377acc5d581e24e21de4d532c8ed8654778f0cd7
[xonotic/darkplaces.git] / r_shadow.c
1
2 /*
3 Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
4 An extrusion of the lit faces, beginning at the original geometry and ending
5 further from the light source than the original geometry (presumably at least
6 as far as the light's radius, if the light has a radius at all), capped at
7 both front and back to avoid any problems (extrusion from dark faces also
8 works but has a different set of problems)
9
10 This is normally rendered using Carmack's Reverse technique, in which
11 backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
12 zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
13 where shadows did not intersect the visible geometry, suitable as a stencil
14 mask for rendering lighting everywhere but shadow.
15
16 In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
17 as decrement and the frontfaces as increment, and we redefine the DepthFunc to
18 GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
19 and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
20 additionally we clear stencil to 128 to avoid the need for the unclamped
21 incr/decr extension (not related to patent).
22
23 Patent warning:
24 This algorithm may be covered by Creative's patent (US Patent #6384822),
25 however that patent is quite specific about increment on backfaces and
26 decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
27 opposite this implementation and partially opposite Carmack's Reverse paper
28 (which uses GL_LESS, but increments on backfaces and decrements on frontfaces).
29
30
31
32 Terminology: Stencil Light Volume (sometimes called Light Volumes)
33 Similar to a Stencil Shadow Volume, but inverted; rather than containing the
34 areas in shadow it contains the areas in light, this can only be built
35 quickly for certain limited cases (such as portal visibility from a point),
36 but is quite useful for some effects (sunlight coming from sky polygons is
37 one possible example, translucent occluders is another example).
38
39
40
41 Terminology: Optimized Stencil Shadow Volume
42 A Stencil Shadow Volume that has been processed sufficiently to ensure it has
43 no duplicate coverage of areas (no need to shadow an area twice), often this
44 greatly improves performance but is an operation too costly to use on moving
45 lights (however completely optimal Stencil Light Volumes can be constructed
46 in some ideal cases).
47
48
49
50 Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
51 Per pixel evaluation of lighting equations, at a bare minimum this involves
52 DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
53 vector and surface normal, using a texture of the surface bumps, called a
54 NormalMap) if supported by hardware; in our case there is support for cards
55 which are incapable of DOT3, the quality is quite poor however.  Additionally
56 it is desirable to have specular evaluation per pixel, per vertex
57 normalization of specular halfangle vectors causes noticable distortion but
58 is unavoidable on hardware without GL_ARB_fragment_program or
59 GL_ARB_fragment_shader.
60
61
62
63 Terminology: Normalization CubeMap
64 A cubemap containing normalized dot3-encoded (vectors of length 1 or less
65 encoded as RGB colors) for any possible direction, this technique allows per
66 pixel calculation of incidence vector for per pixel lighting purposes, which
67 would not otherwise be possible per pixel without GL_ARB_fragment_program or
68 GL_ARB_fragment_shader.
69
70
71
72 Terminology: 2D+1D Attenuation Texturing
73 A very crude approximation of light attenuation with distance which results
74 in cylindrical light shapes which fade vertically as a streak (some games
75 such as Doom3 allow this to be rotated to be less noticable in specific
76 cases), the technique is simply modulating lighting by two 2D textures (which
77 can be the same) on different axes of projection (XY and Z, typically), this
78 is the second best technique available without 3D Attenuation Texturing,
79 GL_ARB_fragment_program or GL_ARB_fragment_shader technology.
80
81
82
83 Terminology: 2D+1D Inverse Attenuation Texturing
84 A clever method described in papers on the Abducted engine, this has a squared
85 distance texture (bright on the outside, black in the middle), which is used
86 twice using GL_ADD blending, the result of this is used in an inverse modulate
87 (GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
88 lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
89 texturing).
90
91
92
93 Terminology: 3D Attenuation Texturing
94 A slightly crude approximation of light attenuation with distance, its flaws
95 are limited radius and resolution (performance tradeoffs).
96
97
98
99 Terminology: 3D Attenuation-Normalization Texturing
100 A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
101 vectors shorter the lighting becomes darker, a very effective optimization of
102 diffuse lighting if 3D Attenuation Textures are already used.
103
104
105
106 Terminology: Light Cubemap Filtering
107 A technique for modeling non-uniform light distribution according to
108 direction, for example a lantern may use a cubemap to describe the light
109 emission pattern of the cage around the lantern (as well as soot buildup
110 discoloring the light in certain areas), often also used for softened grate
111 shadows and light shining through a stained glass window (done crudely by
112 texturing the lighting with a cubemap), another good example would be a disco
113 light.  This technique is used heavily in many games (Doom3 does not support
114 this however).
115
116
117
118 Terminology: Light Projection Filtering
119 A technique for modeling shadowing of light passing through translucent
120 surfaces, allowing stained glass windows and other effects to be done more
121 elegantly than possible with Light Cubemap Filtering by applying an occluder
122 texture to the lighting combined with a stencil light volume to limit the lit
123 area, this technique is used by Doom3 for spotlights and flashlights, among
124 other things, this can also be used more generally to render light passing
125 through multiple translucent occluders in a scene (using a light volume to
126 describe the area beyond the occluder, and thus mask off rendering of all
127 other areas).
128
129
130
131 Terminology: Doom3 Lighting
132 A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
133 CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
134 demonstrated by the game Doom3.
135 */
136
137 #include "quakedef.h"
138 #include "r_shadow.h"
139 #include "cl_collision.h"
140 #include "portals.h"
141 #include "image.h"
142
143 extern void R_Shadow_EditLights_Init(void);
144
145 typedef enum r_shadow_rendermode_e
146 {
147         R_SHADOW_RENDERMODE_NONE,
148         R_SHADOW_RENDERMODE_STENCIL,
149         R_SHADOW_RENDERMODE_SEPARATESTENCIL,
150         R_SHADOW_RENDERMODE_STENCILTWOSIDE,
151         R_SHADOW_RENDERMODE_LIGHT_VERTEX,
152         R_SHADOW_RENDERMODE_LIGHT_DOT3,
153         R_SHADOW_RENDERMODE_LIGHT_GLSL,
154         R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
155         R_SHADOW_RENDERMODE_VISIBLELIGHTING,
156 }
157 r_shadow_rendermode_t;
158
159 r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
160 r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
161 r_shadow_rendermode_t r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_NONE;
162
163 int maxshadowtriangles;
164 int *shadowelements;
165
166 int maxshadowvertices;
167 float *shadowvertex3f;
168
169 int maxshadowmark;
170 int numshadowmark;
171 int *shadowmark;
172 int *shadowmarklist;
173 int shadowmarkcount;
174
175 int maxvertexupdate;
176 int *vertexupdate;
177 int *vertexremap;
178 int vertexupdatenum;
179
180 int r_shadow_buffer_numleafpvsbytes;
181 unsigned char *r_shadow_buffer_leafpvs;
182 int *r_shadow_buffer_leaflist;
183
184 int r_shadow_buffer_numsurfacepvsbytes;
185 unsigned char *r_shadow_buffer_surfacepvs;
186 int *r_shadow_buffer_surfacelist;
187
188 int r_shadow_buffer_numshadowtrispvsbytes;
189 unsigned char *r_shadow_buffer_shadowtrispvs;
190 int r_shadow_buffer_numlighttrispvsbytes;
191 unsigned char *r_shadow_buffer_lighttrispvs;
192
193 rtexturepool_t *r_shadow_texturepool;
194 rtexture_t *r_shadow_attenuationgradienttexture;
195 rtexture_t *r_shadow_attenuation2dtexture;
196 rtexture_t *r_shadow_attenuation3dtexture;
197
198 // lights are reloaded when this changes
199 char r_shadow_mapname[MAX_QPATH];
200
201 // used only for light filters (cubemaps)
202 rtexturepool_t *r_shadow_filters_texturepool;
203
204 cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
205 cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
206 cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
207 cvar_t r_shadow_usenormalmap = {CVAR_SAVE, "r_shadow_usenormalmap", "1", "enables use of directional shading on lights"};
208 cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
209 cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.125", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
210 cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
211 cvar_t r_shadow_glossexponent = {0, "r_shadow_glossexponent", "32", "how 'sharp' the gloss should appear (specular power)"};
212 cvar_t r_shadow_lightattenuationdividebias = {0, "r_shadow_lightattenuationdividebias", "1", "changes attenuation texture generation"};
213 cvar_t r_shadow_lightattenuationlinearscale = {0, "r_shadow_lightattenuationlinearscale", "2", "changes attenuation texture generation"};
214 cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
215 cvar_t r_shadow_lightradiusscale = {0, "r_shadow_lightradiusscale", "1", "renders all world lights larger or smaller"};
216 cvar_t r_shadow_portallight = {0, "r_shadow_portallight", "1", "use portal culling to exactly determine lit triangles when compiling world lights"};
217 cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "1000000", "how far to cast shadows"};
218 cvar_t r_shadow_frontsidecasting = {0, "r_shadow_frontsidecasting", "1", "whether to cast shadows from illuminated triangles (front side of model) or unlit triangles (back side of model)"};
219 cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
220 cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
221 cvar_t r_shadow_realtime_dlight_svbspculling = {0, "r_shadow_realtime_dlight_svbspculling", "0", "enables svbsp optimization on dynamic lights (very slow!)"};
222 cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal optimization on dynamic lights (slow!)"};
223 cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
224 cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
225 cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
226 cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
227 cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
228 cvar_t r_shadow_realtime_world_compilesvbsp = {0, "r_shadow_realtime_world_compilesvbsp", "1", "enables svbsp optimization during compilation"};
229 cvar_t r_shadow_realtime_world_compileportalculling = {0, "r_shadow_realtime_world_compileportalculling", "1", "enables portal-based culling optimization during compilation"};
230 cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
231 cvar_t r_shadow_culltriangles = {0, "r_shadow_culltriangles", "1", "performs more expensive tests to remove unnecessary triangles of lit surfaces"};
232 cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
233 cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
234 cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect r_glsl lighting)"};
235 cvar_t gl_ext_separatestencil = {0, "gl_ext_separatestencil", "1", "make use of OpenGL 2.0 glStencilOpSeparate or GL_ATI_separate_stencil extension"};
236 cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
237 cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
238 cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
239 cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
240 cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
241 cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
242 cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
243
244 // note the table actually includes one more value, just to avoid the need to clamp the distance index due to minor math error
245 #define ATTENTABLESIZE 256
246 // 1D gradient, 2D circle and 3D sphere attenuation textures
247 #define ATTEN1DSIZE 32
248 #define ATTEN2DSIZE 64
249 #define ATTEN3DSIZE 32
250
251 static float r_shadow_attendividebias; // r_shadow_lightattenuationdividebias
252 static float r_shadow_attenlinearscale; // r_shadow_lightattenuationlinearscale
253 static float r_shadow_attentable[ATTENTABLESIZE+1];
254
255 rtlight_t *r_shadow_compilingrtlight;
256 dlight_t *r_shadow_worldlightchain;
257 dlight_t *r_shadow_selectedlight;
258 dlight_t r_shadow_bufferlight;
259 vec3_t r_editlights_cursorlocation;
260
261 extern int con_vislines;
262
263 typedef struct cubemapinfo_s
264 {
265         char basename[64];
266         rtexture_t *texture;
267 }
268 cubemapinfo_t;
269
270 #define MAX_CUBEMAPS 256
271 static int numcubemaps;
272 static cubemapinfo_t cubemaps[MAX_CUBEMAPS];
273
274 void R_Shadow_UncompileWorldLights(void);
275 void R_Shadow_ClearWorldLights(void);
276 void R_Shadow_SaveWorldLights(void);
277 void R_Shadow_LoadWorldLights(void);
278 void R_Shadow_LoadLightsFile(void);
279 void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
280 void R_Shadow_EditLights_Reload_f(void);
281 void R_Shadow_ValidateCvars(void);
282 static void R_Shadow_MakeTextures(void);
283
284 void r_shadow_start(void)
285 {
286         // allocate vertex processing arrays
287         numcubemaps = 0;
288         r_shadow_attenuationgradienttexture = NULL;
289         r_shadow_attenuation2dtexture = NULL;
290         r_shadow_attenuation3dtexture = NULL;
291         r_shadow_texturepool = NULL;
292         r_shadow_filters_texturepool = NULL;
293         R_Shadow_ValidateCvars();
294         R_Shadow_MakeTextures();
295         maxshadowtriangles = 0;
296         shadowelements = NULL;
297         maxshadowvertices = 0;
298         shadowvertex3f = NULL;
299         maxvertexupdate = 0;
300         vertexupdate = NULL;
301         vertexremap = NULL;
302         vertexupdatenum = 0;
303         maxshadowmark = 0;
304         numshadowmark = 0;
305         shadowmark = NULL;
306         shadowmarklist = NULL;
307         shadowmarkcount = 0;
308         r_shadow_buffer_numleafpvsbytes = 0;
309         r_shadow_buffer_leafpvs = NULL;
310         r_shadow_buffer_leaflist = NULL;
311         r_shadow_buffer_numsurfacepvsbytes = 0;
312         r_shadow_buffer_surfacepvs = NULL;
313         r_shadow_buffer_surfacelist = NULL;
314         r_shadow_buffer_numshadowtrispvsbytes = 0;
315         r_shadow_buffer_shadowtrispvs = NULL;
316         r_shadow_buffer_numlighttrispvsbytes = 0;
317         r_shadow_buffer_lighttrispvs = NULL;
318 }
319
320 void r_shadow_shutdown(void)
321 {
322         R_Shadow_UncompileWorldLights();
323         numcubemaps = 0;
324         r_shadow_attenuationgradienttexture = NULL;
325         r_shadow_attenuation2dtexture = NULL;
326         r_shadow_attenuation3dtexture = NULL;
327         R_FreeTexturePool(&r_shadow_texturepool);
328         R_FreeTexturePool(&r_shadow_filters_texturepool);
329         maxshadowtriangles = 0;
330         if (shadowelements)
331                 Mem_Free(shadowelements);
332         shadowelements = NULL;
333         if (shadowvertex3f)
334                 Mem_Free(shadowvertex3f);
335         shadowvertex3f = NULL;
336         maxvertexupdate = 0;
337         if (vertexupdate)
338                 Mem_Free(vertexupdate);
339         vertexupdate = NULL;
340         if (vertexremap)
341                 Mem_Free(vertexremap);
342         vertexremap = NULL;
343         vertexupdatenum = 0;
344         maxshadowmark = 0;
345         numshadowmark = 0;
346         if (shadowmark)
347                 Mem_Free(shadowmark);
348         shadowmark = NULL;
349         if (shadowmarklist)
350                 Mem_Free(shadowmarklist);
351         shadowmarklist = NULL;
352         shadowmarkcount = 0;
353         r_shadow_buffer_numleafpvsbytes = 0;
354         if (r_shadow_buffer_leafpvs)
355                 Mem_Free(r_shadow_buffer_leafpvs);
356         r_shadow_buffer_leafpvs = NULL;
357         if (r_shadow_buffer_leaflist)
358                 Mem_Free(r_shadow_buffer_leaflist);
359         r_shadow_buffer_leaflist = NULL;
360         r_shadow_buffer_numsurfacepvsbytes = 0;
361         if (r_shadow_buffer_surfacepvs)
362                 Mem_Free(r_shadow_buffer_surfacepvs);
363         r_shadow_buffer_surfacepvs = NULL;
364         if (r_shadow_buffer_surfacelist)
365                 Mem_Free(r_shadow_buffer_surfacelist);
366         r_shadow_buffer_surfacelist = NULL;
367         r_shadow_buffer_numshadowtrispvsbytes = 0;
368         if (r_shadow_buffer_shadowtrispvs)
369                 Mem_Free(r_shadow_buffer_shadowtrispvs);
370         r_shadow_buffer_numlighttrispvsbytes = 0;
371         if (r_shadow_buffer_lighttrispvs)
372                 Mem_Free(r_shadow_buffer_lighttrispvs);
373 }
374
375 void r_shadow_newmap(void)
376 {
377 }
378
379 void R_Shadow_Help_f(void)
380 {
381         Con_Printf(
382 "Documentation on r_shadow system:\n"
383 "Settings:\n"
384 "r_shadow_bumpscale_basetexture : base texture as bumpmap with this scale\n"
385 "r_shadow_bumpscale_bumpmap : depth scale for bumpmap conversion\n"
386 "r_shadow_debuglight : render only this light number (-1 = all)\n"
387 "r_shadow_gloss 0/1/2 : no gloss, gloss textures only, force gloss\n"
388 "r_shadow_gloss2intensity : brightness of forced gloss\n"
389 "r_shadow_glossintensity : brightness of textured gloss\n"
390 "r_shadow_lightattenuationlinearscale : used to generate attenuation texture\n"
391 "r_shadow_lightattenuationdividebias : used to generate attenuation texture\n"
392 "r_shadow_lightintensityscale : scale rendering brightness of all lights\n"
393 "r_shadow_lightradiusscale : scale rendering radius of all lights\n"
394 "r_shadow_portallight : use portal visibility for static light precomputation\n"
395 "r_shadow_projectdistance : shadow volume projection distance\n"
396 "r_shadow_realtime_dlight : use high quality dynamic lights in normal mode\n"
397 "r_shadow_realtime_dlight_shadows : cast shadows from dlights\n"
398 "r_shadow_realtime_world : use high quality world lighting mode\n"
399 "r_shadow_realtime_world_lightmaps : use lightmaps in addition to lights\n"
400 "r_shadow_realtime_world_shadows : cast shadows from world lights\n"
401 "r_shadow_realtime_world_compile : compile surface/visibility information\n"
402 "r_shadow_realtime_world_compileshadow : compile shadow geometry\n"
403 "r_shadow_scissor : use scissor optimization\n"
404 "r_shadow_polygonfactor : nudge shadow volumes closer/further\n"
405 "r_shadow_polygonoffset : nudge shadow volumes closer/further\n"
406 "r_shadow_texture3d : use 3d attenuation texture (if hardware supports)\n"
407 "r_showlighting : useful for performance testing; bright = slow!\n"
408 "r_showshadowvolumes : useful for performance testing; bright = slow!\n"
409 "Commands:\n"
410 "r_shadow_help : this help\n"
411         );
412 }
413
414 void R_Shadow_Init(void)
415 {
416         Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
417         Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
418         Cvar_RegisterVariable(&r_shadow_usenormalmap);
419         Cvar_RegisterVariable(&r_shadow_debuglight);
420         Cvar_RegisterVariable(&r_shadow_gloss);
421         Cvar_RegisterVariable(&r_shadow_gloss2intensity);
422         Cvar_RegisterVariable(&r_shadow_glossintensity);
423         Cvar_RegisterVariable(&r_shadow_glossexponent);
424         Cvar_RegisterVariable(&r_shadow_lightattenuationdividebias);
425         Cvar_RegisterVariable(&r_shadow_lightattenuationlinearscale);
426         Cvar_RegisterVariable(&r_shadow_lightintensityscale);
427         Cvar_RegisterVariable(&r_shadow_lightradiusscale);
428         Cvar_RegisterVariable(&r_shadow_portallight);
429         Cvar_RegisterVariable(&r_shadow_projectdistance);
430         Cvar_RegisterVariable(&r_shadow_frontsidecasting);
431         Cvar_RegisterVariable(&r_shadow_realtime_dlight);
432         Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
433         Cvar_RegisterVariable(&r_shadow_realtime_dlight_svbspculling);
434         Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
435         Cvar_RegisterVariable(&r_shadow_realtime_world);
436         Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
437         Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
438         Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
439         Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
440         Cvar_RegisterVariable(&r_shadow_realtime_world_compilesvbsp);
441         Cvar_RegisterVariable(&r_shadow_realtime_world_compileportalculling);
442         Cvar_RegisterVariable(&r_shadow_scissor);
443         Cvar_RegisterVariable(&r_shadow_culltriangles);
444         Cvar_RegisterVariable(&r_shadow_polygonfactor);
445         Cvar_RegisterVariable(&r_shadow_polygonoffset);
446         Cvar_RegisterVariable(&r_shadow_texture3d);
447         Cvar_RegisterVariable(&gl_ext_separatestencil);
448         Cvar_RegisterVariable(&gl_ext_stenciltwoside);
449         if (gamemode == GAME_TENEBRAE)
450         {
451                 Cvar_SetValue("r_shadow_gloss", 2);
452                 Cvar_SetValue("r_shadow_bumpscale_basetexture", 4);
453         }
454         Cmd_AddCommand("r_shadow_help", R_Shadow_Help_f, "prints documentation on console commands and variables used by realtime lighting and shadowing system");
455         R_Shadow_EditLights_Init();
456         r_shadow_worldlightchain = NULL;
457         maxshadowtriangles = 0;
458         shadowelements = NULL;
459         maxshadowvertices = 0;
460         shadowvertex3f = NULL;
461         maxvertexupdate = 0;
462         vertexupdate = NULL;
463         vertexremap = NULL;
464         vertexupdatenum = 0;
465         maxshadowmark = 0;
466         numshadowmark = 0;
467         shadowmark = NULL;
468         shadowmarklist = NULL;
469         shadowmarkcount = 0;
470         r_shadow_buffer_numleafpvsbytes = 0;
471         r_shadow_buffer_leafpvs = NULL;
472         r_shadow_buffer_leaflist = NULL;
473         r_shadow_buffer_numsurfacepvsbytes = 0;
474         r_shadow_buffer_surfacepvs = NULL;
475         r_shadow_buffer_surfacelist = NULL;
476         r_shadow_buffer_shadowtrispvs = NULL;
477         r_shadow_buffer_lighttrispvs = NULL;
478         R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap);
479 }
480
481 matrix4x4_t matrix_attenuationxyz =
482 {
483         {
484                 {0.5, 0.0, 0.0, 0.5},
485                 {0.0, 0.5, 0.0, 0.5},
486                 {0.0, 0.0, 0.5, 0.5},
487                 {0.0, 0.0, 0.0, 1.0}
488         }
489 };
490
491 matrix4x4_t matrix_attenuationz =
492 {
493         {
494                 {0.0, 0.0, 0.5, 0.5},
495                 {0.0, 0.0, 0.0, 0.5},
496                 {0.0, 0.0, 0.0, 0.5},
497                 {0.0, 0.0, 0.0, 1.0}
498         }
499 };
500
501 void R_Shadow_ResizeShadowArrays(int numvertices, int numtriangles)
502 {
503         // make sure shadowelements is big enough for this volume
504         if (maxshadowtriangles < numtriangles)
505         {
506                 maxshadowtriangles = numtriangles;
507                 if (shadowelements)
508                         Mem_Free(shadowelements);
509                 shadowelements = (int *)Mem_Alloc(r_main_mempool, maxshadowtriangles * sizeof(int[24]));
510         }
511         // make sure shadowvertex3f is big enough for this volume
512         if (maxshadowvertices < numvertices)
513         {
514                 maxshadowvertices = numvertices;
515                 if (shadowvertex3f)
516                         Mem_Free(shadowvertex3f);
517                 shadowvertex3f = (float *)Mem_Alloc(r_main_mempool, maxshadowvertices * sizeof(float[6]));
518         }
519 }
520
521 static void R_Shadow_EnlargeLeafSurfaceTrisBuffer(int numleafs, int numsurfaces, int numshadowtriangles, int numlighttriangles)
522 {
523         int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
524         int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
525         int numshadowtrispvsbytes = (((numshadowtriangles + 7) >> 3) + 255) & ~255;
526         int numlighttrispvsbytes = (((numlighttriangles + 7) >> 3) + 255) & ~255;
527         if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
528         {
529                 if (r_shadow_buffer_leafpvs)
530                         Mem_Free(r_shadow_buffer_leafpvs);
531                 if (r_shadow_buffer_leaflist)
532                         Mem_Free(r_shadow_buffer_leaflist);
533                 r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
534                 r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
535                 r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
536         }
537         if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
538         {
539                 if (r_shadow_buffer_surfacepvs)
540                         Mem_Free(r_shadow_buffer_surfacepvs);
541                 if (r_shadow_buffer_surfacelist)
542                         Mem_Free(r_shadow_buffer_surfacelist);
543                 r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
544                 r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes);
545                 r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
546         }
547         if (r_shadow_buffer_numshadowtrispvsbytes < numshadowtrispvsbytes)
548         {
549                 if (r_shadow_buffer_shadowtrispvs)
550                         Mem_Free(r_shadow_buffer_shadowtrispvs);
551                 r_shadow_buffer_numshadowtrispvsbytes = numshadowtrispvsbytes;
552                 r_shadow_buffer_shadowtrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numshadowtrispvsbytes);
553         }
554         if (r_shadow_buffer_numlighttrispvsbytes < numlighttrispvsbytes)
555         {
556                 if (r_shadow_buffer_lighttrispvs)
557                         Mem_Free(r_shadow_buffer_lighttrispvs);
558                 r_shadow_buffer_numlighttrispvsbytes = numlighttrispvsbytes;
559                 r_shadow_buffer_lighttrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numlighttrispvsbytes);
560         }
561 }
562
563 void R_Shadow_PrepareShadowMark(int numtris)
564 {
565         // make sure shadowmark is big enough for this volume
566         if (maxshadowmark < numtris)
567         {
568                 maxshadowmark = numtris;
569                 if (shadowmark)
570                         Mem_Free(shadowmark);
571                 if (shadowmarklist)
572                         Mem_Free(shadowmarklist);
573                 shadowmark = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmark));
574                 shadowmarklist = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmarklist));
575                 shadowmarkcount = 0;
576         }
577         shadowmarkcount++;
578         // if shadowmarkcount wrapped we clear the array and adjust accordingly
579         if (shadowmarkcount == 0)
580         {
581                 shadowmarkcount = 1;
582                 memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
583         }
584         numshadowmark = 0;
585 }
586
587 int R_Shadow_ConstructShadowVolume(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
588 {
589         int i, j;
590         int outtriangles = 0, outvertices = 0;
591         const int *element;
592         const float *vertex;
593         float ratio, direction[3], projectvector[3];
594
595         if (projectdirection)
596                 VectorScale(projectdirection, projectdistance, projectvector);
597         else
598                 VectorClear(projectvector);
599
600         if (maxvertexupdate < innumvertices)
601         {
602                 maxvertexupdate = innumvertices;
603                 if (vertexupdate)
604                         Mem_Free(vertexupdate);
605                 if (vertexremap)
606                         Mem_Free(vertexremap);
607                 vertexupdate = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
608                 vertexremap = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
609                 vertexupdatenum = 0;
610         }
611         vertexupdatenum++;
612         if (vertexupdatenum == 0)
613         {
614                 vertexupdatenum = 1;
615                 memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
616                 memset(vertexremap, 0, maxvertexupdate * sizeof(int));
617         }
618
619         for (i = 0;i < numshadowmarktris;i++)
620                 shadowmark[shadowmarktris[i]] = shadowmarkcount;
621
622         // create the vertices
623         if (projectdirection)
624         {
625                 for (i = 0;i < numshadowmarktris;i++)
626                 {
627                         element = inelement3i + shadowmarktris[i] * 3;
628                         for (j = 0;j < 3;j++)
629                         {
630                                 if (vertexupdate[element[j]] != vertexupdatenum)
631                                 {
632                                         vertexupdate[element[j]] = vertexupdatenum;
633                                         vertexremap[element[j]] = outvertices;
634                                         vertex = invertex3f + element[j] * 3;
635                                         // project one copy of the vertex according to projectvector
636                                         VectorCopy(vertex, outvertex3f);
637                                         VectorAdd(vertex, projectvector, (outvertex3f + 3));
638                                         outvertex3f += 6;
639                                         outvertices += 2;
640                                 }
641                         }
642                 }
643         }
644         else
645         {
646                 for (i = 0;i < numshadowmarktris;i++)
647                 {
648                         element = inelement3i + shadowmarktris[i] * 3;
649                         for (j = 0;j < 3;j++)
650                         {
651                                 if (vertexupdate[element[j]] != vertexupdatenum)
652                                 {
653                                         vertexupdate[element[j]] = vertexupdatenum;
654                                         vertexremap[element[j]] = outvertices;
655                                         vertex = invertex3f + element[j] * 3;
656                                         // project one copy of the vertex to the sphere radius of the light
657                                         // (FIXME: would projecting it to the light box be better?)
658                                         VectorSubtract(vertex, projectorigin, direction);
659                                         ratio = projectdistance / VectorLength(direction);
660                                         VectorCopy(vertex, outvertex3f);
661                                         VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
662                                         outvertex3f += 6;
663                                         outvertices += 2;
664                                 }
665                         }
666                 }
667         }
668
669         if (r_shadow_frontsidecasting.integer)
670         {
671                 for (i = 0;i < numshadowmarktris;i++)
672                 {
673                         int remappedelement[3];
674                         int markindex;
675                         const int *neighbortriangle;
676
677                         markindex = shadowmarktris[i] * 3;
678                         element = inelement3i + markindex;
679                         neighbortriangle = inneighbor3i + markindex;
680                         // output the front and back triangles
681                         outelement3i[0] = vertexremap[element[0]];
682                         outelement3i[1] = vertexremap[element[1]];
683                         outelement3i[2] = vertexremap[element[2]];
684                         outelement3i[3] = vertexremap[element[2]] + 1;
685                         outelement3i[4] = vertexremap[element[1]] + 1;
686                         outelement3i[5] = vertexremap[element[0]] + 1;
687
688                         outelement3i += 6;
689                         outtriangles += 2;
690                         // output the sides (facing outward from this triangle)
691                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
692                         {
693                                 remappedelement[0] = vertexremap[element[0]];
694                                 remappedelement[1] = vertexremap[element[1]];
695                                 outelement3i[0] = remappedelement[1];
696                                 outelement3i[1] = remappedelement[0];
697                                 outelement3i[2] = remappedelement[0] + 1;
698                                 outelement3i[3] = remappedelement[1];
699                                 outelement3i[4] = remappedelement[0] + 1;
700                                 outelement3i[5] = remappedelement[1] + 1;
701
702                                 outelement3i += 6;
703                                 outtriangles += 2;
704                         }
705                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
706                         {
707                                 remappedelement[1] = vertexremap[element[1]];
708                                 remappedelement[2] = vertexremap[element[2]];
709                                 outelement3i[0] = remappedelement[2];
710                                 outelement3i[1] = remappedelement[1];
711                                 outelement3i[2] = remappedelement[1] + 1;
712                                 outelement3i[3] = remappedelement[2];
713                                 outelement3i[4] = remappedelement[1] + 1;
714                                 outelement3i[5] = remappedelement[2] + 1;
715
716                                 outelement3i += 6;
717                                 outtriangles += 2;
718                         }
719                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
720                         {
721                                 remappedelement[0] = vertexremap[element[0]];
722                                 remappedelement[2] = vertexremap[element[2]];
723                                 outelement3i[0] = remappedelement[0];
724                                 outelement3i[1] = remappedelement[2];
725                                 outelement3i[2] = remappedelement[2] + 1;
726                                 outelement3i[3] = remappedelement[0];
727                                 outelement3i[4] = remappedelement[2] + 1;
728                                 outelement3i[5] = remappedelement[0] + 1;
729
730                                 outelement3i += 6;
731                                 outtriangles += 2;
732                         }
733                 }
734         }
735         else
736         {
737                 for (i = 0;i < numshadowmarktris;i++)
738                 {
739                         int remappedelement[3];
740                         int markindex;
741                         const int *neighbortriangle;
742
743                         markindex = shadowmarktris[i] * 3;
744                         element = inelement3i + markindex;
745                         neighbortriangle = inneighbor3i + markindex;
746                         // output the front and back triangles
747                         outelement3i[0] = vertexremap[element[2]];
748                         outelement3i[1] = vertexremap[element[1]];
749                         outelement3i[2] = vertexremap[element[0]];
750                         outelement3i[3] = vertexremap[element[0]] + 1;
751                         outelement3i[4] = vertexremap[element[1]] + 1;
752                         outelement3i[5] = vertexremap[element[2]] + 1;
753
754                         outelement3i += 6;
755                         outtriangles += 2;
756                         // output the sides (facing outward from this triangle)
757                         if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
758                         {
759                                 remappedelement[0] = vertexremap[element[0]];
760                                 remappedelement[1] = vertexremap[element[1]];
761                                 outelement3i[0] = remappedelement[0];
762                                 outelement3i[1] = remappedelement[1];
763                                 outelement3i[2] = remappedelement[1] + 1;
764                                 outelement3i[3] = remappedelement[0];
765                                 outelement3i[4] = remappedelement[1] + 1;
766                                 outelement3i[5] = remappedelement[0] + 1;
767
768                                 outelement3i += 6;
769                                 outtriangles += 2;
770                         }
771                         if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
772                         {
773                                 remappedelement[1] = vertexremap[element[1]];
774                                 remappedelement[2] = vertexremap[element[2]];
775                                 outelement3i[0] = remappedelement[1];
776                                 outelement3i[1] = remappedelement[2];
777                                 outelement3i[2] = remappedelement[2] + 1;
778                                 outelement3i[3] = remappedelement[1];
779                                 outelement3i[4] = remappedelement[2] + 1;
780                                 outelement3i[5] = remappedelement[1] + 1;
781
782                                 outelement3i += 6;
783                                 outtriangles += 2;
784                         }
785                         if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
786                         {
787                                 remappedelement[0] = vertexremap[element[0]];
788                                 remappedelement[2] = vertexremap[element[2]];
789                                 outelement3i[0] = remappedelement[2];
790                                 outelement3i[1] = remappedelement[0];
791                                 outelement3i[2] = remappedelement[0] + 1;
792                                 outelement3i[3] = remappedelement[2];
793                                 outelement3i[4] = remappedelement[0] + 1;
794                                 outelement3i[5] = remappedelement[2] + 1;
795
796                                 outelement3i += 6;
797                                 outtriangles += 2;
798                         }
799                 }
800         }
801         if (outnumvertices)
802                 *outnumvertices = outvertices;
803         return outtriangles;
804 }
805
806 void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, const vec3_t projectdirection, float projectdistance, int nummarktris, const int *marktris)
807 {
808         int tris, outverts;
809         if (projectdistance < 0.1)
810         {
811                 Con_Printf("R_Shadow_Volume: projectdistance %f\n", projectdistance);
812                 return;
813         }
814         if (!numverts || !nummarktris)
815                 return;
816         // make sure shadowelements is big enough for this volume
817         if (maxshadowtriangles < nummarktris || maxshadowvertices < numverts)
818                 R_Shadow_ResizeShadowArrays((numverts + 255) & ~255, (nummarktris + 255) & ~255);
819         tris = R_Shadow_ConstructShadowVolume(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
820         r_refdef.stats.lights_dynamicshadowtriangles += tris;
821         R_Shadow_RenderVolume(outverts, tris, shadowvertex3f, shadowelements);
822 }
823
824 void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
825 {
826         int t, tend;
827         const int *e;
828         const float *v[3];
829         float normal[3];
830         if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
831                 return;
832         tend = firsttriangle + numtris;
833         if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
834         {
835                 // surface box entirely inside light box, no box cull
836                 if (projectdirection)
837                 {
838                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
839                         {
840                                 TriangleNormal(invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3, normal);
841                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
842                                         shadowmarklist[numshadowmark++] = t;
843                         }
844                 }
845                 else
846                 {
847                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
848                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
849                                         shadowmarklist[numshadowmark++] = t;
850                 }
851         }
852         else
853         {
854                 // surface box not entirely inside light box, cull each triangle
855                 if (projectdirection)
856                 {
857                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
858                         {
859                                 v[0] = invertex3f + e[0] * 3;
860                                 v[1] = invertex3f + e[1] * 3;
861                                 v[2] = invertex3f + e[2] * 3;
862                                 TriangleNormal(v[0], v[1], v[2], normal);
863                                 if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
864                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
865                                         shadowmarklist[numshadowmark++] = t;
866                         }
867                 }
868                 else
869                 {
870                         for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
871                         {
872                                 v[0] = invertex3f + e[0] * 3;
873                                 v[1] = invertex3f + e[1] * 3;
874                                 v[2] = invertex3f + e[2] * 3;
875                                 if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
876                                  && TriangleOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
877                                         shadowmarklist[numshadowmark++] = t;
878                         }
879                 }
880         }
881 }
882
883 void R_Shadow_RenderVolume(int numvertices, int numtriangles, const float *vertex3f, const int *element3i)
884 {
885         if (r_shadow_compilingrtlight)
886         {
887                 // if we're compiling an rtlight, capture the mesh
888                 Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, numtriangles, element3i);
889                 return;
890         }
891         r_refdef.stats.lights_shadowtriangles += numtriangles;
892         CHECKGLERROR
893         R_Mesh_VertexPointer(vertex3f, 0, 0);
894         GL_LockArrays(0, numvertices);
895         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
896         {
897                 // decrement stencil if backface is behind depthbuffer
898                 GL_CullFace(GL_BACK); // quake is backwards, this culls front faces
899                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
900                 R_Mesh_Draw(0, numvertices, numtriangles, element3i, 0, 0);
901                 // increment stencil if frontface is behind depthbuffer
902                 GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
903                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
904         }
905         R_Mesh_Draw(0, numvertices, numtriangles, element3i, 0, 0);
906         GL_LockArrays(0, 0);
907         CHECKGLERROR
908 }
909
910 static unsigned char R_Shadow_MakeTextures_SamplePoint(float x, float y, float z)
911 {
912         float dist = sqrt(x*x+y*y+z*z);
913         float intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
914         return (unsigned char)bound(0, intensity * 256.0f, 255);
915 }
916
917 static void R_Shadow_MakeTextures(void)
918 {
919         int x, y, z;
920         float intensity, dist;
921         unsigned char *data;
922         unsigned int palette[256];
923         R_FreeTexturePool(&r_shadow_texturepool);
924         r_shadow_texturepool = R_AllocTexturePool();
925         r_shadow_attenlinearscale = r_shadow_lightattenuationlinearscale.value;
926         r_shadow_attendividebias = r_shadow_lightattenuationdividebias.value;
927         // note this code could suffer byte order issues except that it is multiplying by an integer that reads the same both ways
928         for (x = 0;x < 256;x++)
929                 palette[x] = x * 0x01010101;
930         data = (unsigned char *)Mem_Alloc(tempmempool, max(max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE, ATTEN2DSIZE*ATTEN2DSIZE), ATTEN1DSIZE));
931         // the table includes one additional value to avoid the need to clamp indexing due to minor math errors
932         for (x = 0;x <= ATTENTABLESIZE;x++)
933         {
934                 dist = (x + 0.5f) * (1.0f / ATTENTABLESIZE) * (1.0f / 0.9375);
935                 intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
936                 r_shadow_attentable[x] = bound(0, intensity, 1);
937         }
938         // 1D gradient texture
939         for (x = 0;x < ATTEN1DSIZE;x++)
940                 data[x] = R_Shadow_MakeTextures_SamplePoint((x + 0.5f) * (1.0f / ATTEN1DSIZE) * (1.0f / 0.9375), 0, 0);
941         r_shadow_attenuationgradienttexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation1d", ATTEN1DSIZE, 1, data, TEXTYPE_PALETTE, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, palette);
942         // 2D circle texture
943         for (y = 0;y < ATTEN2DSIZE;y++)
944                 for (x = 0;x < ATTEN2DSIZE;x++)
945                         data[y*ATTEN2DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), 0);
946         r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, data, TEXTYPE_PALETTE, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, palette);
947         // 3D sphere texture
948         if (r_shadow_texture3d.integer && gl_texture3d)
949         {
950                 for (z = 0;z < ATTEN3DSIZE;z++)
951                         for (y = 0;y < ATTEN3DSIZE;y++)
952                                 for (x = 0;x < ATTEN3DSIZE;x++)
953                                         data[(z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375));
954                 r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, data, TEXTYPE_PALETTE, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, palette);
955         }
956         else
957                 r_shadow_attenuation3dtexture = NULL;
958         Mem_Free(data);
959 }
960
961 void R_Shadow_ValidateCvars(void)
962 {
963         if (r_shadow_texture3d.integer && !gl_texture3d)
964                 Cvar_SetValueQuick(&r_shadow_texture3d, 0);
965         if (gl_ext_separatestencil.integer && !gl_support_separatestencil)
966                 Cvar_SetValueQuick(&gl_ext_separatestencil, 0);
967         if (gl_ext_stenciltwoside.integer && !gl_support_stenciltwoside)
968                 Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
969 }
970
971 void R_Shadow_RenderMode_Begin(void)
972 {
973         R_Shadow_ValidateCvars();
974
975         if (!r_shadow_attenuation2dtexture
976          || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
977          || r_shadow_lightattenuationdividebias.value != r_shadow_attendividebias
978          || r_shadow_lightattenuationlinearscale.value != r_shadow_attenlinearscale)
979                 R_Shadow_MakeTextures();
980
981         CHECKGLERROR
982         R_Mesh_ColorPointer(NULL, 0, 0);
983         R_Mesh_ResetTextureState();
984         GL_BlendFunc(GL_ONE, GL_ZERO);
985         GL_DepthRange(0, 1);
986         GL_DepthTest(true);
987         GL_DepthMask(false);
988         GL_Color(0, 0, 0, 1);
989         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
990
991         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
992
993         if (gl_ext_separatestencil.integer)
994                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_SEPARATESTENCIL;
995         else if (gl_ext_stenciltwoside.integer)
996                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCILTWOSIDE;
997         else
998                 r_shadow_shadowingrendermode = R_SHADOW_RENDERMODE_STENCIL;
999
1000         if (r_glsl.integer && gl_support_fragment_shader)
1001                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
1002         else if (gl_dot3arb && gl_texturecubemap && r_textureunits.integer >= 2 && gl_combine.integer && gl_stencil)
1003                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_DOT3;
1004         else
1005                 r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
1006 }
1007
1008 void R_Shadow_RenderMode_ActiveLight(rtlight_t *rtlight)
1009 {
1010         rsurface.rtlight = rtlight;
1011 }
1012
1013 void R_Shadow_RenderMode_Reset(void)
1014 {
1015         CHECKGLERROR
1016         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1017         {
1018                 qglUseProgramObjectARB(0);CHECKGLERROR
1019         }
1020         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1021         {
1022                 qglDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
1023         }
1024         R_Mesh_ColorPointer(NULL, 0, 0);
1025         R_Mesh_ResetTextureState();
1026         GL_DepthRange(0, 1);
1027         GL_DepthTest(true);
1028         GL_DepthMask(false);
1029         qglDepthFunc(GL_LEQUAL);CHECKGLERROR
1030         qglPolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);CHECKGLERROR
1031         qglDisable(GL_STENCIL_TEST);CHECKGLERROR
1032         qglStencilMask(~0);CHECKGLERROR
1033         qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);CHECKGLERROR
1034         qglStencilFunc(GL_ALWAYS, 128, ~0);CHECKGLERROR
1035         GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
1036         GL_Color(1, 1, 1, 1);
1037         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 1);
1038         GL_BlendFunc(GL_ONE, GL_ZERO);
1039 }
1040
1041 void R_Shadow_RenderMode_StencilShadowVolumes(qboolean clearstencil)
1042 {
1043         CHECKGLERROR
1044         R_Shadow_RenderMode_Reset();
1045         GL_ColorMask(0, 0, 0, 0);
1046         qglPolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
1047         qglDepthFunc(GL_LESS);CHECKGLERROR
1048         qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1049         r_shadow_rendermode = r_shadow_shadowingrendermode;
1050         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_SEPARATESTENCIL)
1051         {
1052                 GL_CullFace(GL_NONE);
1053                 qglStencilOpSeparate(GL_BACK, GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR // quake is backwards, this is front faces
1054                 qglStencilOpSeparate(GL_FRONT, GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR // quake is backwards, this is back faces
1055         }
1056         else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCILTWOSIDE)
1057         {
1058                 GL_CullFace(GL_NONE);
1059                 qglEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
1060                 qglActiveStencilFaceEXT(GL_BACK);CHECKGLERROR // quake is backwards, this is front faces
1061                 qglStencilMask(~0);CHECKGLERROR
1062                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
1063                 qglActiveStencilFaceEXT(GL_FRONT);CHECKGLERROR // quake is backwards, this is back faces
1064                 qglStencilMask(~0);CHECKGLERROR
1065                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
1066         }
1067         if (clearstencil)
1068                 GL_Clear(GL_STENCIL_BUFFER_BIT);
1069         r_refdef.stats.lights_clears++;
1070 }
1071
1072 void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent)
1073 {
1074         CHECKGLERROR
1075         R_Shadow_RenderMode_Reset();
1076         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1077         if (!transparent)
1078         {
1079                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1080         }
1081         if (stenciltest)
1082         {
1083                 qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1084                 // only draw light where this geometry was already rendered AND the
1085                 // stencil is 128 (values other than this mean shadow)
1086                 qglStencilFunc(GL_EQUAL, 128, ~0);CHECKGLERROR
1087         }
1088         r_shadow_rendermode = r_shadow_lightingrendermode;
1089         // do global setup needed for the chosen lighting mode
1090         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
1091         {
1092                 R_Mesh_TexBind(0, R_GetTexture(r_texture_blanknormalmap)); // normal
1093                 R_Mesh_TexBind(1, R_GetTexture(r_texture_white)); // diffuse
1094                 R_Mesh_TexBind(2, R_GetTexture(r_texture_white)); // gloss
1095                 R_Mesh_TexBindCubeMap(3, R_GetTexture(rsurface.rtlight->currentcubemap)); // light filter
1096                 R_Mesh_TexBind(4, R_GetTexture(r_texture_fogattenuation)); // fog
1097                 R_Mesh_TexBind(5, R_GetTexture(r_texture_white)); // pants
1098                 R_Mesh_TexBind(6, R_GetTexture(r_texture_white)); // shirt
1099                 R_Mesh_TexBind(7, R_GetTexture(r_texture_white)); // lightmap
1100                 R_Mesh_TexBind(8, R_GetTexture(r_texture_blanknormalmap)); // deluxemap
1101                 R_Mesh_TexBind(9, R_GetTexture(r_texture_black)); // glow
1102                 //R_Mesh_TexMatrix(3, rsurface.entitytolight); // light filter matrix
1103                 GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
1104                 GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 0);
1105                 CHECKGLERROR
1106         }
1107 }
1108
1109 void R_Shadow_RenderMode_VisibleShadowVolumes(void)
1110 {
1111         CHECKGLERROR
1112         R_Shadow_RenderMode_Reset();
1113         GL_BlendFunc(GL_ONE, GL_ONE);
1114         GL_DepthRange(0, 1);
1115         GL_DepthTest(r_showshadowvolumes.integer < 2);
1116         GL_Color(0.0, 0.0125 * r_view.colorscale, 0.1 * r_view.colorscale, 1);
1117         qglPolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
1118         GL_CullFace(GL_NONE);
1119         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
1120 }
1121
1122 void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
1123 {
1124         CHECKGLERROR
1125         R_Shadow_RenderMode_Reset();
1126         GL_BlendFunc(GL_ONE, GL_ONE);
1127         GL_DepthRange(0, 1);
1128         GL_DepthTest(r_showlighting.integer < 2);
1129         GL_Color(0.1 * r_view.colorscale, 0.0125 * r_view.colorscale, 0, 1);
1130         if (!transparent)
1131         {
1132                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1133         }
1134         if (stenciltest)
1135         {
1136                 qglEnable(GL_STENCIL_TEST);CHECKGLERROR
1137                 qglStencilFunc(GL_EQUAL, 128, ~0);CHECKGLERROR
1138         }
1139         r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
1140 }
1141
1142 void R_Shadow_RenderMode_End(void)
1143 {
1144         CHECKGLERROR
1145         R_Shadow_RenderMode_Reset();
1146         R_Shadow_RenderMode_ActiveLight(NULL);
1147         GL_DepthMask(true);
1148         GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
1149         r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
1150 }
1151
1152 qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
1153 {
1154         int i, ix1, iy1, ix2, iy2;
1155         float x1, y1, x2, y2;
1156         vec4_t v, v2;
1157         rmesh_t mesh;
1158         mplane_t planes[11];
1159         float vertex3f[256*3];
1160
1161         // if view is inside the light box, just say yes it's visible
1162         if (BoxesOverlap(r_view.origin, r_view.origin, mins, maxs))
1163         {
1164                 GL_Scissor(r_view.x, r_view.y, r_view.width, r_view.height);
1165                 return false;
1166         }
1167
1168         // create a temporary brush describing the area the light can affect in worldspace
1169         VectorNegate(r_view.frustum[0].normal, planes[ 0].normal);planes[ 0].dist = -r_view.frustum[0].dist;
1170         VectorNegate(r_view.frustum[1].normal, planes[ 1].normal);planes[ 1].dist = -r_view.frustum[1].dist;
1171         VectorNegate(r_view.frustum[2].normal, planes[ 2].normal);planes[ 2].dist = -r_view.frustum[2].dist;
1172         VectorNegate(r_view.frustum[3].normal, planes[ 3].normal);planes[ 3].dist = -r_view.frustum[3].dist;
1173         VectorNegate(r_view.frustum[4].normal, planes[ 4].normal);planes[ 4].dist = -r_view.frustum[4].dist;
1174         VectorSet   (planes[ 5].normal,  1, 0, 0);         planes[ 5].dist =  maxs[0];
1175         VectorSet   (planes[ 6].normal, -1, 0, 0);         planes[ 6].dist = -mins[0];
1176         VectorSet   (planes[ 7].normal, 0,  1, 0);         planes[ 7].dist =  maxs[1];
1177         VectorSet   (planes[ 8].normal, 0, -1, 0);         planes[ 8].dist = -mins[1];
1178         VectorSet   (planes[ 9].normal, 0, 0,  1);         planes[ 9].dist =  maxs[2];
1179         VectorSet   (planes[10].normal, 0, 0, -1);         planes[10].dist = -mins[2];
1180
1181         // turn the brush into a mesh
1182         memset(&mesh, 0, sizeof(rmesh_t));
1183         mesh.maxvertices = 256;
1184         mesh.vertex3f = vertex3f;
1185         mesh.epsilon2 = (1.0f / (32.0f * 32.0f));
1186         R_Mesh_AddBrushMeshFromPlanes(&mesh, 11, planes);
1187
1188         // if that mesh is empty, the light is not visible at all
1189         if (!mesh.numvertices)
1190                 return true;
1191
1192         if (!r_shadow_scissor.integer)
1193                 return false;
1194
1195         // if that mesh is not empty, check what area of the screen it covers
1196         x1 = y1 = x2 = y2 = 0;
1197         v[3] = 1.0f;
1198         //Con_Printf("%i vertices to transform...\n", mesh.numvertices);
1199         for (i = 0;i < mesh.numvertices;i++)
1200         {
1201                 VectorCopy(mesh.vertex3f + i * 3, v);
1202                 GL_TransformToScreen(v, v2);
1203                 //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
1204                 if (i)
1205                 {
1206                         if (x1 > v2[0]) x1 = v2[0];
1207                         if (x2 < v2[0]) x2 = v2[0];
1208                         if (y1 > v2[1]) y1 = v2[1];
1209                         if (y2 < v2[1]) y2 = v2[1];
1210                 }
1211                 else
1212                 {
1213                         x1 = x2 = v2[0];
1214                         y1 = y2 = v2[1];
1215                 }
1216         }
1217
1218         // now convert the scissor rectangle to integer screen coordinates
1219         ix1 = (int)(x1 - 1.0f);
1220         iy1 = (int)(y1 - 1.0f);
1221         ix2 = (int)(x2 + 1.0f);
1222         iy2 = (int)(y2 + 1.0f);
1223         //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2);
1224
1225         // clamp it to the screen
1226         if (ix1 < r_view.x) ix1 = r_view.x;
1227         if (iy1 < r_view.y) iy1 = r_view.y;
1228         if (ix2 > r_view.x + r_view.width) ix2 = r_view.x + r_view.width;
1229         if (iy2 > r_view.y + r_view.height) iy2 = r_view.y + r_view.height;
1230
1231         // if it is inside out, it's not visible
1232         if (ix2 <= ix1 || iy2 <= iy1)
1233                 return true;
1234
1235         // the light area is visible, set up the scissor rectangle
1236         GL_Scissor(ix1, iy1, ix2 - ix1, iy2 - iy1);
1237         //qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1);CHECKGLERROR
1238         //qglEnable(GL_SCISSOR_TEST);CHECKGLERROR
1239         r_refdef.stats.lights_scissored++;
1240         return false;
1241 }
1242
1243 static void R_Shadow_RenderLighting_Light_Vertex_Shading(int firstvertex, int numverts, int numtriangles, const int *element3i, const float *diffusecolor, const float *ambientcolor)
1244 {
1245         float *vertex3f = rsurface.vertex3f + 3 * firstvertex;
1246         float *normal3f = rsurface.normal3f + 3 * firstvertex;
1247         float *color4f = rsurface.array_color4f + 4 * firstvertex;
1248         float dist, dot, distintensity, shadeintensity, v[3], n[3];
1249         if (r_textureunits.integer >= 3)
1250         {
1251                 if (VectorLength2(diffusecolor) > 0)
1252                 {
1253                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1254                         {
1255                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1256                                 Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1257                                 if ((dot = DotProduct(n, v)) < 0)
1258                                 {
1259                                         shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1260                                         VectorMA(ambientcolor, shadeintensity, diffusecolor, color4f);
1261                                 }
1262                                 else
1263                                         VectorCopy(ambientcolor, color4f);
1264                                 if (r_refdef.fogenabled)
1265                                 {
1266                                         float f;
1267                                         f = FogPoint_Model(vertex3f);
1268                                         VectorScale(color4f, f, color4f);
1269                                 }
1270                                 color4f[3] = 1;
1271                         }
1272                 }
1273                 else
1274                 {
1275                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1276                         {
1277                                 VectorCopy(ambientcolor, color4f);
1278                                 if (r_refdef.fogenabled)
1279                                 {
1280                                         float f;
1281                                         Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1282                                         f = FogPoint_Model(vertex3f);
1283                                         VectorScale(color4f, f, color4f);
1284                                 }
1285                                 color4f[3] = 1;
1286                         }
1287                 }
1288         }
1289         else if (r_textureunits.integer >= 2)
1290         {
1291                 if (VectorLength2(diffusecolor) > 0)
1292                 {
1293                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1294                         {
1295                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1296                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1297                                 {
1298                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1299                                         if ((dot = DotProduct(n, v)) < 0)
1300                                         {
1301                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1302                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1303                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1304                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1305                                         }
1306                                         else
1307                                         {
1308                                                 color4f[0] = ambientcolor[0] * distintensity;
1309                                                 color4f[1] = ambientcolor[1] * distintensity;
1310                                                 color4f[2] = ambientcolor[2] * distintensity;
1311                                         }
1312                                         if (r_refdef.fogenabled)
1313                                         {
1314                                                 float f;
1315                                                 f = FogPoint_Model(vertex3f);
1316                                                 VectorScale(color4f, f, color4f);
1317                                         }
1318                                 }
1319                                 else
1320                                         VectorClear(color4f);
1321                                 color4f[3] = 1;
1322                         }
1323                 }
1324                 else
1325                 {
1326                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1327                         {
1328                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1329                                 if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1330                                 {
1331                                         color4f[0] = ambientcolor[0] * distintensity;
1332                                         color4f[1] = ambientcolor[1] * distintensity;
1333                                         color4f[2] = ambientcolor[2] * distintensity;
1334                                         if (r_refdef.fogenabled)
1335                                         {
1336                                                 float f;
1337                                                 f = FogPoint_Model(vertex3f);
1338                                                 VectorScale(color4f, f, color4f);
1339                                         }
1340                                 }
1341                                 else
1342                                         VectorClear(color4f);
1343                                 color4f[3] = 1;
1344                         }
1345                 }
1346         }
1347         else
1348         {
1349                 if (VectorLength2(diffusecolor) > 0)
1350                 {
1351                         for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4)
1352                         {
1353                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1354                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1355                                 {
1356                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
1357                                         Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
1358                                         if ((dot = DotProduct(n, v)) < 0)
1359                                         {
1360                                                 shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
1361                                                 color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
1362                                                 color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
1363                                                 color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
1364                                         }
1365                                         else
1366                                         {
1367                                                 color4f[0] = ambientcolor[0] * distintensity;
1368                                                 color4f[1] = ambientcolor[1] * distintensity;
1369                                                 color4f[2] = ambientcolor[2] * distintensity;
1370                                         }
1371                                         if (r_refdef.fogenabled)
1372                                         {
1373                                                 float f;
1374                                                 f = FogPoint_Model(vertex3f);
1375                                                 VectorScale(color4f, f, color4f);
1376                                         }
1377                                 }
1378                                 else
1379                                         VectorClear(color4f);
1380                                 color4f[3] = 1;
1381                         }
1382                 }
1383                 else
1384                 {
1385                         for (;numverts > 0;numverts--, vertex3f += 3, color4f += 4)
1386                         {
1387                                 Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
1388                                 if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
1389                                 {
1390                                         distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
1391                                         color4f[0] = ambientcolor[0] * distintensity;
1392                                         color4f[1] = ambientcolor[1] * distintensity;
1393                                         color4f[2] = ambientcolor[2] * distintensity;
1394                                         if (r_refdef.fogenabled)
1395                                         {
1396                                                 float f;
1397                                                 f = FogPoint_Model(vertex3f);
1398                                                 VectorScale(color4f, f, color4f);
1399                                         }
1400                                 }
1401                                 else
1402                                         VectorClear(color4f);
1403                                 color4f[3] = 1;
1404                         }
1405                 }
1406         }
1407 }
1408
1409 // TODO: use glTexGen instead of feeding vertices to texcoordpointer?
1410
1411 static void R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(int firstvertex, int numvertices, int numtriangles, const int *element3i)
1412 {
1413         int i;
1414         float       *out3f     = rsurface.array_texcoord3f + 3 * firstvertex;
1415         const float *vertex3f  = rsurface.vertex3f         + 3 * firstvertex;
1416         const float *svector3f = rsurface.svector3f        + 3 * firstvertex;
1417         const float *tvector3f = rsurface.tvector3f        + 3 * firstvertex;
1418         const float *normal3f  = rsurface.normal3f         + 3 * firstvertex;
1419         float lightdir[3];
1420         for (i = 0;i < numvertices;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1421         {
1422                 VectorSubtract(rsurface.entitylightorigin, vertex3f, lightdir);
1423                 // the cubemap normalizes this for us
1424                 out3f[0] = DotProduct(svector3f, lightdir);
1425                 out3f[1] = DotProduct(tvector3f, lightdir);
1426                 out3f[2] = DotProduct(normal3f, lightdir);
1427         }
1428 }
1429
1430 static void R_Shadow_GenTexCoords_Specular_NormalCubeMap(int firstvertex, int numvertices, int numtriangles, const int *element3i)
1431 {
1432         int i;
1433         float       *out3f     = rsurface.array_texcoord3f + 3 * firstvertex;
1434         const float *vertex3f  = rsurface.vertex3f         + 3 * firstvertex;
1435         const float *svector3f = rsurface.svector3f        + 3 * firstvertex;
1436         const float *tvector3f = rsurface.tvector3f        + 3 * firstvertex;
1437         const float *normal3f  = rsurface.normal3f         + 3 * firstvertex;
1438         float lightdir[3], eyedir[3], halfdir[3];
1439         for (i = 0;i < numvertices;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3)
1440         {
1441                 VectorSubtract(rsurface.entitylightorigin, vertex3f, lightdir);
1442                 VectorNormalize(lightdir);
1443                 VectorSubtract(rsurface.modelorg, vertex3f, eyedir);
1444                 VectorNormalize(eyedir);
1445                 VectorAdd(lightdir, eyedir, halfdir);
1446                 // the cubemap normalizes this for us
1447                 out3f[0] = DotProduct(svector3f, halfdir);
1448                 out3f[1] = DotProduct(tvector3f, halfdir);
1449                 out3f[2] = DotProduct(normal3f, halfdir);
1450         }
1451 }
1452
1453 static void R_Shadow_RenderLighting_VisibleLighting(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
1454 {
1455         // used to display how many times a surface is lit for level design purposes
1456         GL_Color(0.1 * r_view.colorscale, 0.025 * r_view.colorscale, 0, 1);
1457         R_Mesh_ColorPointer(NULL, 0, 0);
1458         R_Mesh_ResetTextureState();
1459         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1460 }
1461
1462 static void R_Shadow_RenderLighting_Light_GLSL(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
1463 {
1464         // ARB2 GLSL shader path (GFFX5200, Radeon 9500)
1465         R_SetupSurfaceShader(lightcolorbase, false, ambientscale, diffusescale, specularscale);
1466         R_Mesh_TexCoordPointer(0, 2, rsurface.texcoordtexture2f, rsurface.texcoordtexture2f_bufferobject, rsurface.texcoordtexture2f_bufferoffset);
1467         R_Mesh_TexCoordPointer(1, 3, rsurface.svector3f, rsurface.svector3f_bufferobject, rsurface.svector3f_bufferoffset);
1468         R_Mesh_TexCoordPointer(2, 3, rsurface.tvector3f, rsurface.tvector3f_bufferobject, rsurface.tvector3f_bufferoffset);
1469         R_Mesh_TexCoordPointer(3, 3, rsurface.normal3f, rsurface.normal3f_bufferobject, rsurface.normal3f_bufferoffset);
1470         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1471         {
1472                 qglDepthFunc(GL_EQUAL);CHECKGLERROR
1473         }
1474         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1475         if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST)
1476         {
1477                 qglDepthFunc(GL_LEQUAL);CHECKGLERROR
1478         }
1479 }
1480
1481 static void R_Shadow_RenderLighting_Light_Dot3_Finalize(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, float r, float g, float b)
1482 {
1483         // shared final code for all the dot3 layers
1484         int renders;
1485         GL_ColorMask(r_view.colormask[0], r_view.colormask[1], r_view.colormask[2], 0);
1486         for (renders = 0;renders < 64 && (r > 0 || g > 0 || b > 0);renders++, r--, g--, b--)
1487         {
1488                 GL_Color(bound(0, r, 1), bound(0, g, 1), bound(0, b, 1), 1);
1489                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1490         }
1491 }
1492
1493 static void R_Shadow_RenderLighting_Light_Dot3_AmbientPass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *basetexture, float colorscale)
1494 {
1495         rmeshstate_t m;
1496         // colorscale accounts for how much we multiply the brightness
1497         // during combine.
1498         //
1499         // mult is how many times the final pass of the lighting will be
1500         // performed to get more brightness than otherwise possible.
1501         //
1502         // Limit mult to 64 for sanity sake.
1503         GL_Color(1,1,1,1);
1504         if (r_shadow_texture3d.integer && rsurface.rtlight->currentcubemap != r_texture_whitecube && r_textureunits.integer >= 4)
1505         {
1506                 // 3 3D combine path (Geforce3, Radeon 8500)
1507                 memset(&m, 0, sizeof(m));
1508                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1509                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1510                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1511                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1512                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1513                 m.tex[1] = R_GetTexture(basetexture);
1514                 m.pointer_texcoord[1] = rsurface.texcoordtexture2f;
1515                 m.pointer_texcoord_bufferobject[1] = rsurface.texcoordtexture2f_bufferobject;
1516                 m.pointer_texcoord_bufferoffset[1] = rsurface.texcoordtexture2f_bufferoffset;
1517                 m.texmatrix[1] = rsurface.texture->currenttexmatrix;
1518                 m.texcubemap[2] = R_GetTexture(rsurface.rtlight->currentcubemap);
1519                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1520                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1521                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1522                 m.texmatrix[2] = rsurface.entitytolight;
1523                 GL_BlendFunc(GL_ONE, GL_ONE);
1524         }
1525         else if (r_shadow_texture3d.integer && rsurface.rtlight->currentcubemap == r_texture_whitecube && r_textureunits.integer >= 2)
1526         {
1527                 // 2 3D combine path (Geforce3, original Radeon)
1528                 memset(&m, 0, sizeof(m));
1529                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1530                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1531                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1532                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1533                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1534                 m.tex[1] = R_GetTexture(basetexture);
1535                 m.pointer_texcoord[1] = rsurface.texcoordtexture2f;
1536                 m.pointer_texcoord_bufferobject[1] = rsurface.texcoordtexture2f_bufferobject;
1537                 m.pointer_texcoord_bufferoffset[1] = rsurface.texcoordtexture2f_bufferoffset;
1538                 m.texmatrix[1] = rsurface.texture->currenttexmatrix;
1539                 GL_BlendFunc(GL_ONE, GL_ONE);
1540         }
1541         else if (r_textureunits.integer >= 4 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1542         {
1543                 // 4 2D combine path (Geforce3, Radeon 8500)
1544                 memset(&m, 0, sizeof(m));
1545                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1546                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1547                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1548                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1549                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1550                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1551                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1552                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1553                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1554                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1555                 m.tex[2] = R_GetTexture(basetexture);
1556                 m.pointer_texcoord[2] = rsurface.texcoordtexture2f;
1557                 m.pointer_texcoord_bufferobject[2] = rsurface.texcoordtexture2f_bufferobject;
1558                 m.pointer_texcoord_bufferoffset[2] = rsurface.texcoordtexture2f_bufferoffset;
1559                 m.texmatrix[2] = rsurface.texture->currenttexmatrix;
1560                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1561                 {
1562                         m.texcubemap[3] = R_GetTexture(rsurface.rtlight->currentcubemap);
1563                         m.pointer_texcoord3f[3] = rsurface.vertex3f;
1564                         m.pointer_texcoord_bufferobject[3] = rsurface.vertex3f_bufferobject;
1565                         m.pointer_texcoord_bufferoffset[3] = rsurface.vertex3f_bufferoffset;
1566                         m.texmatrix[3] = rsurface.entitytolight;
1567                 }
1568                 GL_BlendFunc(GL_ONE, GL_ONE);
1569         }
1570         else if (r_textureunits.integer >= 3 && rsurface.rtlight->currentcubemap == r_texture_whitecube)
1571         {
1572                 // 3 2D combine path (Geforce3, original Radeon)
1573                 memset(&m, 0, sizeof(m));
1574                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1575                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1576                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1577                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1578                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1579                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1580                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1581                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1582                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1583                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1584                 m.tex[2] = R_GetTexture(basetexture);
1585                 m.pointer_texcoord[2] = rsurface.texcoordtexture2f;
1586                 m.pointer_texcoord_bufferobject[2] = rsurface.texcoordtexture2f_bufferobject;
1587                 m.pointer_texcoord_bufferoffset[2] = rsurface.texcoordtexture2f_bufferoffset;
1588                 m.texmatrix[2] = rsurface.texture->currenttexmatrix;
1589                 GL_BlendFunc(GL_ONE, GL_ONE);
1590         }
1591         else
1592         {
1593                 // 2/2/2 2D combine path (any dot3 card)
1594                 memset(&m, 0, sizeof(m));
1595                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1596                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1597                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1598                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1599                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1600                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1601                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1602                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1603                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1604                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1605                 R_Mesh_TextureState(&m);
1606                 GL_ColorMask(0,0,0,1);
1607                 GL_BlendFunc(GL_ONE, GL_ZERO);
1608                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1609
1610                 // second pass
1611                 memset(&m, 0, sizeof(m));
1612                 m.tex[0] = R_GetTexture(basetexture);
1613                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1614                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1615                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1616                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1617                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1618                 {
1619                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1620                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1621                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1622                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1623                         m.texmatrix[1] = rsurface.entitytolight;
1624                 }
1625                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1626         }
1627         // this final code is shared
1628         R_Mesh_TextureState(&m);
1629         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
1630 }
1631
1632 static void R_Shadow_RenderLighting_Light_Dot3_DiffusePass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *basetexture, rtexture_t *normalmaptexture, float colorscale)
1633 {
1634         rmeshstate_t m;
1635         // colorscale accounts for how much we multiply the brightness
1636         // during combine.
1637         //
1638         // mult is how many times the final pass of the lighting will be
1639         // performed to get more brightness than otherwise possible.
1640         //
1641         // Limit mult to 64 for sanity sake.
1642         GL_Color(1,1,1,1);
1643         // generate normalization cubemap texcoords
1644         R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(firstvertex, numvertices, numtriangles, element3i);
1645         if (r_shadow_texture3d.integer && r_textureunits.integer >= 4)
1646         {
1647                 // 3/2 3D combine path (Geforce3, Radeon 8500)
1648                 memset(&m, 0, sizeof(m));
1649                 m.tex[0] = R_GetTexture(normalmaptexture);
1650                 m.texcombinergb[0] = GL_REPLACE;
1651                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1652                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1653                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1654                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1655                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1656                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1657                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1658                 m.pointer_texcoord_bufferobject[1] = 0;
1659                 m.pointer_texcoord_bufferoffset[1] = 0;
1660                 m.tex3d[2] = R_GetTexture(r_shadow_attenuation3dtexture);
1661                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1662                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1663                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1664                 m.texmatrix[2] = rsurface.entitytoattenuationxyz;
1665                 R_Mesh_TextureState(&m);
1666                 GL_ColorMask(0,0,0,1);
1667                 GL_BlendFunc(GL_ONE, GL_ZERO);
1668                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1669
1670                 // second pass
1671                 memset(&m, 0, sizeof(m));
1672                 m.tex[0] = R_GetTexture(basetexture);
1673                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1674                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1675                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1676                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1677                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1678                 {
1679                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1680                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1681                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1682                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1683                         m.texmatrix[1] = rsurface.entitytolight;
1684                 }
1685                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1686         }
1687         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1688         {
1689                 // 1/2/2 3D combine path (original Radeon)
1690                 memset(&m, 0, sizeof(m));
1691                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1692                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1693                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1694                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1695                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1696                 R_Mesh_TextureState(&m);
1697                 GL_ColorMask(0,0,0,1);
1698                 GL_BlendFunc(GL_ONE, GL_ZERO);
1699                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1700
1701                 // second pass
1702                 memset(&m, 0, sizeof(m));
1703                 m.tex[0] = R_GetTexture(normalmaptexture);
1704                 m.texcombinergb[0] = GL_REPLACE;
1705                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1706                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1707                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1708                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1709                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1710                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1711                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1712                 m.pointer_texcoord_bufferobject[1] = 0;
1713                 m.pointer_texcoord_bufferoffset[1] = 0;
1714                 R_Mesh_TextureState(&m);
1715                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1716                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1717
1718                 // second pass
1719                 memset(&m, 0, sizeof(m));
1720                 m.tex[0] = R_GetTexture(basetexture);
1721                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1722                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1723                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1724                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1725                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1726                 {
1727                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1728                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1729                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1730                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1731                         m.texmatrix[1] = rsurface.entitytolight;
1732                 }
1733                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1734         }
1735         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap == r_texture_whitecube)
1736         {
1737                 // 2/2 3D combine path (original Radeon)
1738                 memset(&m, 0, sizeof(m));
1739                 m.tex[0] = R_GetTexture(normalmaptexture);
1740                 m.texcombinergb[0] = GL_REPLACE;
1741                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1742                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1743                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1744                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1745                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1746                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1747                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1748                 m.pointer_texcoord_bufferobject[1] = 0;
1749                 m.pointer_texcoord_bufferoffset[1] = 0;
1750                 R_Mesh_TextureState(&m);
1751                 GL_ColorMask(0,0,0,1);
1752                 GL_BlendFunc(GL_ONE, GL_ZERO);
1753                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1754
1755                 // second pass
1756                 memset(&m, 0, sizeof(m));
1757                 m.tex[0] = R_GetTexture(basetexture);
1758                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1759                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1760                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1761                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1762                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
1763                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1764                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1765                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1766                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
1767                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1768         }
1769         else if (r_textureunits.integer >= 4)
1770         {
1771                 // 4/2 2D combine path (Geforce3, Radeon 8500)
1772                 memset(&m, 0, sizeof(m));
1773                 m.tex[0] = R_GetTexture(normalmaptexture);
1774                 m.texcombinergb[0] = GL_REPLACE;
1775                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1776                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1777                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1778                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1779                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1780                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1781                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1782                 m.pointer_texcoord_bufferobject[1] = 0;
1783                 m.pointer_texcoord_bufferoffset[1] = 0;
1784                 m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
1785                 m.pointer_texcoord3f[2] = rsurface.vertex3f;
1786                 m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
1787                 m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
1788                 m.texmatrix[2] = rsurface.entitytoattenuationxyz;
1789                 m.tex[3] = R_GetTexture(r_shadow_attenuation2dtexture);
1790                 m.pointer_texcoord3f[3] = rsurface.vertex3f;
1791                 m.pointer_texcoord_bufferobject[3] = rsurface.vertex3f_bufferobject;
1792                 m.pointer_texcoord_bufferoffset[3] = rsurface.vertex3f_bufferoffset;
1793                 m.texmatrix[3] = rsurface.entitytoattenuationz;
1794                 R_Mesh_TextureState(&m);
1795                 GL_ColorMask(0,0,0,1);
1796                 GL_BlendFunc(GL_ONE, GL_ZERO);
1797                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1798
1799                 // second pass
1800                 memset(&m, 0, sizeof(m));
1801                 m.tex[0] = R_GetTexture(basetexture);
1802                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1803                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1804                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1805                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1806                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1807                 {
1808                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1809                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1810                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1811                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1812                         m.texmatrix[1] = rsurface.entitytolight;
1813                 }
1814                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1815         }
1816         else
1817         {
1818                 // 2/2/2 2D combine path (any dot3 card)
1819                 memset(&m, 0, sizeof(m));
1820                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
1821                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1822                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1823                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1824                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1825                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
1826                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1827                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1828                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1829                 m.texmatrix[1] = rsurface.entitytoattenuationz;
1830                 R_Mesh_TextureState(&m);
1831                 GL_ColorMask(0,0,0,1);
1832                 GL_BlendFunc(GL_ONE, GL_ZERO);
1833                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1834
1835                 // second pass
1836                 memset(&m, 0, sizeof(m));
1837                 m.tex[0] = R_GetTexture(normalmaptexture);
1838                 m.texcombinergb[0] = GL_REPLACE;
1839                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1840                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1841                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1842                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1843                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1844                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1845                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1846                 m.pointer_texcoord_bufferobject[1] = 0;
1847                 m.pointer_texcoord_bufferoffset[1] = 0;
1848                 R_Mesh_TextureState(&m);
1849                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1850                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1851
1852                 // second pass
1853                 memset(&m, 0, sizeof(m));
1854                 m.tex[0] = R_GetTexture(basetexture);
1855                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1856                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1857                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1858                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1859                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1860                 {
1861                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1862                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1863                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1864                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1865                         m.texmatrix[1] = rsurface.entitytolight;
1866                 }
1867                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1868         }
1869         // this final code is shared
1870         R_Mesh_TextureState(&m);
1871         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
1872 }
1873
1874 static void R_Shadow_RenderLighting_Light_Dot3_SpecularPass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, rtexture_t *glosstexture, rtexture_t *normalmaptexture, float colorscale)
1875 {
1876         float glossexponent;
1877         rmeshstate_t m;
1878         // FIXME: detect blendsquare!
1879         //if (!gl_support_blendsquare)
1880         //      return;
1881         GL_Color(1,1,1,1);
1882         // generate normalization cubemap texcoords
1883         R_Shadow_GenTexCoords_Specular_NormalCubeMap(firstvertex, numvertices, numtriangles, element3i);
1884         if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap != r_texture_whitecube)
1885         {
1886                 // 2/0/0/1/2 3D combine blendsquare path
1887                 memset(&m, 0, sizeof(m));
1888                 m.tex[0] = R_GetTexture(normalmaptexture);
1889                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1890                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1891                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1892                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1893                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1894                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1895                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1896                 m.pointer_texcoord_bufferobject[1] = 0;
1897                 m.pointer_texcoord_bufferoffset[1] = 0;
1898                 R_Mesh_TextureState(&m);
1899                 GL_ColorMask(0,0,0,1);
1900                 // this squares the result
1901                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
1902                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1903
1904                 // second and third pass
1905                 R_Mesh_ResetTextureState();
1906                 // square alpha in framebuffer a few times to make it shiny
1907                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
1908                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
1909                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1910
1911                 // fourth pass
1912                 memset(&m, 0, sizeof(m));
1913                 m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture);
1914                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
1915                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
1916                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
1917                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
1918                 R_Mesh_TextureState(&m);
1919                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
1920                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1921
1922                 // fifth pass
1923                 memset(&m, 0, sizeof(m));
1924                 m.tex[0] = R_GetTexture(glosstexture);
1925                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1926                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1927                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1928                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1929                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
1930                 {
1931                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
1932                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
1933                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1934                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1935                         m.texmatrix[1] = rsurface.entitytolight;
1936                 }
1937                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1938         }
1939         else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && rsurface.rtlight->currentcubemap == r_texture_whitecube /* && gl_support_blendsquare*/) // FIXME: detect blendsquare!
1940         {
1941                 // 2/0/0/2 3D combine blendsquare path
1942                 memset(&m, 0, sizeof(m));
1943                 m.tex[0] = R_GetTexture(normalmaptexture);
1944                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1945                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1946                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1947                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1948                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1949                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1950                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1951                 m.pointer_texcoord_bufferobject[1] = 0;
1952                 m.pointer_texcoord_bufferoffset[1] = 0;
1953                 R_Mesh_TextureState(&m);
1954                 GL_ColorMask(0,0,0,1);
1955                 // this squares the result
1956                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
1957                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1958
1959                 // second and third pass
1960                 R_Mesh_ResetTextureState();
1961                 // square alpha in framebuffer a few times to make it shiny
1962                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
1963                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
1964                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1965
1966                 // fourth pass
1967                 memset(&m, 0, sizeof(m));
1968                 m.tex[0] = R_GetTexture(glosstexture);
1969                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1970                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1971                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1972                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1973                 m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture);
1974                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
1975                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
1976                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
1977                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
1978                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
1979         }
1980         else
1981         {
1982                 // 2/0/0/2/2 2D combine blendsquare path
1983                 memset(&m, 0, sizeof(m));
1984                 m.tex[0] = R_GetTexture(normalmaptexture);
1985                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
1986                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
1987                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
1988                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
1989                 m.texcubemap[1] = R_GetTexture(r_texture_normalizationcube);
1990                 m.texcombinergb[1] = GL_DOT3_RGBA_ARB;
1991                 m.pointer_texcoord3f[1] = rsurface.array_texcoord3f;
1992                 m.pointer_texcoord_bufferobject[1] = 0;
1993                 m.pointer_texcoord_bufferoffset[1] = 0;
1994                 R_Mesh_TextureState(&m);
1995                 GL_ColorMask(0,0,0,1);
1996                 // this squares the result
1997                 GL_BlendFunc(GL_SRC_ALPHA, GL_ZERO);
1998                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
1999
2000                 // second and third pass
2001                 R_Mesh_ResetTextureState();
2002                 // square alpha in framebuffer a few times to make it shiny
2003                 GL_BlendFunc(GL_ZERO, GL_DST_ALPHA);
2004                 for (glossexponent = 2;glossexponent * 2 <= r_shadow_glossexponent.value;glossexponent *= 2)
2005                         R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2006
2007                 // fourth pass
2008                 memset(&m, 0, sizeof(m));
2009                 m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture);
2010                 m.pointer_texcoord3f[0] = rsurface.vertex3f;
2011                 m.pointer_texcoord_bufferobject[0] = rsurface.vertex3f_bufferobject;
2012                 m.pointer_texcoord_bufferoffset[0] = rsurface.vertex3f_bufferoffset;
2013                 m.texmatrix[0] = rsurface.entitytoattenuationxyz;
2014                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2015                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
2016                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2017                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2018                 m.texmatrix[1] = rsurface.entitytoattenuationz;
2019                 R_Mesh_TextureState(&m);
2020                 GL_BlendFunc(GL_DST_ALPHA, GL_ZERO);
2021                 R_Mesh_Draw(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2022
2023                 // fifth pass
2024                 memset(&m, 0, sizeof(m));
2025                 m.tex[0] = R_GetTexture(glosstexture);
2026                 m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2027                 m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2028                 m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2029                 m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2030                 if (rsurface.rtlight->currentcubemap != r_texture_whitecube)
2031                 {
2032                         m.texcubemap[1] = R_GetTexture(rsurface.rtlight->currentcubemap);
2033                         m.pointer_texcoord3f[1] = rsurface.vertex3f;
2034                         m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2035                         m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2036                         m.texmatrix[1] = rsurface.entitytolight;
2037                 }
2038                 GL_BlendFunc(GL_DST_ALPHA, GL_ONE);
2039         }
2040         // this final code is shared
2041         R_Mesh_TextureState(&m);
2042         R_Shadow_RenderLighting_Light_Dot3_Finalize(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase[0] * colorscale, lightcolorbase[1] * colorscale, lightcolorbase[2] * colorscale);
2043 }
2044
2045 static void R_Shadow_RenderLighting_Light_Dot3(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
2046 {
2047         // ARB path (any Geforce, any Radeon)
2048         qboolean doambient = ambientscale > 0;
2049         qboolean dodiffuse = diffusescale > 0;
2050         qboolean dospecular = specularscale > 0;
2051         if (!doambient && !dodiffuse && !dospecular)
2052                 return;
2053         R_Mesh_ColorPointer(NULL, 0, 0);
2054         if (doambient)
2055                 R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, basetexture, ambientscale * r_view.colorscale);
2056         if (dodiffuse)
2057                 R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, basetexture, normalmaptexture, diffusescale * r_view.colorscale);
2058         if (dopants)
2059         {
2060                 if (doambient)
2061                         R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorpants, pantstexture, ambientscale * r_view.colorscale);
2062                 if (dodiffuse)
2063                         R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorpants, pantstexture, normalmaptexture, diffusescale * r_view.colorscale);
2064         }
2065         if (doshirt)
2066         {
2067                 if (doambient)
2068                         R_Shadow_RenderLighting_Light_Dot3_AmbientPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorshirt, shirttexture, ambientscale * r_view.colorscale);
2069                 if (dodiffuse)
2070                         R_Shadow_RenderLighting_Light_Dot3_DiffusePass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorshirt, shirttexture, normalmaptexture, diffusescale * r_view.colorscale);
2071         }
2072         if (dospecular)
2073                 R_Shadow_RenderLighting_Light_Dot3_SpecularPass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, glosstexture, normalmaptexture, specularscale * r_view.colorscale);
2074 }
2075
2076 void R_Shadow_RenderLighting_Light_Vertex_Pass(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, vec3_t diffusecolor2, vec3_t ambientcolor2)
2077 {
2078         int renders;
2079         int i;
2080         int stop;
2081         int newfirstvertex;
2082         int newlastvertex;
2083         int newnumtriangles;
2084         int *newe;
2085         const int *e;
2086         float *c;
2087         int newelements[4096*3];
2088         R_Shadow_RenderLighting_Light_Vertex_Shading(firstvertex, numvertices, numtriangles, element3i, diffusecolor2, ambientcolor2);
2089         for (renders = 0;renders < 64;renders++)
2090         {
2091                 stop = true;
2092                 newfirstvertex = 0;
2093                 newlastvertex = 0;
2094                 newnumtriangles = 0;
2095                 newe = newelements;
2096                 // due to low fillrate on the cards this vertex lighting path is
2097                 // designed for, we manually cull all triangles that do not
2098                 // contain a lit vertex
2099                 // this builds batches of triangles from multiple surfaces and
2100                 // renders them at once
2101                 for (i = 0, e = element3i;i < numtriangles;i++, e += 3)
2102                 {
2103                         if (VectorLength2(rsurface.array_color4f + e[0] * 4) + VectorLength2(rsurface.array_color4f + e[1] * 4) + VectorLength2(rsurface.array_color4f + e[2] * 4) >= 0.01)
2104                         {
2105                                 if (newnumtriangles)
2106                                 {
2107                                         newfirstvertex = min(newfirstvertex, e[0]);
2108                                         newlastvertex  = max(newlastvertex, e[0]);
2109                                 }
2110                                 else
2111                                 {
2112                                         newfirstvertex = e[0];
2113                                         newlastvertex = e[0];
2114                                 }
2115                                 newfirstvertex = min(newfirstvertex, e[1]);
2116                                 newlastvertex  = max(newlastvertex, e[1]);
2117                                 newfirstvertex = min(newfirstvertex, e[2]);
2118                                 newlastvertex  = max(newlastvertex, e[2]);
2119                                 newe[0] = e[0];
2120                                 newe[1] = e[1];
2121                                 newe[2] = e[2];
2122                                 newnumtriangles++;
2123                                 newe += 3;
2124                                 if (newnumtriangles >= (int)(sizeof(newelements)/sizeof(float[3])))
2125                                 {
2126                                         R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, newnumtriangles, newelements, 0, 0);
2127                                         newnumtriangles = 0;
2128                                         newe = newelements;
2129                                         stop = false;
2130                                 }
2131                         }
2132                 }
2133                 if (newnumtriangles >= 1)
2134                 {
2135                         // if all triangles are included, use the original array to take advantage of the bufferobject if possible
2136                         if (newnumtriangles == numtriangles)
2137                                 R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset);
2138                         else
2139                                 R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, newnumtriangles, newelements, 0, 0);
2140                         stop = false;
2141                 }
2142                 // if we couldn't find any lit triangles, exit early
2143                 if (stop)
2144                         break;
2145                 // now reduce the intensity for the next overbright pass
2146                 // we have to clamp to 0 here incase the drivers have improper
2147                 // handling of negative colors
2148                 // (some old drivers even have improper handling of >1 color)
2149                 stop = true;
2150                 for (i = 0, c = rsurface.array_color4f + 4 * firstvertex;i < numvertices;i++, c += 4)
2151                 {
2152                         if (c[0] > 1 || c[1] > 1 || c[2] > 1)
2153                         {
2154                                 c[0] = max(0, c[0] - 1);
2155                                 c[1] = max(0, c[1] - 1);
2156                                 c[2] = max(0, c[2] - 1);
2157                                 stop = false;
2158                         }
2159                         else
2160                                 VectorClear(c);
2161                 }
2162                 // another check...
2163                 if (stop)
2164                         break;
2165         }
2166 }
2167
2168 static void R_Shadow_RenderLighting_Light_Vertex(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset, const vec3_t lightcolorbase, const vec3_t lightcolorpants, const vec3_t lightcolorshirt, rtexture_t *basetexture, rtexture_t *pantstexture, rtexture_t *shirttexture, rtexture_t *normalmaptexture, rtexture_t *glosstexture, float ambientscale, float diffusescale, float specularscale, qboolean dopants, qboolean doshirt)
2169 {
2170         // OpenGL 1.1 path (anything)
2171         float ambientcolorbase[3], diffusecolorbase[3];
2172         float ambientcolorpants[3], diffusecolorpants[3];
2173         float ambientcolorshirt[3], diffusecolorshirt[3];
2174         rmeshstate_t m;
2175         VectorScale(lightcolorbase, ambientscale * 2 * r_view.colorscale, ambientcolorbase);
2176         VectorScale(lightcolorbase, diffusescale * 2 * r_view.colorscale, diffusecolorbase);
2177         VectorScale(lightcolorpants, ambientscale * 2 * r_view.colorscale, ambientcolorpants);
2178         VectorScale(lightcolorpants, diffusescale * 2 * r_view.colorscale, diffusecolorpants);
2179         VectorScale(lightcolorshirt, ambientscale * 2 * r_view.colorscale, ambientcolorshirt);
2180         VectorScale(lightcolorshirt, diffusescale * 2 * r_view.colorscale, diffusecolorshirt);
2181         GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
2182         R_Mesh_ColorPointer(rsurface.array_color4f, 0, 0);
2183         memset(&m, 0, sizeof(m));
2184         m.tex[0] = R_GetTexture(basetexture);
2185         m.texmatrix[0] = rsurface.texture->currenttexmatrix;
2186         m.pointer_texcoord[0] = rsurface.texcoordtexture2f;
2187         m.pointer_texcoord_bufferobject[0] = rsurface.texcoordtexture2f_bufferobject;
2188         m.pointer_texcoord_bufferoffset[0] = rsurface.texcoordtexture2f_bufferoffset;
2189         if (r_textureunits.integer >= 2)
2190         {
2191                 // voodoo2 or TNT
2192                 m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture);
2193                 m.texmatrix[1] = rsurface.entitytoattenuationxyz;
2194                 m.pointer_texcoord3f[1] = rsurface.vertex3f;
2195                 m.pointer_texcoord_bufferobject[1] = rsurface.vertex3f_bufferobject;
2196                 m.pointer_texcoord_bufferoffset[1] = rsurface.vertex3f_bufferoffset;
2197                 if (r_textureunits.integer >= 3)
2198                 {
2199                         // Voodoo4 or Kyro (or Geforce3/Radeon with gl_combine off)
2200                         m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture);
2201                         m.texmatrix[2] = rsurface.entitytoattenuationz;
2202                         m.pointer_texcoord3f[2] = rsurface.vertex3f;
2203                         m.pointer_texcoord_bufferobject[2] = rsurface.vertex3f_bufferobject;
2204                         m.pointer_texcoord_bufferoffset[2] = rsurface.vertex3f_bufferoffset;
2205                 }
2206         }
2207         R_Mesh_TextureState(&m);
2208         //R_Mesh_TexBind(0, R_GetTexture(basetexture));
2209         R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorbase, ambientcolorbase);
2210         if (dopants)
2211         {
2212                 R_Mesh_TexBind(0, R_GetTexture(pantstexture));
2213                 R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorpants, ambientcolorpants);
2214         }
2215         if (doshirt)
2216         {
2217                 R_Mesh_TexBind(0, R_GetTexture(shirttexture));
2218                 R_Shadow_RenderLighting_Light_Vertex_Pass(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, diffusecolorshirt, ambientcolorshirt);
2219         }
2220 }
2221
2222 void R_Shadow_RenderLighting(int firstvertex, int numvertices, int numtriangles, const int *element3i, int element3i_bufferobject, size_t element3i_bufferoffset)
2223 {
2224         float ambientscale, diffusescale, specularscale;
2225         vec3_t lightcolorbase, lightcolorpants, lightcolorshirt;
2226         // calculate colors to render this texture with
2227         lightcolorbase[0] = rsurface.rtlight->currentcolor[0] * rsurface.texture->dlightcolor[0];
2228         lightcolorbase[1] = rsurface.rtlight->currentcolor[1] * rsurface.texture->dlightcolor[1];
2229         lightcolorbase[2] = rsurface.rtlight->currentcolor[2] * rsurface.texture->dlightcolor[2];
2230         ambientscale = rsurface.rtlight->ambientscale;
2231         diffusescale = rsurface.rtlight->diffusescale;
2232         specularscale = rsurface.rtlight->specularscale * rsurface.texture->specularscale;
2233         if (!r_shadow_usenormalmap.integer)
2234         {
2235                 ambientscale += 1.0f * diffusescale;
2236                 diffusescale = 0;
2237                 specularscale = 0;
2238         }
2239         if ((ambientscale + diffusescale) * VectorLength2(lightcolorbase) + specularscale * VectorLength2(lightcolorbase) < (1.0f / 1048576.0f))
2240                 return;
2241         GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1);
2242         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST));
2243         GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : GL_FRONT); // quake is backwards, this culls back faces
2244         if (rsurface.texture->colormapping)
2245         {
2246                 qboolean dopants = rsurface.texture->currentskinframe->pants != NULL && VectorLength2(rsurface.colormap_pantscolor) >= (1.0f / 1048576.0f);
2247                 qboolean doshirt = rsurface.texture->currentskinframe->shirt != NULL && VectorLength2(rsurface.colormap_shirtcolor) >= (1.0f / 1048576.0f);
2248                 if (dopants)
2249                 {
2250                         lightcolorpants[0] = lightcolorbase[0] * rsurface.colormap_pantscolor[0];
2251                         lightcolorpants[1] = lightcolorbase[1] * rsurface.colormap_pantscolor[1];
2252                         lightcolorpants[2] = lightcolorbase[2] * rsurface.colormap_pantscolor[2];
2253                 }
2254                 else
2255                         VectorClear(lightcolorpants);
2256                 if (doshirt)
2257                 {
2258                         lightcolorshirt[0] = lightcolorbase[0] * rsurface.colormap_shirtcolor[0];
2259                         lightcolorshirt[1] = lightcolorbase[1] * rsurface.colormap_shirtcolor[1];
2260                         lightcolorshirt[2] = lightcolorbase[2] * rsurface.colormap_shirtcolor[2];
2261                 }
2262                 else
2263                         VectorClear(lightcolorshirt);
2264                 switch (r_shadow_rendermode)
2265                 {
2266                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2267                         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
2268                         R_Shadow_RenderLighting_VisibleLighting(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2269                         break;
2270                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2271                         R_Shadow_RenderLighting_Light_GLSL(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2272                         break;
2273                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2274                         R_Shadow_RenderLighting_Light_Dot3(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2275                         break;
2276                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2277                         R_Shadow_RenderLighting_Light_Vertex(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, lightcolorpants, lightcolorshirt, rsurface.texture->basetexture, rsurface.texture->currentskinframe->pants, rsurface.texture->currentskinframe->shirt, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, dopants, doshirt);
2278                         break;
2279                 default:
2280                         Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2281                         break;
2282                 }
2283         }
2284         else
2285         {
2286                 switch (r_shadow_rendermode)
2287                 {
2288                 case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
2289                         GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
2290                         R_Shadow_RenderLighting_VisibleLighting(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2291                         break;
2292                 case R_SHADOW_RENDERMODE_LIGHT_GLSL:
2293                         R_Shadow_RenderLighting_Light_GLSL(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2294                         break;
2295                 case R_SHADOW_RENDERMODE_LIGHT_DOT3:
2296                         R_Shadow_RenderLighting_Light_Dot3(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2297                         break;
2298                 case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
2299                         R_Shadow_RenderLighting_Light_Vertex(firstvertex, numvertices, numtriangles, element3i, element3i_bufferobject, element3i_bufferoffset, lightcolorbase, vec3_origin, vec3_origin, rsurface.texture->basetexture, r_texture_black, r_texture_black, rsurface.texture->currentskinframe->nmap, rsurface.texture->glosstexture, ambientscale, diffusescale, specularscale, false, false);
2300                         break;
2301                 default:
2302                         Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
2303                         break;
2304                 }
2305         }
2306 }
2307
2308 void R_RTLight_Update(rtlight_t *rtlight, int isstatic, matrix4x4_t *matrix, vec3_t color, int style, const char *cubemapname, qboolean shadow, vec_t corona, vec_t coronasizescale, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int flags)
2309 {
2310         matrix4x4_t tempmatrix = *matrix;
2311         Matrix4x4_Scale(&tempmatrix, r_shadow_lightradiusscale.value, 1);
2312
2313         // if this light has been compiled before, free the associated data
2314         R_RTLight_Uncompile(rtlight);
2315
2316         // clear it completely to avoid any lingering data
2317         memset(rtlight, 0, sizeof(*rtlight));
2318
2319         // copy the properties
2320         rtlight->matrix_lighttoworld = tempmatrix;
2321         Matrix4x4_Invert_Simple(&rtlight->matrix_worldtolight, &tempmatrix);
2322         Matrix4x4_OriginFromMatrix(&tempmatrix, rtlight->shadoworigin);
2323         rtlight->radius = Matrix4x4_ScaleFromMatrix(&tempmatrix);
2324         VectorCopy(color, rtlight->color);
2325         rtlight->cubemapname[0] = 0;
2326         if (cubemapname && cubemapname[0])
2327                 strlcpy(rtlight->cubemapname, cubemapname, sizeof(rtlight->cubemapname));
2328         rtlight->shadow = shadow;
2329         rtlight->corona = corona;
2330         rtlight->style = style;
2331         rtlight->isstatic = isstatic;
2332         rtlight->coronasizescale = coronasizescale;
2333         rtlight->ambientscale = ambientscale;
2334         rtlight->diffusescale = diffusescale;
2335         rtlight->specularscale = specularscale;
2336         rtlight->flags = flags;
2337
2338         // compute derived data
2339         //rtlight->cullradius = rtlight->radius;
2340         //rtlight->cullradius2 = rtlight->radius * rtlight->radius;
2341         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2342         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2343         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2344         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2345         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2346         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2347 }
2348
2349 // compiles rtlight geometry
2350 // (undone by R_FreeCompiledRTLight, which R_UpdateLight calls)
2351 void R_RTLight_Compile(rtlight_t *rtlight)
2352 {
2353         int i;
2354         int numsurfaces, numleafs, numleafpvsbytes, numshadowtrispvsbytes, numlighttrispvsbytes;
2355         int lighttris, shadowtris, shadowmeshes, shadowmeshtris;
2356         entity_render_t *ent = r_refdef.worldentity;
2357         model_t *model = r_refdef.worldmodel;
2358         unsigned char *data;
2359
2360         // compile the light
2361         rtlight->compiled = true;
2362         rtlight->static_numleafs = 0;
2363         rtlight->static_numleafpvsbytes = 0;
2364         rtlight->static_leaflist = NULL;
2365         rtlight->static_leafpvs = NULL;
2366         rtlight->static_numsurfaces = 0;
2367         rtlight->static_surfacelist = NULL;
2368         rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
2369         rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
2370         rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
2371         rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
2372         rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
2373         rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
2374
2375         if (model && model->GetLightInfo)
2376         {
2377                 // this variable must be set for the CompileShadowVolume code
2378                 r_shadow_compilingrtlight = rtlight;
2379                 R_Shadow_EnlargeLeafSurfaceTrisBuffer(model->brush.num_leafs, model->num_surfaces, model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles, model->surfmesh.num_triangles);
2380                 model->GetLightInfo(ent, rtlight->shadoworigin, rtlight->radius, rtlight->cullmins, rtlight->cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs);
2381                 numleafpvsbytes = (model->brush.num_leafs + 7) >> 3;
2382                 numshadowtrispvsbytes = ((model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles) + 7) >> 3;
2383                 numlighttrispvsbytes = (model->surfmesh.num_triangles + 7) >> 3;
2384                 data = (unsigned char *)Mem_Alloc(r_main_mempool, sizeof(int) * numsurfaces + sizeof(int) * numleafs + numleafpvsbytes + numshadowtrispvsbytes + numlighttrispvsbytes);
2385                 rtlight->static_numsurfaces = numsurfaces;
2386                 rtlight->static_surfacelist = (int *)data;data += sizeof(int) * numsurfaces;
2387                 rtlight->static_numleafs = numleafs;
2388                 rtlight->static_leaflist = (int *)data;data += sizeof(int) * numleafs;
2389                 rtlight->static_numleafpvsbytes = numleafpvsbytes;
2390                 rtlight->static_leafpvs = (unsigned char *)data;data += numleafpvsbytes;
2391                 rtlight->static_numshadowtrispvsbytes = numshadowtrispvsbytes;
2392                 rtlight->static_shadowtrispvs = (unsigned char *)data;data += numshadowtrispvsbytes;
2393                 rtlight->static_numlighttrispvsbytes = numlighttrispvsbytes;
2394                 rtlight->static_lighttrispvs = (unsigned char *)data;data += numlighttrispvsbytes;
2395                 if (rtlight->static_numsurfaces)
2396                         memcpy(rtlight->static_surfacelist, r_shadow_buffer_surfacelist, rtlight->static_numsurfaces * sizeof(*rtlight->static_surfacelist));
2397                 if (rtlight->static_numleafs)
2398                         memcpy(rtlight->static_leaflist, r_shadow_buffer_leaflist, rtlight->static_numleafs * sizeof(*rtlight->static_leaflist));
2399                 if (rtlight->static_numleafpvsbytes)
2400                         memcpy(rtlight->static_leafpvs, r_shadow_buffer_leafpvs, rtlight->static_numleafpvsbytes);
2401                 if (rtlight->static_numshadowtrispvsbytes)
2402                         memcpy(rtlight->static_shadowtrispvs, r_shadow_buffer_shadowtrispvs, rtlight->static_numshadowtrispvsbytes);
2403                 if (rtlight->static_numlighttrispvsbytes)
2404                         memcpy(rtlight->static_lighttrispvs, r_shadow_buffer_lighttrispvs, rtlight->static_numlighttrispvsbytes);
2405                 if (model->CompileShadowVolume && rtlight->shadow)
2406                         model->CompileShadowVolume(ent, rtlight->shadoworigin, NULL, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
2407                 // now we're done compiling the rtlight
2408                 r_shadow_compilingrtlight = NULL;
2409         }
2410
2411
2412         // use smallest available cullradius - box radius or light radius
2413         //rtlight->cullradius = RadiusFromBoundsAndOrigin(rtlight->cullmins, rtlight->cullmaxs, rtlight->shadoworigin);
2414         //rtlight->cullradius = min(rtlight->cullradius, rtlight->radius);
2415
2416         shadowmeshes = 0;
2417         shadowmeshtris = 0;
2418         if (rtlight->static_meshchain_shadow)
2419         {
2420                 shadowmesh_t *mesh;
2421                 for (mesh = rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2422                 {
2423                         shadowmeshes++;
2424                         shadowmeshtris += mesh->numtriangles;
2425                 }
2426         }
2427
2428         lighttris = 0;
2429         if (rtlight->static_numlighttrispvsbytes)
2430                 for (i = 0;i < rtlight->static_numlighttrispvsbytes*8;i++)
2431                         if (CHECKPVSBIT(rtlight->static_lighttrispvs, i))
2432                                 lighttris++;
2433
2434         shadowtris = 0;
2435         if (rtlight->static_numlighttrispvsbytes)
2436                 for (i = 0;i < rtlight->static_numshadowtrispvsbytes*8;i++)
2437                         if (CHECKPVSBIT(rtlight->static_shadowtrispvs, i))
2438                                 shadowtris++;
2439
2440         if (developer.integer >= 10)
2441                 Con_Printf("static light built: %f %f %f : %f %f %f box, %i light triangles, %i shadow triangles, %i compiled shadow volume triangles (in %i meshes)\n", rtlight->cullmins[0], rtlight->cullmins[1], rtlight->cullmins[2], rtlight->cullmaxs[0], rtlight->cullmaxs[1], rtlight->cullmaxs[2], lighttris, shadowtris, shadowmeshtris, shadowmeshes);
2442 }
2443
2444 void R_RTLight_Uncompile(rtlight_t *rtlight)
2445 {
2446         if (rtlight->compiled)
2447         {
2448                 if (rtlight->static_meshchain_shadow)
2449                         Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow);
2450                 rtlight->static_meshchain_shadow = NULL;
2451                 // these allocations are grouped
2452                 if (rtlight->static_surfacelist)
2453                         Mem_Free(rtlight->static_surfacelist);
2454                 rtlight->static_numleafs = 0;
2455                 rtlight->static_numleafpvsbytes = 0;
2456                 rtlight->static_leaflist = NULL;
2457                 rtlight->static_leafpvs = NULL;
2458                 rtlight->static_numsurfaces = 0;
2459                 rtlight->static_surfacelist = NULL;
2460                 rtlight->static_numshadowtrispvsbytes = 0;
2461                 rtlight->static_shadowtrispvs = NULL;
2462                 rtlight->static_numlighttrispvsbytes = 0;
2463                 rtlight->static_lighttrispvs = NULL;
2464                 rtlight->compiled = false;
2465         }
2466 }
2467
2468 void R_Shadow_UncompileWorldLights(void)
2469 {
2470         dlight_t *light;
2471         for (light = r_shadow_worldlightchain;light;light = light->next)
2472                 R_RTLight_Uncompile(&light->rtlight);
2473 }
2474
2475 void R_Shadow_ComputeShadowCasterCullingPlanes(rtlight_t *rtlight)
2476 {
2477         int i, j;
2478         mplane_t plane;
2479         // reset the count of frustum planes
2480         // see rsurface.rtlight_frustumplanes definition for how much this array
2481         // can hold
2482         rsurface.rtlight_numfrustumplanes = 0;
2483
2484 #if 1
2485         // generate a deformed frustum that includes the light origin, this is
2486         // used to cull shadow casting surfaces that can not possibly cast a
2487         // shadow onto the visible light-receiving surfaces, which can be a
2488         // performance gain
2489         //
2490         // if the light origin is onscreen the result will be 4 planes exactly
2491         // if the light origin is offscreen on only one axis the result will
2492         // be exactly 5 planes (split-side case)
2493         // if the light origin is offscreen on two axes the result will be
2494         // exactly 4 planes (stretched corner case)
2495         for (i = 0;i < 4;i++)
2496         {
2497                 // quickly reject standard frustum planes that put the light
2498                 // origin outside the frustum
2499                 if (PlaneDiff(rtlight->shadoworigin, &r_view.frustum[i]) < -0.03125)
2500                         continue;
2501                 // copy the plane
2502                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = r_view.frustum[i];
2503         }
2504         // if all the standard frustum planes were accepted, the light is onscreen
2505         // otherwise we need to generate some more planes below...
2506         if (rsurface.rtlight_numfrustumplanes < 4)
2507         {
2508                 // at least one of the stock frustum planes failed, so we need to
2509                 // create one or two custom planes to enclose the light origin
2510                 for (i = 0;i < 4;i++)
2511                 {
2512                         // create a plane using the view origin and light origin, and a
2513                         // single point from the frustum corner set
2514                         TriangleNormal(r_view.origin, r_view.frustumcorner[i], rtlight->shadoworigin, plane.normal);
2515                         VectorNormalize(plane.normal);
2516                         plane.dist = DotProduct(r_view.origin, plane.normal);
2517                         // see if this plane is backwards and flip it if so
2518                         for (j = 0;j < 4;j++)
2519                                 if (j != i && DotProduct(r_view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2520                                         break;
2521                         if (j < 4)
2522                         {
2523                                 VectorNegate(plane.normal, plane.normal);
2524                                 plane.dist *= -1;
2525                                 // flipped plane, test again to see if it is now valid
2526                                 for (j = 0;j < 4;j++)
2527                                         if (j != i && DotProduct(r_view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
2528                                                 break;
2529                                 // if the plane is still not valid, then it is dividing the
2530                                 // frustum and has to be rejected
2531                                 if (j < 4)
2532                                         continue;
2533                         }
2534                         // we have created a valid plane, compute extra info
2535                         PlaneClassify(&plane);
2536                         // copy the plane
2537                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2538 #if 1
2539                         // if we've found 5 frustum planes then we have constructed a
2540                         // proper split-side case and do not need to keep searching for
2541                         // planes to enclose the light origin
2542                         if (rsurface.rtlight_numfrustumplanes == 5)
2543                                 break;
2544 #endif
2545                 }
2546         }
2547 #endif
2548
2549 #if 0
2550         for (i = 0;i < rsurface.rtlight_numfrustumplanes;i++)
2551         {
2552                 plane = rsurface.rtlight_frustumplanes[i];
2553                 Con_Printf("light %p plane #%i %f %f %f : %f (%f %f %f %f %f)\n", rtlight, i, plane.normal[0], plane.normal[1], plane.normal[2], plane.dist, PlaneDiff(r_view.frustumcorner[0], &plane), PlaneDiff(r_view.frustumcorner[1], &plane), PlaneDiff(r_view.frustumcorner[2], &plane), PlaneDiff(r_view.frustumcorner[3], &plane), PlaneDiff(rtlight->shadoworigin, &plane));
2554         }
2555 #endif
2556
2557 #if 0
2558         // now add the light-space box planes if the light box is rotated, as any
2559         // caster outside the oriented light box is irrelevant (even if it passed
2560         // the worldspace light box, which is axial)
2561         if (rtlight->matrix_lighttoworld.m[0][0] != 1 || rtlight->matrix_lighttoworld.m[1][1] != 1 || rtlight->matrix_lighttoworld.m[2][2] != 1)
2562         {
2563                 for (i = 0;i < 6;i++)
2564                 {
2565                         vec3_t v;
2566                         VectorClear(v);
2567                         v[i >> 1] = (i & 1) ? -1 : 1;
2568                         Matrix4x4_Transform(&rtlight->matrix_lighttoworld, v, plane.normal);
2569                         VectorSubtract(plane.normal, rtlight->shadoworigin, plane.normal);
2570                         plane.dist = VectorNormalizeLength(plane.normal);
2571                         plane.dist += DotProduct(plane.normal, rtlight->shadoworigin);
2572                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2573                 }
2574         }
2575 #endif
2576
2577 #if 0
2578         // add the world-space reduced box planes
2579         for (i = 0;i < 6;i++)
2580         {
2581                 VectorClear(plane.normal);
2582                 plane.normal[i >> 1] = (i & 1) ? -1 : 1;
2583                 plane.dist = (i & 1) ? -rsurface.rtlight_cullmaxs[i >> 1] : rsurface.rtlight_cullmins[i >> 1];
2584                 rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = plane;
2585         }
2586 #endif
2587
2588 #if 0
2589         {
2590         int j, oldnum;
2591         vec3_t points[8];
2592         vec_t bestdist;
2593         // reduce all plane distances to tightly fit the rtlight cull box, which
2594         // is in worldspace
2595         VectorSet(points[0], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmins[2]);
2596         VectorSet(points[1], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmins[2]);
2597         VectorSet(points[2], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmins[2]);
2598         VectorSet(points[3], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmins[2]);
2599         VectorSet(points[4], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmaxs[2]);
2600         VectorSet(points[5], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmins[1], rsurface.rtlight_cullmaxs[2]);
2601         VectorSet(points[6], rsurface.rtlight_cullmins[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmaxs[2]);
2602         VectorSet(points[7], rsurface.rtlight_cullmaxs[0], rsurface.rtlight_cullmaxs[1], rsurface.rtlight_cullmaxs[2]);
2603         oldnum = rsurface.rtlight_numfrustumplanes;
2604         rsurface.rtlight_numfrustumplanes = 0;
2605         for (j = 0;j < oldnum;j++)
2606         {
2607                 // find the nearest point on the box to this plane
2608                 bestdist = DotProduct(rsurface.rtlight_frustumplanes[j].normal, points[0]);
2609                 for (i = 1;i < 8;i++)
2610                 {
2611                         dist = DotProduct(rsurface.rtlight_frustumplanes[j].normal, points[i]);
2612                         if (bestdist > dist)
2613                                 bestdist = dist;
2614                 }
2615                 Con_Printf("light %p %splane #%i %f %f %f : %f < %f\n", rtlight, rsurface.rtlight_frustumplanes[j].dist < bestdist + 0.03125 ? "^2" : "^1", j, rsurface.rtlight_frustumplanes[j].normal[0], rsurface.rtlight_frustumplanes[j].normal[1], rsurface.rtlight_frustumplanes[j].normal[2], rsurface.rtlight_frustumplanes[j].dist, bestdist);
2616                 // if the nearest point is near or behind the plane, we want this
2617                 // plane, otherwise the plane is useless as it won't cull anything
2618                 if (rsurface.rtlight_frustumplanes[j].dist < bestdist + 0.03125)
2619                 {
2620                         PlaneClassify(&rsurface.rtlight_frustumplanes[j]);
2621                         rsurface.rtlight_frustumplanes[rsurface.rtlight_numfrustumplanes++] = rsurface.rtlight_frustumplanes[j];
2622                 }
2623         }
2624         }
2625 #endif
2626 }
2627
2628 void R_Shadow_DrawWorldShadow(int numsurfaces, int *surfacelist, const unsigned char *trispvs)
2629 {
2630         RSurf_ActiveWorldEntity();
2631         if (rsurface.rtlight->compiled && r_shadow_realtime_world_compile.integer && r_shadow_realtime_world_compileshadow.integer)
2632         {
2633                 shadowmesh_t *mesh;
2634                 CHECKGLERROR
2635                 for (mesh = rsurface.rtlight->static_meshchain_shadow;mesh;mesh = mesh->next)
2636                 {
2637                         r_refdef.stats.lights_shadowtriangles += mesh->numtriangles;
2638                         R_Mesh_VertexPointer(mesh->vertex3f, mesh->vbo, mesh->vbooffset_vertex3f);
2639                         GL_LockArrays(0, mesh->numverts);
2640                         if (r_shadow_rendermode == R_SHADOW_RENDERMODE_STENCIL)
2641                         {
2642                                 // decrement stencil if backface is behind depthbuffer
2643                                 GL_CullFace(GL_BACK); // quake is backwards, this culls front faces
2644                                 qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP);CHECKGLERROR
2645                                 R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i, mesh->ebo, 0);
2646                                 // increment stencil if frontface is behind depthbuffer
2647                                 GL_CullFace(GL_FRONT); // quake is backwards, this culls back faces
2648                                 qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP);CHECKGLERROR
2649                         }
2650                         R_Mesh_Draw(0, mesh->numverts, mesh->numtriangles, mesh->element3i, mesh->ebo, 0);
2651                         GL_LockArrays(0, 0);
2652                 }
2653                 CHECKGLERROR
2654         }
2655         else if (numsurfaces && r_refdef.worldmodel->brush.shadowmesh && r_shadow_culltriangles.integer)
2656         {
2657                 int t, tend;
2658                 int surfacelistindex;
2659                 msurface_t *surface;
2660                 R_Shadow_PrepareShadowMark(r_refdef.worldmodel->brush.shadowmesh->numtriangles);
2661                 for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
2662                 {
2663                         surface = r_refdef.worldmodel->data_surfaces + surfacelist[surfacelistindex];
2664                         for (t = surface->num_firstshadowmeshtriangle, tend = t + surface->num_triangles;t < tend;t++)
2665                                 if (CHECKPVSBIT(trispvs, t))
2666                                         shadowmarklist[numshadowmark++] = t;
2667                 }
2668                 R_Shadow_VolumeFromList(r_refdef.worldmodel->brush.shadowmesh->numverts, r_refdef.worldmodel->brush.shadowmesh->numtriangles, r_refdef.worldmodel->brush.shadowmesh->vertex3f, r_refdef.worldmodel->brush.shadowmesh->element3i, r_refdef.worldmodel->brush.shadowmesh->neighbor3i, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius + r_refdef.worldmodel->radius*2 + r_shadow_projectdistance.value, numshadowmark, shadowmarklist);
2669         }
2670         else if (numsurfaces)
2671                 r_refdef.worldmodel->DrawShadowVolume(r_refdef.worldentity, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius, numsurfaces, surfacelist, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs);
2672 }
2673
2674 void R_Shadow_DrawEntityShadow(entity_render_t *ent)
2675 {
2676         vec3_t relativeshadoworigin, relativeshadowmins, relativeshadowmaxs;
2677         vec_t relativeshadowradius;
2678         RSurf_ActiveModelEntity(ent, false, false);
2679         Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, relativeshadoworigin);
2680         relativeshadowradius = rsurface.rtlight->radius / ent->scale;
2681         relativeshadowmins[0] = relativeshadoworigin[0] - relativeshadowradius;
2682         relativeshadowmins[1] = relativeshadoworigin[1] - relativeshadowradius;
2683         relativeshadowmins[2] = relativeshadoworigin[2] - relativeshadowradius;
2684         relativeshadowmaxs[0] = relativeshadoworigin[0] + relativeshadowradius;
2685         relativeshadowmaxs[1] = relativeshadoworigin[1] + relativeshadowradius;
2686         relativeshadowmaxs[2] = relativeshadoworigin[2] + relativeshadowradius;
2687         ent->model->DrawShadowVolume(ent, relativeshadoworigin, NULL, relativeshadowradius, ent->model->nummodelsurfaces, ent->model->surfacelist, relativeshadowmins, relativeshadowmaxs);
2688 }
2689
2690 void R_Shadow_SetupEntityLight(const entity_render_t *ent)
2691 {
2692         // set up properties for rendering light onto this entity
2693         RSurf_ActiveModelEntity(ent, true, true);
2694         Matrix4x4_Concat(&rsurface.entitytolight, &rsurface.rtlight->matrix_worldtolight, &ent->matrix);
2695         Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
2696         Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
2697         Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);
2698         if (r_shadow_lightingrendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2699                 R_Mesh_TexMatrix(3, &rsurface.entitytolight);
2700 }
2701
2702 void R_Shadow_DrawWorldLight(int numsurfaces, int *surfacelist, const unsigned char *trispvs)
2703 {
2704         if (!r_refdef.worldmodel->DrawLight)
2705                 return;
2706
2707         // set up properties for rendering light onto this entity
2708         RSurf_ActiveWorldEntity();
2709         rsurface.entitytolight = rsurface.rtlight->matrix_worldtolight;
2710         Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
2711         Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
2712         VectorCopy(rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);
2713         if (r_shadow_lightingrendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
2714                 R_Mesh_TexMatrix(3, &rsurface.entitytolight);
2715
2716         r_refdef.worldmodel->DrawLight(r_refdef.worldentity, numsurfaces, surfacelist, trispvs);
2717 }
2718
2719 void R_Shadow_DrawEntityLight(entity_render_t *ent, int numsurfaces, int *surfacelist)
2720 {
2721         model_t *model = ent->model;
2722         if (!model->DrawLight)
2723                 return;
2724
2725         R_Shadow_SetupEntityLight(ent);
2726
2727         model->DrawLight(ent, model->nummodelsurfaces, model->surfacelist, NULL);
2728 }
2729
2730 void R_DrawRTLight(rtlight_t *rtlight, qboolean visible)
2731 {
2732         int i;
2733         float f;
2734         int numleafs, numsurfaces;
2735         int *leaflist, *surfacelist;
2736         unsigned char *leafpvs, *shadowtrispvs, *lighttrispvs;
2737         int numlightentities;
2738         int numlightentities_noselfshadow;
2739         int numshadowentities;
2740         int numshadowentities_noselfshadow;
2741         entity_render_t *lightentities[MAX_EDICTS];
2742         entity_render_t *lightentities_noselfshadow[MAX_EDICTS];
2743         entity_render_t *shadowentities[MAX_EDICTS];
2744         entity_render_t *shadowentities_noselfshadow[MAX_EDICTS];
2745
2746         // skip lights that don't light because of ambientscale+diffusescale+specularscale being 0 (corona only lights)
2747         // skip lights that are basically invisible (color 0 0 0)
2748         if (VectorLength2(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale) < (1.0f / 1048576.0f))
2749                 return;
2750
2751         // loading is done before visibility checks because loading should happen
2752         // all at once at the start of a level, not when it stalls gameplay.
2753         // (especially important to benchmarks)
2754         // compile light
2755         if (rtlight->isstatic && !rtlight->compiled && r_shadow_realtime_world_compile.integer)
2756                 R_RTLight_Compile(rtlight);
2757         // load cubemap
2758         rtlight->currentcubemap = rtlight->cubemapname[0] ? R_Shadow_Cubemap(rtlight->cubemapname) : r_texture_whitecube;
2759
2760         // look up the light style value at this time
2761         f = (rtlight->style >= 0 ? r_refdef.lightstylevalue[rtlight->style] : 128) * (1.0f / 256.0f) * r_shadow_lightintensityscale.value;
2762         VectorScale(rtlight->color, f, rtlight->currentcolor);
2763         /*
2764         if (rtlight->selected)
2765         {
2766                 f = 2 + sin(realtime * M_PI * 4.0);
2767                 VectorScale(rtlight->currentcolor, f, rtlight->currentcolor);
2768         }
2769         */
2770
2771         // if lightstyle is currently off, don't draw the light
2772         if (VectorLength2(rtlight->currentcolor) < (1.0f / 1048576.0f))
2773                 return;
2774
2775         // if the light box is offscreen, skip it
2776         if (R_CullBox(rtlight->cullmins, rtlight->cullmaxs))
2777                 return;
2778
2779         VectorCopy(rtlight->cullmins, rsurface.rtlight_cullmins);
2780         VectorCopy(rtlight->cullmaxs, rsurface.rtlight_cullmaxs);
2781
2782         if (rtlight->compiled && r_shadow_realtime_world_compile.integer)
2783         {
2784                 // compiled light, world available and can receive realtime lighting
2785                 // retrieve leaf information
2786                 numleafs = rtlight->static_numleafs;
2787                 leaflist = rtlight->static_leaflist;
2788                 leafpvs = rtlight->static_leafpvs;
2789                 numsurfaces = rtlight->static_numsurfaces;
2790                 surfacelist = rtlight->static_surfacelist;
2791                 shadowtrispvs = rtlight->static_shadowtrispvs;
2792                 lighttrispvs = rtlight->static_lighttrispvs;
2793         }
2794         else if (r_refdef.worldmodel && r_refdef.worldmodel->GetLightInfo)
2795         {
2796                 // dynamic light, world available and can receive realtime lighting
2797                 // calculate lit surfaces and leafs
2798                 R_Shadow_EnlargeLeafSurfaceTrisBuffer(r_refdef.worldmodel->brush.num_leafs, r_refdef.worldmodel->num_surfaces, r_refdef.worldmodel->brush.shadowmesh ? r_refdef.worldmodel->brush.shadowmesh->numtriangles : r_refdef.worldmodel->surfmesh.num_triangles, r_refdef.worldmodel->surfmesh.num_triangles);
2799                 r_refdef.worldmodel->GetLightInfo(r_refdef.worldentity, rtlight->shadoworigin, rtlight->radius, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs);
2800                 leaflist = r_shadow_buffer_leaflist;
2801                 leafpvs = r_shadow_buffer_leafpvs;
2802                 surfacelist = r_shadow_buffer_surfacelist;
2803                 shadowtrispvs = r_shadow_buffer_shadowtrispvs;
2804                 lighttrispvs = r_shadow_buffer_lighttrispvs;
2805                 // if the reduced leaf bounds are offscreen, skip it
2806                 if (R_CullBox(rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2807                         return;
2808         }
2809         else
2810         {
2811                 // no world
2812                 numleafs = 0;
2813                 leaflist = NULL;
2814                 leafpvs = NULL;
2815                 numsurfaces = 0;
2816                 surfacelist = NULL;
2817                 shadowtrispvs = NULL;
2818                 lighttrispvs = NULL;
2819         }
2820         // check if light is illuminating any visible leafs
2821         if (numleafs)
2822         {
2823                 for (i = 0;i < numleafs;i++)
2824                         if (r_viewcache.world_leafvisible[leaflist[i]])
2825                                 break;
2826                 if (i == numleafs)
2827                         return;
2828         }
2829         // set up a scissor rectangle for this light
2830         if (R_Shadow_ScissorForBBox(rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2831                 return;
2832
2833         R_Shadow_ComputeShadowCasterCullingPlanes(rtlight);
2834
2835         // make a list of lit entities and shadow casting entities
2836         numlightentities = 0;
2837         numlightentities_noselfshadow = 0;
2838         numshadowentities = 0;
2839         numshadowentities_noselfshadow = 0;
2840         // add dynamic entities that are lit by the light
2841         if (r_drawentities.integer)
2842         {
2843                 for (i = 0;i < r_refdef.numentities;i++)
2844                 {
2845                         model_t *model;
2846                         entity_render_t *ent = r_refdef.entities[i];
2847                         vec3_t org;
2848                         if (!BoxesOverlap(ent->mins, ent->maxs, rsurface.rtlight_cullmins, rsurface.rtlight_cullmaxs))
2849                                 continue;
2850                         // skip the object entirely if it is not within the valid
2851                         // shadow-casting region (which includes the lit region)
2852                         if (R_CullBoxCustomPlanes(ent->mins, ent->maxs, rsurface.rtlight_numfrustumplanes, rsurface.rtlight_frustumplanes))
2853                                 continue;
2854                         if (!(model = ent->model))
2855                                 continue;
2856                         if (r_viewcache.entityvisible[i] && model->DrawLight && (ent->flags & RENDER_LIGHT))
2857                         {
2858                                 // this entity wants to receive light, is visible, and is
2859                                 // inside the light box
2860                                 // TODO: check if the surfaces in the model can receive light
2861                                 // so now check if it's in a leaf seen by the light
2862                                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.worldmodel, leafpvs, ent->mins, ent->maxs))
2863                                         continue;
2864                                 if (ent->flags & RENDER_NOSELFSHADOW)
2865                                         lightentities_noselfshadow[numlightentities_noselfshadow++] = ent;
2866                                 else
2867                                         lightentities[numlightentities++] = ent;
2868                                 // since it is lit, it probably also casts a shadow...
2869                                 // about the VectorDistance2 - light emitting entities should not cast their own shadow
2870                                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
2871                                 if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
2872                                 {
2873                                         // note: exterior models without the RENDER_NOSELFSHADOW
2874                                         // flag still create a RENDER_NOSELFSHADOW shadow but
2875                                         // are lit normally, this means that they are
2876                                         // self-shadowing but do not shadow other
2877                                         // RENDER_NOSELFSHADOW entities such as the gun
2878                                         // (very weird, but keeps the player shadow off the gun)
2879                                         if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
2880                                                 shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
2881                                         else
2882                                                 shadowentities[numshadowentities++] = ent;
2883                                 }
2884                         }
2885                         else if (ent->flags & RENDER_SHADOW)
2886                         {
2887                                 // this entity is not receiving light, but may still need to
2888                                 // cast a shadow...
2889                                 // TODO: check if the surfaces in the model can cast shadow
2890                                 // now check if it is in a leaf seen by the light
2891                                 if (r_refdef.worldmodel && r_refdef.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.worldmodel, leafpvs, ent->mins, ent->maxs))
2892                                         continue;
2893                                 // about the VectorDistance2 - light emitting entities should not cast their own shadow
2894                                 Matrix4x4_OriginFromMatrix(&ent->matrix, org);
2895                                 if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
2896                                 {
2897                                         if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
2898                                                 shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
2899                                         else
2900                                                 shadowentities[numshadowentities++] = ent;
2901                                 }
2902                         }
2903                 }
2904         }
2905
2906         // return if there's nothing at all to light
2907         if (!numlightentities && !numsurfaces)
2908                 return;
2909
2910         // don't let sound skip if going slow
2911         if (r_refdef.extraupdate)
2912                 S_ExtraUpdate ();
2913
2914         // make this the active rtlight for rendering purposes
2915         R_Shadow_RenderMode_ActiveLight(rtlight);
2916         // count this light in the r_speeds
2917         r_refdef.stats.lights++;
2918
2919         if (r_showshadowvolumes.integer && numsurfaces + numshadowentities + numshadowentities_noselfshadow && rtlight->shadow && (rtlight->isstatic ? r_refdef.rtworldshadows : r_refdef.rtdlightshadows))
2920         {
2921                 // optionally draw visible shape of the shadow volumes
2922                 // for performance analysis by level designers
2923                 R_Shadow_RenderMode_VisibleShadowVolumes();
2924                 if (numsurfaces)
2925                         R_Shadow_DrawWorldShadow(numsurfaces, surfacelist, shadowtrispvs);
2926                 for (i = 0;i < numshadowentities;i++)
2927                         R_Shadow_DrawEntityShadow(shadowentities[i]);
2928                 for (i = 0;i < numshadowentities_noselfshadow;i++)
2929                         R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
2930         }
2931
2932         if (gl_stencil && numsurfaces + numshadowentities + numshadowentities_noselfshadow && rtlight->shadow && (rtlight->isstatic ? r_refdef.rtworldshadows : r_refdef.rtdlightshadows))
2933         {
2934                 // draw stencil shadow volumes to mask off pixels that are in shadow
2935                 // so that they won't receive lighting
2936                 R_Shadow_RenderMode_StencilShadowVolumes(true);
2937                 if (numsurfaces)
2938                         R_Shadow_DrawWorldShadow(numsurfaces, surfacelist, shadowtrispvs);
2939                 for (i = 0;i < numshadowentities;i++)
2940                         R_Shadow_DrawEntityShadow(shadowentities[i]);
2941                 if (numlightentities_noselfshadow)
2942                 {
2943                         // draw lighting in the unmasked areas
2944                         R_Shadow_RenderMode_Lighting(true, false);
2945                         for (i = 0;i < numlightentities_noselfshadow;i++)
2946                                 R_Shadow_DrawEntityLight(lightentities_noselfshadow[i], numsurfaces, surfacelist);
2947
2948                         // optionally draw the illuminated areas
2949                         // for performance analysis by level designers
2950                         if (r_showlighting.integer)
2951                         {
2952                                 R_Shadow_RenderMode_VisibleLighting(!r_showdisabledepthtest.integer, false);
2953                                 for (i = 0;i < numlightentities_noselfshadow;i++)
2954                                         R_Shadow_DrawEntityLight(lightentities_noselfshadow[i], numsurfaces, surfacelist);
2955                         }
2956
2957                         R_Shadow_RenderMode_StencilShadowVolumes(false);
2958                 }
2959                 for (i = 0;i < numshadowentities_noselfshadow;i++)
2960                         R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
2961
2962                 if (numsurfaces + numlightentities)
2963                 {
2964                         // draw lighting in the unmasked areas
2965                         R_Shadow_RenderMode_Lighting(true, false);
2966                         if (numsurfaces)
2967                                 R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
2968                         for (i = 0;i < numlightentities;i++)
2969                                 R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
2970
2971                         // optionally draw the illuminated areas
2972                         // for performance analysis by level designers
2973                         if (r_showlighting.integer)
2974                         {
2975                                 R_Shadow_RenderMode_VisibleLighting(!r_showdisabledepthtest.integer, false);
2976                                 if (numsurfaces)
2977                                         R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
2978                                 for (i = 0;i < numlightentities;i++)
2979                                         R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
2980                         }
2981                 }
2982         }
2983         else
2984         {
2985                 if (numsurfaces + numlightentities)
2986                 {
2987                         // draw lighting in the unmasked areas
2988                         R_Shadow_RenderMode_Lighting(false, false);
2989                         if (numsurfaces)
2990                                 R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
2991                         for (i = 0;i < numlightentities;i++)
2992                                 R_Shadow_DrawEntityLight(lightentities[i], numsurfaces, surfacelist);
2993                         for (i = 0;i < numlightentities_noselfshadow;i++)
2994                                 R_Shadow_DrawEntityLight(lightentities_noselfshadow[i], numsurfaces, surfacelist);
2995
2996                         // optionally draw the illuminated areas
2997                         // for performance analysis by level designers
2998                         if (r_showlighting.integer)
2999                         {
3000                                 R_Shadow_RenderMode_VisibleLighting(false, false);
3001                                 if (numsurfaces)
3002                                         R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
3003                                 for (i = 0;i < numlightentities;i++)
3004                            &n