/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #ifdef WORKINGLQUAKE #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) #define NUMVERTEXNORMALS 162 siextern float r_avertexnormals[NUMVERTEXNORMALS][3]; #define m_bytenormals r_avertexnormals #define VectorNormalizeFast VectorNormalize #define Mod_PointContents(v,m) (Mod_PointInLeaf(v,m)->contents) typedef unsigned char qbyte; #define cl_stainmaps.integer 0 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { } #define CL_EntityParticles R_EntityParticles #define CL_ReadPointFile_f R_ReadPointFile_f #define CL_ParseParticleEffect R_ParseParticleEffect #define CL_ParticleExplosion R_ParticleExplosion #define CL_ParticleExplosion2 R_ParticleExplosion2 #define CL_BlobExplosion R_BlobExplosion #define CL_RunParticleEffect R_RunParticleEffect #define CL_LavaSplash R_LavaSplash #define CL_RocketTrail2 R_RocketTrail2 void R_CalcBeamVerts (float *vert, vec3_t org1, vec3_t org2, float width) { vec3_t right1, right2, diff, normal; VectorSubtract (org2, org1, normal); VectorNormalizeFast (normal); // calculate 'right' vector for start VectorSubtract (r_origin, org1, diff); VectorNormalizeFast (diff); CrossProduct (normal, diff, right1); // calculate 'right' vector for end VectorSubtract (r_origin, org2, diff); VectorNormalizeFast (diff); CrossProduct (normal, diff, right2); vert[ 0] = org1[0] + width * right1[0]; vert[ 1] = org1[1] + width * right1[1]; vert[ 2] = org1[2] + width * right1[2]; vert[ 4] = org1[0] - width * right1[0]; vert[ 5] = org1[1] - width * right1[1]; vert[ 6] = org1[2] - width * right1[2]; vert[ 8] = org2[0] - width * right2[0]; vert[ 9] = org2[1] - width * right2[1]; vert[10] = org2[2] - width * right2[2]; vert[12] = org2[0] + width * right2[0]; vert[13] = org2[1] + width * right2[1]; vert[14] = org2[2] + width * right2[2]; } #else #include "cl_collision.h" #endif #define MAX_PARTICLES 8192 // default max # of particles at one time #define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's on the command line typedef enum { pt_static, pt_rain, pt_bubble, pt_blood } ptype_t; #define PARTICLE_INVALID 0 #define PARTICLE_BILLBOARD 1 #define PARTICLE_BEAM 2 #define PARTICLE_ORIENTED_DOUBLESIDED 3 #define P_TEXNUM_FIRSTBIT 0 #define P_TEXNUM_BITS 6 #define P_ORIENTATION_FIRSTBIT (P_TEXNUM_FIRSTBIT + P_TEXNUM_BITS) #define P_ORIENTATION_BITS 2 #define P_FLAGS_FIRSTBIT (P_ORIENTATION_FIRSTBIT + P_ORIENTATION_BITS) //#define P_DYNLIGHT (1 << (P_FLAGS_FIRSTBIT + 0)) #define P_ADDITIVE (1 << (P_FLAGS_FIRSTBIT + 1)) typedef struct particle_s { ptype_t type; unsigned int flags; // dynamically lit, orientation, additive blending, texnum vec3_t org; vec3_t vel; float die; float scalex; float scaley; float alpha; // 0-255 float alphafade; // how much alpha reduces per second float time2; // used for various things (snow fluttering, for example) float bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical) float gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none) vec3_t oldorg; vec3_t vel2; // used for snow fluttering (base velocity, wind for instance) float friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction) float pressure; // if non-zero, apply pressure to other particles qbyte color[4]; } particle_t; static int particlepalette[256] = { 0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b, 0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb, 0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b, 0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23, 0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767, 0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb, 0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07, 0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f, 0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000, 0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000, 0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307, 0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723, 0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b, 0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b, 0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733, 0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397, 0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b, 0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707, 0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b, 0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707, 0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353, 0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07, 0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f, 0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07, 0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307, 0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700, 0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f, 0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f, 0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b, 0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b, 0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000, 0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53 }; //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff}; // these must match r_part.c's textures static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7}; static const int tex_rainsplash[16] = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}; static const int tex_particle = 24; static const int tex_rain = 25; static const int tex_bubble = 26; static int cl_maxparticles; static int cl_numparticles; static particle_t *particles; static particle_t **freeparticles; // list used only in compacting particles array cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1"}; cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1"}; cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1"}; cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1"}; cvar_t cl_particles_blood_size = {CVAR_SAVE, "cl_particles_blood_size", "8"}; cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5"}; cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1"}; cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1"}; cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1"}; cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1"}; #ifndef WORKINGLQUAKE static mempool_t *cl_part_mempool; #endif void CL_Particles_Clear(void) { cl_numparticles = 0; } /* =============== CL_InitParticles =============== */ void CL_ReadPointFile_f (void); void CL_Particles_Init (void) { int i; i = COM_CheckParm ("-particles"); if (i && i < com_argc - 1) { cl_maxparticles = (int)(atoi(com_argv[i+1])); if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES) cl_maxparticles = ABSOLUTE_MIN_PARTICLES; } else cl_maxparticles = MAX_PARTICLES; Cmd_AddCommand ("pointfile", CL_ReadPointFile_f); Cvar_RegisterVariable (&cl_particles); Cvar_RegisterVariable (&cl_particles_size); Cvar_RegisterVariable (&cl_particles_bloodshowers); Cvar_RegisterVariable (&cl_particles_blood); Cvar_RegisterVariable (&cl_particles_blood_size); Cvar_RegisterVariable (&cl_particles_blood_alpha); Cvar_RegisterVariable (&cl_particles_bulletimpacts); Cvar_RegisterVariable (&cl_particles_smoke); Cvar_RegisterVariable (&cl_particles_sparks); Cvar_RegisterVariable (&cl_particles_bubbles); #ifdef WORKINGLQUAKE particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles"); freeparticles = (void *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t *), "particles"); #else cl_part_mempool = Mem_AllocPool("CL_Part"); particles = (particle_t *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t)); freeparticles = (void *) Mem_Alloc(cl_part_mempool, cl_maxparticles * sizeof(particle_t *)); #endif cl_numparticles = 0; } #define particle(ptype, porientation, pcolor1, pcolor2, ptex, plight, padditive, pscalex, pscaley, palpha, palphafade, ptime, pgravity, pbounce, px, py, pz, pvx, pvy, pvz, ptime2, pvx2, pvy2, pvz2, pfriction, ppressure)\ {\ if (cl_numparticles >= cl_maxparticles)\ return;\ {\ particle_t *part;\ int tempcolor, tempcolor2, cr1, cg1, cb1, cr2, cg2, cb2;\ unsigned int partflags;\ partflags = ((porientation) << P_ORIENTATION_FIRSTBIT) | ((ptex) << P_TEXNUM_FIRSTBIT);\ if (padditive)\ partflags |= P_ADDITIVE;\ /*if (plight)*/\ /* partflags |= P_DYNLIGHT;*/\ tempcolor = (pcolor1);\ tempcolor2 = (pcolor2);\ cr2 = ((tempcolor2) >> 16) & 0xFF;\ cg2 = ((tempcolor2) >> 8) & 0xFF;\ cb2 = (tempcolor2) & 0xFF;\ if (tempcolor != tempcolor2)\ {\ cr1 = ((tempcolor) >> 16) & 0xFF;\ cg1 = ((tempcolor) >> 8) & 0xFF;\ cb1 = (tempcolor) & 0xFF;\ tempcolor = rand() & 0xFF;\ cr2 = (((cr2 - cr1) * tempcolor) >> 8) + cr1;\ cg2 = (((cg2 - cg1) * tempcolor) >> 8) + cg1;\ cb2 = (((cb2 - cb1) * tempcolor) >> 8) + cb1;\ }\ part = &particles[cl_numparticles++];\ part->type = (ptype);\ part->color[0] = cr2;\ part->color[1] = cg2;\ part->color[2] = cb2;\ part->color[3] = 0xFF;\ part->flags = partflags;\ part->scalex = (pscalex);\ part->scaley = (pscaley);\ part->alpha = (palpha);\ part->alphafade = (palphafade);\ part->die = cl.time + (ptime);\ part->gravity = (pgravity);\ part->bounce = (pbounce);\ part->org[0] = (px);\ part->org[1] = (py);\ part->org[2] = (pz);\ part->vel[0] = (pvx);\ part->vel[1] = (pvy);\ part->vel[2] = (pvz);\ part->time2 = (ptime2);\ part->vel2[0] = (pvx2);\ part->vel2[1] = (pvy2);\ part->vel2[2] = (pvz2);\ part->friction = (pfriction);\ part->pressure = (ppressure);\ }\ } /* =============== CL_EntityParticles =============== */ void CL_EntityParticles (entity_t *ent) { int i; float angle; float sp, sy, cp, cy; vec3_t forward; float dist; float beamlength; static vec3_t avelocities[NUMVERTEXNORMALS]; if (!cl_particles.integer) return; dist = 64; beamlength = 16; if (!avelocities[0][0]) for (i=0 ; iorigin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0); #else particle(pt_static, PARTICLE_BILLBOARD, particlepalette[0x6f], particlepalette[0x6f], tex_particle, false, false, 2, 2, 255, 0, 0, 0, 0, ent->render.origin[0] + m_bytenormals[i][0]*dist + forward[0]*beamlength, ent->render.origin[1] + m_bytenormals[i][1]*dist + forward[1]*beamlength, ent->render.origin[2] + m_bytenormals[i][2]*dist + forward[2]*beamlength, 0, 0, 0, 0, 0, 0, 0, 0, 0); #endif } } void CL_ReadPointFile_f (void) { vec3_t org; int r, c; char *pointfile = NULL, *pointfilepos, *t, tchar; #if WORKINGLQUAKE char name[MAX_OSPATH]; sprintf (name,"maps/%s.pts", cl.worldmodel->name); COM_FOpenFile (name, &f); if (f) { int pointfilelength; fseek(f, 0, SEEK_END); pointfilelength = ftell(f); fseek(f, 0, SEEK_SET); pointfile = malloc(pointfilelength + 1); fread(pointfile, 1, pointfilelength, f); pointfile[pointfilelength] = 0; fclose(f); } #else pointfile = COM_LoadFile(va("maps/%s.pts", cl.worldmodel->name), true); #endif if (!pointfile) { Con_Printf ("couldn't open %s.pts\n", cl.worldmodel->name); return; } Con_Printf ("Reading %s.pts...\n", cl.worldmodel->name); c = 0; pointfilepos = pointfile; while (*pointfilepos) { while (*pointfilepos == '\n' || *pointfilepos == '\r') pointfilepos++; if (!*pointfilepos) break; t = pointfilepos; while (*t && *t != '\n' && *t != '\r') t++; tchar = *t; *t = 0; r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]); *t = tchar; pointfilepos = t; if (r != 3) break; c++; if (cl_numparticles >= cl_maxparticles) { Con_Printf ("Not enough free particles\n"); break; } particle(pt_static, PARTICLE_BILLBOARD, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, false, false, 2, 2, 255, 0, 99999, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, 0, 0); } #ifdef WORKINGLQUAKE free(pointfile); #else Mem_Free(pointfile); #endif Con_Printf ("%i points read\n", c); } /* =============== CL_ParseParticleEffect Parse an effect out of the server message =============== */ void CL_ParseParticleEffect (void) { vec3_t org, dir; int i, count, msgcount, color; for (i=0 ; i<3 ; i++) org[i] = MSG_ReadCoord (); for (i=0 ; i<3 ; i++) dir[i] = MSG_ReadChar () * (1.0/16); msgcount = MSG_ReadByte (); color = MSG_ReadByte (); if (msgcount == 255) count = 1024; else count = msgcount; CL_RunParticleEffect (org, dir, color, count); } /* =============== CL_ParticleExplosion =============== */ void CL_ParticleExplosion (vec3_t org) { int i, k; vec3_t v; vec3_t v2; if (cl_stainmaps.integer) R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64); i = Mod_PointContents(org, cl.worldmodel); if ((i == CONTENTS_SLIME || i == CONTENTS_WATER) && cl_particles.integer && cl_particles_bubbles.integer) { for (i = 0;i < 128;i++) { particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, true, 2, 2, lhrandom(128, 255), 256, 9999, -0.25, 1.5, org[0] + lhrandom(-16, 16), org[1] + lhrandom(-16, 16), org[2] + lhrandom(-16, 16), lhrandom(-96, 96), lhrandom(-96, 96), lhrandom(-96, 96), 0, 0, 0, 0, (1.0 / 16.0), 0); } } else { // smoke puff if (cl_particles_smoke.integer) { for (i = 0;i < 64;i++) { for (k = 0;k < 16;k++) { v[0] = org[0] + lhrandom(-64, 64); v[1] = org[1] + lhrandom(-64, 64); v[2] = org[2] + lhrandom(-8, 24); if (CL_TraceLine(org, v, v2, NULL, 0, true, NULL) >= 0.1) break; } VectorSubtract(v2, org, v2); VectorScale(v2, 2.0f, v2); particle(pt_static, PARTICLE_BILLBOARD, 0x101010, 0x202020, tex_smoke[rand()&7], true, true, 12, 12, 255, 512, 9999, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, 0, 0); } } if (cl_particles_sparks.integer) { // sparks for (i = 0;i < 256;i++) { k = particlepalette[0x68 + (rand() & 7)]; particle(pt_static, PARTICLE_BEAM, k, k, tex_particle, false, true, 1.5f, 0.05f, lhrandom(0, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192) + 160, 0, 0, 0, 0, 0, 0); } } } if (cl_explosions.integer) R_NewExplosion(org); } /* =============== CL_ParticleExplosion2 =============== */ void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { int i, k; if (!cl_particles.integer) return; for (i = 0;i < 512;i++) { k = particlepalette[colorStart + (i % colorLength)]; particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, false, 1.5, 1.5, 255, 384, 0.3, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-192, 192), lhrandom(-192, 192), lhrandom(-192, 192), 0, 0, 0, 0, 1, 0); } } /* =============== CL_BlobExplosion =============== */ void CL_BlobExplosion (vec3_t org) { if (cl_stainmaps.integer) R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64); if (cl_explosions.integer) R_NewExplosion(org); } /* =============== CL_RunParticleEffect =============== */ void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { int k; if (count == 1024) { CL_ParticleExplosion(org); return; } if (!cl_particles.integer) return; while (count--) { k = particlepalette[color + (rand()&7)]; particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, false, 1, 1, 255, 512, 9999, 0, 0, org[0] + lhrandom(-8, 8), org[1] + lhrandom(-8, 8), org[2] + lhrandom(-8, 8), lhrandom(-15, 15), lhrandom(-15, 15), lhrandom(-15, 15), 0, 0, 0, 0, 0, 0); } } // LordHavoc: added this for spawning sparks/dust (which have strong gravity) /* =============== CL_SparkShower =============== */ void CL_SparkShower (vec3_t org, vec3_t dir, int count) { int k; if (!cl_particles.integer) return; if (cl_stainmaps.integer) R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24); if (cl_particles_bulletimpacts.integer) { // smoke puff if (cl_particles_smoke.integer) particle(pt_static, PARTICLE_BILLBOARD, 0x606060, 0xA0A0A0, tex_smoke[rand()&7], true, true, 4, 4, 255, 1024, 9999, -0.2, 0, org[0], org[1], org[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 16), 0, 0, 0, 0, 0, 0); if (cl_particles_sparks.integer) { // sparks while(count--) { k = particlepalette[0x68 + (rand() & 7)]; particle(pt_static, PARTICLE_BEAM, k, k, tex_particle, false, true, 0.4f, 0.015f, lhrandom(64, 255), 512, 9999, 1, 0, org[0], org[1], org[2], lhrandom(-64, 64) + dir[0], lhrandom(-64, 64) + dir[1], lhrandom(0, 128) + dir[2], 0, 0, 0, 0, 0, 0); } } } } void CL_PlasmaBurn (vec3_t org) { if (cl_stainmaps.integer) R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32); } static float bloodcount = 0; void CL_BloodPuff (vec3_t org, vec3_t vel, int count) { float s, r, a; // bloodcount is used to accumulate counts too small to cause a blood particle if (!cl_particles.integer) return; if (!cl_particles_blood.integer) return; s = count + 32.0f; count *= 5.0f; if (count > 1000) count = 1000; bloodcount += count; r = cl_particles_blood_size.value; a = cl_particles_blood_alpha.value * 255; while(bloodcount > 0) { particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, false, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0] + lhrandom(-s, s), vel[1] + lhrandom(-s, s), vel[2] + lhrandom(-s, s), 0, 0, 0, 0, 1, 0); bloodcount -= r; } } void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count) { float r; float a; vec3_t diff, center, velscale; if (!cl_particles.integer) return; if (!cl_particles_bloodshowers.integer) return; if (!cl_particles_blood.integer) return; VectorSubtract(maxs, mins, diff); center[0] = (mins[0] + maxs[0]) * 0.5; center[1] = (mins[1] + maxs[1]) * 0.5; center[2] = (mins[2] + maxs[2]) * 0.5; // FIXME: change velspeed back to 2.0x after fixing mod velscale[0] = velspeed * 2.0 / diff[0]; velscale[1] = velspeed * 2.0 / diff[1]; velscale[2] = velspeed * 2.0 / diff[2]; bloodcount += count * 5.0f; r = cl_particles_blood_size.value; a = cl_particles_blood_alpha.value * 255; while (bloodcount > 0) { vec3_t org, vel; org[0] = lhrandom(mins[0], maxs[0]); org[1] = lhrandom(mins[1], maxs[1]); org[2] = lhrandom(mins[2], maxs[2]); vel[0] = (org[0] - center[0]) * velscale[0]; vel[1] = (org[1] - center[1]) * velscale[1]; vel[2] = (org[2] - center[2]) * velscale[2]; bloodcount -= r; particle(pt_blood, PARTICLE_BILLBOARD, 0x000000, 0x200000, tex_smoke[rand()&7], true, false, r, r, a, a * 0.5, 9999, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 0, 0, 0, 0, 1, 0); } } void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel) { int k; float t; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} while (count--) { k = particlepalette[colorbase + (rand()&3)]; particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, false, 2, 2, 255, 0, lhrandom(1, 2), gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0] + lhrandom(-randomvel, randomvel), dir[1] + lhrandom(-randomvel, randomvel), dir[2] + lhrandom(-randomvel, randomvel), 0, 0, 0, 0, 0, 0); } } void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type) { int k; float t, z, minz, maxz; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} if (dir[2] < 0) // falling { t = (maxs[2] - mins[2]) / -dir[2]; z = maxs[2]; } else // rising?? { t = (maxs[2] - mins[2]) / dir[2]; z = mins[2]; } if (t < 0 || t > 2) // sanity check t = 2; minz = z - fabs(dir[2]) * 0.1; maxz = z + fabs(dir[2]) * 0.1; minz = bound(mins[2], minz, maxs[2]); maxz = bound(mins[2], maxz, maxs[2]); switch(type) { case 0: count *= 4; // ick, this should be in the mod or maps? while(count--) { k = particlepalette[colorbase + (rand()&3)]; particle(pt_rain, PARTICLE_BEAM, k, k, tex_particle, true, true, 0.5, 0.02, lhrandom(8, 16), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], cl.time + 9999, dir[0], dir[1], dir[2], 0, 0); } break; case 1: while(count--) { k = particlepalette[colorbase + (rand()&3)]; particle(pt_rain, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 1, 1, lhrandom(64, 128), 0, t, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, dir[0], dir[1], dir[2], 0, 0); } break; default: Host_Error("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type); } } void CL_Stardust (vec3_t mins, vec3_t maxs, int count) { int k; float t; vec3_t o, v, center; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} center[0] = (mins[0] + maxs[0]) * 0.5f; center[1] = (mins[1] + maxs[1]) * 0.5f; center[2] = (mins[2] + maxs[2]) * 0.5f; while (count--) { k = particlepalette[224 + (rand()&15)]; o[0] = lhrandom(mins[0], maxs[0]); o[1] = lhrandom(mins[1], maxs[1]); o[2] = lhrandom(mins[2], maxs[2]); VectorSubtract(o, center, v); VectorNormalizeFast(v); VectorScale(v, 100, v); v[2] += sv_gravity.value * 0.15f; particle(pt_static, PARTICLE_BILLBOARD, 0x903010, 0xFFD030, tex_particle, false, true, 1.5, 1.5, lhrandom(64, 128), 128, 9999, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0, 0, 0, 0, 0, 0); } } void CL_FlameCube (vec3_t mins, vec3_t maxs, int count) { int k; float t; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} while (count--) { k = particlepalette[224 + (rand()&15)]; particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 4, 4, lhrandom(64, 128), 384, 9999, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-32, 32), lhrandom(-32, 32), lhrandom(0, 64), 0, 0, 0, 0, 1, 0); if (count & 1) particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, true, 6, 6, lhrandom(48, 96), 64, 9999, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(0, 32), 0, 0, 0, 0, 0, 0); } } void CL_Flames (vec3_t org, vec3_t vel, int count) { int k; if (!cl_particles.integer) return; while (count--) { k = particlepalette[224 + (rand()&15)]; particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 4, 4, lhrandom(64, 128), 384, 9999, -1, 1.1, org[0], org[1], org[2], vel[0] + lhrandom(-128, 128), vel[1] + lhrandom(-128, 128), vel[2] + lhrandom(-128, 128), 0, 0, 0, 0, 1, 0); } } /* =============== CL_LavaSplash =============== */ void CL_LavaSplash (vec3_t origin) { int i, j, k; float vel; vec3_t dir, org; if (!cl_particles.integer) return; for (i=-128 ; i<128 ; i+=16) { for (j=-128 ; j<128 ; j+=16) { dir[0] = j + lhrandom(0, 8); dir[1] = i + lhrandom(0, 8); dir[2] = 256; org[0] = origin[0] + dir[0]; org[1] = origin[1] + dir[1]; org[2] = origin[2] + lhrandom(0, 64); vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale k = particlepalette[224 + (rand()&7)]; particle(pt_static, PARTICLE_BILLBOARD, k, k, tex_particle, false, true, 7, 7, 255, 192, 9999, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, 0, 0); } } } /* =============== CL_TeleportSplash =============== */ #if WORKINGLQUAKE void R_TeleportSplash (vec3_t org) { int i, j, k; if (!cl_particles.integer) return; for (i=-16 ; i<16 ; i+=8) for (j=-16 ; j<16 ; j+=8) for (k=-24 ; k<32 ; k+=8) particle(pt_static, PARTICLE_BILLBOARD, 0xA0A0A0, 0xFFFFFF, tex_particle, false, true, 10, 10, lhrandom(64, 128), 256, 9999, 0, 0, org[0] + i + lhrandom(0, 8), org[1] + j + lhrandom(0, 8), org[2] + k + lhrandom(0, 8), lhrandom(-64, 64), lhrandom(-64, 64), lhrandom(-256, 256), 0, 0, 0, 0, 1, 0); } #endif #ifdef WORKINGLQUAKE void R_RocketTrail (vec3_t start, vec3_t end, int type) #else void CL_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent) #endif { vec3_t vec, dir, vel, pos; float len, dec, speed, r; int contents, smoke, blood, bubbles; VectorSubtract(end, start, dir); VectorNormalize(dir); VectorSubtract (end, start, vec); #ifdef WORKINGLQUAKE len = VectorNormalize (vec); dec = 0; speed = 1.0f / (cl.time - cl.oldtime); VectorSubtract(end, start, vel); #else len = VectorNormalizeLength (vec); dec = -ent->persistent.trail_time; ent->persistent.trail_time += len; if (ent->persistent.trail_time < 0.01f) return; // if we skip out, leave it reset ent->persistent.trail_time = 0.0f; speed = 1.0f / (ent->state_current.time - ent->state_previous.time); VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel); #endif VectorScale(vel, speed, vel); // advance into this frame to reach the first puff location VectorMA(start, dec, vec, pos); len -= dec; contents = Mod_PointContents(pos, cl.worldmodel); if (contents == CONTENTS_SKY || contents == CONTENTS_LAVA) return; smoke = cl_particles.integer && cl_particles_smoke.integer; blood = cl_particles.integer && cl_particles_blood.integer; bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME); while (len >= 0) { switch (type) { case 0: // rocket trail dec = 3; if (smoke) { particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, true, dec, dec, 32, 64, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0, 0, 0, 0, 0, 0); particle(pt_static, PARTICLE_BILLBOARD, 0x801010, 0xFFA020, tex_smoke[rand()&7], false, true, dec, dec, 128, 768, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-20, 20), lhrandom(-20, 20), lhrandom(-20, 20), 0, 0, 0, 0, 0, 0); } if (bubbles) { r = lhrandom(1, 2); particle(pt_bubble, PARTICLE_BILLBOARD, 0x404040, 0x808080, tex_bubble, false, true, r, r, lhrandom(64, 255), 256, 9999, -0.25, 1.5, pos[0], pos[1], pos[2], lhrandom(-16, 16), lhrandom(-16, 16), lhrandom(-16, 16), 0, 0, 0, 0, (1.0 / 16.0), 0); } break; case 1: // grenade trail // FIXME: make it gradually stop smoking dec = 3; if (cl_particles.integer && cl_particles_smoke.integer) { particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], false, true, dec, dec, 32, 96, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-5, 5), lhrandom(-5, 5), lhrandom(-5, 5), 0, 0, 0, 0, 0, 0); } break; case 2: // blood case 4: // slight blood dec = cl_particles_blood_size.value; if (blood) { particle(pt_blood, PARTICLE_BILLBOARD, 0x100000, 0x280000, tex_smoke[rand()&7], true, false, dec, dec, cl_particles_blood_alpha.value * 255.0f, cl_particles_blood_alpha.value * 255.0f * 0.5, 9999, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f + lhrandom(-64, 64), vel[1] * 0.5f + lhrandom(-64, 64), vel[2] * 0.5f + lhrandom(-64, 64), 0, 0, 0, 0, 1, 0); } break; case 3: // green tracer dec = 6; if (smoke) { particle(pt_static, PARTICLE_BILLBOARD, 0x002000, 0x003000, tex_particle, false, true, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0); } break; case 5: // flame tracer dec = 6; if (smoke) { particle(pt_static, PARTICLE_BILLBOARD, 0x301000, 0x502000, tex_particle, false, true, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0); } break; case 6: // voor trail dec = 6; if (smoke) { particle(pt_static, PARTICLE_BILLBOARD, 0x502030, 0x502030, tex_particle, false, true, dec, dec, 128, 384, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-8, 8), lhrandom(-8, 8), lhrandom(-8, 8), 0, 0, 0, 0, 0, 0); } break; case 7: // Nehahra smoke tracer dec = 7; if (smoke) { particle(pt_static, PARTICLE_BILLBOARD, 0x303030, 0x606060, tex_smoke[rand()&7], true, false, dec, dec, 64, 320, 9999, 0, 0, pos[0], pos[1], pos[2], lhrandom(-4, 4), lhrandom(-4, 4), lhrandom(0, 16), 0, 0, 0, 0, 0, 0); } break; } // advance to next time and position len -= dec; VectorMA (pos, dec, vec, pos); } #ifndef WORKINGLQUAKE ent->persistent.trail_time = len; #endif } void CL_RocketTrail2 (vec3_t start, vec3_t end, int color, entity_t *ent) { vec3_t vec, pos; int len; if (!cl_particles.integer) return; if (!cl_particles_smoke.integer) return; VectorCopy(start, pos); VectorSubtract (end, start, vec); #ifdef WORKINGLQUAKE len = (int) (VectorNormalize (vec) * (1.0f / 3.0f)); #else len = (int) (VectorNormalizeLength (vec) * (1.0f / 3.0f)); #endif VectorScale(vec, 3, vec); color = particlepalette[color]; while (len--) { particle(pt_static, PARTICLE_BILLBOARD, color, color, tex_particle, false, false, 5, 5, 128, 320, 9999, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, 0, 0); VectorAdd (pos, vec, pos); } } /* =============== CL_MoveParticles =============== */ void CL_MoveParticles (void) { particle_t *p; int i, activeparticles, maxparticle, j, a, pressureused = false, content; float gravity, dvel, bloodwaterfade, frametime, f, dist, normal[3], v[3], org[3]; // LordHavoc: early out condition if (!cl_numparticles) return; #ifdef WORKINGLQUAKE frametime = cl.frametime; #else frametime = cl.time - cl.oldtime; #endif gravity = frametime * sv_gravity.value; dvel = 1+4*frametime; bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f; activeparticles = 0; maxparticle = -1; j = 0; for (i = 0, p = particles;i < cl_numparticles;i++, p++) { content = 0; VectorCopy(p->org, p->oldorg); VectorMA(p->org, frametime, p->vel, p->org); VectorCopy(p->org, org); #ifndef WORKINGLQUAKE if (p->bounce) { if (CL_TraceLine(p->oldorg, p->org, v, normal, 0, true, NULL) < 1) { VectorCopy(v, p->org); if (p->bounce < 0) { // assume it's blood (lame, but...) if (cl_stainmaps.integer) R_Stain(v, 32, 32, 16, 16, p->alpha * p->scalex * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->scalex * (1.0f / 40.0f)); p->die = -1; freeparticles[j++] = p; continue; } else { dist = DotProduct(p->vel, normal) * -p->bounce; VectorMA(p->vel, dist, normal, p->vel); if (DotProduct(p->vel, p->vel) < 0.03) VectorClear(p->vel); } } } #endif p->vel[2] -= p->gravity * gravity; p->alpha -= p->alphafade * frametime; if (p->friction) { f = p->friction * frametime; if (!content) content = Mod_PointContents(p->org, cl.worldmodel); if (content != CONTENTS_EMPTY) f *= 4; f = 1.0f - f; VectorScale(p->vel, f, p->vel); } if (p->type != pt_static) { switch (p->type) { case pt_blood: if (!content) content = Mod_PointContents(p->org, cl.worldmodel); a = content; if (a != CONTENTS_EMPTY) { if (a == CONTENTS_WATER || a == CONTENTS_SLIME) { p->scalex += frametime * cl_particles_blood_size.value; p->scaley += frametime * cl_particles_blood_size.value; //p->alpha -= bloodwaterfade; } else p->die = -1; } else p->vel[2] -= gravity; break; case pt_bubble: if (!content) content = Mod_PointContents(p->org, cl.worldmodel); if (content != CONTENTS_WATER && content != CONTENTS_SLIME) { p->die = -1; break; } break; case pt_rain: if (cl.time > p->time2) { // snow flutter p->time2 = cl.time + (rand() & 3) * 0.1; p->vel[0] = lhrandom(-32, 32) + p->vel2[0]; p->vel[1] = lhrandom(-32, 32) + p->vel2[1]; p->vel[2] = /*lhrandom(-32, 32) +*/ p->vel2[2]; } if (!content) content = Mod_PointContents(p->org, cl.worldmodel); a = content; if (a != CONTENTS_EMPTY && a != CONTENTS_SKY) p->die = -1; break; default: printf("unknown particle type %i\n", p->type); p->die = -1; break; } } // remove dead particles if (p->alpha < 1 || p->die < cl.time) freeparticles[j++] = p; else { maxparticle = i; activeparticles++; if (p->pressure) pressureused = true; } } // fill in gaps to compact the array i = 0; while (maxparticle >= activeparticles) { *freeparticles[i++] = particles[maxparticle--]; while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time) maxparticle--; } cl_numparticles = activeparticles; if (pressureused) { activeparticles = 0; for (i = 0, p = particles;i < cl_numparticles;i++, p++) if (p->pressure) freeparticles[activeparticles++] = p; if (activeparticles) { for (i = 0, p = particles;i < cl_numparticles;i++, p++) { for (j = 0;j < activeparticles;j++) { if (freeparticles[j] != p) { float dist, diff[3]; VectorSubtract(p->org, freeparticles[j]->org, diff); dist = DotProduct(diff, diff); if (dist < 4096 && dist >= 1) { dist = freeparticles[j]->scalex * 4.0f * frametime / sqrt(dist); VectorMA(p->vel, dist, diff, p->vel); } } } } } } } #define MAX_PARTICLETEXTURES 64 // particletexture_t is a rectangle in the particlefonttexture typedef struct { float s1, t1, s2, t2; } particletexture_t; #if WORKINGLQUAKE static int particlefonttexture; #else static rtexturepool_t *particletexturepool; static rtexture_t *particlefonttexture; #endif static particletexture_t particletexture[MAX_PARTICLETEXTURES]; static cvar_t r_drawparticles = {0, "r_drawparticles", "1"}; static qbyte shadebubble(float dx, float dy, vec3_t light) { float dz, f, dot; vec3_t normal; dz = 1 - (dx*dx+dy*dy); if (dz > 0) // it does hit the sphere { f = 0; // back side normal[0] = dx;normal[1] = dy;normal[2] = dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); // front side normal[0] = dx;normal[1] = dy;normal[2] = -dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); f *= 128; f += 16; // just to give it a haze so you can see the outline f = bound(0, f, 255); return (qbyte) f; } else return 0; } static void setuptex(int cltexnum, int rtexnum, qbyte *data, qbyte *particletexturedata) { int basex, basey, y; basex = ((rtexnum >> 0) & 7) * 32; basey = ((rtexnum >> 3) & 7) * 32; particletexture[cltexnum].s1 = (basex + 1) / 256.0f; particletexture[cltexnum].t1 = (basey + 1) / 256.0f; particletexture[cltexnum].s2 = (basex + 31) / 256.0f; particletexture[cltexnum].t2 = (basey + 31) / 256.0f; for (y = 0;y < 32;y++) memcpy(particletexturedata + ((basey + y) * 256 + basex) * 4, data + y * 32 * 4, 32 * 4); } static void R_InitParticleTexture (void) { int x,y,d,i,m; float dx, dy, radius, f, f2; qbyte data[32][32][4], noise1[64][64], noise2[64][64]; vec3_t light; qbyte particletexturedata[256*256*4]; memset(particletexturedata, 255, sizeof(particletexturedata)); // the particletexture[][] array numbers must match the cl_part.c textures // smoke/blood for (i = 0;i < 8;i++) { do { fractalnoise(&noise1[0][0], 64, 4); fractalnoise(&noise2[0][0], 64, 8); m = 0; for (y = 0;y < 32;y++) { dy = y - 16; for (x = 0;x < 32;x++) { data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; dx = x - 16; d = (noise2[y][x] - 128) * 3 + 192; if (d > 0) d = (d * (256 - (int) (dx*dx+dy*dy))) >> 8; d = (d * noise1[y][x]) >> 7; d = bound(0, d, 255); data[y][x][3] = (qbyte) d; if (m < d) m = d; } } } while (m < 224); setuptex(i + 0, i + 0, &data[0][0][0], particletexturedata); } // rain splash for (i = 0;i < 16;i++) { radius = i * 3.0f / 16.0f; f2 = 255.0f * ((15.0f - i) / 15.0f); for (y = 0;y < 32;y++) { dy = (y - 16) * 0.25f; for (x = 0;x < 32;x++) { dx = (x - 16) * 0.25f; data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; f = (1.0 - fabs(radius - sqrt(dx*dx+dy*dy))) * f2; f = bound(0.0f, f, 255.0f); data[y][x][3] = (int) f; } } setuptex(i + 8, i + 16, &data[0][0][0], particletexturedata); } // normal particle for (y = 0;y < 32;y++) { dy = y - 16; for (x = 0;x < 32;x++) { data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; dx = x - 16; d = (256 - (dx*dx+dy*dy)); d = bound(0, d, 255); data[y][x][3] = (qbyte) d; } } setuptex(24, 32, &data[0][0][0], particletexturedata); // rain light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < 32;y++) { for (x = 0;x < 32;x++) { data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; data[y][x][3] = shadebubble((x - 16) * (1.0 / 8.0), y < 24 ? (y - 24) * (1.0 / 24.0) : (y - 24) * (1.0 / 8.0), light); } } setuptex(25, 33, &data[0][0][0], particletexturedata); // bubble light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < 32;y++) { for (x = 0;x < 32;x++) { data[y][x][0] = data[y][x][1] = data[y][x][2] = 255; data[y][x][3] = shadebubble((x - 16) * (1.0 / 16.0), (y - 16) * (1.0 / 16.0), light); } } setuptex(26, 34, &data[0][0][0], particletexturedata); #if WORKINGLQUAKE glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #else particlefonttexture = R_LoadTexture (particletexturepool, "particlefont", 256, 256, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE); #endif } static void r_part_start(void) { particletexturepool = R_AllocTexturePool(); R_InitParticleTexture (); } static void r_part_shutdown(void) { R_FreeTexturePool(&particletexturepool); } static void r_part_newmap(void) { } void R_Particles_Init (void) { Cvar_RegisterVariable(&r_drawparticles); #ifdef WORKINGLQUAKE r_part_start(); #else R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap); #endif } #ifdef WORKINGLQUAKE void R_InitParticles(void) { CL_Particles_Init(); R_Particles_Init(); } float varray_vertex[16]; #endif void R_DrawParticleCallback(const void *calldata1, int calldata2) { int additive, texnum, orientation; float org[3], up2[3], v[3], right[3], up[3], fog, ifog, fogvec[3], cr, cg, cb, ca; particletexture_t *tex; #ifndef WORKINGLQUAKE rmeshstate_t m; #endif const particle_t *p = calldata1; VectorCopy(p->org, org); orientation = (p->flags >> P_ORIENTATION_FIRSTBIT) & ((1 << P_ORIENTATION_BITS) - 1); texnum = (p->flags >> P_TEXNUM_FIRSTBIT) & ((1 << P_TEXNUM_BITS) - 1); //dynlight = p->flags & P_DYNLIGHT; additive = p->flags & P_ADDITIVE; #ifdef WORKINGLQUAKE if (additive) glBlendFunc(GL_SRC_ALPHA, GL_ONE); else glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); #else memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_SRC_ALPHA; if (additive) m.blendfunc2 = GL_ONE; else m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; m.tex[0] = R_GetTexture(particlefonttexture); R_Mesh_Matrix(&r_identitymatrix); R_Mesh_State(&m); #endif tex = &particletexture[texnum]; cr = p->color[0] * (1.0f / 255.0f); cg = p->color[1] * (1.0f / 255.0f); cb = p->color[2] * (1.0f / 255.0f); ca = p->alpha * (1.0f / 255.0f); #ifndef WORKINGLQUAKE if (fogenabled) { VectorSubtract(org, r_origin, fogvec); fog = exp(fogdensity/DotProduct(fogvec,fogvec)); ifog = 1 - fog; cr = cr * ifog; cg = cg * ifog; cb = cb * ifog; if (!additive) { cr += fogcolor[0] * fog; cg += fogcolor[1] * fog; cb += fogcolor[2] * fog; } } cr *= r_colorscale; cg *= r_colorscale; cb *= r_colorscale; varray_color[ 0] = varray_color[ 4] = varray_color[ 8] = varray_color[12] = cr; varray_color[ 1] = varray_color[ 5] = varray_color[ 9] = varray_color[13] = cg; varray_color[ 2] = varray_color[ 6] = varray_color[10] = varray_color[14] = cb; varray_color[ 3] = varray_color[ 7] = varray_color[11] = varray_color[15] = ca; varray_texcoord[0][0] = tex->s2;varray_texcoord[0][1] = tex->t1; varray_texcoord[0][2] = tex->s1;varray_texcoord[0][3] = tex->t1; varray_texcoord[0][4] = tex->s1;varray_texcoord[0][5] = tex->t2; varray_texcoord[0][6] = tex->s2;varray_texcoord[0][7] = tex->t2; #endif if (orientation == PARTICLE_BEAM) { VectorMA(p->org, -p->scaley, p->vel, v); VectorMA(p->org, p->scaley, p->vel, up2); R_CalcBeamVerts(varray_vertex, v, up2, p->scalex); } else if (orientation == PARTICLE_BILLBOARD) { VectorScale(vright, p->scalex, right); VectorScale(vup, p->scaley, up); varray_vertex[ 0] = org[0] + right[0] - up[0]; varray_vertex[ 1] = org[1] + right[1] - up[1]; varray_vertex[ 2] = org[2] + right[2] - up[2]; varray_vertex[ 4] = org[0] - right[0] - up[0]; varray_vertex[ 5] = org[1] - right[1] - up[1]; varray_vertex[ 6] = org[2] - right[2] - up[2]; varray_vertex[ 8] = org[0] - right[0] + up[0]; varray_vertex[ 9] = org[1] - right[1] + up[1]; varray_vertex[10] = org[2] - right[2] + up[2]; varray_vertex[12] = org[0] + right[0] + up[0]; varray_vertex[13] = org[1] + right[1] + up[1]; varray_vertex[14] = org[2] + right[2] + up[2]; } else if (orientation == PARTICLE_ORIENTED_DOUBLESIDED) { // double-sided if (DotProduct(p->vel2, r_origin) > DotProduct(p->vel2, org)) { VectorNegate(p->vel2, v); VectorVectors(v, right, up); } else VectorVectors(p->vel2, right, up); VectorScale(right, p->scalex, right); VectorScale(up, p->scaley, up); varray_vertex[ 0] = org[0] + right[0] - up[0]; varray_vertex[ 1] = org[1] + right[1] - up[1]; varray_vertex[ 2] = org[2] + right[2] - up[2]; varray_vertex[ 4] = org[0] - right[0] - up[0]; varray_vertex[ 5] = org[1] - right[1] - up[1]; varray_vertex[ 6] = org[2] - right[2] - up[2]; varray_vertex[ 8] = org[0] - right[0] + up[0]; varray_vertex[ 9] = org[1] - right[1] + up[1]; varray_vertex[10] = org[2] - right[2] + up[2]; varray_vertex[12] = org[0] + right[0] + up[0]; varray_vertex[13] = org[1] + right[1] + up[1]; varray_vertex[14] = org[2] + right[2] + up[2]; } else Host_Error("R_DrawParticles: unknown particle orientation %i\n", orientation); #if WORKINGLQUAKE glBegin(GL_QUADS); glColor4f(cr, cg, cb, ca); glTexCoord2f(tex->s2, tex->t1);glVertex3f(varray_vertex[ 0], varray_vertex[ 1], varray_vertex[ 2]); glTexCoord2f(tex->s1, tex->t1);glVertex3f(varray_vertex[ 4], varray_vertex[ 5], varray_vertex[ 6]); glTexCoord2f(tex->s1, tex->t2);glVertex3f(varray_vertex[ 8], varray_vertex[ 9], varray_vertex[10]); glTexCoord2f(tex->s2, tex->t2);glVertex3f(varray_vertex[12], varray_vertex[13], varray_vertex[14]); glEnd(); #else R_Mesh_Draw(4, 2, polygonelements); #endif } void R_DrawParticles (void) { int i; float minparticledist; particle_t *p; // LordHavoc: early out conditions if ((!cl_numparticles) || (!r_drawparticles.integer)) return; minparticledist = DotProduct(r_origin, vpn) + 16.0f; #ifdef WORKINGLQUAKE // helper code if anyone wants to port this to stock glquake engines glBindTexture(GL_TEXTURE_2D, particlefonttexture); glEnable(GL_BLEND); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); // LordHavoc: only render if not too close for (i = 0, p = particles;i < cl_numparticles;i++, p++) if (DotProduct(p->org, vpn) >= minparticledist) R_DrawParticleCallback(p, 0); // helper code if anyone wants to port this to stock glquake engines glDisable(GL_BLEND); #else // LordHavoc: only render if not too close c_particles += cl_numparticles; for (i = 0, p = particles;i < cl_numparticles;i++, p++) if (DotProduct(p->org, vpn) >= minparticledist) R_MeshQueue_AddTransparent(p->org, R_DrawParticleCallback, p, 0); #endif }