/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #ifdef WORKINGLQUAKE #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) #define NUMVERTEXNORMALS 162 siextern float r_avertexnormals[NUMVERTEXNORMALS][3]; #define m_bytenormals r_avertexnormals #define CL_PointQ1Contents(v) (Mod_PointInLeaf(v,cl.worldmodel)->contents) typedef unsigned char unsigned char; #define cl_stainmaps.integer 0 void R_Stain (vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { } #define CL_EntityParticles R_EntityParticles #define CL_ReadPointFile_f R_ReadPointFile_f #define CL_ParseParticleEffect R_ParseParticleEffect #define CL_ParticleExplosion R_ParticleExplosion #define CL_ParticleExplosion2 R_ParticleExplosion2 #define CL_TeleportSplash R_TeleportSplash #define CL_BlobExplosion R_BlobExplosion #define CL_RunParticleEffect R_RunParticleEffect #define CL_LavaSplash R_LavaSplash void R_CalcBeam_Vertex3f (float *vert, vec3_t org1, vec3_t org2, float width) { vec3_t right1, right2, diff, normal; VectorSubtract (org2, org1, normal); VectorNormalize (normal); // calculate 'right' vector for start VectorSubtract (r_vieworigin, org1, diff); VectorNormalize (diff); CrossProduct (normal, diff, right1); // calculate 'right' vector for end VectorSubtract (r_vieworigin, org2, diff); VectorNormalize (diff); CrossProduct (normal, diff, right2); vert[ 0] = org1[0] + width * right1[0]; vert[ 1] = org1[1] + width * right1[1]; vert[ 2] = org1[2] + width * right1[2]; vert[ 3] = org1[0] - width * right1[0]; vert[ 4] = org1[1] - width * right1[1]; vert[ 5] = org1[2] - width * right1[2]; vert[ 6] = org2[0] - width * right2[0]; vert[ 7] = org2[1] - width * right2[1]; vert[ 8] = org2[2] - width * right2[2]; vert[ 9] = org2[0] + width * right2[0]; vert[10] = org2[1] + width * right2[1]; vert[11] = org2[2] + width * right2[2]; } void fractalnoise(unsigned char *noise, int size, int startgrid) { int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower; int *noisebuf; #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)] for (sizepower = 0;(1 << sizepower) < size;sizepower++); if (size != (1 << sizepower)) { Con_Printf("fractalnoise: size must be power of 2\n"); return; } for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++); if (startgrid != (1 << gridpower)) { Con_Printf("fractalnoise: grid must be power of 2\n"); return; } startgrid = bound(0, startgrid, size); amplitude = 0xFFFF; // this gets halved before use noisebuf = malloc(size*size*sizeof(int)); memset(noisebuf, 0, size*size*sizeof(int)); for (g2 = startgrid;g2;g2 >>= 1) { // brownian motion (at every smaller level there is random behavior) amplitude >>= 1; for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x,y) += (rand()&litude); g = g2 >> 1; if (g) { // subdivide, diamond-square algorithm (really this has little to do with squares) // diamond for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2; // square for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) { n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2; n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2; } } } // find range of noise values min = max = 0; for (y = 0;y < size;y++) for (x = 0;x < size;x++) { if (n(x,y) < min) min = n(x,y); if (n(x,y) > max) max = n(x,y); } max -= min; max++; // normalize noise and copy to output for (y = 0;y < size;y++) for (x = 0;x < size;x++) *noise++ = (unsigned char) (((n(x,y) - min) * 256) / max); free(noisebuf); #undef n } void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up) { float d; right[0] = forward[2]; right[1] = -forward[0]; right[2] = forward[1]; d = DotProduct(forward, right); right[0] -= d * forward[0]; right[1] -= d * forward[1]; right[2] -= d * forward[2]; VectorNormalize(right); CrossProduct(right, forward, up); } #if QW #include "pmove.h" extern qboolean PM_RecursiveHullCheck (hull_t *hull, int num, float p1f, float p2f, vec3_t p1, vec3_t p2, pmtrace_t *trace); #endif trace_t CL_TraceBox (vec3_t start, vec3_t mins, vec3_t maxs, vec3_t end, int hitbmodels, int *hitent, int hitsupercontentsmask, qboolean hitplayers) { #if QW pmtrace_t trace; #else trace_t trace; #endif memset (&trace, 0, sizeof(trace)); trace.fraction = 1; VectorCopy (end, trace.endpos); #if QW PM_RecursiveHullCheck (cl.model_precache[1]->hulls, 0, 0, 1, start, end, &trace); #else RecursiveHullCheck (cl.worldmodel->hulls, 0, 0, 1, start, end, &trace); #endif return trace; } #else #include "cl_collision.h" #include "image.h" #endif #define MAX_PARTICLES 32768 // default max # of particles at one time #define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's on the command line typedef enum { PARTICLE_BILLBOARD = 0, PARTICLE_SPARK = 1, PARTICLE_ORIENTED_DOUBLESIDED = 2, PARTICLE_BEAM = 3 } porientation_t; typedef enum { PBLEND_ALPHA = 0, PBLEND_ADD = 1, PBLEND_MOD = 2 } pblend_t; typedef struct particletype_s { pblend_t blendmode; porientation_t orientation; qboolean lighting; } particletype_t; typedef enum { pt_alphastatic, pt_static, pt_spark, pt_beam, pt_rain, pt_raindecal, pt_snow, pt_bubble, pt_blood, pt_smoke, pt_decal, pt_entityparticle, pt_total } ptype_t; // must match ptype_t values particletype_t particletype[pt_total] = { {PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_alphastatic {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_static {PBLEND_ADD, PARTICLE_SPARK, false}, //pt_spark {PBLEND_ADD, PARTICLE_BEAM, false}, //pt_beam {PBLEND_ADD, PARTICLE_SPARK, false}, //pt_rain {PBLEND_ADD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_raindecal {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_snow {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_bubble {PBLEND_MOD, PARTICLE_BILLBOARD, false}, //pt_blood {PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_smoke {PBLEND_MOD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_decal {PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_entityparticle }; typedef struct particle_s { particletype_t *type; int texnum; vec3_t org; vec3_t vel; // velocity of particle, or orientation of decal, or end point of beam float size; float alpha; // 0-255 float alphafade; // how much alpha reduces per second float time2; // used for snow fluttering and decal fade float bounce; // how much bounce-back from a surface the particle hits (0 = no physics, 1 = stop and slide, 2 = keep bouncing forever, 1.5 is typical) float gravity; // how much gravity affects this particle (1.0 = normal gravity, 0.0 = none) float friction; // how much air friction affects this object (objects with a low mass/size ratio tend to get more air friction) unsigned char color[4]; unsigned short owner; // decal stuck to this entity model_t *ownermodel; // model the decal is stuck to (used to make sure the entity is still alive) vec3_t relativeorigin; // decal at this location in entity's coordinate space vec3_t relativedirection; // decal oriented this way relative to entity's coordinate space } particle_t; static int particlepalette[256] = { 0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b, // 0-7 0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb, // 8-15 0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b, // 16-23 0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23, // 24-31 0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767, // 32-39 0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb, // 40-47 0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07, // 48-55 0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f, // 56-63 0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000, // 64-71 0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000, // 72-79 0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307, // 80-87 0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723, // 88-95 0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b, // 96-103 0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b, // 104-111 0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733, // 112-119 0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397, // 120-127 0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b, // 128-135 0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707, // 136-143 0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b, // 144-151 0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707, // 152-159 0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353, // 160-167 0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07, // 168-175 0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f, // 176-183 0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07, // 184-191 0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307, // 192-199 0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700, // 200-207 0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f, // 208-215 0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f, // 216-223 0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b, // 224-231 0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b, // 232-239 0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000, // 240-247 0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53 // 248-255 }; int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61}; int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66}; int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3}; //static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff}; // texture numbers in particle font static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7}; static const int tex_bulletdecal[8] = {8, 9, 10, 11, 12, 13, 14, 15}; static const int tex_blooddecal[8] = {16, 17, 18, 19, 20, 21, 22, 23}; static const int tex_bloodparticle[8] = {24, 25, 26, 27, 28, 29, 30, 31}; static const int tex_rainsplash[16] = {32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47}; static const int tex_particle = 63; static const int tex_bubble = 62; static const int tex_raindrop = 61; static const int tex_beam = 60; static int cl_maxparticles; static int cl_numparticles; static int cl_freeparticle; static particle_t *particles; cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1", "enables particle effects"}; cvar_t cl_particles_quality = {CVAR_SAVE, "cl_particles_quality", "1", "multiplies number of particles and reduces their alpha"}; cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1", "multiplies particle size"}; cvar_t cl_particles_quake = {CVAR_SAVE, "cl_particles_quake", "0", "makes particle effects look mostly like the ones in Quake"}; cvar_t cl_particles_bloodshowers = {CVAR_SAVE, "cl_particles_bloodshowers", "1", "enables blood shower effects"}; cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1", "enables blood effects"}; cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "0.5", "opacity of blood"}; cvar_t cl_particles_blood_bloodhack = {CVAR_SAVE, "cl_particles_blood_bloodhack", "1", "make certain quake particle() calls create blood effects instead"}; cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1", "enables bulletimpact effects"}; cvar_t cl_particles_explosions_bubbles = {CVAR_SAVE, "cl_particles_explosions_bubbles", "1", "enables bubbles from underwater explosions"}; cvar_t cl_particles_explosions_smoke = {CVAR_SAVE, "cl_particles_explosions_smokes", "0", "enables smoke from explosions"}; cvar_t cl_particles_explosions_sparks = {CVAR_SAVE, "cl_particles_explosions_sparks", "1", "enables sparks from explosions"}; cvar_t cl_particles_explosions_shell = {CVAR_SAVE, "cl_particles_explosions_shell", "0", "enables polygonal shell from explosions"}; cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1", "enables smoke (used by multiple effects)"}; cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5", "smoke brightness"}; cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55", "brightness fade per second"}; cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1", "enables sparks (used by multiple effects)"}; cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1", "enables bubbles (used by multiple effects)"}; cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "0", "enables decals (bullet holes, blood, etc)"}; cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "0", "how long before decals start to fade away"}; cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "20", "how long decals take to fade away"}; void CL_Particles_Clear(void) { cl_numparticles = 0; cl_freeparticle = 0; memset(particles, 0, sizeof(particle_t) * cl_maxparticles); } /* =============== CL_InitParticles =============== */ void CL_ReadPointFile_f (void); void CL_Particles_Init (void) { int i; // COMMANDLINEOPTION: Client: -particles changes maximum number of particles at once, default 32768 i = COM_CheckParm ("-particles"); if (i && i < com_argc - 1) { cl_maxparticles = (int)(atoi(com_argv[i+1])); if (cl_maxparticles < ABSOLUTE_MIN_PARTICLES) cl_maxparticles = ABSOLUTE_MIN_PARTICLES; } else cl_maxparticles = MAX_PARTICLES; Cmd_AddCommand ("pointfile", CL_ReadPointFile_f, "display point file produced by qbsp when a leak was detected in the map (a line leading through the leak hole, to an entity inside the level)"); Cvar_RegisterVariable (&cl_particles); Cvar_RegisterVariable (&cl_particles_quality); Cvar_RegisterVariable (&cl_particles_size); Cvar_RegisterVariable (&cl_particles_quake); Cvar_RegisterVariable (&cl_particles_bloodshowers); Cvar_RegisterVariable (&cl_particles_blood); Cvar_RegisterVariable (&cl_particles_blood_alpha); Cvar_RegisterVariable (&cl_particles_blood_bloodhack); Cvar_RegisterVariable (&cl_particles_explosions_bubbles); Cvar_RegisterVariable (&cl_particles_explosions_smoke); Cvar_RegisterVariable (&cl_particles_explosions_sparks); Cvar_RegisterVariable (&cl_particles_explosions_shell); Cvar_RegisterVariable (&cl_particles_bulletimpacts); Cvar_RegisterVariable (&cl_particles_smoke); Cvar_RegisterVariable (&cl_particles_smoke_alpha); Cvar_RegisterVariable (&cl_particles_smoke_alphafade); Cvar_RegisterVariable (&cl_particles_sparks); Cvar_RegisterVariable (&cl_particles_bubbles); Cvar_RegisterVariable (&cl_decals); Cvar_RegisterVariable (&cl_decals_time); Cvar_RegisterVariable (&cl_decals_fadetime); #ifdef WORKINGLQUAKE particles = (particle_t *) Hunk_AllocName(cl_maxparticles * sizeof(particle_t), "particles"); #else particles = (particle_t *) Mem_Alloc(cl_mempool, cl_maxparticles * sizeof(particle_t)); #endif CL_Particles_Clear(); } void CL_Particles_Shutdown (void) { #ifdef WORKINGLQUAKE // No clue what to do here... #endif } // list of all 26 parameters: // ptype - any of the pt_ enum values (pt_static, pt_blood, etc), see ptype_t near the top of this file // pcolor1,pcolor2 - minimum and maximum ranges of color, randomly interpolated to decide particle color // ptex - any of the tex_ values such as tex_smoke[rand()&7] or tex_particle // psize - size of particle (or thickness for PARTICLE_SPARK and PARTICLE_BEAM) // palpha - opacity of particle as 0-255 (can be more than 255) // palphafade - rate of fade per second (so 256 would mean a 256 alpha particle would fade to nothing in 1 second) // ptime - how long the particle can live (note it is also removed if alpha drops to nothing) // pgravity - how much effect gravity has on the particle (0-1) // pbounce - how much bounce the particle has when it hits a surface (0-1), -1 makes a blood splat when it hits a surface, 0 does not even check for collisions // px,py,pz - starting origin of particle // pvx,pvy,pvz - starting velocity of particle // pfriction - how much the particle slows down per second (0-1 typically, can slowdown faster than 1) particle_t *particle(particletype_t *ptype, int pcolor1, int pcolor2, int ptex, float psize, float palpha, float palphafade, float pgravity, float pbounce, float px, float py, float pz, float pvx, float pvy, float pvz, float pfriction, float originjitter, float velocityjitter) { int l1, l2; particle_t *part; vec3_t v; for (;cl_freeparticle < cl_maxparticles && particles[cl_freeparticle].type;cl_freeparticle++); if (cl_freeparticle >= cl_maxparticles) return NULL; part = &particles[cl_freeparticle++]; if (cl_numparticles < cl_freeparticle) cl_numparticles = cl_freeparticle; memset(part, 0, sizeof(*part)); part->type = ptype; l2 = (int)lhrandom(0.5, 256.5); l1 = 256 - l2; part->color[0] = ((((pcolor1 >> 16) & 0xFF) * l1 + ((pcolor2 >> 16) & 0xFF) * l2) >> 8) & 0xFF; part->color[1] = ((((pcolor1 >> 8) & 0xFF) * l1 + ((pcolor2 >> 8) & 0xFF) * l2) >> 8) & 0xFF; part->color[2] = ((((pcolor1 >> 0) & 0xFF) * l1 + ((pcolor2 >> 0) & 0xFF) * l2) >> 8) & 0xFF; part->color[3] = 0xFF; part->texnum = ptex; part->size = psize; part->alpha = palpha; part->alphafade = palphafade; part->gravity = pgravity; part->bounce = pbounce; VectorRandom(v); part->org[0] = px + originjitter * v[0]; part->org[1] = py + originjitter * v[1]; part->org[2] = pz + originjitter * v[2]; part->vel[0] = pvx + velocityjitter * v[0]; part->vel[1] = pvy + velocityjitter * v[1]; part->vel[2] = pvz + velocityjitter * v[2]; part->time2 = 0; part->friction = pfriction; return part; } void CL_SpawnDecalParticleForSurface(int hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha) { particle_t *p; if (!cl_decals.integer) return; p = particle(particletype + pt_decal, color1, color2, texnum, size, alpha, 0, 0, 0, org[0] + normal[0], org[1] + normal[1], org[2] + normal[2], normal[0], normal[1], normal[2], 0, 0, 0); if (p) { p->time2 = cl.time; #ifndef WORKINGLQUAKE p->owner = hitent; p->ownermodel = cl_entities[p->owner].render.model; Matrix4x4_Transform(&cl_entities[p->owner].render.inversematrix, org, p->relativeorigin); Matrix4x4_Transform3x3(&cl_entities[p->owner].render.inversematrix, normal, p->relativedirection); VectorAdd(p->relativeorigin, p->relativedirection, p->relativeorigin); #endif } } void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2) { int i; float bestfrac, bestorg[3], bestnormal[3]; float org2[3]; int besthitent = 0, hitent; trace_t trace; bestfrac = 10; for (i = 0;i < 32;i++) { VectorRandom(org2); VectorMA(org, maxdist, org2, org2); trace = CL_TraceBox(org, vec3_origin, vec3_origin, org2, true, &hitent, SUPERCONTENTS_SOLID, false); if (bestfrac > trace.fraction) { bestfrac = trace.fraction; besthitent = hitent; VectorCopy(trace.endpos, bestorg); VectorCopy(trace.plane.normal, bestnormal); } } if (bestfrac < 1) CL_SpawnDecalParticleForSurface(besthitent, bestorg, bestnormal, color1, color2, texnum, size, alpha); } /* =============== CL_EntityParticles =============== */ void CL_EntityParticles (entity_t *ent) { int i; float pitch, yaw, dist = 64, beamlength = 16, org[3], v[3]; static vec3_t avelocities[NUMVERTEXNORMALS]; if (!cl_particles.integer) return; #ifdef WORKINGLQUAKE VectorCopy(ent->origin, org); #else Matrix4x4_OriginFromMatrix(&ent->render.matrix, org); #endif if (!avelocities[0][0]) for (i = 0;i < NUMVERTEXNORMALS * 3;i++) avelocities[0][i] = lhrandom(0, 2.55); for (i = 0;i < NUMVERTEXNORMALS;i++) { yaw = cl.time * avelocities[i][0]; pitch = cl.time * avelocities[i][1]; v[0] = org[0] + m_bytenormals[i][0] * dist + (cos(pitch)*cos(yaw)) * beamlength; v[1] = org[1] + m_bytenormals[i][1] * dist + (cos(pitch)*sin(yaw)) * beamlength; v[2] = org[2] + m_bytenormals[i][2] * dist + (-sin(pitch)) * beamlength; particle(particletype + pt_entityparticle, particlepalette[0x6f], particlepalette[0x6f], tex_particle, 1, 255, 0, 0, 0, v[0], v[1], v[2], 0, 0, 0, 0, 0, 0); } } void CL_ReadPointFile_f (void) { vec3_t org, leakorg; int r, c, s; char *pointfile = NULL, *pointfilepos, *t, tchar; char name[MAX_OSPATH]; if (!cl.worldmodel) return; FS_StripExtension (cl.worldmodel->name, name, sizeof (name)); strlcat (name, ".pts", sizeof (name)); #if WORKINGLQUAKE pointfile = COM_LoadTempFile (name); #else pointfile = (char *)FS_LoadFile(name, tempmempool, true, NULL); #endif if (!pointfile) { Con_Printf("Could not open %s\n", name); return; } Con_Printf("Reading %s...\n", name); VectorClear(leakorg); c = 0; s = 0; pointfilepos = pointfile; while (*pointfilepos) { while (*pointfilepos == '\n' || *pointfilepos == '\r') pointfilepos++; if (!*pointfilepos) break; t = pointfilepos; while (*t && *t != '\n' && *t != '\r') t++; tchar = *t; *t = 0; r = sscanf (pointfilepos,"%f %f %f", &org[0], &org[1], &org[2]); *t = tchar; pointfilepos = t; if (r != 3) break; if (c == 0) VectorCopy(org, leakorg); c++; if (cl_numparticles < cl_maxparticles - 3) { s++; particle(particletype + pt_static, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, 2, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0); } } #ifndef WORKINGLQUAKE Mem_Free(pointfile); #endif VectorCopy(leakorg, org); Con_Printf("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, org[0], org[1], org[2]); particle(particletype + pt_beam, 0xFF0000, 0xFF0000, tex_beam, 64, 255, 0, 0, 0, org[0] - 4096, org[1], org[2], org[0] + 4096, org[1], org[2], 0, 0, 0); particle(particletype + pt_beam, 0x00FF00, 0x00FF00, tex_beam, 64, 255, 0, 0, 0, org[0], org[1] - 4096, org[2], org[0], org[1] + 4096, org[2], 0, 0, 0); particle(particletype + pt_beam, 0x0000FF, 0x0000FF, tex_beam, 64, 255, 0, 0, 0, org[0], org[1], org[2] - 4096, org[0], org[1], org[2] + 4096, 0, 0, 0); } /* =============== CL_ParseParticleEffect Parse an effect out of the server message =============== */ void CL_ParseParticleEffect (void) { vec3_t org, dir; int i, count, msgcount, color; MSG_ReadVector(org, cls.protocol); for (i=0 ; i<3 ; i++) dir[i] = MSG_ReadChar (); msgcount = MSG_ReadByte (); color = MSG_ReadByte (); if (msgcount == 255) count = 1024; else count = msgcount; if (cl_particles_blood_bloodhack.integer && !cl_particles_quake.integer) { if (color == 73) { // regular blood CL_BloodPuff(org, dir, count / 2); return; } if (color == 225) { // lightning blood CL_BloodPuff(org, dir, count / 2); return; } } CL_RunParticleEffect (org, dir, color, count); } /* =============== CL_ParticleExplosion =============== */ void CL_ParticleExplosion (vec3_t org) { int i; trace_t trace; //vec3_t v; //vec3_t v2; if (cl_stainmaps.integer) R_Stain(org, 96, 80, 80, 80, 64, 176, 176, 176, 64); CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); if (cl_particles_quake.integer) { for (i = 0;i < 1024;i++) { int r, color; r = rand()&3; if (i & 1) { color = particlepalette[ramp1[r]]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 32 * (8 - r), 318, 0, 0, org[0], org[1], org[2], 0, 0, 0, -4, 16, 256); } else { color = particlepalette[ramp2[r]]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 32 * (8 - r), 478, 0, 0, org[0], org[1], org[2], 0, 0, 0, 1, 16, 256); } } } else { i = CL_PointSuperContents(org); if (i & (SUPERCONTENTS_SLIME | SUPERCONTENTS_WATER)) { if (cl_particles.integer && cl_particles_bubbles.integer && cl_particles_explosions_bubbles.integer) for (i = 0;i < 128 * cl_particles_quality.value;i++) particle(particletype + pt_bubble, 0x404040, 0x808080, tex_bubble, 2, lhrandom(128, 255), 128, -0.125, 1.5, org[0], org[1], org[2], 0, 0, 0, (1.0 / 16.0), 16, 96); } else { // LordHavoc: smoke effect similar to UT2003, chews fillrate too badly up close // smoke puff if (cl_particles.integer && cl_particles_smoke.integer && cl_particles_explosions_smoke.integer) { for (i = 0;i < 32;i++) { int k; vec3_t v, v2; #ifdef WORKINGLQUAKE v2[0] = lhrandom(-48, 48); v2[1] = lhrandom(-48, 48); v2[2] = lhrandom(-48, 48); #else for (k = 0;k < 16;k++) { v[0] = org[0] + lhrandom(-48, 48); v[1] = org[1] + lhrandom(-48, 48); v[2] = org[2] + lhrandom(-48, 48); trace = CL_TraceBox(org, vec3_origin, vec3_origin, v, true, NULL, SUPERCONTENTS_SOLID, false); if (trace.fraction >= 0.1) break; } VectorSubtract(trace.endpos, org, v2); #endif VectorScale(v2, 2.0f, v2); particle(particletype + pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 12, 32, 64, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0); } } if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer) for (i = 0;i < 128 * cl_particles_quality.value;i++) particle(particletype + pt_spark, 0x903010, 0xFFD030, tex_particle, 1.0f, lhrandom(0, 255), 512, 1, 0, org[0], org[1], org[2], 0, 0, 80, 0.2, 0, 256); } } if (cl_particles_explosions_shell.integer) R_NewExplosion(org); } /* =============== CL_ParticleExplosion2 =============== */ void CL_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength) { int i, k; if (!cl_particles.integer) return; for (i = 0;i < 512 * cl_particles_quality.value;i++) { k = particlepalette[colorStart + (i % colorLength)]; if (cl_particles_quake.integer) particle(particletype + pt_static, k, k, tex_particle, 1, 255, 850, 0, 0, org[0], org[1], org[2], 0, 0, 0, -4, 8, 256); else particle(particletype + pt_static, k, k, tex_particle, lhrandom(0.5, 1.5), 255, 512, 0, 0, org[0], org[1], org[2], 0, 0, 0, lhrandom(1.5, 3), 8, 192); } } /* =============== CL_BlobExplosion =============== */ void CL_BlobExplosion (vec3_t org) { int i, k; if (!cl_particles.integer) return; if (!cl_particles_quake.integer) { CL_ParticleExplosion(org); return; } for (i = 0;i < 1024 * cl_particles_quality.value;i++) { if (i & 1) { k = particlepalette[66 + rand()%6]; particle(particletype + pt_static, k, k, tex_particle, 1, lhrandom(182, 255), 182, 0, 0, org[0], org[1], org[2], 0, 0, 0, -4, 16, 256); } else { k = particlepalette[150 + rand()%6]; particle(particletype + pt_static, k, k, tex_particle, 1, lhrandom(182, 255), 182, 0, 0, org[0], org[1], org[2], 0, 0, lhrandom(-256, 256), 0, 16, 0); } } } /* =============== CL_RunParticleEffect =============== */ void CL_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count) { int k; if (count == 1024) { CL_ParticleExplosion(org); return; } if (!cl_particles.integer) return; if (cl_particles_quake.integer) { count *= cl_particles_quality.value; while (count--) { k = particlepalette[color + (rand()&7)]; particle(particletype + pt_alphastatic, k, k, tex_particle, 1, lhrandom(51, 255), 512, 0, 0.05, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 8, 0); } } else { count *= cl_particles_quality.value; while (count--) { k = particlepalette[color + (rand()&7)]; if (gamemode == GAME_GOODVSBAD2) particle(particletype + pt_alphastatic, k, k, tex_particle, 5, 255, 300, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 8, 10); else particle(particletype + pt_alphastatic, k, k, tex_particle, 1, 255, 512, 0, 0, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 8, 15); } } } // LordHavoc: added this for spawning sparks/dust (which have strong gravity) /* =============== CL_SparkShower =============== */ void CL_SparkShower (vec3_t org, vec3_t dir, int count, vec_t gravityscale, vec_t radius) { int k; if (!cl_particles.integer) return; if (cl_particles_sparks.integer) { // sparks count *= cl_particles_quality.value; while(count--) { k = particlepalette[0x68 + (rand() & 7)]; particle(particletype + pt_spark, k, k, tex_particle, 0.4f, lhrandom(64, 255), 512, gravityscale, 0, org[0], org[1], org[2], dir[0], dir[1], dir[2] + sv_gravity.value * 0.1, 0, radius, 64); } } } void CL_Smoke (vec3_t org, vec3_t dir, int count, vec_t radius) { vec3_t org2; int k; trace_t trace; if (!cl_particles.integer) return; // smoke puff if (cl_particles_smoke.integer) { k = count * 0.25 * cl_particles_quality.value; while(k--) { org2[0] = org[0] + 0.125f * lhrandom(-count, count); org2[1] = org[1] + 0.125f * lhrandom(-count, count); org2[2] = org[2] + 0.125f * lhrandom(-count, count); trace = CL_TraceBox(org, vec3_origin, vec3_origin, org2, true, NULL, SUPERCONTENTS_SOLID, false); particle(particletype + pt_smoke, 0x101010, 0x202020, tex_smoke[rand()&7], 3, 255, 1024, 0, 0, trace.endpos[0], trace.endpos[1], trace.endpos[2], 0, 0, 0, 0, radius, 8); } } } void CL_BulletMark (vec3_t org) { if (cl_stainmaps.integer) R_Stain(org, 32, 96, 96, 96, 24, 128, 128, 128, 24); CL_SpawnDecalParticleForPoint(org, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); } void CL_PlasmaBurn (vec3_t org) { if (cl_stainmaps.integer) R_Stain(org, 48, 96, 96, 96, 32, 128, 128, 128, 32); CL_SpawnDecalParticleForPoint(org, 6, 6, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); } static float bloodcount = 0; void CL_BloodPuff (vec3_t org, vec3_t vel, int count) { float s; vec3_t org2; trace_t trace; // bloodcount is used to accumulate counts too small to cause a blood particle if (!cl_particles.integer) return; if (cl_particles_quake.integer) { CL_RunParticleEffect(org, vel, 73, count * 2); return; } if (!cl_particles_blood.integer) return; s = count + 64.0f; count *= 5.0f; if (count > 1000) count = 1000; bloodcount += count * cl_particles_quality.value; while(bloodcount > 0) { org2[0] = org[0] + 0.125f * lhrandom(-bloodcount, bloodcount); org2[1] = org[1] + 0.125f * lhrandom(-bloodcount, bloodcount); org2[2] = org[2] + 0.125f * lhrandom(-bloodcount, bloodcount); trace = CL_TraceBox(org, vec3_origin, vec3_origin, org2, true, NULL, SUPERCONTENTS_SOLID, false); particle(particletype + pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, cl_particles_blood_alpha.value * 768, cl_particles_blood_alpha.value * 384, 0, -1, trace.endpos[0], trace.endpos[1], trace.endpos[2], vel[0], vel[1], vel[2], 1, 0, s); bloodcount -= 16; } } void CL_BloodShower (vec3_t mins, vec3_t maxs, float velspeed, int count) { vec3_t org, vel, diff, center, velscale; if (!cl_particles.integer) return; if (!cl_particles_bloodshowers.integer) return; if (!cl_particles_blood.integer) return; VectorSubtract(maxs, mins, diff); center[0] = (mins[0] + maxs[0]) * 0.5; center[1] = (mins[1] + maxs[1]) * 0.5; center[2] = (mins[2] + maxs[2]) * 0.5; velscale[0] = velspeed * 2.0 / diff[0]; velscale[1] = velspeed * 2.0 / diff[1]; velscale[2] = velspeed * 2.0 / diff[2]; bloodcount += count * 5.0f * cl_particles_quality.value; while (bloodcount > 0) { org[0] = lhrandom(mins[0], maxs[0]); org[1] = lhrandom(mins[1], maxs[1]); org[2] = lhrandom(mins[2], maxs[2]); vel[0] = (org[0] - center[0]) * velscale[0]; vel[1] = (org[1] - center[1]) * velscale[1]; vel[2] = (org[2] - center[2]) * velscale[2]; bloodcount -= 16; particle(particletype + pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, cl_particles_blood_alpha.value * 768, cl_particles_blood_alpha.value * 384, 0, -1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 1, 0, 0); } } void CL_ParticleCube (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int gravity, int randomvel) { int k; float t; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} count *= cl_particles_quality.value; while (count--) { k = particlepalette[colorbase + (rand()&3)]; particle(particletype + pt_alphastatic, k, k, tex_particle, 2, 255, 128, gravity ? 1 : 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0], dir[1], dir[2], 0, 0, randomvel); } } void CL_ParticleRain (vec3_t mins, vec3_t maxs, vec3_t dir, int count, int colorbase, int type) { int k; float t, z, minz, maxz; particle_t *p; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} if (dir[2] < 0) // falling z = maxs[2]; else // rising?? z = mins[2]; minz = z - fabs(dir[2]) * 0.1; maxz = z + fabs(dir[2]) * 0.1; minz = bound(mins[2], minz, maxs[2]); maxz = bound(mins[2], maxz, maxs[2]); count *= cl_particles_quality.value; switch(type) { case 0: count *= 4; // ick, this should be in the mod or maps? while(count--) { k = particlepalette[colorbase + (rand()&3)]; if (gamemode == GAME_GOODVSBAD2) particle(particletype + pt_rain, k, k, tex_particle, 20, lhrandom(8, 16), 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, 0, 0); else particle(particletype + pt_rain, k, k, tex_particle, 0.5, lhrandom(8, 16), 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, 0, 0); } break; case 1: while(count--) { k = particlepalette[colorbase + (rand()&3)]; if (gamemode == GAME_GOODVSBAD2) p = particle(particletype + pt_snow, k, k, tex_particle, 20, lhrandom(64, 128), 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, 0, 0); else p = particle(particletype + pt_snow, k, k, tex_particle, 1, lhrandom(64, 128), 0, 0, -1, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz), dir[0], dir[1], dir[2], 0, 0, 0); if (p) VectorCopy(p->vel, p->relativedirection); } break; default: Con_Printf ("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type); } } void CL_Stardust (vec3_t mins, vec3_t maxs, int count) { int k; float t; vec3_t o, v, center; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} center[0] = (mins[0] + maxs[0]) * 0.5f; center[1] = (mins[1] + maxs[1]) * 0.5f; center[2] = (mins[2] + maxs[2]) * 0.5f; count *= cl_particles_quality.value; while (count--) { k = particlepalette[224 + (rand()&15)]; o[0] = lhrandom(mins[0], maxs[0]); o[1] = lhrandom(mins[1], maxs[1]); o[2] = lhrandom(mins[2], maxs[2]); VectorSubtract(o, center, v); VectorNormalize(v); VectorScale(v, 100, v); v[2] += sv_gravity.value * 0.15f; particle(particletype + pt_static, 0x903010, 0xFFD030, tex_particle, 1.5, lhrandom(64, 128), 128, 1, 0, o[0], o[1], o[2], v[0], v[1], v[2], 0.2, 0, 0); } } void CL_FlameCube (vec3_t mins, vec3_t maxs, int count) { int k; float t; if (!cl_particles.integer) return; if (maxs[0] <= mins[0]) {t = mins[0];mins[0] = maxs[0];maxs[0] = t;} if (maxs[1] <= mins[1]) {t = mins[1];mins[1] = maxs[1];maxs[1] = t;} if (maxs[2] <= mins[2]) {t = mins[2];mins[2] = maxs[2];maxs[2] = t;} count *= cl_particles_quality.value; while (count--) { k = particlepalette[224 + (rand()&15)]; particle(particletype + pt_static, k, k, tex_particle, 4, lhrandom(64, 128), 384, -1, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), 0, 0, 32, 1, 0, 32); if (count & 1) particle(particletype + pt_static, 0x303030, 0x606060, tex_smoke[rand()&7], 6, lhrandom(48, 96), 64, 0, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), 0, 0, 24, 0, 0, 8); } } void CL_Flames (vec3_t org, vec3_t vel, int count) { int k; if (!cl_particles.integer) return; count *= cl_particles_quality.value; while (count--) { k = particlepalette[224 + (rand()&15)]; particle(particletype + pt_static, k, k, tex_particle, 4, lhrandom(64, 128), 384, -1, 1.1, org[0], org[1], org[2], vel[0], vel[1], vel[2], 1, 0, 128); } } /* =============== CL_LavaSplash =============== */ void CL_LavaSplash (vec3_t origin) { float i, j, inc, vel; int k, l; vec3_t dir, org; if (!cl_particles.integer) return; if (cl_particles_quake.integer) { inc = 8 / cl_particles_quality.value; for (i = -128;i < 128;i += inc) { for (j = -128;j < 128;j += inc) { dir[0] = j + lhrandom(0, inc); dir[1] = i + lhrandom(0, inc); dir[2] = 256; org[0] = origin[0] + dir[0]; org[1] = origin[1] + dir[1]; org[2] = origin[2] + lhrandom(0, 64); vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale k = l = particlepalette[224 + (rand()&7)]; particle(particletype + pt_alphastatic, k, l, tex_particle, 1, inc * lhrandom(24, 32), inc * 12, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0); } } } else { inc = 32 / cl_particles_quality.value; for (i = -128;i < 128;i += inc) { for (j = -128;j < 128;j += inc) { dir[0] = j + lhrandom(0, inc); dir[1] = i + lhrandom(0, inc); dir[2] = 256; org[0] = origin[0] + dir[0]; org[1] = origin[1] + dir[1]; org[2] = origin[2] + lhrandom(0, 64); vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale if (gamemode == GAME_GOODVSBAD2) { k = particlepalette[0 + (rand()&255)]; l = particlepalette[0 + (rand()&255)]; particle(particletype + pt_static, k, l, tex_particle, 12, inc * 8, inc * 8, 0.05, 1, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0); } else { k = l = particlepalette[224 + (rand()&7)]; particle(particletype + pt_static, k, l, tex_particle, 12, inc * 8, inc * 8, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0); } } } } } /* =============== CL_TeleportSplash =============== */ void CL_TeleportSplash (vec3_t org) { float i, j, k, inc; if (!cl_particles.integer) return; if (cl_particles_quake.integer) { inc = 4 / cl_particles_quality.value; for (i = -16;i < 16;i += inc) { for (j = -16;j < 16;j += inc) { for (k = -24;k < 32;k += inc) { vec3_t dir; float vel; VectorSet(dir, i*8, j*8, k*8); VectorNormalize(dir); vel = lhrandom(50, 113); particle(particletype + pt_alphastatic, particlepalette[7], particlepalette[14], tex_particle, 1, inc * lhrandom(37, 63), inc * 187, 0, 0, org[0] + i + lhrandom(0, inc), org[1] + j + lhrandom(0, inc), org[2] + k + lhrandom(0, inc), dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0); } } } } else { inc = 8 / cl_particles_quality.value; for (i = -16;i < 16;i += inc) for (j = -16;j < 16;j += inc) for (k = -24;k < 32;k += inc) particle(particletype + pt_static, 0xA0A0A0, 0xFFFFFF, tex_particle, 10, inc * lhrandom(8, 16), inc * 32, 0, 0, org[0] + i + lhrandom(0, inc), org[1] + j + lhrandom(0, inc), org[2] + k + lhrandom(0, inc), 0, 0, lhrandom(-256, 256), 1, 0, 0); } } #ifdef WORKINGLQUAKE void R_RocketTrail (vec3_t start, vec3_t end, int type) #else void CL_RocketTrail (vec3_t start, vec3_t end, int type, int color, entity_t *ent) #endif { vec3_t vec, dir, vel, pos; float len, dec, speed, qd; int smoke, blood, bubbles, r; #ifdef WORKINGLQUAKE int contents; #endif if (end[0] == start[0] && end[1] == start[1] && end[2] == start[2]) return; VectorSubtract(end, start, dir); VectorNormalize(dir); VectorSubtract (end, start, vec); #ifdef WORKINGLQUAKE len = VectorNormalize (vec); dec = 0; speed = 1.0f / cl.frametime; VectorSubtract(end, start, vel); #else len = VectorNormalizeLength (vec); dec = -ent->persistent.trail_time; ent->persistent.trail_time += len; if (ent->persistent.trail_time < 0.01f) return; // if we skip out, leave it reset ent->persistent.trail_time = 0.0f; speed = ent->state_current.time - ent->state_previous.time; if (speed) speed = 1.0f / speed; VectorSubtract(ent->state_current.origin, ent->state_previous.origin, vel); color = particlepalette[color]; #endif VectorScale(vel, speed, vel); // advance into this frame to reach the first puff location VectorMA(start, dec, vec, pos); len -= dec; smoke = cl_particles.integer && cl_particles_smoke.integer; blood = cl_particles.integer && cl_particles_blood.integer; #ifdef WORKINGLQUAKE contents = CL_PointQ1Contents(pos); bubbles = cl_particles.integer && cl_particles_bubbles.integer && (contents == CONTENTS_WATER || contents == CONTENTS_SLIME); #else bubbles = cl_particles.integer && cl_particles_bubbles.integer && (CL_PointSuperContents(pos) & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)); #endif qd = 1.0f / cl_particles_quality.value; while (len >= 0) { switch (type) { case 0: // rocket trail if (cl_particles_quake.integer) { dec = 3; r = rand()&3; color = particlepalette[ramp3[r]]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 42*(6-r), 306, 0, -0.05, pos[0], pos[1], pos[2], 0, 0, 0, 0, 3, 0); } else { dec = 3; if (smoke) { particle(particletype + pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, cl_particles_smoke_alpha.value*62, cl_particles_smoke_alphafade.value*62, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); particle(particletype + pt_static, 0x801010, 0xFFA020, tex_smoke[rand()&7], 3, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 20); } if (bubbles) particle(particletype + pt_bubble, 0x404040, 0x808080, tex_bubble, 2, lhrandom(64, 255), 256, -0.25, 1.5, pos[0], pos[1], pos[2], 0, 0, 0, (1.0 / 16.0), 0, 16); } break; case 1: // grenade trail if (cl_particles_quake.integer) { dec = 3; r = 2 + (rand()%5); color = particlepalette[ramp3[r]]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 42*(6-r), 306, 0, -0.05, pos[0], pos[1], pos[2], 0, 0, 0, 0, 3, 0); } else { dec = 3; if (smoke) particle(particletype + pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, cl_particles_smoke_alpha.value*50, cl_particles_smoke_alphafade.value*50, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); } break; case 2: // blood case 4: // slight blood if (cl_particles_quake.integer) { if (type == 2) { dec = 3; color = particlepalette[67 + (rand()&3)]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 255, 128, 0, -0.05, pos[0], pos[1], pos[2], 0, 0, 0, 0, 3, 0); } else { dec = 6; color = particlepalette[67 + (rand()&3)]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 255, 128, 0, -0.05, pos[0], pos[1], pos[2], 0, 0, 0, 0, 3, 0); } } else { dec = 16; if (blood) particle(particletype + pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 0, -1, pos[0], pos[1], pos[2], vel[0] * 0.5f, vel[1] * 0.5f, vel[2] * 0.5f, 1, 0, 64); } break; case 3: // green tracer if (cl_particles_quake.integer) { dec = 6; color = particlepalette[52 + (rand()&7)]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 255, 512, 0, 0, pos[0], pos[1], pos[2], 30*vec[1], 30*-vec[0], 0, 0, 0, 0); particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 255, 512, 0, 0, pos[0], pos[1], pos[2], 30*-vec[1], 30*vec[0], 0, 0, 0, 0); } else { dec = 16; if (smoke) { if (gamemode == GAME_GOODVSBAD2) { dec = 6; particle(particletype + pt_static, 0x00002E, 0x000030, tex_particle, 6, 128, 384, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); } else { dec = 3; color = particlepalette[20 + (rand()&7)]; particle(particletype + pt_static, color, color, tex_particle, 2, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); } } } break; case 5: // flame tracer if (cl_particles_quake.integer) { dec = 6; color = particlepalette[230 + (rand()&7)]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 255, 512, 0, 0, pos[0], pos[1], pos[2], 30*vec[1], 30*-vec[0], 0, 0, 0, 0); particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 255, 512, 0, 0, pos[0], pos[1], pos[2], 30*-vec[1], 30*vec[0], 0, 0, 0, 0); } else { dec = 3; if (smoke) { color = particlepalette[226 + (rand()&7)]; particle(particletype + pt_static, color, color, tex_particle, 2, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); } } break; case 6: // voor trail if (cl_particles_quake.integer) { dec = 3; color = particlepalette[152 + (rand()&3)]; particle(particletype + pt_alphastatic, color, color, tex_particle, 1, 255, 850, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 8, 0); } else { dec = 16; if (smoke) { if (gamemode == GAME_GOODVSBAD2) { dec = 6; particle(particletype + pt_alphastatic, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, 6, 255, 384, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); } else if (gamemode == GAME_PRYDON) { dec = 6; particle(particletype + pt_static, 0x103040, 0x204050, tex_particle, 6, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); } else { dec = 3; particle(particletype + pt_static, 0x502030, 0x502030, tex_particle, 3, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); } } } break; #ifndef WORKINGLQUAKE case 7: // Nehahra smoke tracer dec = 7; if (smoke) particle(particletype + pt_alphastatic, 0x303030, 0x606060, tex_smoke[rand()&7], 7, 64, 320, 0, 0, pos[0], pos[1], pos[2], 0, 0, lhrandom(4, 12), 0, 0, 4); break; case 8: // Nexuiz plasma trail dec = 4; if (smoke) particle(particletype + pt_static, 0x283880, 0x283880, tex_particle, 4, 255, 1024, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 16); break; case 9: // glow trail dec = 3; if (smoke) particle(particletype + pt_alphastatic, color, color, tex_particle, 5, 128, 320, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0); break; #endif default: Sys_Error("CL_RocketTrail: unknown trail type %i", type); } // advance to next time and position dec *= qd; len -= dec; VectorMA (pos, dec, vec, pos); } #ifndef WORKINGLQUAKE ent->persistent.trail_time = len; #endif } void CL_BeamParticle (const vec3_t start, const vec3_t end, vec_t radius, float red, float green, float blue, float alpha, float lifetime) { int tempcolor2, cr, cg, cb; cr = red * 255; cg = green * 255; cb = blue * 255; tempcolor2 = (bound(0, cr, 255) << 16) | (bound(0, cg, 255) << 8) | bound(0, cb, 255); particle(particletype + pt_beam, tempcolor2, tempcolor2, tex_beam, radius, alpha * 255, alpha * 255 / lifetime, 0, 0, start[0], start[1], start[2], end[0], end[1], end[2], 0, 0, 0); } void CL_Tei_Smoke(const vec3_t org, const vec3_t dir, int count) { float f; if (!cl_particles.integer) return; // smoke puff if (cl_particles_smoke.integer) for (f = 0;f < count;f += 4.0f / cl_particles_quality.value) particle(particletype + pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 255, 512, 0, 0, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, count * 0.125f, count * 0.5f); } void CL_Tei_PlasmaHit(const vec3_t org, const vec3_t dir, int count) { float f; if (!cl_particles.integer) return; if (cl_stainmaps.integer) R_Stain(org, 40, 96, 96, 96, 40, 128, 128, 128, 40); CL_SpawnDecalParticleForPoint(org, 6, 8, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF); // smoke puff if (cl_particles_smoke.integer) for (f = 0;f < count;f += 4.0f / cl_particles_quality.value) particle(particletype + pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 255, 512, 0, 0, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, count * 0.125f, count); // sparks if (cl_particles_sparks.integer) for (f = 0;f < count;f += 1.0f / cl_particles_quality.value) particle(particletype + pt_spark, 0x2030FF, 0x80C0FF, tex_particle, 2.0f, lhrandom(64, 255), 512, 0, 0, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, count * 3.0f); } /* =============== CL_MoveParticles =============== */ void CL_MoveParticles (void) { particle_t *p; int i, maxparticle, j, a, content; float gravity, dvel, bloodwaterfade, frametime, f, dist, org[3], oldorg[3]; int hitent; trace_t trace; // LordHavoc: early out condition if (!cl_numparticles) { cl_freeparticle = 0; return; } #ifdef WORKINGLQUAKE frametime = cl.frametime; #else frametime = cl.time - cl.oldtime; #endif gravity = frametime * sv_gravity.value; dvel = 1+4*frametime; bloodwaterfade = max(cl_particles_blood_alpha.value, 0.01f) * frametime * 128.0f; maxparticle = -1; j = 0; for (i = 0, p = particles;i < cl_numparticles;i++, p++) { if (!p->type) continue; maxparticle = i; content = 0; p->alpha -= p->alphafade * frametime; if (p->alpha <= 0) { p->type = NULL; continue; } if (p->type->orientation != PARTICLE_BEAM) { VectorCopy(p->org, oldorg); VectorMA(p->org, frametime, p->vel, p->org); VectorCopy(p->org, org); if (p->bounce) { if (p->type == particletype + pt_rain) { // raindrop - splash on solid/water/slime/lava trace = CL_TraceBox(oldorg, vec3_origin, vec3_origin, p->org, true, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK, false); if (trace.fraction < 1) { int count; // convert from a raindrop particle to a rainsplash decal VectorCopy(trace.endpos, p->org); VectorCopy(trace.plane.normal, p->vel); VectorAdd(p->org, p->vel, p->org); p->type = particletype + pt_raindecal; p->texnum = tex_rainsplash[0]; p->time2 = cl.time; p->alphafade = p->alpha / 0.4; p->bounce = 0; p->friction = 0; p->gravity = 0; p->size = 8.0; count = rand() & 3; while(count--) particle(particletype + pt_spark, 0x000000, 0x707070, tex_particle, 0.25f, lhrandom(64, 255), 512, 1, 0, p->org[0], p->org[1], p->org[2], p->vel[0]*16, p->vel[1]*16, 32 + p->vel[2]*16, 0, 0, 32); } } else if (p->type == particletype + pt_blood) { // blood - splash on solid trace = CL_TraceBox(oldorg, vec3_origin, vec3_origin, p->org, true, &hitent, SUPERCONTENTS_SOLID, false); if (trace.fraction < 1) { // convert from a blood particle to a blood decal VectorCopy(trace.endpos, p->org); VectorCopy(trace.plane.normal, p->vel); VectorAdd(p->org, p->vel, p->org); #ifndef WORKINGLQUAKE if (cl_stainmaps.integer) R_Stain(p->org, 32, 32, 16, 16, p->alpha * p->size * (1.0f / 40.0f), 192, 48, 48, p->alpha * p->size * (1.0f / 40.0f)); #endif if (!cl_decals.integer) { p->type = NULL; continue; } p->type = particletype + pt_decal; p->texnum = tex_blooddecal[rand()&7]; #ifndef WORKINGLQUAKE p->owner = hitent; p->ownermodel = cl_entities[hitent].render.model; Matrix4x4_Transform(&cl_entities[hitent].render.inversematrix, p->org, p->relativeorigin); Matrix4x4_Transform3x3(&cl_entities[hitent].render.inversematrix, p->vel, p->relativedirection); #endif p->time2 = cl.time; p->alphafade = 0; p->bounce = 0; p->friction = 0; p->gravity = 0; p->size *= 2.0f; } } else { trace = CL_TraceBox(oldorg, vec3_origin, vec3_origin, p->org, true, NULL, SUPERCONTENTS_SOLID, false); if (trace.fraction < 1) { VectorCopy(trace.endpos, p->org); if (p->bounce < 0) { p->type = NULL; continue; } else { dist = DotProduct(p->vel, trace.plane.normal) * -p->bounce; VectorMA(p->vel, dist, trace.plane.normal, p->vel); if (DotProduct(p->vel, p->vel) < 0.03) VectorClear(p->vel); } } } } p->vel[2] -= p->gravity * gravity; if (p->friction) { f = p->friction * frametime; #ifdef WORKINGLQUAKE if (CL_PointQ1Contents(p->org) != CONTENTS_EMPTY) #else if (CL_PointSuperContents(p->org) & SUPERCONTENTS_LIQUIDSMASK) #endif f *= 4; f = 1.0f - f; VectorScale(p->vel, f, p->vel); } } if (p->type != particletype + pt_static) { switch (p->type - particletype) { case pt_entityparticle: // particle that removes itself after one rendered frame if (p->time2) p->type = NULL; else p->time2 = 1; break; case pt_blood: #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a <= CONTENTS_WATER) #else a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)) #endif { p->size += frametime * 8; //p->alpha -= bloodwaterfade; } else p->vel[2] -= gravity; #ifdef WORKINGLQUAKE if (a == CONTENTS_SOLID || a == CONTENTS_LAVA) #else if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP)) #endif p->type = NULL; break; case pt_bubble: #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a != CONTENTS_WATER && a != CONTENTS_SLIME) #else a = CL_PointSuperContents(p->org); if (!(a & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME))) #endif { p->type = NULL; break; } break; case pt_rain: #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a != CONTENTS_EMPTY && a != CONTENTS_SKY) #else a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK)) #endif p->type = NULL; break; case pt_snow: if (cl.time > p->time2) { // snow flutter p->time2 = cl.time + (rand() & 3) * 0.1; p->vel[0] = p->relativedirection[0] + lhrandom(-32, 32); p->vel[1] = p->relativedirection[1] + lhrandom(-32, 32); //p->vel[2] = p->relativedirection[2] + lhrandom(-32, 32); } #ifdef WORKINGLQUAKE a = CL_PointQ1Contents(p->org); if (a != CONTENTS_EMPTY && a != CONTENTS_SKY) #else a = CL_PointSuperContents(p->org); if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LIQUIDSMASK)) #endif p->type = NULL; break; case pt_smoke: //p->size += frametime * 15; break; case pt_decal: // FIXME: this has fairly wacky handling of alpha p->alphafade = cl.time > (p->time2 + cl_decals_time.value) ? (255 / cl_decals_fadetime.value) : 0; #ifndef WORKINGLQUAKE if (cl_entities[p->owner].render.model == p->ownermodel) { Matrix4x4_Transform(&cl_entities[p->owner].render.matrix, p->relativeorigin, p->org); Matrix4x4_Transform3x3(&cl_entities[p->owner].render.matrix, p->relativedirection, p->vel); } else p->type = NULL; #endif break; case pt_raindecal: a = max(0, (cl.time - p->time2) * 40); if (a < 16) p->texnum = tex_rainsplash[a]; else p->type = NULL; break; default: break; } } } cl_numparticles = maxparticle + 1; cl_freeparticle = 0; } #define MAX_PARTICLETEXTURES 64 // particletexture_t is a rectangle in the particlefonttexture typedef struct particletexture_s { rtexture_t *texture; float s1, t1, s2, t2; } particletexture_t; #if WORKINGLQUAKE static int particlefonttexture; #else static rtexturepool_t *particletexturepool; static rtexture_t *particlefonttexture; #endif static particletexture_t particletexture[MAX_PARTICLETEXTURES]; static cvar_t r_drawparticles = {0, "r_drawparticles", "1", "enables drawing of particles"}; #define PARTICLETEXTURESIZE 64 #define PARTICLEFONTSIZE (PARTICLETEXTURESIZE*8) static unsigned char shadebubble(float dx, float dy, vec3_t light) { float dz, f, dot; vec3_t normal; dz = 1 - (dx*dx+dy*dy); if (dz > 0) // it does hit the sphere { f = 0; // back side normal[0] = dx;normal[1] = dy;normal[2] = dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); // front side normal[0] = dx;normal[1] = dy;normal[2] = -dz; VectorNormalize(normal); dot = DotProduct(normal, light); if (dot > 0.5) // interior reflection f += ((dot * 2) - 1); else if (dot < -0.5) // exterior reflection f += ((dot * -2) - 1); f *= 128; f += 16; // just to give it a haze so you can see the outline f = bound(0, f, 255); return (unsigned char) f; } else return 0; } static void setuptex(int texnum, unsigned char *data, unsigned char *particletexturedata) { int basex, basey, y; basex = ((texnum >> 0) & 7) * PARTICLETEXTURESIZE; basey = ((texnum >> 3) & 7) * PARTICLETEXTURESIZE; particletexture[texnum].s1 = (basex + 1) / (float)PARTICLEFONTSIZE; particletexture[texnum].t1 = (basey + 1) / (float)PARTICLEFONTSIZE; particletexture[texnum].s2 = (basex + PARTICLETEXTURESIZE - 1) / (float)PARTICLEFONTSIZE; particletexture[texnum].t2 = (basey + PARTICLETEXTURESIZE - 1) / (float)PARTICLEFONTSIZE; for (y = 0;y < PARTICLETEXTURESIZE;y++) memcpy(particletexturedata + ((basey + y) * PARTICLEFONTSIZE + basex) * 4, data + y * PARTICLETEXTURESIZE * 4, PARTICLETEXTURESIZE * 4); } void particletextureblotch(unsigned char *data, float radius, float red, float green, float blue, float alpha) { int x, y; float cx, cy, dx, dy, f, iradius; unsigned char *d; cx = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f; cy = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f; iradius = 1.0f / radius; alpha *= (1.0f / 255.0f); for (y = 0;y < PARTICLETEXTURESIZE;y++) { for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - cx); dy = (y - cy); f = (1.0f - sqrt(dx * dx + dy * dy) * iradius) * alpha; if (f > 0) { d = data + (y * PARTICLETEXTURESIZE + x) * 4; d[0] += f * (red - d[0]); d[1] += f * (green - d[1]); d[2] += f * (blue - d[2]); } } } } void particletextureclamp(unsigned char *data, int minr, int ming, int minb, int maxr, int maxg, int maxb) { int i; for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4) { data[0] = bound(minr, data[0], maxr); data[1] = bound(ming, data[1], maxg); data[2] = bound(minb, data[2], maxb); } } void particletextureinvert(unsigned char *data) { int i; for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4) { data[0] = 255 - data[0]; data[1] = 255 - data[1]; data[2] = 255 - data[2]; } } // Those loops are in a separate function to work around an optimization bug in Mac OS X's GCC static void R_InitBloodTextures (unsigned char *particletexturedata) { int i, j, k, m; unsigned char data[PARTICLETEXTURESIZE][PARTICLETEXTURESIZE][4]; // blood particles for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); for (k = 0;k < 24;k++) particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/16, 96, 0, 0, 160); //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255); particletextureinvert(&data[0][0][0]); setuptex(tex_bloodparticle[i], &data[0][0][0], particletexturedata); } // blood decals for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); m = 8; for (j = 1;j < 10;j++) for (k = min(j, m - 1);k < m;k++) particletextureblotch(&data[0][0][0], (float)j*PARTICLETEXTURESIZE/64.0f, 96, 0, 0, 192 - j * 8); //particletextureclamp(&data[0][0][0], 32, 32, 32, 255, 255, 255); particletextureinvert(&data[0][0][0]); setuptex(tex_blooddecal[i], &data[0][0][0], particletexturedata); } } static void R_InitParticleTexture (void) { int x, y, d, i, k, m; float dx, dy, radius, f, f2; unsigned char data[PARTICLETEXTURESIZE][PARTICLETEXTURESIZE][4], noise3[64][64], data2[64][16][4]; vec3_t light; unsigned char *particletexturedata; // a note: decals need to modulate (multiply) the background color to // properly darken it (stain), and they need to be able to alpha fade, // this is a very difficult challenge because it means fading to white // (no change to background) rather than black (darkening everything // behind the whole decal polygon), and to accomplish this the texture is // inverted (dark red blood on white background becomes brilliant cyan // and white on black background) so we can alpha fade it to black, then // we invert it again during the blendfunc to make it work... particletexturedata = (unsigned char *)Mem_Alloc(tempmempool, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4); memset(particletexturedata, 255, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4); // smoke for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); do { unsigned char noise1[PARTICLETEXTURESIZE*2][PARTICLETEXTURESIZE*2], noise2[PARTICLETEXTURESIZE*2][PARTICLETEXTURESIZE*2]; fractalnoise(&noise1[0][0], PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/8); fractalnoise(&noise2[0][0], PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/4); m = 0; for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); d = (noise2[y][x] - 128) * 3 + 192; if (d > 0) d = d * (1-(dx*dx+dy*dy)); d = (d * noise1[y][x]) >> 7; d = bound(0, d, 255); data[y][x][3] = (unsigned char) d; if (m < d) m = d; } } } while (m < 224); setuptex(tex_smoke[i], &data[0][0][0], particletexturedata); } // rain splash for (i = 0;i < 16;i++) { memset(&data[0][0][0], 255, sizeof(data)); radius = i * 3.0f / 4.0f / 16.0f; f2 = 255.0f * ((15.0f - i) / 15.0f); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); f = f2 * (1.0 - 4.0f * fabs(radius - sqrt(dx*dx+dy*dy))); data[y][x][3] = (int) (bound(0.0f, f, 255.0f)); } } setuptex(tex_rainsplash[i], &data[0][0][0], particletexturedata); } // normal particle memset(&data[0][0][0], 255, sizeof(data)); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); d = 256 * (1 - (dx*dx+dy*dy)); d = bound(0, d, 255); data[y][x][3] = (unsigned char) d; } } setuptex(tex_particle, &data[0][0][0], particletexturedata); // rain memset(&data[0][0][0], 255, sizeof(data)); light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); // stretch upper half of bubble by +50% and shrink lower half by -50% // (this gives an elongated teardrop shape) if (dy > 0.5f) dy = (dy - 0.5f) * 2.0f; else dy = (dy - 0.5f) / 1.5f; for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); // shrink bubble width to half dx *= 2.0f; data[y][x][3] = shadebubble(dx, dy, light); } } setuptex(tex_raindrop, &data[0][0][0], particletexturedata); // bubble memset(&data[0][0][0], 255, sizeof(data)); light[0] = 1;light[1] = 1;light[2] = 1; VectorNormalize(light); for (y = 0;y < PARTICLETEXTURESIZE;y++) { dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); for (x = 0;x < PARTICLETEXTURESIZE;x++) { dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1); data[y][x][3] = shadebubble(dx, dy, light); } } setuptex(tex_bubble, &data[0][0][0], particletexturedata); // Blood particles and blood decals R_InitBloodTextures (particletexturedata); // bullet decals for (i = 0;i < 8;i++) { memset(&data[0][0][0], 255, sizeof(data)); for (k = 0;k < 12;k++) particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/16, 0, 0, 0, 128); for (k = 0;k < 3;k++) particletextureblotch(&data[0][0][0], PARTICLETEXTURESIZE/2, 0, 0, 0, 160); //particletextureclamp(&data[0][0][0], 64, 64, 64, 255, 255, 255); particletextureinvert(&data[0][0][0]); setuptex(tex_bulletdecal[i], &data[0][0][0], particletexturedata); } #if WORKINGLQUAKE glBindTexture(GL_TEXTURE_2D, (particlefonttexture = gl_extension_number++)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #else #if 0 Image_WriteTGARGBA ("particles/particlefont.tga", PARTICLEFONTSIZE, PARTICLEFONTSIZE, particletexturedata); #endif particlefonttexture = loadtextureimage(particletexturepool, "particles/particlefont.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE); if (!particlefonttexture) particlefonttexture = R_LoadTexture2D(particletexturepool, "particlefont", PARTICLEFONTSIZE, PARTICLEFONTSIZE, particletexturedata, TEXTYPE_RGBA, TEXF_ALPHA | TEXF_PRECACHE, NULL); for (i = 0;i < MAX_PARTICLETEXTURES;i++) particletexture[i].texture = particlefonttexture; // nexbeam fractalnoise(&noise3[0][0], 64, 4); m = 0; for (y = 0;y < 64;y++) { dy = (y - 0.5f*64) / (64*0.5f-1); for (x = 0;x < 16;x++) { dx = (x - 0.5f*16) / (16*0.5f-2); d = (1 - sqrt(fabs(dx))) * noise3[y][x]; data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (unsigned char) bound(0, d, 255); data2[y][x][3] = 255; } } #if 0 Image_WriteTGARGBA ("particles/nexbeam.tga", 64, 64, &data2[0][0][0]); #endif particletexture[tex_beam].texture = loadtextureimage(particletexturepool, "particles/nexbeam.tga", 0, 0, false, TEXF_ALPHA | TEXF_PRECACHE); if (!particletexture[tex_beam].texture) particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "nexbeam", 16, 64, &data2[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL); particletexture[tex_beam].s1 = 0; particletexture[tex_beam].t1 = 0; particletexture[tex_beam].s2 = 1; particletexture[tex_beam].t2 = 1; #endif Mem_Free(particletexturedata); } static void r_part_start(void) { particletexturepool = R_AllocTexturePool(); R_InitParticleTexture (); } static void r_part_shutdown(void) { R_FreeTexturePool(&particletexturepool); } static void r_part_newmap(void) { cl_numparticles = 0; cl_freeparticle = 0; } void R_Particles_Init (void) { Cvar_RegisterVariable(&r_drawparticles); #ifdef WORKINGLQUAKE r_part_start(); #else R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap); #endif } #ifdef WORKINGLQUAKE void R_InitParticles(void) { CL_Particles_Init(); R_Particles_Init(); } #endif float particle_vertex3f[12], particle_texcoord2f[8]; #ifdef WORKINGLQUAKE void R_DrawParticle(particle_t *p) { #else void R_DrawParticle_TransparentCallback(const entity_render_t *ent, int surfacenumber, const rtlight_t *rtlight) { const particle_t *p = particles + surfacenumber; rmeshstate_t m; #endif pblend_t blendmode; float org[3], up2[3], v[3], right[3], up[3], fog, ifog, cr, cg, cb, ca, size; particletexture_t *tex; VectorCopy(p->org, org); blendmode = p->type->blendmode; tex = &particletexture[p->texnum]; cr = p->color[0] * (1.0f / 255.0f); cg = p->color[1] * (1.0f / 255.0f); cb = p->color[2] * (1.0f / 255.0f); ca = p->alpha * (1.0f / 255.0f); if (blendmode == PBLEND_MOD) { cr *= ca; cg *= ca; cb *= ca; cr = min(cr, 1); cg = min(cg, 1); cb = min(cb, 1); ca = 1; } ca /= cl_particles_quality.value; #ifndef WORKINGLQUAKE if (p->type->lighting) { float ambient[3], diffuse[3], diffusenormal[3]; R_CompleteLightPoint(ambient, diffuse, diffusenormal, org, true); cr *= (ambient[0] + 0.5 * diffuse[0]); cg *= (ambient[1] + 0.5 * diffuse[1]); cb *= (ambient[2] + 0.5 * diffuse[2]); } if (fogenabled) { fog = VERTEXFOGTABLE(VectorDistance(org, r_vieworigin)); ifog = 1 - fog; cr = cr * ifog; cg = cg * ifog; cb = cb * ifog; if (blendmode == PBLEND_ALPHA) { cr += fogcolor[0] * fog; cg += fogcolor[1] * fog; cb += fogcolor[2] * fog; } } R_Mesh_Matrix(&identitymatrix); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(tex->texture); m.pointer_texcoord[0] = particle_texcoord2f; m.pointer_vertex = particle_vertex3f; R_Mesh_State(&m); GL_Color(cr, cg, cb, ca); if (blendmode == PBLEND_ALPHA) GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); else if (blendmode == PBLEND_ADD) GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); else //if (blendmode == PBLEND_MOD) GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR); GL_DepthMask(false); GL_DepthTest(true); #endif size = p->size * cl_particles_size.value; if (p->type->orientation == PARTICLE_BILLBOARD || p->type->orientation == PARTICLE_ORIENTED_DOUBLESIDED) { if (p->type->orientation == PARTICLE_ORIENTED_DOUBLESIDED) { // double-sided if (DotProduct(p->vel, r_vieworigin) > DotProduct(p->vel, org)) { VectorNegate(p->vel, v); VectorVectors(v, right, up); } else VectorVectors(p->vel, right, up); VectorScale(right, size, right); VectorScale(up, size, up); } else { VectorScale(r_viewleft, -size, right); VectorScale(r_viewup, size, up); } particle_vertex3f[ 0] = org[0] - right[0] - up[0]; particle_vertex3f[ 1] = org[1] - right[1] - up[1]; particle_vertex3f[ 2] = org[2] - right[2] - up[2]; particle_vertex3f[ 3] = org[0] - right[0] + up[0]; particle_vertex3f[ 4] = org[1] - right[1] + up[1]; particle_vertex3f[ 5] = org[2] - right[2] + up[2]; particle_vertex3f[ 6] = org[0] + right[0] + up[0]; particle_vertex3f[ 7] = org[1] + right[1] + up[1]; particle_vertex3f[ 8] = org[2] + right[2] + up[2]; particle_vertex3f[ 9] = org[0] + right[0] - up[0]; particle_vertex3f[10] = org[1] + right[1] - up[1]; particle_vertex3f[11] = org[2] + right[2] - up[2]; particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2; particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1; particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1; particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2; } else if (p->type->orientation == PARTICLE_SPARK) { VectorMA(p->org, -0.02, p->vel, v); VectorMA(p->org, 0.02, p->vel, up2); R_CalcBeam_Vertex3f(particle_vertex3f, v, up2, size); particle_texcoord2f[0] = tex->s1;particle_texcoord2f[1] = tex->t2; particle_texcoord2f[2] = tex->s1;particle_texcoord2f[3] = tex->t1; particle_texcoord2f[4] = tex->s2;particle_texcoord2f[5] = tex->t1; particle_texcoord2f[6] = tex->s2;particle_texcoord2f[7] = tex->t2; } else if (p->type->orientation == PARTICLE_BEAM) { R_CalcBeam_Vertex3f(particle_vertex3f, p->org, p->vel, size); VectorSubtract(p->vel, p->org, up); VectorNormalize(up); v[0] = DotProduct(p->org, up) * (1.0f / 64.0f); v[1] = DotProduct(p->vel, up) * (1.0f / 64.0f); particle_texcoord2f[0] = 1;particle_texcoord2f[1] = v[0]; particle_texcoord2f[2] = 0;particle_texcoord2f[3] = v[0]; particle_texcoord2f[4] = 0;particle_texcoord2f[5] = v[1]; particle_texcoord2f[6] = 1;particle_texcoord2f[7] = v[1]; } else { Con_Printf("R_DrawParticles: unknown particle orientation %i\n", p->type->orientation); return; } #if WORKINGLQUAKE if (blendmode == PBLEND_ALPHA) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); else if (blendmode == PBLEND_ADD) glBlendFunc(GL_SRC_ALPHA, GL_ONE); else //if (blendmode == PBLEND_MOD) glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR); glColor4f(cr, cg, cb, ca); glBegin(GL_QUADS); glTexCoord2f(particle_texcoord2f[0], particle_texcoord2f[1]);glVertex3f(particle_vertex3f[ 0], particle_vertex3f[ 1], particle_vertex3f[ 2]); glTexCoord2f(particle_texcoord2f[2], particle_texcoord2f[3]);glVertex3f(particle_vertex3f[ 3], particle_vertex3f[ 4], particle_vertex3f[ 5]); glTexCoord2f(particle_texcoord2f[4], particle_texcoord2f[5]);glVertex3f(particle_vertex3f[ 6], particle_vertex3f[ 7], particle_vertex3f[ 8]); glTexCoord2f(particle_texcoord2f[6], particle_texcoord2f[7]);glVertex3f(particle_vertex3f[ 9], particle_vertex3f[10], particle_vertex3f[11]); glEnd(); #else R_Mesh_Draw(0, 4, 2, polygonelements); #endif } void R_DrawParticles (void) { int i; float minparticledist; particle_t *p; #ifdef WORKINGLQUAKE CL_MoveParticles(); #endif // LordHavoc: early out conditions if ((!cl_numparticles) || (!r_drawparticles.integer)) return; minparticledist = DotProduct(r_vieworigin, r_viewforward) + 4.0f; #ifdef WORKINGLQUAKE glBindTexture(GL_TEXTURE_2D, particlefonttexture); glEnable(GL_BLEND); glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glDepthMask(0); // LordHavoc: only render if not too close for (i = 0, p = particles;i < cl_numparticles;i++, p++) if (p->type && DotProduct(p->org, r_viewforward) >= minparticledist) R_DrawParticle(p); glDepthMask(1); glDisable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); #else // LordHavoc: only render if not too close for (i = 0, p = particles;i < cl_numparticles;i++, p++) { if (p->type) { renderstats.particles++; if (DotProduct(p->org, r_viewforward) >= minparticledist || p->type->orientation == PARTICLE_BEAM) { if (p->type == particletype + pt_decal) R_DrawParticle_TransparentCallback(0, i, 0); else R_MeshQueue_AddTransparent(p->org, R_DrawParticle_TransparentCallback, NULL, i, NULL); } } } #endif }