/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #ifdef WORKINGLQUAKE #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) #define NUMVERTEXNORMALS 162 siextern float r_avertexnormals[NUMVERTEXNORMALS][3]; #define m_bytenormals r_avertexnormals #define CL_PointQ1Contents(v) (Mod_PointInLeaf(v,cl.worldmodel)->contents) typedef unsigned char qbyte; #define cl_stainmaps.integer 0 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { } #define CL_EntityParticles R_EntityParticles #define CL_ReadPointFile_f R_ReadPointFile_f #define CL_ParseParticleEffect R_ParseParticleEffect #define CL_ParticleExplosion R_ParticleExplosion #define CL_ParticleExplosion2 R_ParticleExplosion2 #define CL_TeleportSplash R_TeleportSplash #define CL_BlobExplosion R_BlobExplosion #define CL_RunParticleEffect R_RunParticleEffect #define CL_LavaSplash R_LavaSplash void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width) { vec3_t right1, right2, diff, normal; VectorSubtract (org2, org1, normal); VectorNormalize (normal); // calculate 'right' vector for start VectorSubtract (r_vieworigin, org1, diff); VectorNormalize (diff); CrossProduct (normal, diff, right1); // calculate 'right' vector for end VectorSubtract (r_vieworigin, org2, diff); VectorNormalize (diff); CrossProduct (normal, diff, right2); vert[ 0] = org1[0] + width * right1[0]; vert[ 1] = org1[1] + width * right1[1]; vert[ 2] = org1[2] + width * right1[2]; vert[ 3] = org1[0] - width * right1[0]; vert[ 4] = org1[1] - width * right1[1]; vert[ 5] = org1[2] - width * right1[2]; vert[ 6] = org2[0] - width * right2[0]; vert[ 7] = org2[1] - width * right2[1]; vert[ 8] = org2[2] - width * right2[2]; vert[ 9] = org2[0] + width * right2[0]; vert[10] = org2[1] + width * right2[1]; vert[11] = org2[2] + width * right2[2]; } void fractalnoise(qbyte *noise, int size, int startgrid) { int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower; int *noisebuf; #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)] for (sizepower = 0;(1 << sizepower) < size;sizepower++); if (size != (1 << sizepower)) { Con_Printf("fractalnoise: size must be power of 2\n"); return; } for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++); if (startgrid != (1 << gridpower)) { Con_Printf("fractalnoise: grid must be power of 2\n"); return; } startgrid = bound(0, startgrid, size); amplitude = 0xFFFF; // this gets halved before use noisebuf = malloc(size*size*sizeof(int)); memset(noisebuf, 0, size*size*sizeof(int)); for (g2 = startgrid;g2;g2 >>= 1) { // brownian motion (at every smaller level there is random behavior) amplitude >>= 1; for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x,y) += (rand()&litude); g = g2 >> 1; if (g) { // subdivide, diamond-square algorithm (really this has little to do with squares) // diamond for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2; // square for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) { n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2; n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2; } } } // find range of noise values min = max = 0; for (y = 0;y < size;y++) for (x = 0;x < size;x++) { if (n(x,y) < min) min = n(x,y); if (n(x,y) > max) max = n(x,y); } max -= min; max++; // normalize noise and copy to output for (y = 0;y < size;y++) for (x = 0;x < size;x++) *noise++ = (qbyte) (((n(x,y) - min) * 256) / max); free(noisebuf); #undef n } void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up) { float d; right[0] = forward[2]; right[1] = -forward[0]; right[2] = forward[1]; d = DotProduct(forward, right); right[0] -= d * forward[0]; right[1] -= d * forward[1]; right[2] -= d * forward[2]; VectorNormalize(right); CrossProduct(right, forward, up); } #if QW #include "pmove.h" extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace); #endif trace_t CL_TraceBox (vec3_t start, vec3_t mins, vec3_t maxs, vec3_t end, int hitbmodels, int *hitent, int hitsupercontentsmask, qboolean hitplayers) { #if QW pmtrace_t trace; #else trace_t trace; #endif memset (&trace, 0, sizeof(trace)); trace.fraction = 1; VectorCopy (end, trace.endpos); #if QW PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace); #else RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace); #endif return trace; } #else #include "cl_collision.h" #include "image.h" #endif #define MAX_PARTICLES 32768 // default max # of particles at one time #define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's on the command line typedef enum { PARTICLE_BILLBOARD = 0, PARTICLE_SPARK = 1, PARTICLE_ORIENTED_DOUBLESIDED = 2, PARTICLE_BEAM = 3 } porientation_t; typedef enum { PBLEND_ALPHA = 0, PBLEND_ADD = 1, PBLEND_MOD = 2 } pblend_t; typedef struct particletype_s { pblend_t blendmode; porientation_t orientation; qboolean lighting; } particletype_t; typedef enum { pt_alphastatic, pt_static, pt_spark, pt_beam, pt_rain, pt_raindecal, pt_snow, pt_bubble, pt_blood, pt_smoke, pt_decal, pt_entityparticle, pt_total } ptype_t; // must match ptype_t values particletype_t particletype[pt_total] = { {PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_alphastatic {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_static {PBLEND_ADD, PARTICLE_SPARK, false}, //pt_spark {PBLEND_ADD, PARTICLE_BEAM, false}, //pt_beam {PBLEND_ADD, PARTICLE_SPARK, false}, //pt_rain {PBLEND_ADD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_raindecal {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_snow {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_bubble {PBLEND_MOD, PARTICLE_BILLBOARD, false}, //pt_blood {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_smoke {PBLEND_MOD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_decal {PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_entityparticle }; typedef struct particle_s { particletype_t *type; int texnum; vec3_t org; vec3_t vel; // velocity of particle, or orientation of decal, or end point of beam float size; float alpha; // 0-255 float alphafade; // how much alpha reduces per second float time2; // used for snow fluttering and decal fade float bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical) float gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none) float friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction) qbyte color[4]; unsigned short owner; // decal stuck to this entity model_t *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive) vec3_t relativeorigin; // decal at this location in entity's coordinate space vec3_t relativedirection; // decal oriented this way relative to entity's coordinate space } particle_t; static int particlepalette[256] = { 0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b, 0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb, 0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b, 0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23, 0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767, 0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb, 0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07, 0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f, 0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000, 0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000, 0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307, 0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723, 0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b, 0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b, 0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733, 0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397, 0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b, 0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707, 0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b, 0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707, 0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353, 0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07, 0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f, 0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07, 0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307, 0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700, 0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f, 0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f, 0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b, 0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b, 0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000, 0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53 }; //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff}; // texture numbers in particle font static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7}; static const int tex_bulletdecal[8] = {8, 9, 10, 11, 12, 13, 14, 15}; static const int tex_blooddecal[8] = {16, 17, 18, 19, 20, 21, 22, 23}; static const int tex_bloodparticle[8] = {24, 25, 26, 27, 28, 29, 30, 31}; static const int tex_rainsplash[16] = {32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47}; static const int tex_particle = 63; static const int tex_bubble = 62; static const int tex_raindrop = 61; static const int tex_beam = 60; static int cl_maxparticles; static int cl_numparticles; static int cl_freeparticle; static particle_t *particles; cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"}; cvar_t cl_particles_quality = {CVAR_SAVE, "cl_particles_quality", "1"}; cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"}; cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"}; cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"}; cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"}; cvar_t cl_particles_blood_bloodhack = {CVAR_SAVE, "cl_particles_blood_bloodhack", "1"}; cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"}; cvar_t cl_particles_explosions_bubbles = {CVAR_SAVE, "cl_particles_explosions_bubbles", "1"}; cvar_t cl_particles_explosions_smoke = {CVAR_SAVE, "cl_particles_explosions_smokes", "0"}; cvar_t cl_particles_explosions_sparks = {CVAR_SAVE, "cl_particles_explosions_sparks", "1"}; cvar_t cl_particles_explosions_shell = {CVAR_SAVE, "cl_particles_explosions_shell", "0"}; cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"}; cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5"}; cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55"}; cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"}; cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"}; cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0"}; cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0"}; cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20"}; void CL_Particles_Clear(void) { cl_numparticles = 0; cl_freeparticle = 0; memset(particles, 0, sizeof(particle_t) * cl_maxparticles); } /* =============== CL_InitParticles =============== */ void CL_ReadPointFile_f (void); void CL_Particles_Init (void) { int i; // COMMANDLINEOPTION: Client: -particles changes maximum number of particles at once, default 32768 i = COM_CheckParm ("-particles"); if (i && i < com_argc - 1) { cl_maxparticles = (int)(atoi(com_argv[i+1])); if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES) cl_maxparticles = ABSOLUTE_MIN_PARTICLES; } else cl_maxparticles = MAX_PARTICLES; Cmd_AddCommand ("pointfile", CL_ReadPointFile_f); Cvar_RegisterVariable (&cl_particles); Cvar_RegisterVariable (&cl_particles_quality); Cvar_RegisterVariable (&cl_particles_size); Cvar_RegisterVariable (&cl_particles_bloodshowers); Cvar_RegisterVariable (&cl_particles_blood); Cvar_RegisterVariable (&cl_particles_blood_alpha); Cvar_RegisterVariable (&cl_particles_blood_bloodhack); Cvar_RegisterVariable (&cl_particles_explosions_bubbles); Cvar_RegisterVariable (&cl_particles_explosions_smoke); Cvar_RegisterVariable (&cl_particles_explosions_sparks); Cvar_RegisterVariable (&cl_particles_explosions_shell); Cvar_RegisterVariable (&cl_particles_bulletimpacts); Cvar_RegisterVariable (&cl_particles_smoke); Cvar_RegisterVariable (&cl_particles_smoke_alpha); Cvar_RegisterVariable (&cl_particles_smoke_alphafade); Cvar_RegisterVariable (&cl_particles_sparks); Cvar_RegisterVariable (&cl_particles_bubbles); Cvar_RegisterVariable (&cl_decals); Cvar_RegisterVariable (&cl_decals_time); Cvar_RegisterVariable (&cl_decals_fadetime); #ifdef WORKINGLQUAKE particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles"); #else particles = (particle_t *) Mem_Alloc(cl_mempool, cl_maxparticles * sizeof(particle_t)); #endif CL_Particles_Clear(); } void CL_Particles_Shutdown (void) { #ifdef WORKINGLQUAKE // No clue what to do here... #endif } // list of all 26 parameters: // ptype - any of the pt_ enum values (pt_static, pt_blood, etc), see ptype_t near the top of this file // pcolor1,pcolor2 - minimum and maximum ranges of color, randomly interpolated to decide particle color // ptex - any of the tex_ values such as tex_smoke[rand()&7] or tex_particle // psize - size of particle (or thickness for PARTICLE_SPARK and PARTICLE_BEAM) // palpha - opacity of particle as 0-255 (can be more than 255) // palphafade - rate of fade per second (so 256 would mean a 256 alpha particle would fade to nothing in 1 second) // ptime - how long the particle can live (note it is also removed if alpha drops to nothing) // pgravity - how much effect gravity has on the particle (0-1) // pbounce - how much bounce the particle has when it hits a surface (0-1), -1 makes a blood splat when it hits a surface, 0 does not even check for collisions // px,py,pz - starting origin of particle // pvx,pvy,pvz - starting velocity of particle // pfriction - how much the particle slows down per second (0-1 typically, can slowdown faster than 1) particle_t *particle(particletype_t *ptype, int pcolor1, int pcolor2, int ptex, float psize, float palpha, float palphafade, float pgravity, float pbounce, float px, float py, float pz, float pvx, float pvy, float pvz, float pfriction) { particle_t *part; int ptempcolor, ptempcolor2, pcr1, pcg1, pcb1, pcr2, pcg2, pcb2; ptempcolor = (pcolor1); ptempcolor2 = (pcolor2); pcr2 = ((ptempcolor2) >> 16) & 0xFF; pcg2 = ((ptempcolor2) >> 8) & 0xFF; pcb2 = (ptempcolor2) & 0xFF; if (ptempcolor != ptempcolor2) { pcr1 = ((ptempcolor) >> 16) & 0xFF; pcg1 = ((ptempcolor) >> 8) & 0xFF; pcb1 = (ptempcolor) & 0xFF; ptempcolor = rand() & 0xFF; pcr2 = (((pcr2 - pcr1) * ptempcolor) >> 8) + pcr1; pcg2 = (((pcg2 - pcg1) * ptempcolor) >> 8) + pcg1; pcb2 = (((pcb2 - pcb1) * ptempcolor) >> 8) + pcb1; } for (;cl_freeparticle < cl_maxparticles && particles[cl_freeparticle].type;cl_freeparticle++); if (cl_freeparticle >= cl_maxparticles) return NULL; part = &particles[cl_freeparticle++]; if (cl_numparticles < cl_freeparticle) cl_numparticles = cl_freeparticle; memset(part, 0, sizeof(*part)); part->type = (ptype); part->color[0] = pcr2; part->color[1] = pcg2; part->color[2] = pcb2; part->color[3] = 0xFF; part->texnum = ptex; part->size = (psize); part->alpha = (palpha); part->alphafade = (palphafade); part->gravity = (pgravity); part->bounce = (pbounce); part->org[0] = (px); part->org[1] = (py); part->org[2] = (pz); part->vel[0] = (pvx); part->vel[1] = (pvy); part->vel[2] = (pvz); part->time2 = 0; part->friction = (pfriction); return part; } void CL_SpawnDecalParticleForSurface(int hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha) { particle_t *p; if (!cl_decals.integer) return; p = particle(particletype + pt_decal, color1, color2, texnum, size, alpha, 0, 0, 0, org[0] + normal[0], org[1] + normal[1], org[2] + normal[2], normal[0], normal[1], normal[2], 0); if (p) { p->time2 = cl.time; #ifndef WORKINGLQUAKE p->owner = hitent; p->ownermodel = cl_entities[p->owner].render.model; Matrix4x4_Transform(&cl_entities[p->owner].render.inversematrix, org, p->relativeorigin); Matrix4x4_Transform3x3(&cl_entities[p->owner].render.inversematrix, normal, p->relativedirection); VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin); #endif } } void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2) { int i; float bestfrac, bestorg[3], bestnormal[3]; float org2[3]; int besthitent = 0, hitent; trace_t trace; bestfrac = 10; for (i = 0;i < 32;i++) { VectorRandom(org2); VectorMA(org, maxdist, org2, org2); trace = CL_TraceBox(org, vec3_origin, vec3_origin, org2, true, &hitent, SUPERCONTENTS_SOLID, false); if (bestfrac > trace.fraction) { bestfrac = trace.fraction; besthitent = hitent; VectorCopy(trace.endpos, bestorg); VectorCopy(trace.plane.normal, bestnormal); } } if (bestfrac < 1) CL_SpawnDecalParticleForSurface(besthitent, bestorg, bestnormal, color1, color2, texnum, size, alpha); } /* =============== CL_EntityParticles =============== */ void CL_EntityParticles (entity_t *ent) { int i; float angle; float sp, sy, cp, cy; vec3_t forward; float dist; float beamlength; static vec3_t avelocities[NUMVERTEXNORMALS]; if (!cl_particles.integer) return; dist = 64; beamlength = 16; if (!avelocities[0][0]) for (i=0 ; iorigin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0); #else particle(particletype + pt_entityparticle, particlepalette[0x6f], particlepalette[0x6f], tex_particle, 2, 255, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0); #endif } } void CL_ReadPointFile_f (void) { vec3_t org, leakorg; int r, c, s; char *pointfile = NULL, *pointfilepos, *t, tchar; char name[MAX_OSPATH]; if (!cl.worldmodel) return; FS_StripExtension (cl.worldmodel->name, name, sizeof (name)); strlcat (name, ".pts", sizeof (name)); #if WORKINGLQUAKE pointfile = COM_LoadTempFile (name); #else pointfile = FS_LoadFile(name, tempmempool, true); #endif if (!pointfile) { Con_Printf("Could not open %s\n", name); return; } Con_Printf("Reading %s...\n", name); c = 0; s = 0; pointfilepos = pointfile; while (*pointfilepos) { while (*pointfilepos == '\n' || *pointfilepos == '\r') pointfilepos++; if (!*pointfilepos) break; t = pointfilepos; while (*t && *t != '\n' && *t != '\r') t++; tchar = *t; *t = 0; r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]); *t = tchar; pointfilepos = t; if (r != 3) break; if (c == 0) VectorCopy(org, leakorg); c++; if (cl_numparticles < cl_maxparticles - 3) { s++; particle(particletype + pt_static, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, 2, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0); } } #ifndef WORKINGLQUAKE Mem_Free(pointfile); #endif VectorCopy(leakorg, org); Con_Printf("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]); particle(particletype + pt_beam, 0xFF0000, 0xFF0000, tex_beam, 64, 255, 0, 0, 0, org[0] - 4096, org[1], org[2], org[0] + 4096, org[1], org[2], 0); particle(particletype + pt_beam, 0x00FF00, 0x00FF00, tex_beam, 64, 255, 0, 0, 0, org[0], org[1] - 4096, org[2], org[0], org[1] + 4096, org[2], 0); particle(particletype + pt_beam, 0x0000FF, 0x0000FF, tex_beam, 64, 255, 0, 0, 0, org[0], org[1], org[2] - 4096, org[0], org[1], org[2] + 4096, 0); } /* =============== CL_ParseParticleEffect Parse an effect out of the server message =============== */ void CL_ParseParticleEffect (void) { vec3_t org, dir; int i, count, msgcount, color; MSG_ReadVector(org, cl.protocol); for (i=0 ; i<3 ; i++) dir[i] = MSG_ReadChar () * (1.0/16); msgcount = MSG_ReadByte (); color = MSG_ReadByte (); if (msgcount == 255) count = 1024; else count = msgcount; if (cl_particles_blood_bloodhack.integer) { if (color == 73) { // regular blood CL_BloodPuff(org, dir, count / 2); return; } if (color == 225) { // lightning blood CL_BloodPuff(org, dir, count / 2); return; } } CL_RunParticleEffect (org, dir, color, count); } /* =============== CL_ParticleExplosion =============== */ void CL_ParticleExplosion (vec3_t org) { int i; trace_t trace; //vec3_t v; //vec3_t v2; if (cl_stainmaps.integer) R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64); CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); i = CL_PointSuperContents(org); if (i & (SUPERCONTENTS_SLIME | SUPERCONTENTS_WATER)) { if (cl_particles.integer && cl_particles_bubbles.integer && cl_particles_explosions_bubbles.integer) for (i = 0;i < 128 * cl_particles_quality.value;i++) particle(particletype + pt_bubble, 0x404040, 0x808080, tex_bubble, 2, (1.0f / cl_particles_quality.value) * lhrandom(128, 255), (1.0f / cl_particles_quality.value) * 128, -0.125, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), (1.0 / 16.0)); } else { // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close // smoke puff if (cl_particles.integer && cl_particles_smoke.integer && cl_particles_explosions_smoke.integer) { for (i = 0;i < 32;i++) { int k; vec3_t v, v2; #ifdef WORKINGLQUAKE v2[0] = lhrandom(-48, 48); v2[1] = lhrandom(-48, 48); v2[2] = lhrandom(-48, 48); #else for (k = 0;k < 16;k++) { v[0] = org[0] + lhrandom(-48, 48); v[1] = org[1] + lhrandom(-48, 48); v[2] = org[2] + lhrandom(-48, 48); trace = CL_TraceBox(org, vec3_origin, vec3_origin, v, true, NULL, SUPERCONTENTS_SOLID, false); if (trace.fraction >= 0.1) break; } VectorSubtract(trace.endpos, org, v2); #endif VectorScale(v2, 2.0f, v2); particle(particletype + pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 12, 32, 64, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0); } } if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer) for (i = 0;i < 128 * cl_particles_quality.value;i++) particle(particletype + pt_spark, 0x903010, 0xFFD030, tex_particle, 1.0f, (1.0f / cl_particles_quality.value) * lhrandom(0, 255), (1.0f / cl_particles_quality.value) * 512, 1, 0, org[0], org[1], org[2], lhrandom(-256, 256), lhrandom(-256, 256), lhrandom(-256, 256) + 80, 0.2); } if (cl_particles_explosions_shell.integer) R_NewExplosion(org); } /* =============== CL_ParticleExplosion2 =============== */ void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { vec3_t vel; vec3_t offset; int i, k; float pscale; if (!cl_particles.integer) return; for (i = 0;i < 512 * cl_particles_quality.value;i++) { VectorRandom (offset); VectorScale (offset, 192, vel); VectorScale (offset, 8, offset); k = particlepalette[colorStart + (i % colorLength)]; pscale = lhrandom(0.5, 1.5); particle(particletype + pt_static, k, k, tex_particle, pscale, (1.0f / cl_particles_quality.value) * 255, (1.0f/cl_particles_quality.value)*512, 0, 0, org[0] + offset[0], org[1] + offset[1], org[2] + offset[2], vel[0], vel[1], vel[2], lhrandom(1.5, 3)); } } /* =============== CL_BlobExplosion =============== */ void CL_BlobExplosion (vec3_t org) { CL_ParticleExplosion(org); } /* =============== CL_RunParticleEffect =============== */ void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { int k; if (count == 1024) { CL_ParticleExplosion(org); return; } if (!cl_particles.integer) return; count *= cl_particles_quality.value; while (count--) { k = particlepalette[color + (rand()&7)]; if (gamemode == GAME_GOODVSBAD2) particle(particletype + pt_alphastatic, k, k, tex_particle, 5, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 300, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-10, 10), lhrandom(-10, 10), lhrandom(-10, 10), 0); else particle(particletype + pt_alphastatic, k, k, tex_particle, 1, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 512, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), dir[0] + lhrandom(-15, 15), dir[1] + lhrandom(-15, 15), dir[2] + lhrandom(-15, 15), 0); } } // LordHavoc: added this for spawning sparks/dust (which have strong gravity) /* =============== CL_SparkShower =============== */ void CL_SparkShower (vec3_t org, vec3_t dir, int count, vec_t gravityscale) { int k; if (!cl_particles.integer) return; if (cl_particles_sparks.integer) { // sparks count *= cl_particles_quality.value; while(count--) { k = particlepalette[0x68 + (rand() & 7)]; particle(particletype + pt_spark, k, k, tex_particle, 0.4f, (1.0f / cl_particles_quality.value) * lhrandom(64, 255), (1.0f / cl_particles_quality.value) * 512, gravityscale, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0); } } } void CL_Smoke (vec3_t org, vec3_t dir, int count) { vec3_t org2; int k; trace_t trace; if (!cl_particles.integer) return; // smoke puff if (cl_particles_smoke.integer) { k = count * 0.25 * cl_particles_quality.value; while(k--) { org2[0] = org[0] + 0.125f * lhrandom(-count, count); org2[1] = org[1] + 0.125f * lhrandom(-count, count); org2[2] = org[2] + 0.125f * lhrandom(-count, count); trace = CL_TraceBox(org, vec3_origin, vec3_origin, org2, true, NULL, SUPERCONTENTS_SOLID, false); particle(particletype + pt_smoke, 0x101010, 0x202020, tex_smoke[rand()&7], 3, (1.0f / cl_particles_quality.value) * 255, (1.0f / cl_particles_quality.value) * 1024, 0, 0, trace.endpos[0], trace.endpos[1], trace.endpos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0); } } } void CL_BulletMark (vec3_t org) { if (cl_stainmaps.integer) R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24); CL_SpawnDecalParticleForPoint(org, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); } void CL_PlasmaBurn (vec3_t org) { if (cl_stainmaps.integer) R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32); CL_SpawnDecalParticleForPoint(org, 6, 6, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); } static float bloodcount = 0; void CL_BloodPuff (vec3_t org, vec3_t vel, int count) { float s; vec3_t org2; trace_t trace; // bloodcount is used to accumulate counts too small to cause a blood particle if (!cl_particles.integer) return; if (!cl_particles_blood.integer) return; s = count + 64.0f; count *= 5.0f; if (count > 1000) count = 1000; bloodcount += count; while(bloodcount > 0) { org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount); org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount); org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount); trace = CL_TraceBox(org, vec3_origin, vec3_origin, org2, true, NULL, SUPERCONTENTS_SOLID, false); particle(particletype + pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 0, -1, trace.endpos[0], trace.endpos[1], trace.endpos[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 1); bloodcount -= 16 / cl_particles_quality.value; } } void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count) { vec3_t org, vel, diff, center, velscale; if (!cl_particles.integer) return; if (!cl_particles_bloodshowers.integer) return; if (!cl_particles_blood.integer) return; VectorSubtract(maxs, mins, diff); center[0] = (mins[0] + maxs[0]) * 0.5; center[1] = (mins[1] + maxs[1]) * 0.5; center[2] = (mins[2] + maxs[2]) * 0.5; velscale[0] = velspeed * 2.0 / diff[0]; velscale[1] = velspeed * 2.0 / diff[1]; velscale[2] = velspeed * 2.0 / diff[2]; bloodcount += count * 5.0f; while (bloodcount > 0) { org[0] = lhrandom(mins[0], maxs[0]); org[1] = lhrandom(mins[1], maxs[1]); org[2] = lhrandom(mins[2], maxs[2]); vel[0] = (org[0] - center[0]) * velscale[0]; vel[1] = (org[1] - center[1]) * velscale[1]; vel[2] = (org[2] - center[2]) * velscale[2]; bloodcount -= 16 / cl_particles_quality.value; particle(particletype + pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, cl_particles_blood_alpha.value * 768 / cl_particles_quality.value, cl_particles_blood_alpha.value * 384 / cl_particles_quality.value, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 1); } } void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel) { int k; float t; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} count *= cl_particles_quality.value; while (count--) { k = particlepalette[colorbase + (rand()&3)]; particle(particletype + pt_alphastatic, k, k, tex_particle, 2, 255 / cl_particles_quality.value, (255 / cl_particles_quality.value) / 2, gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0); } } void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type) { int k; float t, z, minz, maxz; particle_t *p; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} if (dir[2] < 0) // falling z = maxs[2]; else // rising?? z = mins[2]; minz = z - fabs(dir[2]) * 0.1; maxz = z + fabs(dir[2]) * 0.1; minz = bound(mins[2], minz, maxs[2]); maxz = bound(mins[2], maxz, maxs[2]); count *= cl_particles_quality.value; switch(type) { case 0: count *= 4; // ick, this should be in the mod or maps? while(count--) { k = particlepalette[colorbase + (rand()&3)]; if (gamemode == GAME_GOODVSBAD2) particle(particletype + pt_rain, k, k, tex_particle, 20, lhrandom(8, 16) / cl_particles_quality.value, 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0); else particle(particletype + pt_rain, k, k, tex_particle, 0.5, lhrandom(8, 16) / cl_particles_quality.value, 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0); } break; case 1: while(count--) { k = particlepalette[colorbase + (rand()&3)]; if (gamemode == GAME_GOODVSBAD2) p = particle(particletype + pt_snow, k, k, tex_particle, 20, lhrandom(64, 128) / cl_particles_quality.value, 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0); else p = particle(particletype + pt_snow, k, k, tex_particle, 1, lhrandom(64, 128) / cl_particles_quality.value, 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0); if (p) VectorCopy(p->vel, p->relativedirection); } break; default: Con_Printf ("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type); } } void CL_Stardust (vec3_t mins, vec3_t maxs, int count) { int k; float t; vec3_t o, v, center; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} center[0] = (mins[0] + maxs[0]) * 0.5f; center[1] = (mins[1] + maxs[1]) * 0.5f; center[2] = (mins[2] + maxs[2]) * 0.5f; count *= cl_particles_quality.value; while (count--) { k = particlepalette[224 + (rand()&15)]; o[0] = lhrandom(mins[0], maxs[0]); o[1] = lhrandom(mins[1], maxs[1]); o[2] = lhrandom(mins[2], maxs[2]); VectorSubtract(o, center, v); VectorNormalize(v); VectorScale(v, 100, v); v[2] += sv_gravity.value * 0.15f; particle(particletype + pt_static, 0x903010, 0xFFD030, tex_particle, 1.5, lhrandom(64, 128) / cl_particles_quality.value, 128 / cl_particles_quality.value, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0.2); } } void CL_FlameCube (vec3_t mins, vec3_t maxs, int count) { int k; float t; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} count *= cl_particles_quality.value; while (count--) { k = particlepalette[224 + (rand()&15)]; particle(particletype + pt_static, k, k, tex_particle, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 1); if (count & 1) particle(particletype + pt_static, 0x303030, 0x606060, tex_smoke[rand()&7], 6, lhrandom(48, 96) / cl_particles_quality.value, 64 / cl_particles_quality.value, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0); } } void CL_Flames (vec3_t org, vec3_t vel, int count) { int k; if (!cl_particles.integer) return; count *= cl_particles_quality.value; while (count--) { k = particlepalette[224 + (rand()&15)]; particle(particletype + pt_static, k, k, tex_particle, 4, lhrandom(64, 128) / cl_particles_quality.value, 384 / cl_particles_quality.value, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 1); } } /* =============== CL_LavaSplash =============== */ void CL_LavaSplash (vec3_t origin) { float i, j, inc, vel; int k, l; vec3_t dir, org; if (!cl_particles.integer) return; inc = 32 / cl_particles_quality.value; for (i = -128;i < 128;i += inc) { for (j = -128;j < 128;j += inc) { dir[0] = j + lhrandom(0, 8); dir[1] = i + lhrandom(0, 8); dir[2] = 256; org[0] = origin[0] + dir[0]; org[1] = origin[1] + dir[1]; org[2] = origin[2] + lhrandom(0, 64); vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale if (gamemode == GAME_GOODVSBAD2) { k = particlepalette[0 + (rand()&255)]; l = particlepalette[0 + (rand()&255)]; particle(particletype + pt_static, k, l, tex_particle, 12, inc * 8, inc * 8, 0.05, 1, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0); } else { k = l = particlepalette[224 + (rand()&7)]; particle(particletype + pt_static, k, l, tex_particle, 12, inc * 8, inc * 8, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0); } } } } /* =============== CL_TeleportSplash =============== */ void CL_TeleportSplash (vec3_t org) { float i, j, k, inc; if (!cl_particles.integer) return; inc = 8 / cl_particles_quality.value; for (i = -16;i < 16;i += inc) for (j = -16;j < 16;j += inc) for (k = -24;k < 32;k += inc) particle(particletype + pt_static, 0xA0A0A0, 0xFFFFFF, tex_particle, 10, inc * lhrandom(8, 16), inc * 32, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 1); } #ifdef WORKINGLQUAKE void R_RocketTrail (vec3_t start, vec3_t end, int type) #else void CL_RocketTrail (vec3_t start, vec3_t end, int type, int color, entity_t *ent) #endif { vec3_t vec, dir, vel, pos; float len, dec, speed, qd; int smoke, blood, bubbles; #ifdef WORKINGLQUAKE int contents; #endif if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2]) return; VectorSubtract(end, start, dir); VectorNormalize(dir); VectorSubtract (end, start, vec); #ifdef WORKINGLQUAKE len = VectorNormalize (vec); dec = 0; speed = 1.0f / cl.frametime; VectorSubtract(end, start, vel); #else len = VectorNormalizeLength (vec); dec = -ent->persistent.trail_time; ent->persistent.trail_time += len; if (ent->persistent.trail_time < 0.01f) return; // if we skip out, leave it reset ent->persistent.trail_time = 0.0f; speed = ent->state_current.time - ent->state_previous.time; if (speed) speed = 1.0f / speed; VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel); color = particlepalette[color]; #endif VectorScale(vel, speed, vel); // advance into this frame to reach the first puff location VectorMA(start, dec, vec, pos); len -= dec; smoke = cl_particles.integer && cl_particles_smoke.integer; blood = cl_particles.integer && cl_particles_blood.integer; #ifdef WORKINGLQUAKE contents = CL_PointQ1Contents(pos); bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME); #else bubbles = cl_particles.integer && cl_particles_bubbles.integer && (CL_PointSuperContents(pos) & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)); #endif qd = 1.0f / cl_particles_quality.value; while (len >= 0) { switch (type) { case 0: // rocket trail dec = qd*3; if (smoke) { particle(particletype + pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, qd*cl_particles_smoke_alpha.value*125, qd*cl_particles_smoke_alphafade.value*125, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0); particle(particletype + pt_static, 0x801010, 0xFFA020, tex_smoke[rand()&7], 3, qd*cl_particles_smoke_alpha.value*288, qd*cl_particles_smoke_alphafade.value*1400, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0); } if (bubbles) particle(particletype + pt_bubble, 0x404040, 0x808080, tex_bubble, 2, qd*lhrandom(64, 255), qd*256, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), (1.0 / 16.0)); break; case 1: // grenade trail // FIXME: make it gradually stop smoking dec = qd*3; if (smoke) particle(particletype + pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, qd*cl_particles_smoke_alpha.value*100, qd*cl_particles_smoke_alphafade.value*100, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0); break; case 2: // blood case 4: // slight blood dec = qd*16; if (blood) particle(particletype + pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 1); break; case 3: // green tracer dec = qd*6; if (smoke) { if (gamemode == GAME_GOODVSBAD2) particle(particletype + pt_static, 0x00002E, 0x000030, tex_particle, 6, qd*128, qd*384, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0); else particle(particletype + pt_static, 0x002000, 0x003000, tex_particle, 6, qd*128, qd*384, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0); } break; case 5: // flame tracer dec = qd*6; if (smoke) particle(particletype + pt_static, 0x301000, 0x502000, tex_particle, 6, qd*128, qd*384, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0); break; case 6: // voor trail dec = qd*6; if (smoke) { if (gamemode == GAME_GOODVSBAD2) particle(particletype + pt_alphastatic, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, 6, qd*255, qd*384, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0); else if (gamemode == GAME_PRYDON) particle(particletype + pt_static, 0x103040, 0x204050, tex_particle, 6, qd*128, qd*384, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0); else particle(particletype + pt_static, 0x502030, 0x502030, tex_particle, 6, qd*128, qd*384, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0); } break; #ifndef WORKINGLQUAKE case 7: // Nehahra smoke tracer dec = qd*7; if (smoke) particle(particletype + pt_alphastatic, 0x303030, 0x606060, tex_smoke[rand()&7], 7, qd*64, qd*320, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0); break; case 8: // Nexuiz plasma trail dec = qd*4; if (smoke) particle(particletype + pt_static, 0x283880, 0x283880, tex_particle, 4, qd*255, qd*1024, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0); break; case 9: // glow trail dec = qd*3; if (smoke) particle(particletype + pt_alphastatic, color, color, tex_particle, 5, qd*128, qd*320, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0); break; #endif } // advance to next time and position len -= dec; VectorMA (pos, dec, vec, pos); } #ifndef WORKINGLQUAKE ent->persistent.trail_time = len; #endif } void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime) { int tempcolor2, cr, cg, cb; cr = red * 255; cg = green * 255; cb = blue * 255; tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255); particle(particletype + pt_beam, tempcolor2, tempcolor2, tex_beam, radius, alpha * 255, alpha * 255 / lifetime, 0, 0, start[0], start[1], start[2], end[0], end[1], end[2], 0); } void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count) { float f; if (!cl_particles.integer) return; // smoke puff if (cl_particles_smoke.integer) for (f = 0;f < count;f += 4.0f / cl_particles_quality.value) particle(particletype + pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count) * 0.5f, dir[1] + lhrandom(-count, count) * 0.5f, dir[2] + lhrandom(-count, count) * 0.5f, 0); } void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count) { float f; if (!cl_particles.integer) return; if (cl_stainmaps.integer) R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40); CL_SpawnDecalParticleForPoint(org, 6, 8, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); // smoke puff if (cl_particles_smoke.integer) for (f = 0;f < count;f += 4.0f / cl_particles_quality.value) particle(particletype + pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 255 / cl_particles_quality.value, 512 / cl_particles_quality.value, 0, 0, org[0] + 0.125f * lhrandom(-count, count), org[1] + 0.125f * lhrandom (-count, count), org[2] + 0.125f * lhrandom(-count, count), dir[0] + lhrandom(-count, count), dir[1] + lhrandom(-count, count), dir[2] + lhrandom(-count, count), 0); // sparks if (cl_particles_sparks.integer) for (f = 0;f < count;f += 1.0f / cl_particles_quality.value) particle(particletype + pt_spark, 0x2030FF, 0x80C0FF, tex_particle, 2.0f, lhrandom(64, 255) / cl_particles_quality.value, 512 / cl_particles_quality.value, 0, 0, org[0], org[1], org[2], lhrandom(-count, count) * 3.0f + dir[0], lhrandom(-count, count) * 3.0f + dir[1], lhrandom(-count, count) * 3.0f + dir[2], 0); } /* =============== CL_MoveParticles =============== */ void CL_MoveParticles (void) { particle_t *p; int i, maxparticle, j, a, content; float gravity, dvel, bloodwaterfade, frametime, f, dist, org[3], oldorg[3]; int hitent; trace_t trace; // LordHavoc: early out condition if (!cl_numparticles) { cl_freeparticle = 0; return; } #ifdef WORKINGLQUAKE frametime = cl.frametime; #else frametime = cl.time - cl.oldtime; #endif gravity = frametime * sv_gravity.value; dvel = 1+4*frametime; bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f; maxparticle = -1; j = 0; for (i = 0, p = particles;i < cl_numparticles;i++, p++) { if (!p->type) continue; maxparticle = i; content = 0; p->alpha -= p->alphafade * frametime; if (p->alpha <= 0) { p->type = NULL; continue; } if (p->type->orientation != PARTICLE_BEAM) { VectorCopy(p->org, oldorg); VectorMA(p->org, frametime, p->vel, p->org); VectorCopy(p->org, org); if (p->bounce) { if (p->type == particletype + pt_rain) { // raindrop - splash on solid/water/slime/lava trace = CL_TraceBox(oldorg, vec3_origin, vec3_origin, p->org, true, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK, false); if (trace.fraction < 1) { // convert from a raindrop particle to a rainsplash decal VectorCopy(trace.endpos, p->org); VectorCopy(trace.plane.normal, p->vel); VectorAdd(p->org, p->vel, p->org); p->type = particletype + pt_raindecal; p->texnum = tex_rainsplash[0]; p->time2 = cl.time; p->alphafade = p->alpha / 0.4; p->bounce = 0; p->friction = 0; p->gravity = 0; p->size = 8.0; } } else if (p->type == particletype + pt_blood) { // blood - splash on solid trace = CL_TraceBox(oldorg, vec3_origin, vec3_origin, p->org, true, &hitent, SUPERCONTENTS_SOLID, false); if (trace.fraction < 1) { // convert from a blood particle to a blood decal VectorCopy(trace.endpos, p->org); VectorCopy(trace.plane.normal, p->vel); VectorAdd(p->org, p->vel, p->org); #ifndef WORKINGLQUAKE if (cl_stainmaps.integer) R_Stain(p->org, 32, 32, 16, 16, p->alpha * p->size * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->size * (1.0f / 40.0f)); #endif if (!cl_decals.integer) { p->type = NULL; continue; } p->type = particletype + pt_decal; p->texnum = tex_blooddecal[rand()&7]; #ifndef WORKINGLQUAKE p->owner = hitent; p->ownermodel = cl_entities[hitent].render.model; Matrix4x4_Transform(&cl_entities[hitent].render.inversematrix, p->org, p->relativeorigin); Matrix4x4_Transform3x3(&cl_entities[hitent].render.inversematrix, p->vel, p->relativedirection); #endif p->time2 = cl.time; p->alphafade = 0; p->bounce = 0; p->friction = 0; p->gravity = 0; p->size *= 2.0f; } } else { trace = CL_TraceBox(oldorg, vec3_origin, vec3_origin, p->org, true, NULL, SUPERCONTENTS_SOLID, false); if (trace.fraction < 1) { VectorCopy(trace.endpos, p->org); if (p->bounce < 0) { p->type = NULL; continue; } else { dist = DotProduct(p->vel, trace.plane.normal) * -p->bounce; VectorMA(p->vel, dist, trace.plane.normal, p->vel); if (DotProduct(p->vel, p->vel) < 0.03) VectorClear(p->vel); } } } } p->vel[2] -= p->gravity * gravity; if (p->friction) { f = p->friction * frametime; #ifdef WORKINGLQUAKE if (CL_PointQ1Contents(p->org) != CONTENTS_EMPTY) #else if (CL_PointSuperContents(p->org) & SUPERCONTENTS_LIQUIDSMASK) #endif f *= 4; f = 1.0f - f; VectorScale(p->vel, f, p->vel); } } if (p->type != particletype + pt_static) { switch (p->type - particletype) { case pt_entityparticle: // particle that removes itself after one rendered frame if (p->time2) p->type = NULL; else p->time2 = 1; break; case pt_blood: #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a <= CONTENTS_WATER) #else a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)) #endif { p->size += frametime * 8; //p->alpha -= bloodwaterfade; } else p->vel[2] -= gravity; #ifdef WORKINGLQUAKE if (a == CONTENTS_SOLID || a == CONTENTS_LAVA) #else if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP)) #endif p->type = NULL; break; case pt_bubble: #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a != CONTENTS_WATER && a != CONTENTS_SLIME) #else a = CL_PointSuperContents(p->org); if (!(a & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME))) #endif { p->type = NULL; break; } break; case pt_rain: #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a != CONTENTS_EMPTY && a != CONTENTS_SKY) #else a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK)) #endif p->type = NULL; break; case pt_snow: if (cl.time > p->time2) { // snow flutter p->time2 = cl.time + (rand() & 3) * 0.1; p->vel[0] = p->relativedirection[0] + lhrandom(-32, 32); p->vel[1] = p->relativedirection[1] + lhrandom(-32, 32); //p->vel[2] = p->relativedirection[2] + lhrandom(-32, 32); } #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a != CONTENTS_EMPTY && a != CONTENTS_SKY) #else a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK)) #endif p->type = NULL; break; case pt_smoke: //p->size += frametime * 15; break; case pt_decal: // FIXME: this has fairly wacky handling of alpha p->alphafade = cl.time > (p->time2 + cl_decals_time.value) ? (255 / cl_decals_fadetime.value) : 0; #ifndef WORKINGLQUAKE if (cl_entities[p->owner].render.model == p->ownermodel) { Matrix4x4_Transform(&cl_entities[p->owner].render.matrix, p->relativeorigin, p->org); Matrix4x4_Transform3x3(&cl_entities[p->owner].render.matrix, p->relativedirection, p->vel); } else p->type = NULL; #endif break; case pt_raindecal: a = max(0, (cl.time - p->time2) * 40); if (a < 16) p->texnum = tex_rainsplash[a]; else p->type = NULL; break; default: break; } } } cl_numparticles = maxparticle + 1; cl_freeparticle = 0; } #define MAX_PARTICLETEXTURES 64 // particletexture_t is a rectangle in the particlefonttexture typedef struct { rtexture_t *texture; float s1, t1, s2, t2; } particletexture_t; #if WORKINGLQUAKE static int particlefonttexture; #else static rtexturepool_t *particletexturepool; static rtexture_t *particlefonttexture; #endif static particletexture_t particletexture[MAX_PARTICLETEXTURES]; static cvar_t r_drawparticles = {0, "r_drawparticles", "1"}; #define PARTICLETEXTURESIZE 64 #define PARTICLEFONTSIZE (PARTICLETEXTURESIZE*8) static qbyte shadebubble(float dx, float dy, vec3_t light) { float dz, f, dot; vec3_t normal; dz = 1 - (dx*dx+dy*dy); if (dz > 0) // it does hit the sphere { f = 0; // back side normal[0] = dx;normal[1] = dy;normal[2] = dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); // front side normal[0] = dx;normal[1] = dy;normal[2] = -dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); f *= 128; f += 16; // just to give it a haze so you can see the outline f = bound(0, f, 255); return (qbyte) f; } else return 0; } static void setuptex(int texnum, qbyte *data, qbyte *particletexturedata) { int basex, basey, y; basex = ((texnum >> 0) & 7) * PARTICLETEXTURESIZE; basey = ((texnum >> 3) & 7) * PARTICLETEXTURESIZE; particletexture[texnum].s1 = (basex + 1) / (float)PARTICLEFONTSIZE; particletexture[texnum].t1 = (basey + 1) / (float)PARTICLEFONTSIZE; particletexture[texnum].s2 = (basex + PARTICLETEXTURESIZE - 1) / (float)PARTICLEFONTSIZE; particletexture[texnum].t2 = (basey + PARTICLETEXTURESIZE - 1) / (float)PARTICLEFONTSIZE; for (y = 0;y < PARTICLETEXTURESIZE;y++) memcpy(particletexturedata + ((basey + y) * PARTICLEFONTSIZE + basex) * 4, data + y * PARTICLETEXTURESIZE * 4, PARTICLETEXTURESIZE * 4); } void particletextureblotch(qbyte *data, float radius, float red, float green, float blue, float alpha) { int x, y; float cx, cy, dx, dy, f, iradius; qbyte *d; cx = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f; cy = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f; iradius = 1.0f / radius; alpha *= (1.0f / 255.0f); for (y = 0;y < PARTICLETEXTURESIZE;y++) { for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - cx); dy = (y - cy); f = (1.0f - sqrt(dx * dx + dy * dy) * iradius) * alpha; if (f > 0) { d = data + (y * PARTICLETEXTURESIZE + x) * 4; d[0] += f * (red - d[0]); d[1] += f * (green - d[1]); d[2] += f * (blue - d[2]); } } } } void particletextureclamp(qbyte *data, int minr, int ming, int minb, int maxr, int maxg, int maxb) { int i; for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4) { data[0] = bound(minr, data[0], maxr); data[1] = bound(ming, data[1], maxg); data[2] = bound(minb, data[2], maxb); } } void particletextureinvert(qbyte *data) { int i; for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4) { data[0] = 255 - data[0]; data[1] = 255 - data[1]; data[2] = 255 - data[2]; } } // Those loops are in a separate function to work around an optimization bug in Mac OS X's GCC static void R_InitBloodTextures (qbyte *particletexturedata) { int i, j, k, m; qbyte data[PARTICLETEXTURESIZE][PARTICLETEXTURESIZE][4]; // blood particles for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); for (k = 0;k < 24;k++) particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/16, 96, 0, 0, 160); //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255); particletextureinvert(&data[0][0][0]); setuptex(tex_bloodparticle[i], &data[0][0][0], particletexturedata); } // blood decals for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); m = 8; for (j = 1;j < 10;j++) for (k = min(j, m - 1);k < m;k++) particletextureblotch(&data[0][0][0], (float)j*PARTICLETEXTURESIZE/64.0f, 96, 0, 0, 192 - j * 8); //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255); particletextureinvert(&data[0][0][0]); setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata); } } static void R_InitParticleTexture (void) { int x, y, d, i, k, m; float dx, dy, radius, f, f2; qbyte data[PARTICLETEXTURESIZE][PARTICLETEXTURESIZE][4], noise3[64][64], data2[64][16][4]; vec3_t light; qbyte *particletexturedata; // a note: decals need to modulate (multiply) the background color to // properly darken it (stain), and they need to be able to alpha fade, // this is a very difficult challenge because it means fading to white // (no change to background) rather than black (darkening everything // behind the whole decal polygon), and to accomplish this the texture is // inverted (dark red blood on white background becomes brilliant cyan // and white on black background) so we can alpha fade it to black, then // we invert it again during the blendfunc to make it work... particletexturedata = Mem_Alloc(tempmempool, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4); memset(particletexturedata, 255, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4); // smoke for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); do { qbyte noise1[PARTICLETEXTURESIZE*2][PARTICLETEXTURESIZE*2], noise2[PARTICLETEXTURESIZE*2][PARTICLETEXTURESIZE*2]; fractalnoise(&noise1[0][0], PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/8); fractalnoise(&noise2[0][0], PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/4); m = 0; for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); d = (noise2[y][x] - 128) * 3 + 192; if (d > 0) d = d * (1-(dx*dx+dy*dy)); d = (d * noise1[y][x]) >> 7; d = bound(0, d, 255); data[y][x][3] = (qbyte) d; if (m < d) m = d; } } } while (m < 224); setuptex(tex_smoke[i], &data[0][0][0], particletexturedata); } // rain splash for (i = 0;i < 16;i++) { memset(&data[0][0][0], 255, sizeof(data)); radius = i * 3.0f / 4.0f / 16.0f; f2 = 255.0f * ((15.0f - i) / 15.0f); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); f = f2 * (1.0 - 4.0f * fabs(radius - sqrt(dx*dx+dy*dy))); data[y][x][3] = (int) (bound(0.0f, f, 255.0f)); } } setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata); } // normal particle memset(&data[0][0][0], 255, sizeof(data)); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); d = 256 * (1 - (dx*dx+dy*dy)); d = bound(0, d, 255); data[y][x][3] = (qbyte) d; } } setuptex(tex_particle, &data[0][0][0], particletexturedata); // rain memset(&data[0][0][0], 255, sizeof(data)); light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); // stretch upper half of bubble by +50% and shrink lower half by -50% // (this gives an elongated teardrop shape) if (dy > 0.5f) dy = (dy - 0.5f) * 2.0f; else dy = (dy - 0.5f) / 1.5f; for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); // shrink bubble width to half dx *= 2.0f; data[y][x][3] = shadebubble(dx, dy, light); } } setuptex(tex_raindrop, &data[0][0][0], particletexturedata); // bubble memset(&data[0][0][0], 255, sizeof(data)); light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); data[y][x][3] = shadebubble(dx, dy, light); } } setuptex(tex_bubble, &data[0][0][0], particletexturedata); // Blood particles and blood decals R_InitBloodTextures (particletexturedata); // bullet decals for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); for (k = 0;k < 12;k++) particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/16, 0, 0, 0, 128); for (k = 0;k < 3;k++) particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/2, 0, 0, 0, 160); //particletextureclamp(&data[0][0][0], 64, 64, 64, 255, 255, 255); particletextureinvert(&data[0][0][0]); setuptex(tex_bulletdecal[i], &data[0][0][0], particletexturedata); } #if WORKINGLQUAKE glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #else #if 0 Image_WriteTGARGBA ("particles/particlefont.tga", PARTICLEFONTSIZE, PARTICLEFONTSIZE, particletexturedata); #endif particlefonttexture = loadtextureimage(particletexturepool, "particles/particlefont.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE); if (!particlefonttexture) particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", PARTICLEFONTSIZE, PARTICLEFONTSIZE, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL); for (i = 0;i < MAX_PARTICLETEXTURES;i++) particletexture[i].texture = particlefonttexture; // nexbeam fractalnoise(&noise3[0][0], 64, 4); m = 0; for (y = 0;y < 64;y++) { dy = (y - 0.5f*64) / (64*0.5f-1); for (x = 0;x < 16;x++) { dx = (x - 0.5f*16) / (16*0.5f-2); d = (1 - sqrt(fabs(dx))) * noise3[y][x]; data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (qbyte) bound(0, d, 255); data2[y][x][3] = 255; } } #if 0 Image_WriteTGARGBA ("particles/nexbeam.tga", 64, 64, &data2[0][0][0]); #endif particletexture[tex_beam].texture = loadtextureimage(particletexturepool, "particles/nexbeam.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE); if (!particletexture[tex_beam].texture) particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "nexbeam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL); particletexture[tex_beam].s1 = 0; particletexture[tex_beam].t1 = 0; particletexture[tex_beam].s2 = 1; particletexture[tex_beam].t2 = 1; #endif Mem_Free(particletexturedata); } static void r_part_start(void) { particletexturepool = R_AllocTexturePool(); R_InitParticleTexture (); } static void r_part_shutdown(void) { R_FreeTexturePool(&particletexturepool); } static void r_part_newmap(void) { cl_numparticles = 0; cl_freeparticle = 0; } void R_Particles_Init (void) { Cvar_RegisterVariable(&r_drawparticles); #ifdef WORKINGLQUAKE r_part_start(); #else R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap); #endif } #ifdef WORKINGLQUAKE void R_InitParticles(void) { CL_Particles_Init(); R_Particles_Init(); } #endif float particle_vertex3f[12], particle_texcoord2f[8]; #ifdef WORKINGLQUAKE void R_DrawParticle(particle_t *p) { #else void R_DrawParticleCallback(const void *calldata1, int calldata2) { const particle_t *p = calldata1; rmeshstate_t m; #endif pblend_t blendmode; float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca, size; particletexture_t *tex; VectorCopy(p->org, org); blendmode = p->type->blendmode; tex = &particletexture[p->texnum]; cr = p->color[0] * (1.0f / 255.0f); cg = p->color[1] * (1.0f / 255.0f); cb = p->color[2] * (1.0f / 255.0f); ca = p->alpha * (1.0f / 255.0f); if (blendmode == PBLEND_MOD) { cr *= ca; cg *= ca; cb *= ca; cr = min(cr, 1); cg = min(cg, 1); cb = min(cb, 1); ca = 1; } #ifndef WORKINGLQUAKE if (p->type->lighting) { float ambient[3], diffuse[3], diffusenormal[3]; R_CompleteLightPoint(ambient, diffuse, diffusenormal, org, true); cr *= (ambient[0] + 0.5 * diffuse[0]); cg *= (ambient[1] + 0.5 * diffuse[1]); cb *= (ambient[2] + 0.5 * diffuse[2]); } if (fogenabled) { VectorSubtract(org, r_vieworigin, fogvec); fog = exp(fogdensity/DotProduct(fogvec,fogvec)); ifog = 1 - fog; cr = cr * ifog; cg = cg * ifog; cb = cb * ifog; if (blendmode == PBLEND_ALPHA) { cr += fogcolor[0] * fog; cg += fogcolor[1] * fog; cb += fogcolor[2] * fog; } } R_Mesh_Matrix(&r_identitymatrix); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(tex->texture); m.pointer_texcoord[0] = particle_texcoord2f; m.pointer_vertex = particle_vertex3f; R_Mesh_State(&m); GL_Color(cr, cg, cb, ca); if (blendmode == PBLEND_ALPHA) GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); else if (blendmode == PBLEND_ADD) GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); else //if (blendmode == PBLEND_MOD) GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR); GL_DepthMask(false); GL_DepthTest(true); #endif size = p->size * cl_particles_size.value; if (p->type->orientation == PARTICLE_BILLBOARD || p->type->orientation == PARTICLE_ORIENTED_DOUBLESIDED) { if (p->type->orientation == PARTICLE_ORIENTED_DOUBLESIDED) { // double-sided if (DotProduct(p->vel, r_vieworigin) > DotProduct(p->vel, org)) { VectorNegate(p->vel, v); VectorVectors(v, right, up); } else VectorVectors(p->vel, right, up); VectorScale(right, size, right); VectorScale(up, size, up); } else { VectorScale(r_viewleft, -size, right); VectorScale(r_viewup, size, up); } particle_vertex3f[ 0] = org[0] - right[0] - up[0]; particle_vertex3f[ 1] = org[1] - right[1] - up[1]; particle_vertex3f[ 2] = org[2] - right[2] - up[2]; particle_vertex3f[ 3] = org[0] - right[0] + up[0]; particle_vertex3f[ 4] = org[1] - right[1] + up[1]; particle_vertex3f[ 5] = org[2] - right[2] + up[2]; particle_vertex3f[ 6] = org[0] + right[0] + up[0]; particle_vertex3f[ 7] = org[1] + right[1] + up[1]; particle_vertex3f[ 8] = org[2] + right[2] + up[2]; particle_vertex3f[ 9] = org[0] + right[0] - up[0]; particle_vertex3f[10] = org[1] + right[1] - up[1]; particle_vertex3f[11] = org[2] + right[2] - up[2]; particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2; particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1; particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1; particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2; } else if (p->type->orientation == PARTICLE_SPARK) { VectorMA(p->org, -0.02, p->vel, v); VectorMA(p->org, 0.02, p->vel, up2); R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, size); particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2; particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1; particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1; particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2; } else if (p->type->orientation == PARTICLE_BEAM) { R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel, size); VectorSubtract(p->vel, p->org, up); VectorNormalize(up); v[0] = DotProduct(p->org, up) * (1.0f / 64.0f); v[1] = DotProduct(p->vel, up) * (1.0f / 64.0f); particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0]; particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0]; particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1]; particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1]; } else { Con_Printf("R_DrawParticles: unknown particle orientation %i\n", p->type->orientation); return; } #if WORKINGLQUAKE if (blendmode == PBLEND_ALPHA) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); else if (blendmode == PBLEND_ADD) glBlendFunc(GL_SRC_ALPHA, GL_ONE); else //if (blendmode == PBLEND_MOD) glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR); glColor4f(cr, cg, cb, ca); glBegin(GL_QUADS); glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]); glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]); glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]); glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]); glEnd(); #else R_Mesh_Draw(0, 4, 2, polygonelements); #endif } void R_DrawParticles (void) { int i; float minparticledist; particle_t *p; #ifdef WORKINGLQUAKE CL_MoveParticles(); #endif // LordHavoc: early out conditions if ((!cl_numparticles) || (!r_drawparticles.integer)) return; minparticledist = DotProduct(r_vieworigin, r_viewforward) + 4.0f; #ifdef WORKINGLQUAKE glBindTexture(GL_TEXTURE_2D, particlefonttexture); glEnable(GL_BLEND); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glDepthMask(0); // LordHavoc: only render if not too close for (i = 0, p = particles;i < cl_numparticles;i++, p++) if (p->type && DotProduct(p->org, r_viewforward) >= minparticledist) R_DrawParticle(p); glDepthMask(1); glDisable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); #else // LordHavoc: only render if not too close for (i = 0, p = particles;i < cl_numparticles;i++, p++) { if (p->type) { c_particles++; if (DotProduct(p->org, r_viewforward) >= minparticledist || p->type->orientation == PARTICLE_BEAM) { if (p->type == particletype + pt_decal) R_DrawParticleCallback(p, 0); else R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0); } } } #endif }