 0;i < 5;i++)
1605         {
1606                 Matrix4x4_Transform(&rtlight->matrix_worldtolight, !i ? r_refdef.view.origin : r_refdef.view.frustumcorner[i-1], p);
1607                 dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
1608                 masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
1609                 masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
1610                 dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
1611                 masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
1612                 masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
1613                 dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
1614                 masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
1615                 masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
1616         }
1617 #endif
1618         return sides & masks[0] & masks[1] & masks[2] & masks[3] & masks[4] & masks[5];
1619 }
1620
1621 int R_Shadow_ChooseSidesFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const matrix4x4_t *worldtolight, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs, int *totals)
1622 {
1623         int t, tend;
1624         const int *e;
1625         const float *v[3];
1626         float normal[3];
1627         vec3_t p[3];
1628         float bias;
1629         int mask, surfacemask = 0;
1630         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
1631                 return 0;
1632         bias = r_shadow_shadowmapborder / (float)(r_shadow_shadowmapmaxsize - r_shadow_shadowmapborder);
1633         tend = firsttriangle + numtris;
1634         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
1635         {
1636                 // surface box entirely inside light box, no box cull
1637                 if (projectdirection)
1638                 {
1639                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1640                         {
1641                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
1642                                 TriangleNormal(v[0], v[1], v[2], normal);
1643                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
1644                                 {
1645                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1646                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1647                                         surfacemask |= mask;
1648                                         if(totals)
1649                                         {
1650                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1651                                                 shadowsides[numshadowsides] = mask;
1652                                                 shadowsideslist[numshadowsides++] = t;
1653                                         }
1654                                 }
1655                         }
1656                 }
1657                 else
1658                 {
1659                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1660                         {
1661                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,     v[2] = invertex3f + e[2] * 3;
1662                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2]))
1663                                 {
1664                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1665                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1666                                         surfacemask |= mask;
1667                                         if(totals)
1668                                         {
1669                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1670                                                 shadowsides[numshadowsides] = mask;
1671                                                 shadowsideslist[numshadowsides++] = t;
1672                                         }
1673                                 }
1674                         }
1675                 }
1676         }
1677         else
1678         {
1679                 // surface box not entirely inside light box, cull each triangle
1680                 if (projectdirection)
1681                 {
1682                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1683                         {
1684                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,     v[2] = invertex3f + e[2] * 3;
1685                                 TriangleNormal(v[0], v[1], v[2], normal);
1686                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
1687                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1688                                 {
1689                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1690                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1691                                         surfacemask |= mask;
1692                                         if(totals)
1693                                         {
1694                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1695                                                 shadowsides[numshadowsides] = mask;
1696                                                 shadowsideslist[numshadowsides++] = t;
1697                                         }
1698                                 }
1699                         }
1700                 }
1701                 else
1702                 {
1703                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
1704                         {
1705                                 v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
1706                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
1707                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
1708                                 {
1709                                         Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
1710                                         mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
1711                                         surfacemask |= mask;
1712                                         if(totals)
1713                                         {
1714                                                 totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
1715                                                 shadowsides[numshadowsides] = mask;
1716                                                 shadowsideslist[numshadowsides++] = t;
1717                                         }
1718                                 }
1719                         }
1720                 }
1721         }
1722         return surfacemask;
1723 }
1724
1725 void R_Shadow_ShadowMapFromList(int numverts, int numtris, const float *vertex3f, const int *elements, int numsidetris, const int *sidetotals, const unsigned char *sides, const int *sidetris)
1726 {
1727         int i, j, outtriangles = 0;
1728         int *outelement3i[6];
1729         if (!numverts || !numsidetris || !r_shadow_compilingrtlight)
1730                 return;
1731         outtriangles = sidetotals[0] + sidetotals[1] + sidetotals[2] + sidetotals[3] + sidetotals[4] + sidetotals[5];
1732         // make sure shadowelements is big enough for this mesh
1733         if (maxshadowtriangles < outtriangles)
1734                 R_Shadow_ResizeShadowArrays(0, outtriangles, 0, 1);
1735
1736         // compute the offset and size of the separate index lists for each cubemap side
1737         outtriangles = 0;
1738         for (i = 0;i < 6;i++)
1739         {
1740                 outelement3i[i] = shadowelements + outtriangles * 3;
1741                 r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sideoffsets[i] = outtriangles;
1742                 r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sidetotals[i] = sidetotals[i];
1743                 outtriangles += sidetotals[i];
1744         }
1745
1746         // gather up the (sparse) triangles into separate index lists for each cubemap side
1747         for (i = 0;i < numsidetris;i++)
1748         {
1749                 const int *element = elements + sidetris[i] * 3;
1750                 for (j = 0;j < 6;j++)
1751                 {
1752                         if (sides[i] & (1 << j))
1753                         {
1754                                 outelement3i[j][0] = element[0];
1755                                 outelement3i[j][1] = element[1];
1756                                 outelement3i[j][2] = element[2];
1757                                 outelement3i[j] += 3;
1758                         }
1759                 }
1760         }
1761                         
1762         Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, outtriangles, shadowelements);
1763 }
1764
1765 static void R_Shadow_MakeTextures_MakeCorona(void)
1766 {
1767         float dx, dy;
1768         int x, y, a;
1769         unsigned char pixels[32][32][4];
1770         for (y = 0;y < 32;y++)
1771         {
1772                 dy = (y - 15.5f) * (1.0f / 16.0f);
1773                 for (x = 0;x < 32;x++)
1774                 {
1775                         dx = (x - 15.5f) * (1.0f / 16.0f);
1776                         a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
1777                         a = bound(0, a, 255);
1778                         pixels[y][x][0] = a;
1779                         pixels[y][x][1] = a;
1780                         pixels[y][x][2] = a;
1781                         pixels[y][x][3] = 255;
1782                 }
1783         }
1784         r_shadow_lightcorona = R_SkinFrame_LoadInternalBGRA("lightcorona", TEXF_FORCELINEAR, &pixels[0][0][0], 32, 32, false);
1785 }
1786
1787 static unsigned int R_Shadow_MakeTextures_SamplePoint(float x, float y, float z)
1788 {
1789         float dist = sqrt(x*x+y*y+z*z);
1790         float intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
1791         // note this code could suffer byte order issues except that it is multiplying by an integer that reads the same both ways
1792         return (unsigned char)bound(0, intensity * 256.0f, 255) * 0x01010101;
1793 }
1794
1795 static void R_Shadow_MakeTextures(void)
1796 {
1797         int x, y, z;
1798         float intensity, dist;
1799         unsigned int *data;
1800         R_Shadow_FreeShadowMaps();
1801         R_FreeTexturePool(&r_shadow_texturepool);
1802         r_shadow_texturepool = R_AllocTexturePool();
1803         r_shadow_attenlinearscale = r_shadow_lightattenuationlinearscale.value;
1804         r_shadow_attendividebias = r_shadow_lightattenuationdividebias.value;
1805         data = (unsigned int *)Mem_Alloc(tempmempool, max(max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE, ATTEN2DSIZE*ATTEN2DSIZE), ATTEN1DSIZE) * 4);
1806         // the table includes one additional value to avoid the need to clamp indexing due to minor math errors
1807         for (x = 0;x <= ATTENTABLESIZE;x++)
1808         {
1809                 dist = (x + 0.5f) * (1.0f / ATTENTABLESIZE) * (1.0f / 0.9375);
1810                 intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
1811                 r_shadow_attentable[x] = bound(0, intensity, 1);
1812         }
1813         // 1D gradient texture
1814         for (x = 0;x < ATTEN1DSIZE;x++)
1815                 data[x] = R_Shadow_MakeTextures_SamplePoint((x + 0.5f) * (1.0f / ATTEN1DSIZE) * (1.0f / 0.9375), 0, 0);
1816         r_shadow_attenuationgradienttexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation1d", ATTEN1DSIZE, 1, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1817         // 2D circle texture
1818         for (y = 0;y < ATTEN2DSIZE;y++)
1819                 for (x = 0;x < ATTEN2DSIZE;x++)
1820                         data[y*ATTEN2DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), 0);
1821         r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1822         // 3D sphere texture
1823         if (r_shadow_texture3d.integer && vid.support.ext_texture_3d)
1824         {
1825                 for (z = 0;z < ATTEN3DSIZE;z++)
1826                         for (y = 0;y < ATTEN3DSIZE;y++)
1827                                 for (x = 0;x < ATTEN3DSIZE;x++)
1828                                         data[(z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375));
1829                 r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
1830         }
1831         else
1832                 r_shadow_attenuation3dtexture = NULL;
1833         Mem_Free(data);
1834
1835         R_Shadow_MakeTextures_MakeCorona();
1836
1837         // Editor light sprites
1838         r_editlights_sprcursor = R_SkinFrame_LoadInternal8bit("gfx/editlights/cursor", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1839         "................"
1840         ".3............3."
1841         "..5...2332...5.."
1842         "...7.3....3.7..."
1843         "....7......7...."
1844         "...3.7....7.3..."
1845         "..2...7..7...2.."
1846         "..3..........3.."
1847         "..3..........3.."
1848         "..2...7..7...2.."
1849         "...3.7....7.3..."
1850         "....7......7...."
1851         "...7.3....3.7..."
1852         "..5...2332...5.."
1853         ".3............3."
1854         "................"
1855         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1856         r_editlights_sprlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/light", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1857         "................"
1858         "................"
1859         "......1111......"
1860         "....11233211...."
1861         "...1234554321..."
1862         "...1356776531..."
1863         "..124677776421.."
1864         "..135777777531.."
1865         "..135777777531.."
1866         "..124677776421.."
1867         "...1356776531..."
1868         "...1234554321..."
1869         "....11233211...."
1870         "......1111......"
1871         "................"
1872         "................"
1873         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1874         r_editlights_sprnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/noshadow", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1875         "................"
1876         "................"
1877         "......1111......"
1878         "....11233211...."
1879         "...1234554321..."
1880         "...1356226531..."
1881         "..12462..26421.."
1882         "..1352....2531.."
1883         "..1352....2531.."
1884         "..12462..26421.."
1885         "...1356226531..."
1886         "...1234554321..."
1887         "....11233211...."
1888         "......1111......"
1889         "................"
1890         "................"
1891         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1892         r_editlights_sprcubemaplight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemaplight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1893         "................"
1894         "................"
1895         "......2772......"
1896         "....27755772...."
1897         "..277533335772.."
1898         "..753333333357.."
1899         "..777533335777.."
1900         "..735775577537.."
1901         "..733357753337.."
1902         "..733337733337.."
1903         "..753337733357.."
1904         "..277537735772.."
1905         "....27777772...."
1906         "......2772......"
1907         "................"
1908         "................"
1909         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1910         r_editlights_sprcubemapnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemapnoshadowlight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
1911         "................"
1912         "................"
1913         "......2772......"
1914         "....27722772...."
1915         "..2772....2772.."
1916         "..72........27.."
1917         "..7772....2777.."
1918         "..7.27722772.7.."
1919         "..7...2772...7.."
1920         "..7....77....7.."
1921         "..72...77...27.."
1922         "..2772.77.2772.."
1923         "....27777772...."
1924         "......2772......"
1925         "................"
1926         "................"
1927         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1928         r_editlights_sprselection = R_SkinFrame_LoadInternal8bit("gfx/editlights/selection", TEXF_ALPHA | TEXF_CLAMP, (unsigned char *)
1929         "................"
1930         ".777752..257777."
1931         ".742........247."
1932         ".72..........27."
1933         ".7............7."
1934         ".5............5."
1935         ".2............2."
1936         "................"
1937         "................"
1938         ".2............2."
1939         ".5............5."
1940         ".7............7."
1941         ".72..........27."
1942         ".742........247."
1943         ".777752..257777."
1944         "................"
1945         , 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
1946 }
1947
1948 void R_Shadow_ValidateCvars(void)
1949 {
1950         if (r_shadow_texture3d.integer && !vid.support.ext_texture_3d)
1951                 Cvar_SetValueQuick(&r_shadow_texture3d, 0);
1952         if (gl_ext_separatestencil.integer && !vid.support.ati_separate_stencil)
1953                 Cvar_SetValueQuick(&gl_ext_separatestencil, 0);
1954         if (gl_ext_stenciltwoside.integer && !vid.support.ext_stencil_two_side)
1955                 Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
1956 }
1957
1958 void R_Shadow_RenderMode_Begin(void)
1959 {
1960 #if 0
1961         GLint drawbuffer;
1962         GLint readbuffer;
1963 #endif
1964         R_Shadow_ValidateCvars();
1965
1966         if (!r_shadow_attenuation2dtexture
1967          || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
1968          || r_shadow_lightattenuationdividebias.value != r_shadow_attendividebias
1969          || r_shadow_lightattenuationlinearscale.value != r_shadow_attenlinearscale)
1970                 R_Shadow_MakeTextures();
1971
1972         CHECKGLERROR
1973         R_Mesh_ResetTextureState();
1974         GL_BlendFunc(GL_ONE, GL_ZERO);
1975         GL_DepthRange(0, 1);
1976         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
1977         GL_DepthTest(true);
1978         GL_DepthMask(false);
1979         GL_Color(0, 0, 0, 1);
1980         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
1981         
1982         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1983
1984         if (gl_ext_separatestencil.integer && vid.support.ati_separate_stencil)
1985         {
1986                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL;
1987                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL;
1988         }
1989         else if (gl_ext_stenciltwoside.integer && vid.support.ext_stencil_two_side)
1990         {
1991                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE;
1992                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE;
1993         }
1994         else
1995         {
1996                 r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCIL;
1997                 r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCIL;
1998         }
1999
2000         switch(vid.renderpath)
2001         {
2002         case RENDERPATH_GL20:
2003         case RENDERPATH_D3D9:
2004         case RENDERPATH_D3D10:
2005         case RENDERPATH_D3D11:
2006         case RENDERPATH_SOFT:
2007         case RENDERPATH_GLES2:
2008                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
2009                 break;
2010         case RENDERPATH_GL11:
2011         case RENDERPATH_GL13:
2012         case RENDERPATH_GLES1:
2013                 if (r_textureunits.integer >= 2 && vid.texunits >= 2 && r_shadow_texture3d.integer && r_shadow_attenuation3dtexture)
2014                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN;
2015                 else if (r_textureunits.integer >= 3 && vid.texunits >= 3)
2016                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN;
2017                 else if (r_textureunits.integer >= 2 && vid.texunits >= 2)
2018                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN;
2019                 else
2020                         r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
2021                 break;
2022         }
2023
2024         CHECKGLERROR
2025 #if 0
2026         qglGetIntegerv(GL_DRAW_BUFFER, &drawbuffer);CHECKGLERROR
2027         qglGetIntegerv(GL_READ_BUFFER, &readbuffer);CHECKGLERROR
2028         r_shadow_drawbuffer = drawbuffer;
2029         r_shadow_readbuffer = readbuffer;
2030 #endif
2031         r_shadow_cullface_front = r_refdef.view.cullface_front;
2032         r_shadow_cullface_back = r_refdef.view.cullface_back;
2033 }
2034
2035 void R_Shadow_RenderMode_ActiveLight(const rtlight_t *rtlight)
2036 {
2037         rsurface.rtlight = rtlight;
2038 }
2039
2040 void R_Shadow_RenderMode_Reset(void)
2041 {
2042         R_Mesh_ResetTextureState();
2043         R_Mesh_SetRenderTargets(r_shadow_fb_fbo, r_shadow_fb_depthtexture, r_shadow_fb_colortexture, NULL, NULL, NULL);
2044         R_SetViewport(&r_refdef.view.viewport);
2045         GL_Scissor(r_shadow_lightscissor[0], r_shadow_lightscissor[1], r_shadow_lightscissor[2], r_shadow_lightscissor[3]);
2046         GL_DepthRange(0, 1);
2047         GL_DepthTest(true);
2048         GL_DepthMask(false);
2049         GL_DepthFunc(GL_LEQUAL);
2050         GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);CHECKGLERROR
2051         r_refdef.view.cullface_front = r_shadow_cullface_front;
2052         r_refdef.view.cullface_back = r_shadow_cullface_back;
2053         GL_CullFace(r_refdef.view.cullface_back);
2054         GL_Color(1, 1, 1, 1);
2055         GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
2056         GL_BlendFunc(GL_ONE, GL_ZERO);
2057         R_SetupShader_Generic_NoTexture(false, false);
2058         r_shadow_usingshadowmap2d = false;
2059         r_shadow_usingshadowmaportho = false;
2060         R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
2061 }
2062
2063 void R_Shadow_ClearStencil(void)
2064 {
2065         GL_Clear(GL_STENCIL_BUFFER_BIT, NULL, 1.0f, 128);
2066         r_refdef.stats.lights_clears++;
2067 }
2068
2069 void R_Shadow_RenderMode_StencilShadowVolumes(qboolean zpass)
2070 {
2071         r_shadow_rendermode_t mode = zpass ? r_shadow_shadowingrendermode_zpass : r_shadow_shadowingrendermode_zfail;
2072         if (r_shadow_rendermode == mode)
2073                 return;
2074         R_Shadow_RenderMode_Reset();
2075         GL_DepthFunc(GL_LESS);
2076         GL_ColorMask(0, 0, 0, 0);
2077         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
2078         GL_CullFace(GL_NONE);
2079         R_SetupShader_DepthOrShadow(false, false);
2080         r_shadow_rendermode = mode;
2081         switch(mode)
2082         {
2083         default:
2084                 break;
2085         case R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE:
2086         case R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL:
2087                 R_SetStencilSeparate(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, GL_ALWAYS, 128, 255);
2088                 break;
2089         case R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE:
2090         case R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL:
2091                 R_SetStencilSeparate(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, GL_ALWAYS, 128, 255);
2092                 break;
2093         }
2094 }
2095
2096 static void R_Shadow_MakeVSDCT(void)
2097 {
2098         // maps to a 2x3 texture rectangle with normalized coordinates
2099         // +-
2100         // XX
2101         // YY
2102         // ZZ
2103         // stores abs(dir.xy), offset.xy/2.5
2104         unsigned char data[4*6] =
2105         {
2106                 255, 0, 0x33, 0x33, // +X: <1, 0>, <0.5, 0.5>
2107                 255, 0, 0x99, 0x33, // -X: <1, 0>, <1.5, 0.5>
2108                 0, 255, 0x33, 0x99, // +Y: <0, 1>, <0.5, 1.5>
2109                 0, 255, 0x99, 0x99, // -Y: <0, 1>, <1.5, 1.5>
2110                 0,   0, 0x33, 0xFF, // +Z: <0, 0>, <0.5, 2.5>
2111                 0,   0, 0x99, 0xFF, // -Z: <0, 0>, <1.5, 2.5>
2112         };
2113         r_shadow_shadowmapvsdcttexture = R_LoadTextureCubeMap(r_shadow_texturepool, "shadowmapvsdct", 1, data, TEXTYPE_RGBA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
2114 }
2115
2116 static void R_Shadow_MakeShadowMap(int side, int size)
2117 {
2118         switch (r_shadow_shadowmode)
2119         {
2120         case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
2121                 if (r_shadow_shadowmap2ddepthtexture) return;
2122                 if (r_fb.usedepthtextures)
2123                 {
2124                         r_shadow_shadowmap2ddepthtexture = R_LoadTextureShadowMap2D(r_shadow_texturepool, "shadowmap", size*2, size*(vid.support.arb_texture_non_power_of_two ? 3 : 4), r_shadow_shadowmapdepthbits >= 24 ? (r_shadow_shadowmapsampler ? TEXTYPE_SHADOWMAP24_COMP : TEXTYPE_SHADOWMAP24_RAW) : (r_shadow_shadowmapsampler ? TEXTYPE_SHADOWMAP16_COMP : TEXTYPE_SHADOWMAP16_RAW), r_shadow_shadowmapsampler);
2125                         r_shadow_shadowmap2ddepthbuffer = NULL;
2126                         r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL, NULL);
2127                 }
2128                 else
2129                 {
2130                         r_shadow_shadowmap2ddepthtexture = R_LoadTexture2D(r_shadow_texturepool, "shadowmaprendertarget", size*2, size*(vid.support.arb_texture_non_power_of_two ? 3 : 4), NULL, TEXTYPE_COLORBUFFER, TEXF_RENDERTARGET | TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
2131                         r_shadow_shadowmap2ddepthbuffer = R_LoadTextureRenderBuffer(r_shadow_texturepool, "shadowmap", size*2, size*(vid.support.arb_texture_non_power_of_two ? 3 : 4), r_shadow_shadowmapdepthbits >= 24 ? TEXTYPE_DEPTHBUFFER24 : TEXTYPE_DEPTHBUFFER16);
2132                         r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2ddepthbuffer, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL);
2133                 }
2134                 break;
2135         default:
2136                 return;
2137         }
2138 }
2139
2140 static void R_Shadow_RenderMode_ShadowMap(int side, int clear, int size)
2141 {
2142         float nearclip, farclip, bias;
2143         r_viewport_t viewport;
2144         int flipped;
2145         GLuint fbo2d = 0;
2146         float clearcolor[4];
2147         nearclip = r_shadow_shadowmapping_nearclip.value / rsurface.rtlight->radius;
2148         farclip = 1.0f;
2149         bias = r_shadow_shadowmapping_bias.value * nearclip * (1024.0f / size);// * rsurface.rtlight->radius;
2150         r_shadow_shadowmap_parameters[1] = -nearclip * farclip / (farclip - nearclip) - 0.5f * bias;
2151         r_shadow_shadowmap_parameters[3] = 0.5f + 0.5f * (farclip + nearclip) / (farclip - nearclip);
2152         r_shadow_shadowmapside = side;
2153         r_shadow_shadowmapsize = size;
2154
2155         r_shadow_shadowmap_parameters[0] = 0.5f * (size - r_shadow_shadowmapborder);
2156         r_shadow_shadowmap_parameters[2] = r_shadow_shadowmapvsdct ? 2.5f*size : size;
2157         R_Viewport_InitRectSideView(&viewport, &rsurface.rtlight->matrix_lighttoworld, side, size, r_shadow_shadowmapborder, nearclip, farclip, NULL);
2158         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_SHADOWMAP2D) goto init_done;
2159
2160         // complex unrolled cube approach (more flexible)
2161         if (r_shadow_shadowmapvsdct && !r_shadow_shadowmapvsdcttexture)
2162                 R_Shadow_MakeVSDCT();
2163         if (!r_shadow_shadowmap2ddepthtexture)
2164                 R_Shadow_MakeShadowMap(side, r_shadow_shadowmapmaxsize);
2165         fbo2d = r_shadow_fbo2d;
2166         r_shadow_shadowmap_texturescale[0] = 1.0f / R_TextureWidth(r_shadow_shadowmap2ddepthtexture);
2167         r_shadow_shadowmap_texturescale[1] = 1.0f / R_TextureHeight(r_shadow_shadowmap2ddepthtexture);
2168         r_shadow_rendermode = R_SHADOW_RENDERMODE_SHADOWMAP2D;
2169
2170         R_Mesh_ResetTextureState();
2171         R_Shadow_RenderMode_Reset();
2172         if (r_shadow_shadowmap2ddepthbuffer)
2173                 R_Mesh_SetRenderTargets(fbo2d, r_shadow_shadowmap2ddepthbuffer, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL);
2174         else
2175                 R_Mesh_SetRenderTargets(fbo2d, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL, NULL);
2176         R_SetupShader_DepthOrShadow(true, r_shadow_shadowmap2ddepthbuffer != NULL);
2177         GL_PolygonOffset(r_shadow_shadowmapping_polygonfactor.value, r_shadow_shadowmapping_polygonoffset.value);
2178         GL_DepthMask(true);
2179         GL_DepthTest(true);
2180
2181 init_done:
2182         R_SetViewport(&viewport);
2183         flipped = (side & 1) ^ (side >> 2);
2184         r_refdef.view.cullface_front = flipped ? r_shadow_cullface_back : r_shadow_cullface_front;
2185         r_refdef.view.cullface_back = flipped ? r_shadow_cullface_front : r_shadow_cullface_back;
2186         if (r_shadow_shadowmap2ddepthbuffer)
2187         {
2188                 // completely different meaning than in depthtexture approach
2189                 r_shadow_shadowmap_parameters[1] = 0;
2190                 r_shadow_shadowmap_parameters[3] = -bias;
2191         }
2192         Vector4Set(clearcolor, 1,1,1,1);
2193         if (r_shadow_shadowmap2ddepthbuffer)
2194                 GL_ColorMask(1,1,1,1);
2195         else
2196                 GL_ColorMask(0,0,0,0);
2197         switch(vid.renderpath)
2198         {
2199         case RENDERPATH_GL11:
2200         case RENDERPATH_GL13:
2201         case RENDERPATH_GL20:
2202         case RENDERPATH_SOFT:
2203         case RENDERPATH_GLES1:
2204         case RENDERPATH_GLES2:
2205                 GL_CullFace(r_refdef.view.cullface_back);
2206                 // OpenGL lets us scissor larger than the viewport, so go ahead and clear all views at once
2207                 if ((clear & ((2 << side) - 1)) == (1 << side)) // only clear if the side is the first in the mask
2208                 {
2209                         // get tightest scissor rectangle that encloses all viewports in the clear mask
2210                         int x1 = clear & 0x15 ? 0 : size;
2211                         int x2 = clear & 0x2A ? 2 * size : size;
2212                         int y1 = clear & 0x03 ? 0 : (clear & 0xC ? size : 2 * size);
2213                         int y2 = clear & 0x30 ? 3 * size : (clear & 0xC ? 2 * size : size);
2214                         GL_Scissor(x1, y1, x2 - x1, y2 - y1);
2215                         if (clear)
2216                         {
2217                                 if (r_shadow_shadowmap2ddepthbuffer)
2218                                         GL_Clear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT, clearcolor, 1.0f, 0);
2219                                 else
2220                                         GL_Clear(GL_DEPTH_BUFFER_BIT, clearcolor, 1.0f, 0);
2221                         }
2222                 }
2223                 GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
2224                 break;
2225         case RENDERPATH_D3D9:
2226         case RENDERPATH_D3D10:
2227         case RENDERPATH_D3D11:
2228                 // we invert the cull mode because we flip the projection matrix
2229                 // NOTE: this actually does nothing because the DrawShadowMap code sets it to doublesided...
2230                 GL_CullFace(r_refdef.view.cullface_front);
2231                 // D3D considers it an error to use a scissor larger than the viewport...  clear just this view
2232                 GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
2233                 if (clear)
2234                 {
2235                         if (r_shadow_shadowmap2ddepthbuffer)
2236                                 GL_Clear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT, clearcolor, 1.0f, 0);
2237                         else
2238                                 GL_Clear(GL_DEPTH_BUFFER_BIT, clearcolor, 1.0f, 0);
2239                 }
2240                 break;
2241         }
2242 }
2243
2244 void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent, qboolean shadowmapping)
2245 {
2246         R_Mesh_ResetTextureState();
2247         if (transparent)
2248         {
2249                 r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
2250                 r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
2251                 r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
2252                 r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
2253         }
2254         R_Shadow_RenderMode_Reset();
2255         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2256         if (!transparent)
2257                 GL_DepthFunc(GL_EQUAL);
2258         // do global setup needed for the chosen lighting mode
2259         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2260                 GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 0);
2261         r_shadow_usingshadowmap2d = shadowmapping;
2262         r_shadow_rendermode = r_shadow_lightingrendermode;
2263         // only draw light where this geometry was already rendered AND the
2264         // stencil is 128 (values other than this mean shadow)
2265         if (stenciltest)
2266                 R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2267         else
2268                 R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
2269 }
2270
2271 static const unsigned short bboxelements[36] =
2272 {
2273         5, 1, 3, 5, 3, 7,
2274         6, 2, 0, 6, 0, 4,
2275         7, 3, 2, 7, 2, 6,
2276         4, 0, 1, 4, 1, 5,
2277         4, 5, 7, 4, 7, 6,
2278         1, 0, 2, 1, 2, 3,
2279 };
2280
2281 static const float bboxpoints[8][3] =
2282 {
2283         {-1,-1,-1},
2284         { 1,-1,-1},
2285         {-1, 1,-1},
2286         { 1, 1,-1},
2287         {-1,-1, 1},
2288         { 1,-1, 1},
2289         {-1, 1, 1},
2290         { 1, 1, 1},
2291 };
2292
2293 void R_Shadow_RenderMode_DrawDeferredLight(qboolean stenciltest, qboolean shadowmapping)
2294 {
2295         int i;
2296         float vertex3f[8*3];
2297         const matrix4x4_t *matrix = &rsurface.rtlight->matrix_lighttoworld;
2298 // do global setup needed for the chosen lighting mode
2299         R_Shadow_RenderMode_Reset();
2300         r_shadow_rendermode = r_shadow_lightingrendermode;
2301         R_EntityMatrix(&identitymatrix);
2302         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2303         // only draw light where this geometry was already rendered AND the
2304         // stencil is 128 (values other than this mean shadow)
2305         R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2306         if (rsurface.rtlight->specularscale > 0 && r_shadow_gloss.integer > 0)
2307                 R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
2308         else
2309                 R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusefbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);
2310
2311         r_shadow_usingshadowmap2d = shadowmapping;
2312
2313         // render the lighting
2314         R_SetupShader_DeferredLight(rsurface.rtlight);
2315         for (i = 0;i < 8;i++)
2316                 Matrix4x4_Transform(matrix, bboxpoints[i], vertex3f + i*3);
2317         GL_ColorMask(1,1,1,1);
2318         GL_DepthMask(false);
2319         GL_DepthRange(0, 1);
2320         GL_PolygonOffset(0, 0);
2321         GL_DepthTest(true);
2322         GL_DepthFunc(GL_GREATER);
2323         GL_CullFace(r_refdef.view.cullface_back);
2324         R_Mesh_PrepareVertices_Vertex3f(8, vertex3f, NULL);
2325         R_Mesh_Draw(0, 8, 0, 12, NULL, NULL, 0, bboxelements, NULL, 0);
2326 }
2327
2328 void R_Shadow_UpdateBounceGridTexture(void)
2329 {
2330 #define MAXBOUNCEGRIDPARTICLESPERLIGHT 1048576
2331         dlight_t *light;
2332         int flag = r_refdef.scene.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
2333         int bouncecount;
2334         int hitsupercontentsmask;
2335         int maxbounce;
2336         int numpixels;
2337         int resolution[3];
2338         int shootparticles;
2339         int shotparticles;
2340         int photoncount;
2341         int tex[3];
2342         trace_t cliptrace;
2343         //trace_t cliptrace2;
2344         //trace_t cliptrace3;
2345         unsigned char *pixel;
2346         unsigned char *pixels;
2347         float *highpixel;
2348         float *highpixels;
2349         unsigned int lightindex;
2350         unsigned int range;
2351         unsigned int range1;
2352         unsigned int range2;
2353         unsigned int seed = (unsigned int)(realtime * 1000.0f);
2354         vec3_t shotcolor;
2355         vec3_t baseshotcolor;
2356         vec3_t surfcolor;
2357         vec3_t clipend;
2358         vec3_t clipstart;
2359         vec3_t clipdiff;
2360         vec3_t ispacing;
2361         vec3_t maxs;
2362         vec3_t mins;
2363         vec3_t size;
2364         vec3_t spacing;
2365         vec3_t lightcolor;
2366         vec3_t steppos;
2367         vec3_t stepdelta;
2368         vec3_t cullmins, cullmaxs;
2369         vec_t radius;
2370         vec_t s;
2371         vec_t lightintensity;
2372         vec_t photonscaling;
2373         vec_t photonresidual;
2374         float m[16];
2375         float texlerp[2][3];
2376         float splatcolor[32];
2377         float pixelweight[8];
2378         float w;
2379         int c[4];
2380         int pixelindex[8];
2381         int corner;
2382         int pixelsperband;
2383         int pixelband;
2384         int pixelbands;
2385         int numsteps;
2386         int step;
2387         int x, y, z;
2388         rtlight_t *rtlight;
2389         r_shadow_bouncegrid_settings_t settings;
2390         qboolean enable = r_shadow_bouncegrid.integer != 0 && r_refdef.scene.worldmodel;
2391         qboolean allowdirectionalshading = false;
2392         switch(vid.renderpath)
2393         {
2394         case RENDERPATH_GL20:
2395                 allowdirectionalshading = true;
2396                 if (!vid.support.ext_texture_3d)
2397                         return;
2398                 break;
2399         case RENDERPATH_GLES2:
2400                 // for performance reasons, do not use directional shading on GLES devices
2401                 if (!vid.support.ext_texture_3d)
2402                         return;
2403                 break;
2404                 // these renderpaths do not currently have the code to display the bouncegrid, so disable it on them...
2405         case RENDERPATH_GL11:
2406         case RENDERPATH_GL13:
2407         case RENDERPATH_GLES1:
2408         case RENDERPATH_SOFT:
2409         case RENDERPATH_D3D9:
2410         case RENDERPATH_D3D10:
2411         case RENDERPATH_D3D11:
2412                 return;
2413         }
2414
2415         r_shadow_bouncegridintensity = r_shadow_bouncegrid_intensity.value;
2416
2417         // see if there are really any lights to render...
2418         if (enable && r_shadow_bouncegrid_static.integer)
2419         {
2420                 enable = false;
2421                 range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
2422                 for (lightindex = 0;lightindex < range;lightindex++)
2423                 {
2424                         light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2425                         if (!light || !(light->flags & flag))
2426                                 continue;
2427                         rtlight = &light->rtlight;
2428                         // when static, we skip styled lights because they tend to change...
2429                         if (rtlight->style > 0)
2430                                 continue;
2431                         VectorScale(rtlight->color, (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale), lightcolor);
2432                         if (!VectorLength2(lightcolor))
2433                                 continue;
2434                         enable = true;
2435                         break;
2436                 }
2437         }
2438
2439         if (!enable)
2440         {
2441                 if (r_shadow_bouncegridtexture)
2442                 {
2443                         R_FreeTexture(r_shadow_bouncegridtexture);
2444                         r_shadow_bouncegridtexture = NULL;
2445                 }
2446                 if (r_shadow_bouncegridpixels)
2447                         Mem_Free(r_shadow_bouncegridpixels);
2448                 r_shadow_bouncegridpixels = NULL;
2449                 if (r_shadow_bouncegridhighpixels)
2450                         Mem_Free(r_shadow_bouncegridhighpixels);
2451                 r_shadow_bouncegridhighpixels = NULL;
2452                 r_shadow_bouncegridnumpixels = 0;
2453                 r_shadow_bouncegriddirectional = false;
2454                 return;
2455         }
2456
2457         // build up a complete collection of the desired settings, so that memcmp can be used to compare parameters
2458         memset(&settings, 0, sizeof(settings));
2459         settings.staticmode                    = r_shadow_bouncegrid_static.integer != 0;
2460         settings.bounceanglediffuse            = r_shadow_bouncegrid_bounceanglediffuse.integer != 0;
2461         settings.directionalshading            = (r_shadow_bouncegrid_static.integer != 0 ? r_shadow_bouncegrid_static_directionalshading.integer != 0 : r_shadow_bouncegrid_directionalshading.integer != 0) && allowdirectionalshading;
2462         settings.dlightparticlemultiplier      = r_shadow_bouncegrid_dlightparticlemultiplier.value;
2463         settings.hitmodels                     = r_shadow_bouncegrid_hitmodels.integer != 0;
2464         settings.includedirectlighting         = r_shadow_bouncegrid_includedirectlighting.integer != 0 || r_shadow_bouncegrid.integer == 2;
2465         settings.lightradiusscale              = (r_shadow_bouncegrid_static.integer != 0 ? r_shadow_bouncegrid_static_lightradiusscale.value : r_shadow_bouncegrid_lightradiusscale.value);
2466         settings.maxbounce                     = (r_shadow_bouncegrid_static.integer != 0 ? r_shadow_bouncegrid_static_maxbounce.integer : r_shadow_bouncegrid_maxbounce.integer);
2467         settings.particlebounceintensity       = r_shadow_bouncegrid_particlebounceintensity.value;
2468         settings.particleintensity             = r_shadow_bouncegrid_particleintensity.value * 16384.0f * (settings.directionalshading ? 4.0f : 1.0f) / (r_shadow_bouncegrid_spacing.value * r_shadow_bouncegrid_spacing.value);
2469         settings.photons                       = r_shadow_bouncegrid_static.integer ? r_shadow_bouncegrid_static_photons.integer : r_shadow_bouncegrid_photons.integer;
2470         settings.spacing[0]                    = r_shadow_bouncegrid_spacing.value;
2471         settings.spacing[1]                    = r_shadow_bouncegrid_spacing.value;
2472         settings.spacing[2]                    = r_shadow_bouncegrid_spacing.value;
2473         settings.stablerandom                  = r_shadow_bouncegrid_stablerandom.integer;
2474
2475         // bound the values for sanity
2476         settings.photons = bound(1, settings.photons, 1048576);
2477         settings.lightradiusscale = bound(0.0001f, settings.lightradiusscale, 1024.0f);
2478         settings.maxbounce = bound(0, settings.maxbounce, 16);
2479         settings.spacing[0] = bound(1, settings.spacing[0], 512);
2480         settings.spacing[1] = bound(1, settings.spacing[1], 512);
2481         settings.spacing[2] = bound(1, settings.spacing[2], 512);
2482
2483         // get the spacing values
2484         spacing[0] = settings.spacing[0];
2485         spacing[1] = settings.spacing[1];
2486         spacing[2] = settings.spacing[2];
2487         ispacing[0] = 1.0f / spacing[0];
2488         ispacing[1] = 1.0f / spacing[1];
2489         ispacing[2] = 1.0f / spacing[2];
2490
2491         // calculate texture size enclosing entire world bounds at the spacing
2492         VectorMA(r_refdef.scene.worldmodel->normalmins, -2.0f, spacing, mins);
2493         VectorMA(r_refdef.scene.worldmodel->normalmaxs, 2.0f, spacing, maxs);
2494         VectorSubtract(maxs, mins, size);
2495         // now we can calculate the resolution we want
2496         c[0] = (int)floor(size[0] / spacing[0] + 0.5f);
2497         c[1] = (int)floor(size[1] / spacing[1] + 0.5f);
2498         c[2] = (int)floor(size[2] / spacing[2] + 0.5f);
2499         // figure out the exact texture size (honoring power of 2 if required)
2500         c[0] = bound(4, c[0], (int)vid.maxtexturesize_3d);
2501         c[1] = bound(4, c[1], (int)vid.maxtexturesize_3d);
2502         c[2] = bound(4, c[2], (int)vid.maxtexturesize_3d);
2503         if (vid.support.arb_texture_non_power_of_two)
2504         {
2505                 resolution[0] = c[0];
2506                 resolution[1] = c[1];
2507                 resolution[2] = c[2];
2508         }
2509         else
2510         {
2511                 for (resolution[0] = 4;resolution[0] < c[0];resolution[0]*=2) ;
2512                 for (resolution[1] = 4;resolution[1] < c[1];resolution[1]*=2) ;
2513                 for (resolution[2] = 4;resolution[2] < c[2];resolution[2]*=2) ;
2514         }
2515         size[0] = spacing[0] * resolution[0];
2516         size[1] = spacing[1] * resolution[1];
2517         size[2] = spacing[2] * resolution[2];
2518
2519         // if dynamic we may or may not want to use the world bounds
2520         // if the dynamic size is smaller than the world bounds, use it instead
2521         if (!settings.staticmode && (r_shadow_bouncegrid_x.integer * r_shadow_bouncegrid_y.integer * r_shadow_bouncegrid_z.integer < resolution[0] * resolution[1] * resolution[2]))
2522         {
2523                 // we know the resolution we want
2524                 c[0] = r_shadow_bouncegrid_x.integer;
2525                 c[1] = r_shadow_bouncegrid_y.integer;
2526                 c[2] = r_shadow_bouncegrid_z.integer;
2527                 // now we can calculate the texture size (power of 2 if required)
2528                 c[0] = bound(4, c[0], (int)vid.maxtexturesize_3d);
2529                 c[1] = bound(4, c[1], (int)vid.maxtexturesize_3d);
2530                 c[2] = bound(4, c[2], (int)vid.maxtexturesize_3d);
2531                 if (vid.support.arb_texture_non_power_of_two)
2532                 {
2533                         resolution[0] = c[0];
2534                         resolution[1] = c[1];
2535                         resolution[2] = c[2];
2536                 }
2537                 else
2538                 {
2539                         for (resolution[0] = 4;resolution[0] < c[0];resolution[0]*=2) ;
2540                         for (resolution[1] = 4;resolution[1] < c[1];resolution[1]*=2) ;
2541                         for (resolution[2] = 4;resolution[2] < c[2];resolution[2]*=2) ;
2542                 }
2543                 size[0] = spacing[0] * resolution[0];
2544                 size[1] = spacing[1] * resolution[1];
2545                 size[2] = spacing[2] * resolution[2];
2546                 // center the rendering on the view
2547                 mins[0] = floor(r_refdef.view.origin[0] * ispacing[0] + 0.5f) * spacing[0] - 0.5f * size[0];
2548                 mins[1] = floor(r_refdef.view.origin[1] * ispacing[1] + 0.5f) * spacing[1] - 0.5f * size[1];
2549                 mins[2] = floor(r_refdef.view.origin[2] * ispacing[2] + 0.5f) * spacing[2] - 0.5f * size[2];
2550         }
2551
2552         // recalculate the maxs in case the resolution was not satisfactory
2553         VectorAdd(mins, size, maxs);
2554
2555         // if all the settings seem identical to the previous update, return
2556         if (r_shadow_bouncegridtexture && (settings.staticmode || realtime < r_shadow_bouncegridtime + r_shadow_bouncegrid_updateinterval.value) && !memcmp(&r_shadow_bouncegridsettings, &settings, sizeof(settings)))
2557                 return;
2558
2559         // store the new settings
2560         r_shadow_bouncegridsettings = settings;
2561
2562         pixelbands = settings.directionalshading ? 8 : 1;
2563         pixelsperband = resolution[0]*resolution[1]*resolution[2];
2564         numpixels = pixelsperband*pixelbands;
2565
2566         // we're going to update the bouncegrid, update the matrix...
2567         memset(m, 0, sizeof(m));
2568         m[0] = 1.0f / size[0];
2569         m[3] = -mins[0] * m[0];
2570         m[5] = 1.0f / size[1];
2571         m[7] = -mins[1] * m[5];
2572         m[10] = 1.0f / size[2];
2573         m[11] = -mins[2] * m[10];
2574         m[15] = 1.0f;
2575         Matrix4x4_FromArrayFloatD3D(&r_shadow_bouncegridmatrix, m);
2576         // reallocate pixels for this update if needed...
2577         if (r_shadow_bouncegridnumpixels != numpixels || !r_shadow_bouncegridpixels || !r_shadow_bouncegridhighpixels)
2578         {
2579                 if (r_shadow_bouncegridtexture)
2580                 {
2581                         R_FreeTexture(r_shadow_bouncegridtexture);
2582                         r_shadow_bouncegridtexture = NULL;
2583                 }
2584                 r_shadow_bouncegridpixels = (unsigned char *)Mem_Realloc(r_main_mempool, r_shadow_bouncegridpixels, numpixels * sizeof(unsigned char[4]));
2585                 r_shadow_bouncegridhighpixels = (float *)Mem_Realloc(r_main_mempool, r_shadow_bouncegridhighpixels, numpixels * sizeof(float[4]));
2586         }
2587         r_shadow_bouncegridnumpixels = numpixels;
2588         pixels = r_shadow_bouncegridpixels;
2589         highpixels = r_shadow_bouncegridhighpixels;
2590         x = pixelsperband*4;
2591         for (pixelband = 0;pixelband < pixelbands;pixelband++)
2592         {
2593                 if (pixelband == 1)
2594                         memset(pixels + pixelband * x, 128, x);
2595                 else
2596                         memset(pixels + pixelband * x, 0, x);
2597         }
2598         memset(highpixels, 0, numpixels * sizeof(float[4]));
2599         // figure out what we want to interact with
2600         if (settings.hitmodels)
2601                 hitsupercontentsmask = SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY;// | SUPERCONTENTS_LIQUIDSMASK;
2602         else
2603                 hitsupercontentsmask = SUPERCONTENTS_SOLID;// | SUPERCONTENTS_LIQUIDSMASK;
2604         maxbounce = settings.maxbounce;
2605         // clear variables that produce warnings otherwise
2606         memset(splatcolor, 0, sizeof(splatcolor));
2607         // iterate world rtlights
2608         range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
2609         range1 = settings.staticmode ? 0 : r_refdef.scene.numlights;
2610         range2 = range + range1;
2611         photoncount = 0;
2612         for (lightindex = 0;lightindex < range2;lightindex++)
2613         {
2614                 if (lightindex < range)
2615                 {
2616                         light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2617                         if (!light)
2618                                 continue;
2619                         rtlight = &light->rtlight;
2620                         VectorClear(rtlight->photoncolor);
2621                         rtlight->photons = 0;
2622                         if (!(light->flags & flag))
2623                                 continue;
2624                         if (settings.staticmode)
2625                         {
2626                                 // when static, we skip styled lights because they tend to change...
2627                                 if (rtlight->style > 0 && r_shadow_bouncegrid.integer != 2)
2628                                         continue;
2629                         }
2630                 }
2631                 else
2632                 {
2633                         rtlight = r_refdef.scene.lights[lightindex - range];
2634                         VectorClear(rtlight->photoncolor);
2635                         rtlight->photons = 0;
2636                 }
2637                 // draw only visible lights (major speedup)
2638                 radius = rtlight->radius * settings.lightradiusscale;
2639                 cullmins[0] = rtlight->shadoworigin[0] - radius;
2640                 cullmins[1] = rtlight->shadoworigin[1] - radius;
2641                 cullmins[2] = rtlight->shadoworigin[2] - radius;
2642                 cullmaxs[0] = rtlight->shadoworigin[0] + radius;
2643                 cullmaxs[1] = rtlight->shadoworigin[1] + radius;
2644                 cullmaxs[2] = rtlight->shadoworigin[2] + radius;
2645                 if (R_CullBox(cullmins, cullmaxs))
2646                         continue;
2647                 if (r_refdef.scene.worldmodel
2648                  && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs
2649                  && !r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, cullmins, cullmaxs))
2650                         continue;
2651                 w = r_shadow_lightintensityscale.value * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale);
2652                 if (w * VectorLength2(rtlight->color) == 0.0f)
2653                         continue;
2654                 w *= (rtlight->style >= 0 ? r_refdef.scene.rtlightstylevalue[rtlight->style] : 1);
2655                 VectorScale(rtlight->color, w, rtlight->photoncolor);
2656                 //if (!VectorLength2(rtlight->photoncolor))
2657                 //      continue;
2658                 // shoot particles from this light
2659                 // use a calculation for the number of particles that will not
2660                 // vary with lightstyle, otherwise we get randomized particle
2661                 // distribution, the seeded random is only consistent for a
2662                 // consistent number of particles on this light...
2663                 s = rtlight->radius;
2664                 lightintensity = VectorLength(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale);
2665                 if (lightindex >= range)
2666                         lightintensity *= settings.dlightparticlemultiplier;
2667                 rtlight->photons = max(0.0f, lightintensity * s * s);
2668                 photoncount += rtlight->photons;
2669         }
2670         photonscaling = (float)settings.photons / max(1, photoncount);
2671         photonresidual = 0.0f;
2672         for (lightindex = 0;lightindex < range2;lightindex++)
2673         {
2674                 if (lightindex < range)
2675                 {
2676                         light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
2677                         if (!light)
2678                                 continue;
2679                         rtlight = &light->rtlight;
2680                 }
2681                 else
2682                         rtlight = r_refdef.scene.lights[lightindex - range];
2683                 // skip a light with no photons
2684                 if (rtlight->photons == 0.0f)
2685                         continue;
2686                 // skip a light with no photon color)
2687                 if (VectorLength2(rtlight->photoncolor) == 0.0f)
2688                         continue;
2689                 photonresidual += rtlight->photons * photonscaling;
2690                 shootparticles = (int)bound(0, photonresidual, MAXBOUNCEGRIDPARTICLESPERLIGHT);
2691                 if (!shootparticles)
2692                         continue;
2693                 photonresidual -= shootparticles;
2694                 radius = rtlight->radius * settings.lightradiusscale;
2695                 s = settings.particleintensity / shootparticles;
2696                 VectorScale(rtlight->photoncolor, s, baseshotcolor);
2697                 r_refdef.stats.bouncegrid_lights++;
2698                 r_refdef.stats.bouncegrid_particles += shootparticles;
2699                 for (shotparticles = 0;shotparticles < shootparticles;shotparticles++)
2700                 {
2701                         if (settings.stablerandom > 0)
2702                                 seed = lightindex * 11937 + shotparticles;
2703                         VectorCopy(baseshotcolor, shotcolor);
2704                         VectorCopy(rtlight->shadoworigin, clipstart);
2705                         if (settings.stablerandom < 0)
2706                                 VectorRandom(clipend);
2707                         else
2708                                 VectorCheeseRandom(clipend);
2709                         VectorMA(clipstart, radius, clipend, clipend);
2710                         for (bouncecount = 0;;bouncecount++)
2711                         {
2712                                 r_refdef.stats.bouncegrid_traces++;
2713                                 //r_refdef.scene.worldmodel->TraceLineAgainstSurfaces(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace, clipstart, clipend, hitsupercontentsmask);
2714                                 //r_refdef.scene.worldmodel->TraceLine(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace2, clipstart, clipend, hitsupercontentsmask);
2715                                 if (settings.staticmode)
2716                                 {
2717                                         // static mode fires a LOT of rays but none of them are identical, so they are not cached
2718                                         cliptrace = CL_TraceLine(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), NULL, hitsupercontentsmask, true, false, NULL, true, true);
2719                                 }
2720                                 else
2721                                 {
2722                                         // dynamic mode fires many rays and most will match the cache from the previous frame
2723                                         cliptrace = CL_Cache_TraceLineSurfaces(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), hitsupercontentsmask);
2724                                 }
2725                                 if (bouncecount > 0 || settings.includedirectlighting)
2726                                 {
2727                                         // calculate second order spherical harmonics values (average, slopeX, slopeY, slopeZ)
2728                                         // accumulate average shotcolor
2729                                         w = VectorLength(shotcolor);
2730                                         splatcolor[ 0] = shotcolor[0];
2731                                         splatcolor[ 1] = shotcolor[1];
2732                                         splatcolor[ 2] = shotcolor[2];
2733                                         splatcolor[ 3] = 0.0f;
2734                                         if (pixelbands > 1)
2735                                         {
2736                                                 VectorSubtract(clipstart, cliptrace.endpos, clipdiff);
2737                                                 VectorNormalize(clipdiff);
2738                                                 // store bentnormal in case the shader has a use for it
2739                                                 splatcolor[ 4] = clipdiff[0] * w;
2740                                                 splatcolor[ 5] = clipdiff[1] * w;
2741                                                 splatcolor[ 6] = clipdiff[2] * w;
2742                                                 splatcolor[ 7] = w;
2743                                                 // accumulate directional contributions (+X, +Y, +Z, -X, -Y, -Z)
2744                                                 splatcolor[ 8] = shotcolor[0] * max(0.0f, clipdiff[0]);
2745                                                 splatcolor[ 9] = shotcolor[0] * max(0.0f, clipdiff[1]);
2746                                                 splatcolor[10] = shotcolor[0] * max(0.0f, clipdiff[2]);
2747                                                 splatcolor[11] = 0.0f;
2748                                                 splatcolor[12] = shotcolor[1] * max(0.0f, clipdiff[0]);
2749                                                 splatcolor[13] = shotcolor[1] * max(0.0f, clipdiff[1]);
2750                                                 splatcolor[14] = shotcolor[1] * max(0.0f, clipdiff[2]);
2751                                                 splatcolor[15] = 0.0f;
2752                                                 splatcolor[16] = shotcolor[2] * max(0.0f, clipdiff[0]);
2753                                                 splatcolor[17] = shotcolor[2] * max(0.0f, clipdiff[1]);
2754                                                 splatcolor[18] = shotcolor[2] * max(0.0f, clipdiff[2]);
2755                                                 splatcolor[19] = 0.0f;
2756                                                 splatcolor[20] = shotcolor[0] * max(0.0f, -clipdiff[0]);
2757                                                 splatcolor[21] = shotcolor[0] * max(0.0f, -clipdiff[1]);
2758                                                 splatcolor[22] = shotcolor[0] * max(0.0f, -clipdiff[2]);
2759                                                 splatcolor[23] = 0.0f;
2760                                                 splatcolor[24] = shotcolor[1] * max(0.0f, -clipdiff[0]);
2761                                                 splatcolor[25] = shotcolor[1] * max(0.0f, -clipdiff[1]);
2762                                                 splatcolor[26] = shotcolor[1] * max(0.0f, -clipdiff[2]);
2763                                                 splatcolor[27] = 0.0f;
2764                                                 splatcolor[28] = shotcolor[2] * max(0.0f, -clipdiff[0]);
2765                                                 splatcolor[29] = shotcolor[2] * max(0.0f, -clipdiff[1]);
2766                                                 splatcolor[30] = shotcolor[2] * max(0.0f, -clipdiff[2]);
2767                                                 splatcolor[31] = 0.0f;
2768                                         }
2769                                         // calculate the number of steps we need to traverse this distance
2770                                         VectorSubtract(cliptrace.endpos, clipstart, stepdelta);
2771                                         numsteps = (int)(VectorLength(stepdelta) * ispacing[0]);
2772                                         numsteps = bound(1, numsteps, 1024);
2773                                         w = 1.0f / numsteps;
2774                                         VectorScale(stepdelta, w, stepdelta);
2775                                         VectorMA(clipstart, 0.5f, stepdelta, steppos);
2776                                         for (step = 0;step < numsteps;step++)
2777                                         {
2778                                                 r_refdef.stats.bouncegrid_splats++;
2779                                                 // figure out which texture pixel this is in
2780                                                 texlerp[1][0] = ((steppos[0] - mins[0]) * ispacing[0]) - 0.5f;
2781                                                 texlerp[1][1] = ((steppos[1] - mins[1]) * ispacing[1]) - 0.5f;
2782                                                 texlerp[1][2] = ((steppos[2] - mins[2]) * ispacing[2]) - 0.5f;
2783                                                 tex[0] = (int)floor(texlerp[1][0]);
2784                                                 tex[1] = (int)floor(texlerp[1][1]);
2785                                                 tex[2] = (int)floor(texlerp[1][2]);
2786                                                 if (tex[0] >= 1 && tex[1] >= 1 && tex[2] >= 1 && tex[0] < resolution[0] - 2 && tex[1] < resolution[1] - 2 && tex[2] < resolution[2] - 2)
2787                                                 {
2788                                                         // it is within bounds...  do the real work now
2789                                                         // calculate the lerp factors
2790                                                         texlerp[1][0] -= tex[0];
2791                                                         texlerp[1][1] -= tex[1];
2792                                                         texlerp[1][2] -= tex[2];
2793                                                         texlerp[0][0] = 1.0f - texlerp[1][0];
2794                                                         texlerp[0][1] = 1.0f - texlerp[1][1];
2795                                                         texlerp[0][2] = 1.0f - texlerp[1][2];
2796                                                         // calculate individual pixel indexes and weights
2797                                                         pixelindex[0] = (((tex[2]  )*resolution[1]+tex[1]  )*resolution[0]+tex[0]  );pixelweight[0] = (texlerp[0][0]*texlerp[0][1]*texlerp[0][2]);
2798                                                         pixelindex[1] = (((tex[2]  )*resolution[1]+tex[1]  )*resolution[0]+tex[0]+1);pixelweight[1] = (texlerp[1][0]*texlerp[0][1]*texlerp[0][2]);
2799                                                         pixelindex[2] = (((tex[2]  )*resolution[1]+tex[1]+1)*resolution[0]+tex[0]  );pixelweight[2] = (texlerp[0][0]*texlerp[1][1]*texlerp[0][2]);
2800                                                         pixelindex[3] = (((tex[2]  )*resolution[1]+tex[1]+1)*resolution[0]+tex[0]+1);pixelweight[3] = (texlerp[1][0]*texlerp[1][1]*texlerp[0][2]);
2801                                                         pixelindex[4] = (((tex[2]+1)*resolution[1]+tex[1]  )*resolution[0]+tex[0]  );pixelweight[4] = (texlerp[0][0]*texlerp[0][1]*texlerp[1][2]);
2802                                                         pixelindex[5] = (((tex[2]+1)*resolution[1]+tex[1]  )*resolution[0]+tex[0]+1);pixelweight[5] = (texlerp[1][0]*texlerp[0][1]*texlerp[1][2]);
2803                                                         pixelindex[6] = (((tex[2]+1)*resolution[1]+tex[1]+1)*resolution[0]+tex[0]  );pixelweight[6] = (texlerp[0][0]*texlerp[1][1]*texlerp[1][2]);
2804                                                         pixelindex[7] = (((tex[2]+1)*resolution[1]+tex[1]+1)*resolution[0]+tex[0]+1);pixelweight[7] = (texlerp[1][0]*texlerp[1][1]*texlerp[1][2]);
2805                                                         // update the 8 pixels...
2806                                                         for (pixelband = 0;pixelband < pixelbands;pixelband++)
2807                                                         {
2808                                                                 for (corner = 0;corner < 8;corner++)
2809                                                                 {
2810                                                                         // calculate address for pixel
2811                                                                         w = pixelweight[corner];
2812                                                                         pixel = pixels + 4 * pixelindex[corner] + pixelband * pixelsperband * 4;
2813                                                                         highpixel = highpixels + 4 * pixelindex[corner] + pixelband * pixelsperband * 4;
2814                                                                         // add to the high precision pixel color
2815                                                                         highpixel[0] += (splatcolor[pixelband*4+0]*w);
2816                                                                         highpixel[1] += (splatcolor[pixelband*4+1]*w);
2817                                                                         highpixel[2] += (splatcolor[pixelband*4+2]*w);
2818                                                                         highpixel[3] += (splatcolor[pixelband*4+3]*w);
2819                                                                         // flag the low precision pixel as needing to be updated
2820                                                                         pixel[3] = 255;
2821                                                                         // advance to next band of coefficients
2822                                                                         //pixel += pixelsperband*4;
2823                                                                         //highpixel += pixelsperband*4;
2824                                                                 }
2825                                                         }
2826                                                 }
2827                                                 VectorAdd(steppos, stepdelta, steppos);
2828                                         }
2829                                 }
2830                                 if (cliptrace.fraction >= 1.0f)
2831                                         break;
2832                                 r_refdef.stats.bouncegrid_hits++;
2833                                 if (bouncecount >= maxbounce)
2834                                         break;
2835                                 // scale down shot color by bounce intensity and texture color (or 50% if no texture reported)
2836                                 // also clamp the resulting color to never add energy, even if the user requests extreme values
2837                                 if (cliptrace.hittexture && cliptrace.hittexture->currentskinframe)
2838                                         VectorCopy(cliptrace.hittexture->currentskinframe->avgcolor, surfcolor);
2839                                 else
2840                                         VectorSet(surfcolor, 0.5f, 0.5f, 0.5f);
2841                                 VectorScale(surfcolor, settings.particlebounceintensity, surfcolor);
2842                                 surfcolor[0] = min(surfcolor[0], 1.0f);
2843                                 surfcolor[1] = min(surfcolor[1], 1.0f);
2844                                 surfcolor[2] = min(surfcolor[2], 1.0f);
2845                                 VectorMultiply(shotcolor, surfcolor, shotcolor);
2846                                 if (VectorLength2(baseshotcolor) == 0.0f)
2847                                         break;
2848                                 r_refdef.stats.bouncegrid_bounces++;
2849                                 if (settings.bounceanglediffuse)
2850                                 {
2851                                         // random direction, primarily along plane normal
2852                                         s = VectorDistance(cliptrace.endpos, clipend);
2853                                         if (settings.stablerandom < 0)
2854                                                 VectorRandom(clipend);
2855                                         else
2856                                                 VectorCheeseRandom(clipend);
2857                                         VectorMA(cliptrace.plane.normal, 0.95f, clipend, clipend);
2858                                         VectorNormalize(clipend);
2859                                         VectorScale(clipend, s, clipend);
2860                                 }
2861                                 else
2862                                 {
2863                                         // reflect the remaining portion of the line across plane normal
2864                                         VectorSubtract(clipend, cliptrace.endpos, clipdiff);
2865                                         VectorReflect(clipdiff, 1.0, cliptrace.plane.normal, clipend);
2866                                 }
2867                                 // calculate the new line start and end
2868                                 VectorCopy(cliptrace.endpos, clipstart);
2869                                 VectorAdd(clipstart, clipend, clipend);
2870                         }
2871                 }
2872         }
2873         // generate pixels array from highpixels array
2874         // skip first and last columns, rows, and layers as these are blank
2875         // the pixel[3] value was written above, so we can use it to detect only pixels that need to be calculated
2876         for (pixelband = 0;pixelband < pixelbands;pixelband++)
2877         {
2878                 for (z = 1;z < resolution[2]-1;z++)
2879                 {
2880                         for (y = 1;y < resolution[1]-1;y++)
2881                         {
2882                                 for (x = 1, pixelindex[0] = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x, pixel = pixels + 4*pixelindex[0], highpixel = highpixels + 4*pixelindex[0];x < resolution[0]-1;x++, pixel += 4, highpixel += 4)
2883                                 {
2884                                         // only convert pixels that were hit by photons
2885                                         if (pixel[3] == 255)
2886                                         {
2887                                                 // normalize the bentnormal...
2888                                                 if (pixelband == 1)
2889                                                 {
2890                                                         VectorNormalize(highpixel);
2891                                                         c[0] = (int)(highpixel[0]*128.0f+128.0f);
2892                                                         c[1] = (int)(highpixel[1]*128.0f+128.0f);
2893                                                         c[2] = (int)(highpixel[2]*128.0f+128.0f);
2894                                                         c[3] = (int)(highpixel[3]*128.0f+128.0f);
2895                                                 }
2896                                                 else
2897                                                 {
2898                                                         c[0] = (int)(highpixel[0]*256.0f);
2899                                                         c[1] = (int)(highpixel[1]*256.0f);
2900                                                         c[2] = (int)(highpixel[2]*256.0f);
2901                                                         c[3] = (int)(highpixel[3]*256.0f);
2902                                                 }
2903                                                 pixel[2] = (unsigned char)bound(0, c[0], 255);
2904                                                 pixel[1] = (unsigned char)bound(0, c[1], 255);
2905                                                 pixel[0] = (unsigned char)bound(0, c[2], 255);
2906                                                 pixel[3] = (unsigned char)bound(0, c[3], 255);
2907                                         }
2908                                 }
2909                         }
2910                 }
2911         }
2912         if (r_shadow_bouncegridtexture && r_shadow_bouncegridresolution[0] == resolution[0] && r_shadow_bouncegridresolution[1] == resolution[1] && r_shadow_bouncegridresolution[2] == resolution[2] && r_shadow_bouncegriddirectional == settings.directionalshading)
2913                 R_UpdateTexture(r_shadow_bouncegridtexture, pixels, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
2914         else
2915         {
2916                 VectorCopy(resolution, r_shadow_bouncegridresolution);
2917                 r_shadow_bouncegriddirectional = settings.directionalshading;
2918                 if (r_shadow_bouncegridtexture)
2919                         R_FreeTexture(r_shadow_bouncegridtexture);
2920                 r_shadow_bouncegridtexture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, pixels, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
2921         }
2922         r_shadow_bouncegridtime = realtime;
2923 }
2924
2925 void R_Shadow_RenderMode_VisibleShadowVolumes(void)
2926 {
2927         R_Shadow_RenderMode_Reset();
2928         GL_BlendFunc(GL_ONE, GL_ONE);
2929         GL_DepthRange(0, 1);
2930         GL_DepthTest(r_showshadowvolumes.integer < 2);
2931         GL_Color(0.0, 0.0125 * r_refdef.view.colorscale, 0.1 * r_refdef.view.colorscale, 1);
2932         GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
2933         GL_CullFace(GL_NONE);
2934         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
2935 }
2936
2937 void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
2938 {
2939         R_Shadow_RenderMode_Reset();
2940         GL_BlendFunc(GL_ONE, GL_ONE);
2941         GL_DepthRange(0, 1);
2942         GL_DepthTest(r_showlighting.integer < 2);
2943         GL_Color(0.1 * r_refdef.view.colorscale, 0.0125 * r_refdef.view.colorscale, 0, 1);
2944         if (!transparent)
2945                 GL_DepthFunc(GL_EQUAL);
2946         R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
2947         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
2948 }
2949
2950 void R_Shadow_RenderMode_End(void)
2951 {
2952         R_Shadow_RenderMode_Reset();
2953         R_Shadow_RenderMode_ActiveLight(NULL);
2954         GL_DepthMask(true);
2955         GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
2956         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
2957 }
2958
2959 int bboxedges[12][2] =
2960 {
2961         // top
2962         {0, 1}, // +X
2963         {0, 2}, // +Y
2964         {1, 3}, // Y, +X
2965         {2, 3}, // X, +Y
2966         // bottom
2967         {4, 5}, // +X
2968         {4, 6}, // +Y
2969         {5, 7}, // Y, +X
2970         {6, 7}, // X, +Y
2971         // verticals
2972         {0, 4}, // +Z
2973         {1, 5}, // X, +Z
2974         {2, 6}, // Y, +Z
2975         {3, 7}, // XY, +Z
2976 };
2977
2978 qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
2979 {
2980         if (!r_shadow_scissor.integer || r_shadow_usingdeferredprepass || r_trippy.integer)
2981         {
2982                 r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
2983                 r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
2984                 r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
2985                 r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
2986                 return false;
2987         }
2988         if(R_ScissorForBBox(mins, maxs, r_shadow_lightscissor))
2989                 return true; // invisible
2990         if(r_shadow_lightscissor[0] != r_refdef.view.viewport.x
2991         || r_shadow_lightscissor[1] != r_refdef.view.viewport.y
2992         || r_shadow_lightscissor[2] != r_refdef.view.viewport.width
2993         || r_shadow_lightscissor[3] != r_refdef.view.viewport.height)
2994                 r_refdef.stats.lights_scissored++;
2995         return false;
2996 }
2997
2998 static void R_Shadow_RenderLighting_Light_Vertex_Shading(int firstvertex, int numverts, const float *diffusecolor, const float *ambientcolor)
2999 {
3000         int i;
3001         const float *vertex3f;
3002         const float *normal3f;
3003         float *color4f;
3004         float dist, dot, distintensity, shadeintensity, v[3], n[3];
3005         switch (r_shadow_rendermode)
3006         {
3007         case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
3008         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
3009                 if (VectorLength2(diffusecolor) > 0)
3010                 {
3011                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
3012                         {
3013                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
3014                                 Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
3015                                 if ((dot = DotProduct(n, v)) < 0)
3016                                 {
3017                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
3018                                         VectorMA(ambientcolor, shadeintensity, diffusecolor, color4f);
3019                                 }
3020                                 else
3021                                         VectorCopy(ambientcolor, color4f);
3022                                 if (r_refdef.fogenabled)
3023                                 {
3024                                         float f;
3025                                         f = RSurf_FogVertex(vertex3f);
3026                                         VectorScale(color4f, f, color4f);
3027                                 }
3028                                 color4f[3] = 1;
3029                         }
3030                 }
3031                 else
3032                 {
3033                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
3034                         {
3035                                 VectorCopy(ambientcolor, color4f);
3036                                 if (r_refdef.fogenabled)
3037                                 {
3038                                         float f;
3039                                         Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
3040                                         f = RSurf_FogVertex(vertex3f);
3041                                         VectorScale(color4f + 4*i, f, color4f);
3042                                 }
3043                                 color4f[3] = 1;
3044                         }
3045                 }
3046                 break;
3047         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
3048                 if (VectorLength2(diffusecolor) > 0)
3049                 {
3050                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
3051                         {
3052                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
3053                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
3054                                 {
3055                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
3056                                         if ((dot = DotProduct(n, v)) < 0)
3057                                         {
3058                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
3059                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
3060                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
3061                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
3062                                         }
3063                                         else
3064                                         {
3065                                                 color4f[0] = ambientcolor[0] * distintensity;
3066                                                 color4f[1] = ambientcolor[1] * distintensity;
3067                                                 color4f[2] = ambientcolor[2] * distintensity;
3068                                         }
3069                                         if (r_refdef.fogenabled)
3070                                         {
3071                                                 float f;
3072                                                 f = RSurf_FogVertex(vertex3f);
3073                                                 VectorScale(color4f, f, color4f);
3074                                         }
3075                                 }
3076                                 else
3077                                         VectorClear(color4f);
3078                                 color4f[3] = 1;
3079                         }
3080                 }
3081                 else
3082                 {
3083                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
3084                         {
3085                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
3086                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
3087                                 {
3088                                         color4f[0] = ambientcolor[0] * distintensity;
3089                                         color4f[1] = ambientcolor[1] * distintensity;
3090                                         color4f[2] = ambientcolor[2] * distintensity;
3091                                         if (r_refdef.fogenabled)
3092                                         {
3093                                                 float f;
3094                                                 f = RSurf_FogVertex(vertex3f);
3095                                                 VectorScale(color4f, f, color4f);
3096                                         }
3097                                 }
3098                                 else
3099                                         VectorClear(color4f);
3100                                 color4f[3] = 1;
3101                         }
3102                 }
3103                 break;
3104         case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
3105                 if (VectorLength2(diffusecolor) > 0)
3106                 {
3107                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
3108                         {
3109                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
3110                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
3111                                 {
3112                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
3113                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
3114                                         if ((dot = DotProduct(n, v)) < 0)
3115                                         {
3116                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
3117                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
3118                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
3119                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
3120                                         }
3121                                         else
3122                                         {
3123                                                 color4f[0] = ambientcolor[0] * distintensity;
3124                                                 color4f[1] = ambientcolor[1] * distintensity;
3125                                                 color4f[2] = ambientcolor[2] * distintensity;
3126                                         }
3127                                         if (r_refdef.fogenabled)
3128                                         {
3129                                                 float f;
3130                                                 f = RSurf_FogVertex(vertex3f);
3131                                                 VectorScale(color4f, f, color4f);
3132                                         }
3133                                 }
3134                                 else
3135                                         VectorClear(color4f);
3136                                 color4f[3] = 1;
3137                         }
3138                 }
3139                 else
3140                 {
3141                         for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
3142                         {
3143                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
3144                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
3145                                 {
3146                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
3147                                         color4f[0] = ambientcolor[0] * distintensity;
3148                                         color4f[1] = ambientcolor[1] * distintensity;
3149                                         color4f[2] = ambientcolor[2] * distintensity;
3150                                         if (r_refdef.fogenabled)
3151                                         {
3152                                                 float f;
3153                                                 f = RSurf_FogVertex(vertex3f);
3154                                                 VectorScale(color4f, f, color4f);
3155                                         }
3156                                 }
3157                                 else
3158                                         VectorClear(color4f);
3159                                 color4f[3] = 1;
3160                         }
3161                 }
3162                 break;
3163         default:
3164                 break;
3165         }
3166 }
3167
3168 static void R_Shadow_RenderLighting_VisibleLighting(int texturenumsurfaces, const msurface_t **texturesurfacelist)
3169 {
3170         // used to display how many times a surface is lit for level design purposes
3171         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
3172         R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
3173         RSurf_DrawBatch();
3174 }
3175
3176 static void R_Shadow_RenderLighting_Light_GLSL(int texturenumsurfaces, const msurface_t **texturesurfacelist, const vec3_t lightcolor, float ambientscale, float diffusescale, float specularscale)
3177 {
3178         // ARB2 GLSL shader path (GFFX5200, Radeon 9500)
3179         R_SetupShader_Surface(lightcolor, false, ambientscale, diffusescale, specularscale, RSURFPASS_RTLIGHT, texturenumsurfaces, texturesurfacelist, NULL, false);
3180         RSurf_DrawBatch();
3181 }
3182
3183 static void R_Shadow_RenderLighting_Light_Vertex_Pass(int firstvertex, int numvertices, int numtriangles, const int *element3i, vec3_t diffusecolor2, vec3_t ambientcolor2)
3184 {
3185         int renders;
3186         int i;
3187         int stop;
3188         int newfirstvertex;
3189         int newlastvertex;
3190         int newnumtriangles;
3191         int *newe;
3192         const int *e;
3193         float *c;
3194         int maxtriangles = 1024;
3195         int newelements[1024*3];
3196         R_Shadow_RenderLighting_Light_Vertex_Shading(firstvertex, numvertices, diffusecolor2, ambientcolor2);
3197         for (renders = 0;renders < 4;renders++)
3198         {
3199                 stop = true;
3200                 newfirstvertex = 0;
3201                 newlastvertex = 0;
3202                 newnumtriangles = 0;
3203                 newe = newelements;
3204                 // due to low fillrate on the cards this vertex lighting path is
3205                 // designed for, we manually cull all triangles that do not
3206                 // contain a lit vertex
3207                 // this builds batches of triangles from multiple surfaces and
3208                 // renders them at once
3209                 for (i = 0, e = element3i;i < numtriangles;i++, e += 3)
3210                 {
3211                         if (VectorLength2(rsurface.passcolor4f + e[0] * 4) + VectorLength2(rsurface.passcolor4f + e[1] * 4) + VectorLength2(rsurface.passcolor4f + e[2] * 4) >= 0.01)
3212                         {
3213                                 if (newnumtriangles)
3214                                 {
3215                                         newfirstvertex = min(newfirstvertex, e[0]);
3216                                         newlastvertex  = max(newlastvertex, e[0]);
3217                                 }
3218                                 else
3219                                 {
3220                                         newfirstvertex = e[0];
3221                                         newlastvertex = e[0];
3222                                 }
3223                                 newfirstvertex = min(newfirstvertex, e[1]);
3224                                 newlastvertex  = max(newlastvertex, e[1]);
3225                                 newfirstvertex = min(newfirstvertex, e[2]);
3226                                 newlastvertex  = max(newlastvertex, e[2]);
3227                                 newe[0] = e[0];
3228                                 newe[1] = e[1];
3229                                 newe[2] = e[2];
3230                                 newnumtriangles++;
3231                                 newe += 3;
3232                                 if (newnumtriangles >= maxtriangles)
3233                                 {
3234                                         R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, 0, newnumtriangles, newelements, NULL, 0, NULL, NULL, 0);
3235                                         newnumtriangles = 0;
3236                                         newe = newelements;
3237                                         stop = false;
3238                                 }
3239                         }
3240                 }
3241                 if (newnumtriangles >= 1)
3242                 {
3243                         R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, 0, newnumtriangles, newelements, NULL, 0, NULL, NULL, 0);
3244                         stop = false;
3245                 }
3246                 // if we couldn't find any lit triangles, exit early
3247                 if (stop)
3248                         break;
3249                 // now reduce the intensity for the next overbright pass
3250                 // we have to clamp to 0 here incase the drivers have improper
3251                 // handling of negative colors
3252                 // (some old drivers even have improper handling of >1 color)
3253                 stop = true;
3254                 for (i = 0, c = rsurface.passcolor4f + 4 * firstvertex;i < numvertices;i++, c += 4)
3255                 {
3256                         if (c[0] > 1 || c[1] > 1 || c[2] > 1)
3257                         {
3258                                 c[0] = max(0, c[0] - 1);
3259                                 c[1] = max(0, c[1] - 1);
3260                                 c[2] = max(0, c[2] - 1);
3261                                 stop = false;
3262                         }
3263                         else
3264                                 VectorClear(c);
3265                 }
3266                 // another check...
3267                 if (stop)
3268                         break;
3269         }
3270 }
3271
3272 static void R_Shadow_RenderLighting_Light_Vertex(int texturenumsurfaces, const msurface_t **texturesurfacelist, const vec3_t lightcolor, float ambientscale, float diffusescale)
3273 {
3274         // OpenGL 1.1 path (anything)
3275         float ambientcolorbase[3], diffusecolorbase[3];
3276         float ambientcolorpants[3], diffusecolorpants[3];
3277         float ambientcolorshirt[3], diffusecolorshirt[3];
3278         const float *surfacecolor = rsurface.texture->dlightcolor;
3279         const float *surfacepants = rsurface.colormap_pantscolor;
3280         const float *surfaceshirt = rsurface.colormap_shirtcolor;
3281         rtexture_t *basetexture = rsurface.texture->basetexture;
3282         rtexture_t *pantstexture = rsurface.texture->pantstexture;
3283         rtexture_t *shirttexture = rsurface.texture->shirttexture;
3284         qboolean dopants = pantstexture && VectorLength2(surfacepants) >= (1.0f / 1048576.0f);
3285         qboolean doshirt = shirttexture && VectorLength2(surfaceshirt) >= (1.0f / 1048576.0f);
3286         ambientscale *= 2 * r_refdef.view.colorscale;
3287         diffusescale *= 2 * r_refdef.view.colorscale;
3288         ambientcolorbase[0] = lightcolor[0] * ambientscale * surfacecolor[0];ambientcolorbase[1] = lightcolor[1] * ambientscale * surfacecolor[1];ambientcolorbase[2] = lightcolor[2] * ambientscale * surfacecolor[2];
3289         diffusecolorbase[0] = lightcolor[0] * diffusescale * surfacecolor[0];diffusecolorbase[1] = lightcolor[1] * diffusescale * surfacecolor[1];diffusecolorbase[2] = lightcolor[2] * diffusescale * surfacecolor[2];
3290         ambientcolorpants[0] = ambientcolorbase[0] * surfacepants[0];ambientcolorpants[1] = ambientcolorbase[1] * surfacepants[1];ambientcolorpants[2] = ambientcolorbase[2] * surfacepants[2];
3291         diffusecolorpants[0] = diffusecolorbase[0] * surfacepants[0];diffusecolorpants[1] = diffusecolorbase[1] * surfacepants[1];diffusecolorpants[2] = diffusecolorbase[2] * surfacepants[2];
3292         ambientcolorshirt[0] = ambientcolorbase[0] * surfaceshirt[0];ambientcolorshirt[1] = ambientcolorbase[1] * surfaceshirt[1];ambientcolorshirt[2] = ambientcolorbase[2] * surfaceshirt[2];
3293         diffusecolorshirt[0] = diffusecolorbase[0] * surfaceshirt[0];diffusecolorshirt[1] = diffusecolorbase[1] * surfaceshirt[1];diffusecolorshirt[2] = diffusecolorbase[2] * surfaceshirt[2];
3294         RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | (diffusescale > 0 ? BATCHNEED_ARRAY_NORMAL : 0) | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
3295         rsurface.passcolor4f = (float *)R_FrameData_Alloc((rsurface.batchfirstvertex + rsurface.batchnumvertices) * sizeof(float[4]));
3296         R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
3297         R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.passcolor4f, 0, 0);
3298         R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
3299         R_Mesh_TexBind(0, basetexture);
3300         R_Mesh_TexMatrix(0, &rsurface.texture->currenttexmatrix);
3301         R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1);
3302         switch(r_shadow_rendermode)
3303         {
3304         case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
3305                 R_Mesh_TexBind(1, r_shadow_attenuation3dtexture);
3306                 R_Mesh_TexMatrix(1, &rsurface.entitytoattenuationxyz);
3307                 R_Mesh_TexCombine(1, GL_MODULATE, GL_MODULATE, 1, 1);
3308                 R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
3309                 break;
3310         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
3311                 R_Mesh_TexBind(2, r_shadow_attenuation2dtexture);
3312                 R_Mesh_TexMatrix(2, &rsurface.entitytoattenuationz);
3313                 R_Mesh_TexCombine(2, GL_MODULATE, GL_MODULATE, 1, 1);
3314                 R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
3315                 // fall through
3316         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
3317                 R_Mesh_TexBind(1, r_shadow_attenuation2dtexture);
3318                 R_Mesh_TexMatrix(1, &rsurface.entitytoattenuationxyz);
3319                 R_Mesh_TexCombine(1, GL_MODULATE, GL_MODULATE, 1, 1);
3320                 R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
3321                 break;
3322         case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
3323                 break;
3324         default:
3325                 break;
3326         }
3327         //R_Mesh_TexBind(0, basetexture);
3328         R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorbase, ambientcolorbase);
3329         if (dopants)
3330         {
3331                 R_Mesh_TexBind(0, pantstexture);
3332                 R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorpants, ambientcolorpants);
3333         }
3334         if (doshirt)
3335         {
3336                 R_Mesh_TexBind(0, shirttexture);
3337                 R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorshirt, ambientcolorshirt);
3338         }
3339 }
3340
3341 extern cvar_t gl_lightmaps;
3342 void R_Shadow_RenderLighting(int texturenumsurfaces, const msurface_t **texturesurfacelist)
3343 {
3344         float ambientscale, diffusescale, specularscale;
3345         qboolean negated;
3346         float lightcolor[3];
3347         VectorCopy(rsurface.rtlight->currentcolor, lightcolor);
3348         ambientscale = rsurface.rtlight->ambientscale + rsurface.texture->rtlightambient;
3349         diffusescale = rsurface.rtlight->diffusescale * max(0, 1.0 - rsurface.texture->rtlightambient);
3350         specularscale = rsurface.rtlight->specularscale * rsurface.texture->specularscale;
3351         if (!r_shadow_usenormalmap.integer)
3352         {
3353                 ambientscale += 1.0f * diffusescale;
3354                 diffusescale = 0;
3355                 specularscale = 0;
3356         }
3357         if ((ambientscale + diffusescale) * VectorLength2(lightcolor) + specularscale * VectorLength2(lightcolor) < (1.0f / 1048576.0f))
3358                 return;
3359         negated = (lightcolor[0] + lightcolor[1] + lightcolor[2] < 0) && vid.support.ext_blend_subtract;
3360         if(negated)
3361         {
3362                 VectorNegate(lightcolor, lightcolor);
3363                 GL_BlendEquationSubtract(true);
3364         }
3365         RSurf_SetupDepthAndCulling();
3366         switch (r_shadow_rendermode)
3367         {
3368         case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
3369                 GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
3370                 R_Shadow_RenderLighting_VisibleLighting(texturenumsurfaces, texturesurfacelist);
3371                 break;
3372         case R_SHADOW_RENDERMODE_LIGHT_GLSL:
3373                 R_Shadow_RenderLighting_Light_GLSL(texturenumsurfaces, texturesurfacelist, lightcolor, ambientscale, diffusescale, specularscale);
3374                 break;
3375         case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
3376         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
3377         case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
3378         case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
3379                 R_Shadow_RenderLighting_Light_Vertex(texturenumsurfaces, texturesurfacelist, lightcolor, ambientscale, diffusescale);
3380                 break;
3381         default:
3382                 Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
3383                 break;
3384         }
<