#include "quakedef.h" #include "polygon.h" #include "collision.h" #define COLLISION_EDGEDIR_DOT_EPSILON (0.999f) #define COLLISION_EDGECROSS_MINLENGTH2 (1.0f / 4194304.0f) #define COLLISION_SNAPSCALE (32.0f) #define COLLISION_SNAP (1.0f / COLLISION_SNAPSCALE) #define COLLISION_SNAP2 (2.0f / COLLISION_SNAPSCALE) #define COLLISION_PLANE_DIST_EPSILON (2.0f / COLLISION_SNAPSCALE) cvar_t collision_impactnudge = {CVAR_CLIENT | CVAR_SERVER, "collision_impactnudge", "0.03125", "how much to back off from the impact"}; cvar_t collision_extendmovelength = {CVAR_CLIENT | CVAR_SERVER, "collision_extendmovelength", "16", "internal bias on trace length to ensure detection of collisions within the collision_impactnudge distance so that short moves do not degrade across frames (this does not alter the final trace length)"}; cvar_t collision_extendtraceboxlength = {CVAR_CLIENT | CVAR_SERVER, "collision_extendtraceboxlength", "1", "internal bias for tracebox() qc builtin to account for collision_impactnudge (this does not alter the final trace length)"}; cvar_t collision_extendtracelinelength = {CVAR_CLIENT | CVAR_SERVER, "collision_extendtracelinelength", "1", "internal bias for traceline() qc builtin to account for collision_impactnudge (this does not alter the final trace length)"}; cvar_t collision_debug_tracelineasbox = {CVAR_CLIENT | CVAR_SERVER, "collision_debug_tracelineasbox", "0", "workaround for any bugs in Collision_TraceLineBrushFloat by using Collision_TraceBrushBrushFloat"}; cvar_t collision_cache = {CVAR_CLIENT | CVAR_SERVER, "collision_cache", "1", "store results of collision traces for next frame to reuse if possible (optimization)"}; cvar_t collision_triangle_bevelsides = {CVAR_CLIENT | CVAR_SERVER, "collision_triangle_bevelsides", "0", "generate sloped edge planes on triangles - if 0, see axialedgeplanes"}; cvar_t collision_triangle_axialsides = {CVAR_CLIENT | CVAR_SERVER, "collision_triangle_axialsides", "1", "generate axially-aligned edge planes on triangles - otherwise use perpendicular edge planes"}; cvar_t collision_bih_fullrecursion = {CVAR_CLIENT | CVAR_SERVER, "collision_bih_fullrecursion", "0", "debugging option to disable the bih recursion optimizations by iterating the entire tree"}; mempool_t *collision_mempool; void Collision_Init (void) { Cvar_RegisterVariable(&collision_impactnudge); Cvar_RegisterVariable(&collision_extendmovelength); Cvar_RegisterVariable(&collision_extendtracelinelength); Cvar_RegisterVariable(&collision_extendtraceboxlength); Cvar_RegisterVariable(&collision_debug_tracelineasbox); Cvar_RegisterVariable(&collision_cache); Cvar_RegisterVariable(&collision_triangle_bevelsides); Cvar_RegisterVariable(&collision_triangle_axialsides); Cvar_RegisterVariable(&collision_bih_fullrecursion); collision_mempool = Mem_AllocPool("collision cache", 0, NULL); Collision_Cache_Init(collision_mempool); } static void Collision_PrintBrushAsQHull(colbrushf_t *brush, const char *name) { int i; Con_Printf("3 %s\n%i\n", name, brush->numpoints); for (i = 0;i < brush->numpoints;i++) Con_Printf("%f %f %f\n", brush->points[i].v[0], brush->points[i].v[1], brush->points[i].v[2]); // FIXME: optimize! Con_Printf("4\n%i\n", brush->numplanes); for (i = 0;i < brush->numplanes;i++) Con_Printf("%f %f %f %f\n", brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist); } static void Collision_ValidateBrush(colbrushf_t *brush) { int j, k, pointsoffplanes, pointonplanes, pointswithinsufficientplanes, printbrush; float d; printbrush = false; if (!brush->numpoints) { Con_Print("Collision_ValidateBrush: brush with no points!\n"); printbrush = true; } #if 0 // it's ok for a brush to have one point and no planes... if (brush->numplanes == 0 && brush->numpoints != 1) { Con_Print("Collision_ValidateBrush: brush with no planes and more than one point!\n"); printbrush = true; } #endif if (brush->numplanes) { pointsoffplanes = 0; pointswithinsufficientplanes = 0; for (k = 0;k < brush->numplanes;k++) if (DotProduct(brush->planes[k].normal, brush->planes[k].normal) < 0.0001f) Con_Printf("Collision_ValidateBrush: plane #%i (%f %f %f %f) is degenerate\n", k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist); for (j = 0;j < brush->numpoints;j++) { pointonplanes = 0; for (k = 0;k < brush->numplanes;k++) { d = DotProduct(brush->points[j].v, brush->planes[k].normal) - brush->planes[k].dist; if (d > COLLISION_PLANE_DIST_EPSILON) { Con_Printf("Collision_ValidateBrush: point #%i (%f %f %f) infront of plane #%i (%f %f %f %f)\n", j, brush->points[j].v[0], brush->points[j].v[1], brush->points[j].v[2], k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist); printbrush = true; } if (fabs(d) > COLLISION_PLANE_DIST_EPSILON) pointsoffplanes++; else pointonplanes++; } if (pointonplanes < 3) pointswithinsufficientplanes++; } if (pointswithinsufficientplanes) { Con_Print("Collision_ValidateBrush: some points have insufficient planes, every point must be on at least 3 planes to form a corner.\n"); printbrush = true; } if (pointsoffplanes == 0) // all points are on all planes { Con_Print("Collision_ValidateBrush: all points lie on all planes (degenerate, no brush volume!)\n"); printbrush = true; } } if (printbrush) Collision_PrintBrushAsQHull(brush, "unnamed"); } static float nearestplanedist_float(const float *normal, const colpointf_t *points, int numpoints) { float dist, bestdist; if (!numpoints) return 0; bestdist = DotProduct(points->v, normal); points++; while(--numpoints) { dist = DotProduct(points->v, normal); bestdist = min(bestdist, dist); points++; } return bestdist; } static float furthestplanedist_float(const float *normal, const colpointf_t *points, int numpoints) { float dist, bestdist; if (!numpoints) return 0; bestdist = DotProduct(points->v, normal); points++; while(--numpoints) { dist = DotProduct(points->v, normal); bestdist = max(bestdist, dist); points++; } return bestdist; } static void Collision_CalcEdgeDirsForPolygonBrushFloat(colbrushf_t *brush) { int i, j; for (i = 0, j = brush->numpoints - 1;i < brush->numpoints;j = i, i++) VectorSubtract(brush->points[i].v, brush->points[j].v, brush->edgedirs[j].v); } colbrushf_t *Collision_NewBrushFromPlanes(mempool_t *mempool, int numoriginalplanes, const colplanef_t *originalplanes, int supercontents, int q3surfaceflags, const texture_t *texture, int hasaabbplanes) { // TODO: planesbuf could be replaced by a remapping table int j, k, w, xyzflags; int numpointsbuf = 0, maxpointsbuf = 256, numedgedirsbuf = 0, maxedgedirsbuf = 256, numplanesbuf = 0, maxplanesbuf = 256, numelementsbuf = 0, maxelementsbuf = 256; int isaabb = true; double maxdist; colbrushf_t *brush; colpointf_t pointsbuf[256]; colpointf_t edgedirsbuf[256]; colplanef_t planesbuf[256]; int elementsbuf[1024]; int polypointbuf[256]; int pmaxpoints = 64; int pnumpoints; double p[2][3*64]; #if 0 // enable these if debugging to avoid seeing garbage in unused data- memset(pointsbuf, 0, sizeof(pointsbuf)); memset(edgedirsbuf, 0, sizeof(edgedirsbuf)); memset(planesbuf, 0, sizeof(planesbuf)); memset(elementsbuf, 0, sizeof(elementsbuf)); memset(polypointbuf, 0, sizeof(polypointbuf)); memset(p, 0, sizeof(p)); #endif // check if there are too many planes and skip the brush if (numoriginalplanes >= maxplanesbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many planes for buffer\n"); return NULL; } // figure out how large a bounding box we need to properly compute this brush maxdist = 0; for (j = 0;j < numoriginalplanes;j++) maxdist = max(maxdist, fabs(originalplanes[j].dist)); // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024 maxdist = floor(maxdist * (4.0 / 1024.0) + 2) * 1024.0; // construct a collision brush (points, planes, and renderable mesh) from // a set of planes, this also optimizes out any unnecessary planes (ones // whose polygon is clipped away by the other planes) for (j = 0;j < numoriginalplanes;j++) { int n; // add the new plane VectorCopy(originalplanes[j].normal, planesbuf[numplanesbuf].normal); planesbuf[numplanesbuf].dist = originalplanes[j].dist; planesbuf[numplanesbuf].q3surfaceflags = originalplanes[j].q3surfaceflags; planesbuf[numplanesbuf].texture = originalplanes[j].texture; numplanesbuf++; // create a large polygon from the plane w = 0; PolygonD_QuadForPlane(p[w], originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist, maxdist); pnumpoints = 4; // clip it by all other planes for (k = 0;k < numoriginalplanes && pnumpoints >= 3 && pnumpoints <= pmaxpoints;k++) { // skip the plane this polygon // (nothing happens if it is processed, this is just an optimization) if (k != j) { // we want to keep the inside of the brush plane so we flip // the cutting plane PolygonD_Divide(pnumpoints, p[w], -originalplanes[k].normal[0], -originalplanes[k].normal[1], -originalplanes[k].normal[2], -originalplanes[k].dist, COLLISION_PLANE_DIST_EPSILON, pmaxpoints, p[!w], &pnumpoints, 0, NULL, NULL, NULL); w = !w; } } // if nothing is left, skip it if (pnumpoints < 3) { //Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon for plane %f %f %f %f clipped away\n", originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist); continue; } for (k = 0;k < pnumpoints;k++) { int l, m; m = 0; for (l = 0;l < numoriginalplanes;l++) if (fabs(DotProduct(&p[w][k*3], originalplanes[l].normal) - originalplanes[l].dist) < COLLISION_PLANE_DIST_EPSILON) m++; if (m < 3) break; } if (k < pnumpoints) { Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon point does not lie on at least 3 planes\n"); //return NULL; } // check if there are too many polygon vertices for buffer if (pnumpoints > pmaxpoints) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n"); return NULL; } // check if there are too many triangle elements for buffer if (numelementsbuf + (pnumpoints - 2) * 3 > maxelementsbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many triangle elements for buffer\n"); return NULL; } // add the unique points for this polygon for (k = 0;k < pnumpoints;k++) { int m; float v[3]; // downgrade to float precision before comparing VectorCopy(&p[w][k*3], v); // check if there is already a matching point (no duplicates) for (m = 0;m < numpointsbuf;m++) if (VectorDistance2(v, pointsbuf[m].v) < COLLISION_SNAP2) break; // if there is no match, add a new one if (m == numpointsbuf) { // check if there are too many and skip the brush if (numpointsbuf >= maxpointsbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n"); return NULL; } // add the new one VectorCopy(&p[w][k*3], pointsbuf[numpointsbuf].v); numpointsbuf++; } // store the index into a buffer polypointbuf[k] = m; } // add the triangles for the polygon // (this particular code makes a triangle fan) for (k = 0;k < pnumpoints - 2;k++) { elementsbuf[numelementsbuf++] = polypointbuf[0]; elementsbuf[numelementsbuf++] = polypointbuf[k + 1]; elementsbuf[numelementsbuf++] = polypointbuf[k + 2]; } // add the unique edgedirs for this polygon for (k = 0, n = pnumpoints-1;k < pnumpoints;n = k, k++) { int m; float dir[3]; // downgrade to float precision before comparing VectorSubtract(&p[w][k*3], &p[w][n*3], dir); VectorNormalize(dir); // check if there is already a matching edgedir (no duplicates) for (m = 0;m < numedgedirsbuf;m++) if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON) break; // skip this if there is if (m < numedgedirsbuf) continue; // try again with negated edgedir VectorNegate(dir, dir); // check if there is already a matching edgedir (no duplicates) for (m = 0;m < numedgedirsbuf;m++) if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON) break; // if there is no match, add a new one if (m == numedgedirsbuf) { // check if there are too many and skip the brush if (numedgedirsbuf >= maxedgedirsbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many edgedirs for buffer\n"); return NULL; } // add the new one VectorCopy(dir, edgedirsbuf[numedgedirsbuf].v); numedgedirsbuf++; } } // if any normal is not purely axial, it's not an axis-aligned box if (isaabb && (originalplanes[j].normal[0] == 0) + (originalplanes[j].normal[1] == 0) + (originalplanes[j].normal[2] == 0) < 2) isaabb = false; } // if nothing is left, there's nothing to allocate if (numplanesbuf < 4) { Con_DPrintf("Collision_NewBrushFromPlanes: failed to build collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf); return NULL; } // if no triangles or points could be constructed, then this routine failed but the brush is not discarded if (numelementsbuf < 12 || numpointsbuf < 4) Con_DPrintf("Collision_NewBrushFromPlanes: unable to rebuild triangles/points for collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf); // validate plane distances for (j = 0;j < numplanesbuf;j++) { float d = furthestplanedist_float(planesbuf[j].normal, pointsbuf, numpointsbuf); if (fabs(planesbuf[j].dist - d) > COLLISION_PLANE_DIST_EPSILON) Con_DPrintf("plane %f %f %f %f mismatches dist %f\n", planesbuf[j].normal[0], planesbuf[j].normal[1], planesbuf[j].normal[2], planesbuf[j].dist, d); } // allocate the brush and copy to it brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colpointf_t) * numpointsbuf + sizeof(colpointf_t) * numedgedirsbuf + sizeof(colplanef_t) * numplanesbuf + sizeof(int) * numelementsbuf); brush->isaabb = isaabb; brush->hasaabbplanes = hasaabbplanes; brush->supercontents = supercontents; brush->numplanes = numplanesbuf; brush->numedgedirs = numedgedirsbuf; brush->numpoints = numpointsbuf; brush->numtriangles = numelementsbuf / 3; brush->planes = (colplanef_t *)(brush + 1); brush->points = (colpointf_t *)(brush->planes + brush->numplanes); brush->edgedirs = (colpointf_t *)(brush->points + brush->numpoints); brush->elements = (int *)(brush->points + brush->numpoints); brush->q3surfaceflags = q3surfaceflags; brush->texture = texture; for (j = 0;j < brush->numpoints;j++) { brush->points[j].v[0] = pointsbuf[j].v[0]; brush->points[j].v[1] = pointsbuf[j].v[1]; brush->points[j].v[2] = pointsbuf[j].v[2]; } for (j = 0;j < brush->numedgedirs;j++) { brush->edgedirs[j].v[0] = edgedirsbuf[j].v[0]; brush->edgedirs[j].v[1] = edgedirsbuf[j].v[1]; brush->edgedirs[j].v[2] = edgedirsbuf[j].v[2]; } for (j = 0;j < brush->numplanes;j++) { brush->planes[j].normal[0] = planesbuf[j].normal[0]; brush->planes[j].normal[1] = planesbuf[j].normal[1]; brush->planes[j].normal[2] = planesbuf[j].normal[2]; brush->planes[j].dist = planesbuf[j].dist; brush->planes[j].q3surfaceflags = planesbuf[j].q3surfaceflags; brush->planes[j].texture = planesbuf[j].texture; } for (j = 0;j < brush->numtriangles * 3;j++) brush->elements[j] = elementsbuf[j]; xyzflags = 0; VectorClear(brush->mins); VectorClear(brush->maxs); for (j = 0;j < min(6, numoriginalplanes);j++) { if (originalplanes[j].normal[0] == 1) {xyzflags |= 1;brush->maxs[0] = originalplanes[j].dist;} else if (originalplanes[j].normal[0] == -1) {xyzflags |= 2;brush->mins[0] = -originalplanes[j].dist;} else if (originalplanes[j].normal[1] == 1) {xyzflags |= 4;brush->maxs[1] = originalplanes[j].dist;} else if (originalplanes[j].normal[1] == -1) {xyzflags |= 8;brush->mins[1] = -originalplanes[j].dist;} else if (originalplanes[j].normal[2] == 1) {xyzflags |= 16;brush->maxs[2] = originalplanes[j].dist;} else if (originalplanes[j].normal[2] == -1) {xyzflags |= 32;brush->mins[2] = -originalplanes[j].dist;} } // if not all xyzflags were set, then this is not a brush from q3map/q3map2, and needs reconstruction of the bounding box // (this case works for any brush with valid points, but sometimes brushes are not reconstructed properly and hence the points are not valid, so this is reserved as a fallback case) if (xyzflags != 63) { VectorCopy(brush->points[0].v, brush->mins); VectorCopy(brush->points[0].v, brush->maxs); for (j = 1;j < brush->numpoints;j++) { brush->mins[0] = min(brush->mins[0], brush->points[j].v[0]); brush->mins[1] = min(brush->mins[1], brush->points[j].v[1]); brush->mins[2] = min(brush->mins[2], brush->points[j].v[2]); brush->maxs[0] = max(brush->maxs[0], brush->points[j].v[0]); brush->maxs[1] = max(brush->maxs[1], brush->points[j].v[1]); brush->maxs[2] = max(brush->maxs[2], brush->points[j].v[2]); } } brush->mins[0] -= 1; brush->mins[1] -= 1; brush->mins[2] -= 1; brush->maxs[0] += 1; brush->maxs[1] += 1; brush->maxs[2] += 1; Collision_ValidateBrush(brush); return brush; } void Collision_CalcPlanesForTriangleBrushFloat(colbrushf_t *brush) { float edge0[3], edge1[3], edge2[3]; colpointf_t *p; TriangleNormal(brush->points[0].v, brush->points[1].v, brush->points[2].v, brush->planes[0].normal); if (DotProduct(brush->planes[0].normal, brush->planes[0].normal) < 0.0001f) { // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out) // note that some of these exist in q3bsp bspline patches brush->numplanes = 0; return; } // there are 5 planes (front, back, sides) and 3 edges brush->numplanes = 5; brush->numedgedirs = 3; VectorNormalize(brush->planes[0].normal); brush->planes[0].dist = DotProduct(brush->points->v, brush->planes[0].normal); VectorNegate(brush->planes[0].normal, brush->planes[1].normal); brush->planes[1].dist = -brush->planes[0].dist; // edge directions are easy to calculate VectorSubtract(brush->points[2].v, brush->points[0].v, edge0); VectorSubtract(brush->points[0].v, brush->points[1].v, edge1); VectorSubtract(brush->points[1].v, brush->points[2].v, edge2); VectorCopy(edge0, brush->edgedirs[0].v); VectorCopy(edge1, brush->edgedirs[1].v); VectorCopy(edge2, brush->edgedirs[2].v); // now select an algorithm to generate the side planes if (collision_triangle_bevelsides.integer) { // use 45 degree slopes at the edges of the triangle to make a sinking trace error turn into "riding up" the slope rather than getting stuck CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal); CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal); CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal); VectorNormalize(brush->planes[2].normal); VectorNormalize(brush->planes[3].normal); VectorNormalize(brush->planes[4].normal); VectorAdd(brush->planes[2].normal, brush->planes[0].normal, brush->planes[2].normal); VectorAdd(brush->planes[3].normal, brush->planes[0].normal, brush->planes[3].normal); VectorAdd(brush->planes[4].normal, brush->planes[0].normal, brush->planes[4].normal); VectorNormalize(brush->planes[2].normal); VectorNormalize(brush->planes[3].normal); VectorNormalize(brush->planes[4].normal); } else if (collision_triangle_axialsides.integer) { float projectionnormal[3], projectionedge0[3], projectionedge1[3], projectionedge2[3]; int i, best; float dist, bestdist; bestdist = fabs(brush->planes[0].normal[0]); best = 0; for (i = 1;i < 3;i++) { dist = fabs(brush->planes[0].normal[i]); if (bestdist < dist) { bestdist = dist; best = i; } } VectorClear(projectionnormal); if (brush->planes[0].normal[best] < 0) projectionnormal[best] = -1; else projectionnormal[best] = 1; VectorCopy(edge0, projectionedge0); VectorCopy(edge1, projectionedge1); VectorCopy(edge2, projectionedge2); projectionedge0[best] = 0; projectionedge1[best] = 0; projectionedge2[best] = 0; CrossProduct(projectionedge0, projectionnormal, brush->planes[2].normal); CrossProduct(projectionedge1, projectionnormal, brush->planes[3].normal); CrossProduct(projectionedge2, projectionnormal, brush->planes[4].normal); VectorNormalize(brush->planes[2].normal); VectorNormalize(brush->planes[3].normal); VectorNormalize(brush->planes[4].normal); } else { CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal); CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal); CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal); VectorNormalize(brush->planes[2].normal); VectorNormalize(brush->planes[3].normal); VectorNormalize(brush->planes[4].normal); } brush->planes[2].dist = DotProduct(brush->points[2].v, brush->planes[2].normal); brush->planes[3].dist = DotProduct(brush->points[0].v, brush->planes[3].normal); brush->planes[4].dist = DotProduct(brush->points[1].v, brush->planes[4].normal); if (developer_extra.integer) { int i; // validity check - will be disabled later Collision_ValidateBrush(brush); for (i = 0;i < brush->numplanes;i++) { int j; for (j = 0, p = brush->points;j < brush->numpoints;j++, p++) if (DotProduct(p->v, brush->planes[i].normal) > brush->planes[i].dist + COLLISION_PLANE_DIST_EPSILON) Con_DPrintf("Error in brush plane generation, plane %i\n", i); } } } // NOTE: start and end of each brush pair must have same numplanes/numpoints void Collision_TraceBrushBrushFloat(trace_t *trace, const colbrushf_t *trace_start, const colbrushf_t *trace_end, const colbrushf_t *other_start, const colbrushf_t *other_end) { int nplane, nplane2, nedge1, nedge2, hitq3surfaceflags = 0; int tracenumedgedirs = trace_start->numedgedirs; //int othernumedgedirs = other_start->numedgedirs; int tracenumpoints = trace_start->numpoints; int othernumpoints = other_start->numpoints; int numplanes1 = other_start->numplanes; int numplanes2 = numplanes1 + trace_start->numplanes; int numplanes3 = numplanes2 + trace_start->numedgedirs * other_start->numedgedirs * 2; vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1; vec4_t startplane; vec4_t endplane; vec4_t newimpactplane; const texture_t *hittexture = NULL; vec_t startdepth = 1; vec3_t startdepthnormal; const texture_t *starttexture = NULL; VectorClear(startdepthnormal); Vector4Clear(newimpactplane); // fast case for AABB vs compiled brushes (which begin with AABB planes and also have precomputed bevels for AABB collisions) if (trace_start->isaabb && other_start->hasaabbplanes) numplanes3 = numplanes2 = numplanes1; // Separating Axis Theorem: // if a supporting vector (plane normal) can be found that separates two // objects, they are not colliding. // // Minkowski Sum: // reduce the size of one object to a point while enlarging the other to // represent the space that point can not occupy. // // try every plane we can construct between the two brushes and measure // the distance between them. for (nplane = 0;nplane < numplanes3;nplane++) { if (nplane < numplanes1) { nplane2 = nplane; VectorCopy(other_start->planes[nplane2].normal, startplane); VectorCopy(other_end->planes[nplane2].normal, endplane); } else if (nplane < numplanes2) { nplane2 = nplane - numplanes1; VectorCopy(trace_start->planes[nplane2].normal, startplane); VectorCopy(trace_end->planes[nplane2].normal, endplane); } else { // pick an edgedir from each brush and cross them nplane2 = nplane - numplanes2; nedge1 = nplane2 >> 1; nedge2 = nedge1 / tracenumedgedirs; nedge1 -= nedge2 * tracenumedgedirs; if (nplane2 & 1) { CrossProduct(trace_start->edgedirs[nedge1].v, other_start->edgedirs[nedge2].v, startplane); CrossProduct(trace_end->edgedirs[nedge1].v, other_end->edgedirs[nedge2].v, endplane); } else { CrossProduct(other_start->edgedirs[nedge2].v, trace_start->edgedirs[nedge1].v, startplane); CrossProduct(other_end->edgedirs[nedge2].v, trace_end->edgedirs[nedge1].v, endplane); } if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2 || VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2) continue; // degenerate crossproducts VectorNormalize(startplane); VectorNormalize(endplane); } startplane[3] = furthestplanedist_float(startplane, other_start->points, othernumpoints); endplane[3] = furthestplanedist_float(endplane, other_end->points, othernumpoints); startdist = nearestplanedist_float(startplane, trace_start->points, tracenumpoints) - startplane[3]; enddist = nearestplanedist_float(endplane, trace_end->points, tracenumpoints) - endplane[3]; //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist)); // aside from collisions, this is also used for error correction if (startdist <= 0.0f && nplane < numplanes1 && (startdepth < startdist || startdepth == 1)) { startdepth = startdist; VectorCopy(startplane, startdepthnormal); starttexture = other_start->planes[nplane2].texture; } if (startdist > enddist) { // moving into brush if (enddist > 0.0f) return; if (startdist >= 0) { // enter imove = 1 / (startdist - enddist); f = startdist * imove; // check if this will reduce the collision time range if (enterfrac < f) { // reduced collision time range enterfrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; // calculate the nudged fraction and impact normal we'll // need if we accept this collision later enterfrac2 = (startdist - collision_impactnudge.value) * imove; // if the collision would be further away than the trace's // existing collision data, we don't care about this // collision if (enterfrac2 >= trace->fraction) return; ie = 1.0f - enterfrac; newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac; newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac; newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac; newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac; if (nplane < numplanes1) { // use the plane from other nplane2 = nplane; hitq3surfaceflags = other_start->planes[nplane2].q3surfaceflags; hittexture = other_start->planes[nplane2].texture; } else if (nplane < numplanes2) { // use the plane from trace nplane2 = nplane - numplanes1; hitq3surfaceflags = trace_start->planes[nplane2].q3surfaceflags; hittexture = trace_start->planes[nplane2].texture; } else { hitq3surfaceflags = other_start->q3surfaceflags; hittexture = other_start->texture; } } } } else { // moving out of brush if (startdist >= 0) return; if (enddist > 0) { // leave f = startdist / (startdist - enddist); // check if this will reduce the collision time range if (leavefrac > f) { // reduced collision time range leavefrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; } } } } // at this point we know the trace overlaps the brush because it was not // rejected at any point in the loop above // see if the trace started outside the brush or not if (enterfrac > -1) { // started outside, and overlaps, therefore there is a collision here // store out the impact information if ((trace->hitsupercontentsmask & other_start->supercontents) && !(trace->skipsupercontentsmask & other_start->supercontents) && !(trace->skipmaterialflagsmask & (hittexture ? hittexture->currentmaterialflags : 0))) { trace->hitsupercontents = other_start->supercontents; trace->hitq3surfaceflags = hitq3surfaceflags; trace->hittexture = hittexture; trace->fraction = bound(0, enterfrac2, 1); VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; } } else { // started inside, update startsolid and friends trace->startsupercontents |= other_start->supercontents; if ((trace->hitsupercontentsmask & other_start->supercontents) && !(trace->skipsupercontentsmask & other_start->supercontents) && !(trace->skipmaterialflagsmask & (starttexture ? starttexture->currentmaterialflags : 0))) { trace->startsolid = true; if (leavefrac < 1) trace->allsolid = true; VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; if (trace->startdepth > startdepth) { trace->startdepth = startdepth; VectorCopy(startdepthnormal, trace->startdepthnormal); trace->starttexture = starttexture; } } } } // NOTE: start and end of each brush pair must have same numplanes/numpoints void Collision_TraceLineBrushFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const colbrushf_t *other_start, const colbrushf_t *other_end) { int nplane, hitq3surfaceflags = 0; int numplanes = other_start->numplanes; vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1; vec4_t startplane; vec4_t endplane; vec4_t newimpactplane; const texture_t *hittexture = NULL; vec_t startdepth = 1; vec3_t startdepthnormal; const texture_t *starttexture = NULL; if (collision_debug_tracelineasbox.integer) { colboxbrushf_t thisbrush_start, thisbrush_end; Collision_BrushForBox(&thisbrush_start, linestart, linestart, 0, 0, NULL); Collision_BrushForBox(&thisbrush_end, lineend, lineend, 0, 0, NULL); Collision_TraceBrushBrushFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, other_start, other_end); return; } VectorClear(startdepthnormal); Vector4Clear(newimpactplane); // Separating Axis Theorem: // if a supporting vector (plane normal) can be found that separates two // objects, they are not colliding. // // Minkowski Sum: // reduce the size of one object to a point while enlarging the other to // represent the space that point can not occupy. // // try every plane we can construct between the two brushes and measure // the distance between them. for (nplane = 0;nplane < numplanes;nplane++) { VectorCopy(other_start->planes[nplane].normal, startplane); startplane[3] = other_start->planes[nplane].dist; VectorCopy(other_end->planes[nplane].normal, endplane); endplane[3] = other_end->planes[nplane].dist; startdist = DotProduct(linestart, startplane) - startplane[3]; enddist = DotProduct(lineend, endplane) - endplane[3]; //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist)); // aside from collisions, this is also used for error correction if (startdist <= 0.0f && (startdepth < startdist || startdepth == 1)) { startdepth = startdist; VectorCopy(startplane, startdepthnormal); starttexture = other_start->planes[nplane].texture; } if (startdist > enddist) { // moving into brush if (enddist > 0.0f) return; if (startdist > 0) { // enter imove = 1 / (startdist - enddist); f = startdist * imove; // check if this will reduce the collision time range if (enterfrac < f) { // reduced collision time range enterfrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; // calculate the nudged fraction and impact normal we'll // need if we accept this collision later enterfrac2 = (startdist - collision_impactnudge.value) * imove; // if the collision would be further away than the trace's // existing collision data, we don't care about this // collision if (enterfrac2 >= trace->fraction) return; ie = 1.0f - enterfrac; newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac; newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac; newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac; newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac; hitq3surfaceflags = other_start->planes[nplane].q3surfaceflags; hittexture = other_start->planes[nplane].texture; } } } else { // moving out of brush if (startdist > 0) return; if (enddist > 0) { // leave f = startdist / (startdist - enddist); // check if this will reduce the collision time range if (leavefrac > f) { // reduced collision time range leavefrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; } } } } // at this point we know the trace overlaps the brush because it was not // rejected at any point in the loop above // see if the trace started outside the brush or not if (enterfrac > -1) { // started outside, and overlaps, therefore there is a collision here // store out the impact information if ((trace->hitsupercontentsmask & other_start->supercontents) && !(trace->skipsupercontentsmask & other_start->supercontents) && !(trace->skipmaterialflagsmask & (hittexture ? hittexture->currentmaterialflags : 0))) { trace->hitsupercontents = other_start->supercontents; trace->hitq3surfaceflags = hitq3surfaceflags; trace->hittexture = hittexture; trace->fraction = bound(0, enterfrac2, 1); VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; } } else { // started inside, update startsolid and friends trace->startsupercontents |= other_start->supercontents; if ((trace->hitsupercontentsmask & other_start->supercontents) && !(trace->skipsupercontentsmask & other_start->supercontents) && !(trace->skipmaterialflagsmask & (starttexture ? starttexture->currentmaterialflags : 0))) { trace->startsolid = true; if (leavefrac < 1) trace->allsolid = true; VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; if (trace->startdepth > startdepth) { trace->startdepth = startdepth; VectorCopy(startdepthnormal, trace->startdepthnormal); trace->starttexture = starttexture; } } } } qboolean Collision_PointInsideBrushFloat(const vec3_t point, const colbrushf_t *brush) { int nplane; const colplanef_t *plane; if (!BoxesOverlap(point, point, brush->mins, brush->maxs)) return false; for (nplane = 0, plane = brush->planes;nplane < brush->numplanes;nplane++, plane++) if (DotProduct(plane->normal, point) > plane->dist) return false; return true; } void Collision_TracePointBrushFloat(trace_t *trace, const vec3_t linestart, const colbrushf_t *other_start) { int nplane; int numplanes = other_start->numplanes; vec_t startdist; vec4_t startplane; vec4_t newimpactplane; vec_t startdepth = 1; vec3_t startdepthnormal; const texture_t *starttexture = NULL; VectorClear(startdepthnormal); Vector4Clear(newimpactplane); // Separating Axis Theorem: // if a supporting vector (plane normal) can be found that separates two // objects, they are not colliding. // // Minkowski Sum: // reduce the size of one object to a point while enlarging the other to // represent the space that point can not occupy. // // try every plane we can construct between the two brushes and measure // the distance between them. for (nplane = 0; nplane < numplanes; nplane++) { VectorCopy(other_start->planes[nplane].normal, startplane); startplane[3] = other_start->planes[nplane].dist; startdist = DotProduct(linestart, startplane) - startplane[3]; if (startdist > 0) return; // aside from collisions, this is also used for error correction if (startdepth < startdist || startdepth == 1) { startdepth = startdist; VectorCopy(startplane, startdepthnormal); starttexture = other_start->planes[nplane].texture; } } // at this point we know the trace overlaps the brush because it was not // rejected at any point in the loop above // started inside, update startsolid and friends trace->startsupercontents |= other_start->supercontents; if ((trace->hitsupercontentsmask & other_start->supercontents) && !(trace->skipsupercontentsmask & other_start->supercontents) && !(trace->skipmaterialflagsmask & (starttexture ? starttexture->currentmaterialflags : 0))) { trace->startsolid = true; trace->allsolid = true; VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; if (trace->startdepth > startdepth) { trace->startdepth = startdepth; VectorCopy(startdepthnormal, trace->startdepthnormal); trace->starttexture = starttexture; } } } static void Collision_SnapCopyPoints(int numpoints, const colpointf_t *in, colpointf_t *out, float fractionprecision, float invfractionprecision) { int i; for (i = 0;i < numpoints;i++) { out[i].v[0] = floor(in[i].v[0] * fractionprecision + 0.5f) * invfractionprecision; out[i].v[1] = floor(in[i].v[1] * fractionprecision + 0.5f) * invfractionprecision; out[i].v[2] = floor(in[i].v[2] * fractionprecision + 0.5f) * invfractionprecision; } } void Collision_TraceBrushTriangleMeshFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs) { int i; colpointf_t points[3]; colpointf_t edgedirs[3]; colplanef_t planes[5]; colbrushf_t brush; memset(&brush, 0, sizeof(brush)); brush.isaabb = false; brush.hasaabbplanes = false; brush.numpoints = 3; brush.numedgedirs = 3; brush.numplanes = 5; brush.points = points; brush.edgedirs = edgedirs; brush.planes = planes; brush.supercontents = supercontents; brush.q3surfaceflags = q3surfaceflags; brush.texture = texture; for (i = 0;i < brush.numplanes;i++) { brush.planes[i].q3surfaceflags = q3surfaceflags; brush.planes[i].texture = texture; } if(stride > 0) { int k, cnt, tri; cnt = (numtriangles + stride - 1) / stride; for(i = 0; i < cnt; ++i) { if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs)) { for(k = 0; k < stride; ++k) { tri = i * stride + k; if(tri >= numtriangles) break; VectorCopy(vertex3f + element3i[tri * 3 + 0] * 3, points[0].v); VectorCopy(vertex3f + element3i[tri * 3 + 1] * 3, points[1].v); VectorCopy(vertex3f + element3i[tri * 3 + 2] * 3, points[2].v); Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP); Collision_CalcEdgeDirsForPolygonBrushFloat(&brush); Collision_CalcPlanesForTriangleBrushFloat(&brush); //Collision_PrintBrushAsQHull(&brush, "brush"); Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush); } } } } else if(stride == 0) { for (i = 0;i < numtriangles;i++, element3i += 3) { if (TriangleBBoxOverlapsBox(vertex3f + element3i[0]*3, vertex3f + element3i[1]*3, vertex3f + element3i[2]*3, segmentmins, segmentmaxs)) { VectorCopy(vertex3f + element3i[0] * 3, points[0].v); VectorCopy(vertex3f + element3i[1] * 3, points[1].v); VectorCopy(vertex3f + element3i[2] * 3, points[2].v); Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP); Collision_CalcEdgeDirsForPolygonBrushFloat(&brush); Collision_CalcPlanesForTriangleBrushFloat(&brush); //Collision_PrintBrushAsQHull(&brush, "brush"); Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush); } } } else { for (i = 0;i < numtriangles;i++, element3i += 3) { VectorCopy(vertex3f + element3i[0] * 3, points[0].v); VectorCopy(vertex3f + element3i[1] * 3, points[1].v); VectorCopy(vertex3f + element3i[2] * 3, points[2].v); Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP); Collision_CalcEdgeDirsForPolygonBrushFloat(&brush); Collision_CalcPlanesForTriangleBrushFloat(&brush); //Collision_PrintBrushAsQHull(&brush, "brush"); Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush); } } } void Collision_TraceLineTriangleMeshFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs) { int i; // FIXME: snap vertices? if(stride > 0) { int k, cnt, tri; cnt = (numtriangles + stride - 1) / stride; for(i = 0; i < cnt; ++i) { if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs)) { for(k = 0; k < stride; ++k) { tri = i * stride + k; if(tri >= numtriangles) break; Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[tri * 3 + 0] * 3, vertex3f + element3i[tri * 3 + 1] * 3, vertex3f + element3i[tri * 3 + 2] * 3, supercontents, q3surfaceflags, texture); } } } } else { for (i = 0;i < numtriangles;i++, element3i += 3) Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[0] * 3, vertex3f + element3i[1] * 3, vertex3f + element3i[2] * 3, supercontents, q3surfaceflags, texture); } } void Collision_TraceBrushTriangleFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, const float *v0, const float *v1, const float *v2, int supercontents, int q3surfaceflags, const texture_t *texture) { int i; colpointf_t points[3]; colpointf_t edgedirs[3]; colplanef_t planes[5]; colbrushf_t brush; memset(&brush, 0, sizeof(brush)); brush.isaabb = false; brush.hasaabbplanes = false; brush.numpoints = 3; brush.numedgedirs = 3; brush.numplanes = 5; brush.points = points; brush.edgedirs = edgedirs; brush.planes = planes; brush.supercontents = supercontents; brush.q3surfaceflags = q3surfaceflags; brush.texture = texture; for (i = 0;i < brush.numplanes;i++) { brush.planes[i].q3surfaceflags = q3surfaceflags; brush.planes[i].texture = texture; } VectorCopy(v0, points[0].v); VectorCopy(v1, points[1].v); VectorCopy(v2, points[2].v); Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP); Collision_CalcEdgeDirsForPolygonBrushFloat(&brush); Collision_CalcPlanesForTriangleBrushFloat(&brush); //Collision_PrintBrushAsQHull(&brush, "brush"); Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush); } void Collision_BrushForBox(colboxbrushf_t *boxbrush, const vec3_t mins, const vec3_t maxs, int supercontents, int q3surfaceflags, const texture_t *texture) { int i; memset(boxbrush, 0, sizeof(*boxbrush)); boxbrush->brush.isaabb = true; boxbrush->brush.hasaabbplanes = true; boxbrush->brush.points = boxbrush->points; boxbrush->brush.edgedirs = boxbrush->edgedirs; boxbrush->brush.planes = boxbrush->planes; boxbrush->brush.supercontents = supercontents; boxbrush->brush.q3surfaceflags = q3surfaceflags; boxbrush->brush.texture = texture; if (VectorCompare(mins, maxs)) { // point brush boxbrush->brush.numpoints = 1; boxbrush->brush.numedgedirs = 0; boxbrush->brush.numplanes = 0; VectorCopy(mins, boxbrush->brush.points[0].v); } else { boxbrush->brush.numpoints = 8; boxbrush->brush.numedgedirs = 3; boxbrush->brush.numplanes = 6; // there are 8 points on a box // there are 3 edgedirs on a box (both signs are tested in collision) // there are 6 planes on a box VectorSet(boxbrush->brush.points[0].v, mins[0], mins[1], mins[2]); VectorSet(boxbrush->brush.points[1].v, maxs[0], mins[1], mins[2]); VectorSet(boxbrush->brush.points[2].v, mins[0], maxs[1], mins[2]); VectorSet(boxbrush->brush.points[3].v, maxs[0], maxs[1], mins[2]); VectorSet(boxbrush->brush.points[4].v, mins[0], mins[1], maxs[2]); VectorSet(boxbrush->brush.points[5].v, maxs[0], mins[1], maxs[2]); VectorSet(boxbrush->brush.points[6].v, mins[0], maxs[1], maxs[2]); VectorSet(boxbrush->brush.points[7].v, maxs[0], maxs[1], maxs[2]); VectorSet(boxbrush->brush.edgedirs[0].v, 1, 0, 0); VectorSet(boxbrush->brush.edgedirs[1].v, 0, 1, 0); VectorSet(boxbrush->brush.edgedirs[2].v, 0, 0, 1); VectorSet(boxbrush->brush.planes[0].normal, -1, 0, 0);boxbrush->brush.planes[0].dist = -mins[0]; VectorSet(boxbrush->brush.planes[1].normal, 1, 0, 0);boxbrush->brush.planes[1].dist = maxs[0]; VectorSet(boxbrush->brush.planes[2].normal, 0, -1, 0);boxbrush->brush.planes[2].dist = -mins[1]; VectorSet(boxbrush->brush.planes[3].normal, 0, 1, 0);boxbrush->brush.planes[3].dist = maxs[1]; VectorSet(boxbrush->brush.planes[4].normal, 0, 0, -1);boxbrush->brush.planes[4].dist = -mins[2]; VectorSet(boxbrush->brush.planes[5].normal, 0, 0, 1);boxbrush->brush.planes[5].dist = maxs[2]; for (i = 0;i < 6;i++) { boxbrush->brush.planes[i].q3surfaceflags = q3surfaceflags; boxbrush->brush.planes[i].texture = texture; } } boxbrush->brush.supercontents = supercontents; boxbrush->brush.q3surfaceflags = q3surfaceflags; boxbrush->brush.texture = texture; VectorSet(boxbrush->brush.mins, mins[0] - 1, mins[1] - 1, mins[2] - 1); VectorSet(boxbrush->brush.maxs, maxs[0] + 1, maxs[1] + 1, maxs[2] + 1); //Collision_ValidateBrush(&boxbrush->brush); } //pseudocode for detecting line/sphere overlap without calculating an impact point //linesphereorigin = sphereorigin - linestart;linediff = lineend - linestart;linespherefrac = DotProduct(linesphereorigin, linediff) / DotProduct(linediff, linediff);return VectorLength2(linesphereorigin - bound(0, linespherefrac, 1) * linediff) >= sphereradius*sphereradius; // LadyHavoc: currently unused, but tested // note: this can be used for tracing a moving sphere vs a stationary sphere, // by simply adding the moving sphere's radius to the sphereradius parameter, // all the results are correct (impactpoint, impactnormal, and fraction) float Collision_ClipTrace_Line_Sphere(double *linestart, double *lineend, double *sphereorigin, double sphereradius, double *impactpoint, double *impactnormal) { double dir[3], scale, v[3], deviationdist2, impactdist, linelength; // make sure the impactpoint and impactnormal are valid even if there is // no collision VectorCopy(lineend, impactpoint); VectorClear(impactnormal); // calculate line direction VectorSubtract(lineend, linestart, dir); // normalize direction linelength = VectorLength(dir); if (linelength) { scale = 1.0 / linelength; VectorScale(dir, scale, dir); } // this dotproduct calculates the distance along the line at which the // sphere origin is (nearest point to the sphere origin on the line) impactdist = DotProduct(sphereorigin, dir) - DotProduct(linestart, dir); // calculate point on line at that distance, and subtract the // sphereorigin from it, so we have a vector to measure for the distance // of the line from the sphereorigin (deviation, how off-center it is) VectorMA(linestart, impactdist, dir, v); VectorSubtract(v, sphereorigin, v); deviationdist2 = sphereradius * sphereradius - VectorLength2(v); // if squared offset length is outside the squared sphere radius, miss if (deviationdist2 < 0) return 1; // miss (off to the side) // nudge back to find the correct impact distance impactdist -= sqrt(deviationdist2); if (impactdist >= linelength) return 1; // miss (not close enough) if (impactdist < 0) return 1; // miss (linestart is past or inside sphere) // calculate new impactpoint VectorMA(linestart, impactdist, dir, impactpoint); // calculate impactnormal (surface normal at point of impact) VectorSubtract(impactpoint, sphereorigin, impactnormal); // normalize impactnormal VectorNormalize(impactnormal); // return fraction of movement distance return impactdist / linelength; } void Collision_TraceLineTriangleFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const float *point0, const float *point1, const float *point2, int supercontents, int q3surfaceflags, const texture_t *texture) { float d1, d2, d, f, f2, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, faceplanenormallength2, edge01[3], edge21[3], edge02[3]; // this function executes: // 32 ops when line starts behind triangle // 38 ops when line ends infront of triangle // 43 ops when line fraction is already closer than this triangle // 72 ops when line is outside edge 01 // 92 ops when line is outside edge 21 // 115 ops when line is outside edge 02 // 123 ops when line impacts triangle and updates trace results // this code is designed for clockwise triangles, conversion to // counterclockwise would require swapping some things around... // it is easier to simply swap the point0 and point2 parameters to this // function when calling it than it is to rewire the internals. // calculate the faceplanenormal of the triangle, this represents the front side // 15 ops VectorSubtract(point0, point1, edge01); VectorSubtract(point2, point1, edge21); CrossProduct(edge01, edge21, faceplanenormal); // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out) // 6 ops faceplanenormallength2 = DotProduct(faceplanenormal, faceplanenormal); if (faceplanenormallength2 < 0.0001f) return; // calculate the distance // 5 ops faceplanedist = DotProduct(point0, faceplanenormal); // if start point is on the back side there is no collision // (we don't care about traces going through the triangle the wrong way) // calculate the start distance // 6 ops d1 = DotProduct(faceplanenormal, linestart); if (d1 <= faceplanedist) return; // calculate the end distance // 6 ops d2 = DotProduct(faceplanenormal, lineend); // if both are in front, there is no collision if (d2 >= faceplanedist) return; // from here on we know d1 is >= 0 and d2 is < 0 // this means the line starts infront and ends behind, passing through it // calculate the recipricol of the distance delta, // so we can use it multiple times cheaply (instead of division) // 2 ops d = 1.0f / (d1 - d2); // calculate the impact fraction by taking the start distance (> 0) // and subtracting the face plane distance (this is the distance of the // triangle along that same normal) // then multiply by the recipricol distance delta // 4 ops f = (d1 - faceplanedist) * d; f2 = f - collision_impactnudge.value * d; // skip out if this impact is further away than previous ones // 1 ops if (f2 >= trace->fraction) return; // calculate the perfect impact point for classification of insidedness // 9 ops impact[0] = linestart[0] + f * (lineend[0] - linestart[0]); impact[1] = linestart[1] + f * (lineend[1] - linestart[1]); impact[2] = linestart[2] + f * (lineend[2] - linestart[2]); // calculate the edge normal and reject if impact is outside triangle // (an edge normal faces away from the triangle, to get the desired normal // a crossproduct with the faceplanenormal is used, and because of the way // the insidedness comparison is written it does not need to be normalized) // first use the two edges from the triangle plane math // the other edge only gets calculated if the point survives that long // 20 ops CrossProduct(edge01, faceplanenormal, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal)) return; // 20 ops CrossProduct(faceplanenormal, edge21, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal)) return; // 23 ops VectorSubtract(point0, point2, edge02); CrossProduct(faceplanenormal, edge02, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal)) return; // 8 ops (rare) // skip if this trace should not be blocked by these contents if (!(supercontents & trace->hitsupercontentsmask) || (supercontents & trace->skipsupercontentsmask) || (texture->currentmaterialflags & trace->skipmaterialflagsmask)) return; // store the new trace fraction trace->fraction = f2; // store the new trace plane (because collisions only happen from // the front this is always simply the triangle normal, never flipped) d = 1.0 / sqrt(faceplanenormallength2); VectorScale(faceplanenormal, d, trace->plane.normal); trace->plane.dist = faceplanedist * d; trace->hitsupercontents = supercontents; trace->hitq3surfaceflags = q3surfaceflags; trace->hittexture = texture; } void Collision_BoundingBoxOfBrushTraceSegment(const colbrushf_t *start, const colbrushf_t *end, vec3_t mins, vec3_t maxs, float startfrac, float endfrac) { int i; colpointf_t *ps, *pe; float tempstart[3], tempend[3]; VectorLerp(start->points[0].v, startfrac, end->points[0].v, mins); VectorCopy(mins, maxs); for (i = 0, ps = start->points, pe = end->points;i < start->numpoints;i++, ps++, pe++) { VectorLerp(ps->v, startfrac, pe->v, tempstart); VectorLerp(ps->v, endfrac, pe->v, tempend); mins[0] = min(mins[0], min(tempstart[0], tempend[0])); mins[1] = min(mins[1], min(tempstart[1], tempend[1])); mins[2] = min(mins[2], min(tempstart[2], tempend[2])); maxs[0] = min(maxs[0], min(tempstart[0], tempend[0])); maxs[1] = min(maxs[1], min(tempstart[1], tempend[1])); maxs[2] = min(maxs[2], min(tempstart[2], tempend[2])); } mins[0] -= 1; mins[1] -= 1; mins[2] -= 1; maxs[0] += 1; maxs[1] += 1; maxs[2] += 1; } //=========================================== static void Collision_TranslateBrush(const vec3_t shift, colbrushf_t *brush) { int i; // now we can transform the data for(i = 0; i < brush->numplanes; ++i) { brush->planes[i].dist += DotProduct(shift, brush->planes[i].normal); } for(i = 0; i < brush->numpoints; ++i) { VectorAdd(brush->points[i].v, shift, brush->points[i].v); } VectorAdd(brush->mins, shift, brush->mins); VectorAdd(brush->maxs, shift, brush->maxs); } static void Collision_TransformBrush(const matrix4x4_t *matrix, colbrushf_t *brush) { int i; vec3_t v; // we're breaking any AABB properties here... brush->isaabb = false; brush->hasaabbplanes = false; // now we can transform the data for(i = 0; i < brush->numplanes; ++i) { Matrix4x4_TransformPositivePlane(matrix, brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist, brush->planes[i].normal_and_dist); } for(i = 0; i < brush->numedgedirs; ++i) { Matrix4x4_Transform(matrix, brush->edgedirs[i].v, v); VectorCopy(v, brush->edgedirs[i].v); } for(i = 0; i < brush->numpoints; ++i) { Matrix4x4_Transform(matrix, brush->points[i].v, v); VectorCopy(v, brush->points[i].v); } VectorCopy(brush->points[0].v, brush->mins); VectorCopy(brush->points[0].v, brush->maxs); for(i = 1; i < brush->numpoints; ++i) { if(brush->points[i].v[0] < brush->mins[0]) brush->mins[0] = brush->points[i].v[0]; if(brush->points[i].v[1] < brush->mins[1]) brush->mins[1] = brush->points[i].v[1]; if(brush->points[i].v[2] < brush->mins[2]) brush->mins[2] = brush->points[i].v[2]; if(brush->points[i].v[0] > brush->maxs[0]) brush->maxs[0] = brush->points[i].v[0]; if(brush->points[i].v[1] > brush->maxs[1]) brush->maxs[1] = brush->points[i].v[1]; if(brush->points[i].v[2] > brush->maxs[2]) brush->maxs[2] = brush->points[i].v[2]; } } typedef struct collision_cachedtrace_parameters_s { dp_model_t *model; vec3_t end; vec3_t start; int hitsupercontentsmask; int skipsupercontentsmask; int skipmaterialflagsmask; matrix4x4_t matrix; } collision_cachedtrace_parameters_t; typedef struct collision_cachedtrace_s { qboolean valid; collision_cachedtrace_parameters_t p; trace_t result; } collision_cachedtrace_t; static mempool_t *collision_cachedtrace_mempool; static collision_cachedtrace_t *collision_cachedtrace_array; static int collision_cachedtrace_firstfree; static int collision_cachedtrace_lastused; static int collision_cachedtrace_max; static unsigned char collision_cachedtrace_sequence; static int collision_cachedtrace_hashsize; static int *collision_cachedtrace_hash; static unsigned int *collision_cachedtrace_arrayfullhashindex; static unsigned int *collision_cachedtrace_arrayhashindex; static unsigned int *collision_cachedtrace_arraynext; static unsigned char *collision_cachedtrace_arrayused; static qboolean collision_cachedtrace_rebuildhash; void Collision_Cache_Reset(qboolean resetlimits) { if (collision_cachedtrace_hash) Mem_Free(collision_cachedtrace_hash); if (collision_cachedtrace_array) Mem_Free(collision_cachedtrace_array); if (collision_cachedtrace_arrayfullhashindex) Mem_Free(collision_cachedtrace_arrayfullhashindex); if (collision_cachedtrace_arrayhashindex) Mem_Free(collision_cachedtrace_arrayhashindex); if (collision_cachedtrace_arraynext) Mem_Free(collision_cachedtrace_arraynext); if (collision_cachedtrace_arrayused) Mem_Free(collision_cachedtrace_arrayused); if (resetlimits || !collision_cachedtrace_max) collision_cachedtrace_max = collision_cache.integer ? 128 : 1; collision_cachedtrace_firstfree = 1; collision_cachedtrace_lastused = 0; collision_cachedtrace_hashsize = collision_cachedtrace_max; collision_cachedtrace_array = (collision_cachedtrace_t *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(collision_cachedtrace_t)); collision_cachedtrace_hash = (int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_hashsize * sizeof(int)); collision_cachedtrace_arrayfullhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int)); collision_cachedtrace_arrayhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int)); collision_cachedtrace_arraynext = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int)); collision_cachedtrace_arrayused = (unsigned char *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned char)); collision_cachedtrace_sequence = 1; collision_cachedtrace_rebuildhash = false; } void Collision_Cache_Init(mempool_t *mempool) { collision_cachedtrace_mempool = mempool; Collision_Cache_Reset(true); } static void Collision_Cache_RebuildHash(void) { int index; int range = collision_cachedtrace_lastused + 1; unsigned char sequence = collision_cachedtrace_sequence; int firstfree = collision_cachedtrace_max; int lastused = 0; int *hash = collision_cachedtrace_hash; unsigned int hashindex; unsigned int *arrayhashindex = collision_cachedtrace_arrayhashindex; unsigned int *arraynext = collision_cachedtrace_arraynext; collision_cachedtrace_rebuildhash = false; memset(collision_cachedtrace_hash, 0, collision_cachedtrace_hashsize * sizeof(int)); for (index = 1;index < range;index++) { if (collision_cachedtrace_arrayused[index] == sequence) { hashindex = arrayhashindex[index]; arraynext[index] = hash[hashindex]; hash[hashindex] = index; lastused = index; } else { if (firstfree > index) firstfree = index; collision_cachedtrace_arrayused[index] = 0; } } collision_cachedtrace_firstfree = firstfree; collision_cachedtrace_lastused = lastused; } void Collision_Cache_NewFrame(void) { if (collision_cache.integer) { if (collision_cachedtrace_max < 128) Collision_Cache_Reset(true); } else { if (collision_cachedtrace_max > 1) Collision_Cache_Reset(true); } // rebuild hash if sequence would overflow byte, otherwise increment if (collision_cachedtrace_sequence == 255) { Collision_Cache_RebuildHash(); collision_cachedtrace_sequence = 1; } else { collision_cachedtrace_rebuildhash = true; collision_cachedtrace_sequence++; } } static unsigned int Collision_Cache_HashIndexForArray(unsigned int *array, unsigned int size) { unsigned int i; unsigned int hashindex = 0; // this is a super-cheesy checksum, designed only for speed for (i = 0;i < size;i++) hashindex += array[i] * (1 + i); return hashindex; } static collision_cachedtrace_t *Collision_Cache_Lookup(dp_model_t *model, const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask) { int hashindex = 0; unsigned int fullhashindex; int index = 0; int range; unsigned char sequence = collision_cachedtrace_sequence; int *hash = collision_cachedtrace_hash; unsigned int *arrayfullhashindex = collision_cachedtrace_arrayfullhashindex; unsigned int *arraynext = collision_cachedtrace_arraynext; collision_cachedtrace_t *cached = collision_cachedtrace_array + index; collision_cachedtrace_parameters_t params; // all non-cached traces use the same index if (!collision_cache.integer) r_refdef.stats[r_stat_photoncache_traced]++; else { // cached trace lookup memset(¶ms, 0, sizeof(params)); params.model = model; VectorCopy(start, params.start); VectorCopy(end, params.end); params.hitsupercontentsmask = hitsupercontentsmask; params.skipsupercontentsmask = skipsupercontentsmask; params.skipmaterialflagsmask = skipmaterialflagsmask; params.matrix = *matrix; fullhashindex = Collision_Cache_HashIndexForArray((unsigned int *)¶ms, sizeof(params) / sizeof(unsigned int)); hashindex = (int)(fullhashindex % (unsigned int)collision_cachedtrace_hashsize); for (index = hash[hashindex];index;index = arraynext[index]) { if (arrayfullhashindex[index] != fullhashindex) continue; cached = collision_cachedtrace_array + index; //if (memcmp(&cached->p, ¶ms, sizeof(params))) if (cached->p.model != params.model || cached->p.end[0] != params.end[0] || cached->p.end[1] != params.end[1] || cached->p.end[2] != params.end[2] || cached->p.start[0] != params.start[0] || cached->p.start[1] != params.start[1] || cached->p.start[2] != params.start[2] || cached->p.hitsupercontentsmask != params.hitsupercontentsmask || cached->p.skipsupercontentsmask != params.skipsupercontentsmask || cached->p.skipmaterialflagsmask != params.skipmaterialflagsmask || cached->p.matrix.m[0][0] != params.matrix.m[0][0] || cached->p.matrix.m[0][1] != params.matrix.m[0][1] || cached->p.matrix.m[0][2] != params.matrix.m[0][2] || cached->p.matrix.m[0][3] != params.matrix.m[0][3] || cached->p.matrix.m[1][0] != params.matrix.m[1][0] || cached->p.matrix.m[1][1] != params.matrix.m[1][1] || cached->p.matrix.m[1][2] != params.matrix.m[1][2] || cached->p.matrix.m[1][3] != params.matrix.m[1][3] || cached->p.matrix.m[2][0] != params.matrix.m[2][0] || cached->p.matrix.m[2][1] != params.matrix.m[2][1] || cached->p.matrix.m[2][2] != params.matrix.m[2][2] || cached->p.matrix.m[2][3] != params.matrix.m[2][3] || cached->p.matrix.m[3][0] != params.matrix.m[3][0] || cached->p.matrix.m[3][1] != params.matrix.m[3][1] || cached->p.matrix.m[3][2] != params.matrix.m[3][2] || cached->p.matrix.m[3][3] != params.matrix.m[3][3] ) continue; // found a matching trace in the cache r_refdef.stats[r_stat_photoncache_cached]++; cached->valid = true; collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence; return cached; } r_refdef.stats[r_stat_photoncache_traced]++; // find an unused cache entry for (index = collision_cachedtrace_firstfree, range = collision_cachedtrace_max;index < range;index++) if (collision_cachedtrace_arrayused[index] == 0) break; if (index == range) { // all claimed, but probably some are stale... for (index = 1, range = collision_cachedtrace_max;index < range;index++) if (collision_cachedtrace_arrayused[index] != sequence) break; if (index < range) { // found a stale one, rebuild the hash Collision_Cache_RebuildHash(); } else { // we need to grow the cache collision_cachedtrace_max *= 2; Collision_Cache_Reset(false); index = 1; } } // link the new cache entry into the hash bucket collision_cachedtrace_firstfree = index + 1; if (collision_cachedtrace_lastused < index) collision_cachedtrace_lastused = index; cached = collision_cachedtrace_array + index; collision_cachedtrace_arraynext[index] = collision_cachedtrace_hash[hashindex]; collision_cachedtrace_hash[hashindex] = index; collision_cachedtrace_arrayhashindex[index] = hashindex; cached->valid = false; cached->p = params; collision_cachedtrace_arrayfullhashindex[index] = fullhashindex; collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence; } return cached; } void Collision_Cache_ClipLineToGenericEntitySurfaces(trace_t *trace, dp_model_t *model, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask) { collision_cachedtrace_t *cached = Collision_Cache_Lookup(model, matrix, inversematrix, start, end, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); if (cached->valid) { *trace = cached->result; return; } Collision_ClipLineToGenericEntity(trace, model, NULL, NULL, vec3_origin, vec3_origin, 0, matrix, inversematrix, start, end, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask, collision_extendmovelength.value, true); cached->result = *trace; } void Collision_Cache_ClipLineToWorldSurfaces(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t end, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask) { collision_cachedtrace_t *cached = Collision_Cache_Lookup(model, &identitymatrix, &identitymatrix, start, end, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); if (cached->valid) { *trace = cached->result; return; } Collision_ClipLineToWorld(trace, model, start, end, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask, collision_extendmovelength.value, true); cached->result = *trace; } typedef struct extendtraceinfo_s { trace_t *trace; float realstart[3]; float realend[3]; float realdelta[3]; float extendstart[3]; float extendend[3]; float extenddelta[3]; float reallength; float extendlength; float scaletoextend; float extend; } extendtraceinfo_t; static void Collision_ClipExtendPrepare(extendtraceinfo_t *extendtraceinfo, trace_t *trace, const vec3_t tstart, const vec3_t tend, float textend) { memset(trace, 0, sizeof(*trace)); trace->fraction = 1; extendtraceinfo->trace = trace; VectorCopy(tstart, extendtraceinfo->realstart); VectorCopy(tend, extendtraceinfo->realend); VectorSubtract(extendtraceinfo->realend, extendtraceinfo->realstart, extendtraceinfo->realdelta); VectorCopy(extendtraceinfo->realstart, extendtraceinfo->extendstart); VectorCopy(extendtraceinfo->realend, extendtraceinfo->extendend); VectorCopy(extendtraceinfo->realdelta, extendtraceinfo->extenddelta); extendtraceinfo->reallength = VectorLength(extendtraceinfo->realdelta); extendtraceinfo->extendlength = extendtraceinfo->reallength; extendtraceinfo->scaletoextend = 1.0f; extendtraceinfo->extend = textend; // make the trace longer according to the extend parameter if (extendtraceinfo->reallength && extendtraceinfo->extend) { extendtraceinfo->extendlength = extendtraceinfo->reallength + extendtraceinfo->extend; extendtraceinfo->scaletoextend = extendtraceinfo->extendlength / extendtraceinfo->reallength; VectorMA(extendtraceinfo->realstart, extendtraceinfo->scaletoextend, extendtraceinfo->realdelta, extendtraceinfo->extendend); VectorSubtract(extendtraceinfo->extendend, extendtraceinfo->extendstart, extendtraceinfo->extenddelta); } } static void Collision_ClipExtendFinish(extendtraceinfo_t *extendtraceinfo) { trace_t *trace = extendtraceinfo->trace; if (trace->fraction != 1.0f) { // undo the extended trace length trace->fraction *= extendtraceinfo->scaletoextend; // if the extended trace hit something that the unextended trace did not hit (even considering the collision_impactnudge), then we have to clear the hit information if (trace->fraction > 1.0f) { // note that ent may refer to either startsolid or fraction<1, we can't restore the startsolid ent unfortunately trace->ent = NULL; trace->hitq3surfaceflags = 0; trace->hitsupercontents = 0; trace->hittexture = NULL; VectorClear(trace->plane.normal); trace->plane.dist = 0.0f; } } // clamp things trace->fraction = bound(0, trace->fraction, 1); // calculate the end position VectorMA(extendtraceinfo->realstart, trace->fraction, extendtraceinfo->realdelta, trace->endpos); } void Collision_ClipToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t tstart, const vec3_t mins, const vec3_t maxs, const vec3_t tend, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask, float extend) { vec3_t starttransformed, endtransformed; extendtraceinfo_t extendtraceinfo; Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend); Matrix4x4_Transform(inversematrix, extendtraceinfo.extendstart, starttransformed); Matrix4x4_Transform(inversematrix, extendtraceinfo.extendend, endtransformed); #if COLLISIONPARANOID >= 3 Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", extendtraceinfo.extendstart[0], extendtraceinfo.extendstart[1], extendtraceinfo.extendstart[2], starttransformed[0], starttransformed[1], starttransformed[2], extendtraceinfo.extendend[0], extendtraceinfo.extendend[1], extendtraceinfo.extendend[2], endtransformed[0], endtransformed[1], endtransformed[2]); #endif if (model && model->TraceBox) { if(model->TraceBrush && (inversematrix->m[0][1] || inversematrix->m[0][2] || inversematrix->m[1][0] || inversematrix->m[1][2] || inversematrix->m[2][0] || inversematrix->m[2][1])) { // we get here if TraceBrush exists, AND we have a rotation component (SOLID_BSP case) // using starttransformed, endtransformed is WRONG in this case! // should rather build a brush and trace using it colboxbrushf_t thisbrush_start, thisbrush_end; Collision_BrushForBox(&thisbrush_start, mins, maxs, 0, 0, NULL); Collision_BrushForBox(&thisbrush_end, mins, maxs, 0, 0, NULL); Collision_TranslateBrush(extendtraceinfo.extendstart, &thisbrush_start.brush); Collision_TranslateBrush(extendtraceinfo.extendend, &thisbrush_end.brush); Collision_TransformBrush(inversematrix, &thisbrush_start.brush); Collision_TransformBrush(inversematrix, &thisbrush_end.brush); //Collision_TranslateBrush(starttransformed, &thisbrush_start.brush); //Collision_TranslateBrush(endtransformed, &thisbrush_end.brush); model->TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); } else // this is only approximate if rotated, quite useless model->TraceBox(model, frameblend, skeleton, trace, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); } else // and this requires that the transformation matrix doesn't have angles components, like SV_TraceBox ensures; FIXME may get called if a model is SOLID_BSP but has no TraceBox function Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask, bodysupercontents, 0, NULL); Collision_ClipExtendFinish(&extendtraceinfo); // transform plane // NOTE: this relies on plane.dist being directly after plane.normal Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal_and_dist); } void Collision_ClipToWorld(trace_t *trace, dp_model_t *model, const vec3_t tstart, const vec3_t mins, const vec3_t maxs, const vec3_t tend, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask, float extend) { extendtraceinfo_t extendtraceinfo; Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend); // ->TraceBox: TraceBrush not needed here, as worldmodel is never rotated if (model && model->TraceBox) model->TraceBox(model, NULL, NULL, trace, extendtraceinfo.extendstart, mins, maxs, extendtraceinfo.extendend, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); Collision_ClipExtendFinish(&extendtraceinfo); } void Collision_ClipLineToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t tstart, const vec3_t tend, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask, float extend, qboolean hitsurfaces) { vec3_t starttransformed, endtransformed; extendtraceinfo_t extendtraceinfo; Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend); Matrix4x4_Transform(inversematrix, extendtraceinfo.extendstart, starttransformed); Matrix4x4_Transform(inversematrix, extendtraceinfo.extendend, endtransformed); #if COLLISIONPARANOID >= 3 Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", extendtraceinfo.extendstart[0], extendtraceinfo.extendstart[1], extendtraceinfo.extendstart[2], starttransformed[0], starttransformed[1], starttransformed[2], extendtraceinfo.extendend[0], extendtraceinfo.extendend[1], extendtraceinfo.extendend[2], endtransformed[0], endtransformed[1], endtransformed[2]); #endif if (model && model->TraceLineAgainstSurfaces && hitsurfaces) model->TraceLineAgainstSurfaces(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); else if (model && model->TraceLine) model->TraceLine(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); else Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, vec3_origin, vec3_origin, endtransformed, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask, bodysupercontents, 0, NULL); Collision_ClipExtendFinish(&extendtraceinfo); // transform plane // NOTE: this relies on plane.dist being directly after plane.normal Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal_and_dist); } void Collision_ClipLineToWorld(trace_t *trace, dp_model_t *model, const vec3_t tstart, const vec3_t tend, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask, float extend, qboolean hitsurfaces) { extendtraceinfo_t extendtraceinfo; Collision_ClipExtendPrepare(&extendtraceinfo, trace, tstart, tend, extend); if (model && model->TraceLineAgainstSurfaces && hitsurfaces) model->TraceLineAgainstSurfaces(model, NULL, NULL, trace, extendtraceinfo.extendstart, extendtraceinfo.extendend, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); else if (model && model->TraceLine) model->TraceLine(model, NULL, NULL, trace, extendtraceinfo.extendstart, extendtraceinfo.extendend, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); Collision_ClipExtendFinish(&extendtraceinfo); } void Collision_ClipPointToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask) { float starttransformed[3]; memset(trace, 0, sizeof(*trace)); trace->fraction = 1; Matrix4x4_Transform(inversematrix, start, starttransformed); #if COLLISIONPARANOID >= 3 Con_Printf("trans(%f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2]); #endif if (model && model->TracePoint) model->TracePoint(model, NULL, NULL, trace, starttransformed, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); else Collision_ClipTrace_Point(trace, bodymins, bodymaxs, starttransformed, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask, bodysupercontents, 0, NULL); VectorCopy(start, trace->endpos); // transform plane // NOTE: this relies on plane.dist being directly after plane.normal Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal_and_dist); } void Collision_ClipPointToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, int hitsupercontentsmask, int skipsupercontentsmask, int skipmaterialflagsmask) { memset(trace, 0, sizeof(*trace)); trace->fraction = 1; if (model && model->TracePoint) model->TracePoint(model, NULL, NULL, trace, start, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask); VectorCopy(start, trace->endpos); } void Collision_CombineTraces(trace_t *cliptrace, const trace_t *trace, void *touch, qboolean isbmodel) { // take the 'best' answers from the new trace and combine with existing data if (trace->allsolid) cliptrace->allsolid = true; if (trace->startsolid) { if (isbmodel) cliptrace->bmodelstartsolid = true; cliptrace->startsolid = true; if (cliptrace->fraction == 1) cliptrace->ent = touch; if (cliptrace->startdepth > trace->startdepth) { cliptrace->startdepth = trace->startdepth; VectorCopy(trace->startdepthnormal, cliptrace->startdepthnormal); } } // don't set this except on the world, because it can easily confuse // monsters underwater if there's a bmodel involved in the trace // (inopen && inwater is how they check water visibility) //if (trace->inopen) // cliptrace->inopen = true; if (trace->inwater) cliptrace->inwater = true; if ((trace->fraction < cliptrace->fraction) && (VectorLength2(trace->plane.normal) > 0)) { cliptrace->fraction = trace->fraction; VectorCopy(trace->endpos, cliptrace->endpos); cliptrace->plane = trace->plane; cliptrace->ent = touch; cliptrace->hitsupercontents = trace->hitsupercontents; cliptrace->hitq3surfaceflags = trace->hitq3surfaceflags; cliptrace->hittexture = trace->hittexture; } cliptrace->startsupercontents |= trace->startsupercontents; }