#include "quakedef.h" #include "polygon.h" #define COLLISION_EDGEDIR_DOT_EPSILON (0.999f) #define COLLISION_EDGECROSS_MINLENGTH2 (1.0f / 4194304.0f) #define COLLISION_SNAPSCALE (32.0f) #define COLLISION_SNAP (1.0f / COLLISION_SNAPSCALE) #define COLLISION_SNAP2 (2.0f / COLLISION_SNAPSCALE) #define COLLISION_PLANE_DIST_EPSILON (2.0f / COLLISION_SNAPSCALE) cvar_t collision_impactnudge = {0, "collision_impactnudge", "0.03125", "how much to back off from the impact"}; cvar_t collision_startnudge = {0, "collision_startnudge", "0", "how much to bias collision trace start"}; cvar_t collision_endnudge = {0, "collision_endnudge", "0", "how much to bias collision trace end"}; cvar_t collision_enternudge = {0, "collision_enternudge", "0", "how much to bias collision entry fraction"}; cvar_t collision_leavenudge = {0, "collision_leavenudge", "0", "how much to bias collision exit fraction"}; cvar_t collision_prefernudgedfraction = {0, "collision_prefernudgedfraction", "1", "whether to sort collision events by nudged fraction (1) or real fraction (0)"}; void Collision_Init (void) { Cvar_RegisterVariable(&collision_impactnudge); Cvar_RegisterVariable(&collision_startnudge); Cvar_RegisterVariable(&collision_endnudge); Cvar_RegisterVariable(&collision_enternudge); Cvar_RegisterVariable(&collision_leavenudge); Cvar_RegisterVariable(&collision_prefernudgedfraction); } void Collision_PrintBrushAsQHull(colbrushf_t *brush, const char *name) { int i; Con_Printf("3 %s\n%i\n", name, brush->numpoints); for (i = 0;i < brush->numpoints;i++) Con_Printf("%f %f %f\n", brush->points[i].v[0], brush->points[i].v[1], brush->points[i].v[2]); // FIXME: optimize! Con_Printf("4\n%i\n", brush->numplanes); for (i = 0;i < brush->numplanes;i++) Con_Printf("%f %f %f %f\n", brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist); } void Collision_ValidateBrush(colbrushf_t *brush) { int j, k, pointsoffplanes, pointonplanes, pointswithinsufficientplanes, printbrush; float d; printbrush = false; if (!brush->numpoints) { Con_Print("Collision_ValidateBrush: brush with no points!\n"); printbrush = true; } #if 0 // it's ok for a brush to have one point and no planes... if (brush->numplanes == 0 && brush->numpoints != 1) { Con_Print("Collision_ValidateBrush: brush with no planes and more than one point!\n"); printbrush = true; } #endif if (brush->numplanes) { pointsoffplanes = 0; pointswithinsufficientplanes = 0; for (k = 0;k < brush->numplanes;k++) if (DotProduct(brush->planes[k].normal, brush->planes[k].normal) < 0.0001f) Con_Printf("Collision_ValidateBrush: plane #%i (%f %f %f %f) is degenerate\n", k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist); for (j = 0;j < brush->numpoints;j++) { pointonplanes = 0; for (k = 0;k < brush->numplanes;k++) { d = DotProduct(brush->points[j].v, brush->planes[k].normal) - brush->planes[k].dist; if (d > COLLISION_PLANE_DIST_EPSILON) { Con_Printf("Collision_ValidateBrush: point #%i (%f %f %f) infront of plane #%i (%f %f %f %f)\n", j, brush->points[j].v[0], brush->points[j].v[1], brush->points[j].v[2], k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist); printbrush = true; } if (fabs(d) > COLLISION_PLANE_DIST_EPSILON) pointsoffplanes++; else pointonplanes++; } if (pointonplanes < 3) pointswithinsufficientplanes++; } if (pointswithinsufficientplanes) { Con_Print("Collision_ValidateBrush: some points have insufficient planes, every point must be on at least 3 planes to form a corner.\n"); printbrush = true; } if (pointsoffplanes == 0) // all points are on all planes { Con_Print("Collision_ValidateBrush: all points lie on all planes (degenerate, no brush volume!)\n"); printbrush = true; } } if (printbrush) Collision_PrintBrushAsQHull(brush, "unnamed"); } float nearestplanedist_float(const float *normal, const colpointf_t *points, int numpoints) { float dist, bestdist; if (!numpoints) return 0; bestdist = DotProduct(points->v, normal); points++; while(--numpoints) { dist = DotProduct(points->v, normal); bestdist = min(bestdist, dist); points++; } return bestdist; } float furthestplanedist_float(const float *normal, const colpointf_t *points, int numpoints) { float dist, bestdist; if (!numpoints) return 0; bestdist = DotProduct(points->v, normal); points++; while(--numpoints) { dist = DotProduct(points->v, normal); bestdist = max(bestdist, dist); points++; } return bestdist; } void Collision_CalcEdgeDirsForPolygonBrushFloat(colbrushf_t *brush) { int i, j; for (i = 0, j = brush->numpoints - 1;i < brush->numpoints;j = i, i++) VectorSubtract(brush->points[i].v, brush->points[j].v, brush->edgedirs[j].v); } colbrushf_t *Collision_NewBrushFromPlanes(mempool_t *mempool, int numoriginalplanes, const colplanef_t *originalplanes, int supercontents, int q3surfaceflags, texture_t *texture, int hasaabbplanes) { // TODO: planesbuf could be replaced by a remapping table int j, k, l, m, w, xyzflags; int numpointsbuf = 0, maxpointsbuf = 256, numedgedirsbuf = 0, maxedgedirsbuf = 256, numplanesbuf = 0, maxplanesbuf = 256, numelementsbuf = 0, maxelementsbuf = 256; int isaabb = true; double maxdist; colbrushf_t *brush; colpointf_t pointsbuf[256]; colpointf_t edgedirsbuf[256]; colplanef_t planesbuf[256]; int elementsbuf[1024]; int polypointbuf[256]; int pmaxpoints = 64; int pnumpoints; double p[2][3*64]; #if 0 // enable these if debugging to avoid seeing garbage in unused data- memset(pointsbuf, 0, sizeof(pointsbuf)); memset(edgedirsbuf, 0, sizeof(edgedirsbuf)); memset(planesbuf, 0, sizeof(planesbuf)); memset(elementsbuf, 0, sizeof(elementsbuf)); memset(polypointbuf, 0, sizeof(polypointbuf)); memset(p, 0, sizeof(p)); #endif // check if there are too many planes and skip the brush if (numoriginalplanes >= maxplanesbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many planes for buffer\n"); return NULL; } // figure out how large a bounding box we need to properly compute this brush maxdist = 0; for (j = 0;j < numoriginalplanes;j++) maxdist = max(maxdist, fabs(originalplanes[j].dist)); // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024 maxdist = floor(maxdist * (4.0 / 1024.0) + 2) * 1024.0; // construct a collision brush (points, planes, and renderable mesh) from // a set of planes, this also optimizes out any unnecessary planes (ones // whose polygon is clipped away by the other planes) for (j = 0;j < numoriginalplanes;j++) { // add the new plane VectorCopy(originalplanes[j].normal, planesbuf[numplanesbuf].normal); planesbuf[numplanesbuf].dist = originalplanes[j].dist; planesbuf[numplanesbuf].q3surfaceflags = originalplanes[j].q3surfaceflags; planesbuf[numplanesbuf].texture = originalplanes[j].texture; numplanesbuf++; // create a large polygon from the plane w = 0; PolygonD_QuadForPlane(p[w], originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist, maxdist); pnumpoints = 4; // clip it by all other planes for (k = 0;k < numoriginalplanes && pnumpoints >= 3 && pnumpoints <= pmaxpoints;k++) { // skip the plane this polygon // (nothing happens if it is processed, this is just an optimization) if (k != j) { // we want to keep the inside of the brush plane so we flip // the cutting plane PolygonD_Divide(pnumpoints, p[w], -originalplanes[k].normal[0], -originalplanes[k].normal[1], -originalplanes[k].normal[2], -originalplanes[k].dist, COLLISION_PLANE_DIST_EPSILON, pmaxpoints, p[!w], &pnumpoints, 0, NULL, NULL, NULL); w = !w; } } // if nothing is left, skip it if (pnumpoints < 3) { //Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon for plane %f %f %f %f clipped away\n", originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist); continue; } for (k = 0;k < pnumpoints;k++) { int l, m; m = 0; for (l = 0;l < numoriginalplanes;l++) if (fabs(DotProduct(&p[w][k*3], originalplanes[l].normal) - originalplanes[l].dist) < COLLISION_PLANE_DIST_EPSILON) m++; if (m < 3) break; } if (k < pnumpoints) { Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon point does not lie on at least 3 planes\n"); //return NULL; } // check if there are too many polygon vertices for buffer if (pnumpoints > pmaxpoints) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n"); return NULL; } // check if there are too many triangle elements for buffer if (numelementsbuf + (pnumpoints - 2) * 3 > maxelementsbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many triangle elements for buffer\n"); return NULL; } // add the unique points for this polygon for (k = 0;k < pnumpoints;k++) { float v[3]; // downgrade to float precision before comparing VectorCopy(&p[w][k*3], v); // check if there is already a matching point (no duplicates) for (m = 0;m < numpointsbuf;m++) if (VectorDistance2(v, pointsbuf[m].v) < COLLISION_SNAP2) break; // if there is no match, add a new one if (m == numpointsbuf) { // check if there are too many and skip the brush if (numpointsbuf >= maxpointsbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n"); return NULL; } // add the new one VectorCopy(&p[w][k*3], pointsbuf[numpointsbuf].v); numpointsbuf++; } // store the index into a buffer polypointbuf[k] = m; } // add the triangles for the polygon // (this particular code makes a triangle fan) for (k = 0;k < pnumpoints - 2;k++) { elementsbuf[numelementsbuf++] = polypointbuf[0]; elementsbuf[numelementsbuf++] = polypointbuf[k + 1]; elementsbuf[numelementsbuf++] = polypointbuf[k + 2]; } // add the unique edgedirs for this polygon for (k = 0, l = pnumpoints-1;k < pnumpoints;l = k, k++) { float dir[3]; // downgrade to float precision before comparing VectorSubtract(&p[w][k*3], &p[w][l*3], dir); VectorNormalize(dir); // check if there is already a matching edgedir (no duplicates) for (m = 0;m < numedgedirsbuf;m++) if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON) break; // skip this if there is if (m < numedgedirsbuf) continue; // try again with negated edgedir VectorNegate(dir, dir); // check if there is already a matching edgedir (no duplicates) for (m = 0;m < numedgedirsbuf;m++) if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON) break; // if there is no match, add a new one if (m == numedgedirsbuf) { // check if there are too many and skip the brush if (numedgedirsbuf >= maxedgedirsbuf) { Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many edgedirs for buffer\n"); return NULL; } // add the new one VectorCopy(dir, edgedirsbuf[numedgedirsbuf].v); numedgedirsbuf++; } } // if any normal is not purely axial, it's not an axis-aligned box if (isaabb && (originalplanes[j].normal[0] == 0) + (originalplanes[j].normal[1] == 0) + (originalplanes[j].normal[2] == 0) < 2) isaabb = false; } // if nothing is left, there's nothing to allocate if (numplanesbuf < 4) { Con_DPrintf("Collision_NewBrushFromPlanes: failed to build collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf); return NULL; } // if no triangles or points could be constructed, then this routine failed but the brush is not discarded if (numelementsbuf < 12 || numpointsbuf < 4) Con_DPrintf("Collision_NewBrushFromPlanes: unable to rebuild triangles/points for collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf); // validate plane distances for (j = 0;j < numplanesbuf;j++) { float d = furthestplanedist_float(planesbuf[j].normal, pointsbuf, numpointsbuf); if (fabs(planesbuf[j].dist - d) > COLLISION_PLANE_DIST_EPSILON) Con_DPrintf("plane %f %f %f %f mismatches dist %f\n", planesbuf[j].normal[0], planesbuf[j].normal[1], planesbuf[j].normal[2], planesbuf[j].dist, d); } // allocate the brush and copy to it brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colpointf_t) * numpointsbuf + sizeof(colpointf_t) * numedgedirsbuf + sizeof(colplanef_t) * numplanesbuf + sizeof(int) * numelementsbuf); brush->isaabb = isaabb; brush->hasaabbplanes = hasaabbplanes; brush->supercontents = supercontents; brush->numplanes = numplanesbuf; brush->numedgedirs = numedgedirsbuf; brush->numpoints = numpointsbuf; brush->numtriangles = numelementsbuf / 3; brush->planes = (colplanef_t *)(brush + 1); brush->points = (colpointf_t *)(brush->planes + brush->numplanes); brush->edgedirs = (colpointf_t *)(brush->points + brush->numpoints); brush->elements = (int *)(brush->points + brush->numpoints); brush->q3surfaceflags = q3surfaceflags; brush->texture = texture; for (j = 0;j < brush->numpoints;j++) { brush->points[j].v[0] = pointsbuf[j].v[0]; brush->points[j].v[1] = pointsbuf[j].v[1]; brush->points[j].v[2] = pointsbuf[j].v[2]; } for (j = 0;j < brush->numedgedirs;j++) { brush->edgedirs[j].v[0] = edgedirsbuf[j].v[0]; brush->edgedirs[j].v[1] = edgedirsbuf[j].v[1]; brush->edgedirs[j].v[2] = edgedirsbuf[j].v[2]; } for (j = 0;j < brush->numplanes;j++) { brush->planes[j].normal[0] = planesbuf[j].normal[0]; brush->planes[j].normal[1] = planesbuf[j].normal[1]; brush->planes[j].normal[2] = planesbuf[j].normal[2]; brush->planes[j].dist = planesbuf[j].dist; brush->planes[j].q3surfaceflags = planesbuf[j].q3surfaceflags; brush->planes[j].texture = planesbuf[j].texture; } for (j = 0;j < brush->numtriangles * 3;j++) brush->elements[j] = elementsbuf[j]; xyzflags = 0; VectorClear(brush->mins); VectorClear(brush->maxs); for (j = 0;j < min(6, numoriginalplanes);j++) { if (originalplanes[j].normal[0] == 1) {xyzflags |= 1;brush->maxs[0] = originalplanes[j].dist;} else if (originalplanes[j].normal[0] == -1) {xyzflags |= 2;brush->mins[0] = -originalplanes[j].dist;} else if (originalplanes[j].normal[1] == 1) {xyzflags |= 4;brush->maxs[1] = originalplanes[j].dist;} else if (originalplanes[j].normal[1] == -1) {xyzflags |= 8;brush->mins[1] = -originalplanes[j].dist;} else if (originalplanes[j].normal[2] == 1) {xyzflags |= 16;brush->maxs[2] = originalplanes[j].dist;} else if (originalplanes[j].normal[2] == -1) {xyzflags |= 32;brush->mins[2] = -originalplanes[j].dist;} } // if not all xyzflags were set, then this is not a brush from q3map/q3map2, and needs reconstruction of the bounding box // (this case works for any brush with valid points, but sometimes brushes are not reconstructed properly and hence the points are not valid, so this is reserved as a fallback case) if (xyzflags != 63) { VectorCopy(brush->points[0].v, brush->mins); VectorCopy(brush->points[0].v, brush->maxs); for (j = 1;j < brush->numpoints;j++) { brush->mins[0] = min(brush->mins[0], brush->points[j].v[0]); brush->mins[1] = min(brush->mins[1], brush->points[j].v[1]); brush->mins[2] = min(brush->mins[2], brush->points[j].v[2]); brush->maxs[0] = max(brush->maxs[0], brush->points[j].v[0]); brush->maxs[1] = max(brush->maxs[1], brush->points[j].v[1]); brush->maxs[2] = max(brush->maxs[2], brush->points[j].v[2]); } } brush->mins[0] -= 1; brush->mins[1] -= 1; brush->mins[2] -= 1; brush->maxs[0] += 1; brush->maxs[1] += 1; brush->maxs[2] += 1; Collision_ValidateBrush(brush); return brush; } void Collision_CalcPlanesForPolygonBrushFloat(colbrushf_t *brush) { int i; float edge0[3], edge1[3], edge2[3], normal[3], dist, bestdist; colpointf_t *p, *p2; // FIXME: these probably don't actually need to be normalized if the collision code does not care if (brush->numpoints == 3) { // optimized triangle case TriangleNormal(brush->points[0].v, brush->points[1].v, brush->points[2].v, brush->planes[0].normal); if (DotProduct(brush->planes[0].normal, brush->planes[0].normal) < 0.0001f) { // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out) brush->numplanes = 0; return; } else { brush->numplanes = 5; brush->numedgedirs = 3; VectorNormalize(brush->planes[0].normal); brush->planes[0].dist = DotProduct(brush->points->v, brush->planes[0].normal); VectorNegate(brush->planes[0].normal, brush->planes[1].normal); brush->planes[1].dist = -brush->planes[0].dist; VectorSubtract(brush->points[2].v, brush->points[0].v, edge0); VectorSubtract(brush->points[0].v, brush->points[1].v, edge1); VectorSubtract(brush->points[1].v, brush->points[2].v, edge2); VectorCopy(edge0, brush->edgedirs[0].v); VectorCopy(edge1, brush->edgedirs[1].v); VectorCopy(edge2, brush->edgedirs[2].v); #if 1 { float projectionnormal[3], projectionedge0[3], projectionedge1[3], projectionedge2[3]; int i, best; float dist, bestdist; bestdist = fabs(brush->planes[0].normal[0]); best = 0; for (i = 1;i < 3;i++) { dist = fabs(brush->planes[0].normal[i]); if (bestdist < dist) { bestdist = dist; best = i; } } VectorClear(projectionnormal); if (brush->planes[0].normal[best] < 0) projectionnormal[best] = -1; else projectionnormal[best] = 1; VectorCopy(edge0, projectionedge0); VectorCopy(edge1, projectionedge1); VectorCopy(edge2, projectionedge2); projectionedge0[best] = 0; projectionedge1[best] = 0; projectionedge2[best] = 0; CrossProduct(projectionedge0, projectionnormal, brush->planes[2].normal); CrossProduct(projectionedge1, projectionnormal, brush->planes[3].normal); CrossProduct(projectionedge2, projectionnormal, brush->planes[4].normal); } #else CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal); CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal); CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal); #endif VectorNormalize(brush->planes[2].normal); VectorNormalize(brush->planes[3].normal); VectorNormalize(brush->planes[4].normal); brush->planes[2].dist = DotProduct(brush->points[2].v, brush->planes[2].normal); brush->planes[3].dist = DotProduct(brush->points[0].v, brush->planes[3].normal); brush->planes[4].dist = DotProduct(brush->points[1].v, brush->planes[4].normal); if (developer.integer >= 100) { // validation code #if 0 float temp[3]; VectorSubtract(brush->points[0].v, brush->points[1].v, edge0); VectorSubtract(brush->points[2].v, brush->points[1].v, edge1); CrossProduct(edge0, edge1, normal); VectorNormalize(normal); VectorSubtract(normal, brush->planes[0].normal, temp); if (VectorLength(temp) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: TriangleNormal gave wrong answer (%f %f %f != correct answer %f %f %f)\n", brush->planes->normal[0], brush->planes->normal[1], brush->planes->normal[2], normal[0], normal[1], normal[2]); if (fabs(DotProduct(brush->planes[1].normal, brush->planes[0].normal) - -1.0f) > 0.01f || fabs(brush->planes[1].dist - -brush->planes[0].dist) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: plane 1 (%f %f %f %f) is not opposite plane 0 (%f %f %f %f)\n", brush->planes[1].normal[0], brush->planes[1].normal[1], brush->planes[1].normal[2], brush->planes[1].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[0].dist); #if 0 if (fabs(DotProduct(brush->planes[2].normal, brush->planes[0].normal)) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: plane 2 (%f %f %f %f) is not perpendicular to plane 0 (%f %f %f %f)\n", brush->planes[2].normal[0], brush->planes[2].normal[1], brush->planes[2].normal[2], brush->planes[2].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[2].dist); if (fabs(DotProduct(brush->planes[3].normal, brush->planes[0].normal)) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: plane 3 (%f %f %f %f) is not perpendicular to plane 0 (%f %f %f %f)\n", brush->planes[3].normal[0], brush->planes[3].normal[1], brush->planes[3].normal[2], brush->planes[3].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[3].dist); if (fabs(DotProduct(brush->planes[4].normal, brush->planes[0].normal)) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: plane 4 (%f %f %f %f) is not perpendicular to plane 0 (%f %f %f %f)\n", brush->planes[4].normal[0], brush->planes[4].normal[1], brush->planes[4].normal[2], brush->planes[4].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[4].dist); if (fabs(DotProduct(brush->planes[2].normal, edge0)) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: plane 2 (%f %f %f %f) is not perpendicular to edge 0 (%f %f %f to %f %f %f)\n", brush->planes[2].normal[0], brush->planes[2].normal[1], brush->planes[2].normal[2], brush->planes[2].dist, brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2]); if (fabs(DotProduct(brush->planes[3].normal, edge1)) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: plane 3 (%f %f %f %f) is not perpendicular to edge 1 (%f %f %f to %f %f %f)\n", brush->planes[3].normal[0], brush->planes[3].normal[1], brush->planes[3].normal[2], brush->planes[3].dist, brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2]); if (fabs(DotProduct(brush->planes[4].normal, edge2)) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: plane 4 (%f %f %f %f) is not perpendicular to edge 2 (%f %f %f to %f %f %f)\n", brush->planes[4].normal[0], brush->planes[4].normal[1], brush->planes[4].normal[2], brush->planes[4].dist, brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2]); #endif #endif if (fabs(DotProduct(brush->points[0].v, brush->planes[0].normal) - brush->planes[0].dist) > 0.01f || fabs(DotProduct(brush->points[1].v, brush->planes[0].normal) - brush->planes[0].dist) > 0.01f || fabs(DotProduct(brush->points[2].v, brush->planes[0].normal) - brush->planes[0].dist) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: edges (%f %f %f to %f %f %f to %f %f %f) off front plane 0 (%f %f %f %f)\n", brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[0].dist); if (fabs(DotProduct(brush->points[0].v, brush->planes[1].normal) - brush->planes[1].dist) > 0.01f || fabs(DotProduct(brush->points[1].v, brush->planes[1].normal) - brush->planes[1].dist) > 0.01f || fabs(DotProduct(brush->points[2].v, brush->planes[1].normal) - brush->planes[1].dist) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: edges (%f %f %f to %f %f %f to %f %f %f) off back plane 1 (%f %f %f %f)\n", brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->planes[1].normal[0], brush->planes[1].normal[1], brush->planes[1].normal[2], brush->planes[1].dist); if (fabs(DotProduct(brush->points[2].v, brush->planes[2].normal) - brush->planes[2].dist) > 0.01f || fabs(DotProduct(brush->points[0].v, brush->planes[2].normal) - brush->planes[2].dist) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: edge 0 (%f %f %f to %f %f %f) off front plane 2 (%f %f %f %f)\n", brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->planes[2].normal[0], brush->planes[2].normal[1], brush->planes[2].normal[2], brush->planes[2].dist); if (fabs(DotProduct(brush->points[0].v, brush->planes[3].normal) - brush->planes[3].dist) > 0.01f || fabs(DotProduct(brush->points[1].v, brush->planes[3].normal) - brush->planes[3].dist) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: edge 0 (%f %f %f to %f %f %f) off front plane 2 (%f %f %f %f)\n", brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->planes[3].normal[0], brush->planes[3].normal[1], brush->planes[3].normal[2], brush->planes[3].dist); if (fabs(DotProduct(brush->points[1].v, brush->planes[4].normal) - brush->planes[4].dist) > 0.01f || fabs(DotProduct(brush->points[2].v, brush->planes[4].normal) - brush->planes[4].dist) > 0.01f) Con_Printf("Collision_CalcPlanesForPolygonBrushFloat: edge 0 (%f %f %f to %f %f %f) off front plane 2 (%f %f %f %f)\n", brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->planes[4].normal[0], brush->planes[4].normal[1], brush->planes[4].normal[2], brush->planes[4].dist); } } } else { // choose best surface normal for polygon's plane bestdist = 0; for (i = 0, p = brush->points + 1;i < brush->numpoints - 2;i++, p++) { VectorSubtract(p[-1].v, p[0].v, edge0); VectorSubtract(p[1].v, p[0].v, edge1); CrossProduct(edge0, edge1, normal); //TriangleNormal(p[-1].v, p[0].v, p[1].v, normal); dist = DotProduct(normal, normal); if (i == 0 || bestdist < dist) { bestdist = dist; VectorCopy(normal, brush->planes->normal); } } if (bestdist < 0.0001f) { // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out) brush->numplanes = 0; return; } else { brush->numplanes = brush->numpoints + 2; VectorNormalize(brush->planes->normal); brush->planes->dist = DotProduct(brush->points->v, brush->planes->normal); // negate plane to create other side VectorNegate(brush->planes[0].normal, brush->planes[1].normal); brush->planes[1].dist = -brush->planes[0].dist; for (i = 0, p = brush->points + (brush->numpoints - 1), p2 = brush->points;i < brush->numpoints;i++, p = p2, p2++) { VectorSubtract(p->v, p2->v, edge0); CrossProduct(edge0, brush->planes->normal, brush->planes[i + 2].normal); VectorNormalize(brush->planes[i + 2].normal); brush->planes[i + 2].dist = DotProduct(p->v, brush->planes[i + 2].normal); } } } if (developer.integer >= 100) { // validity check - will be disabled later Collision_ValidateBrush(brush); for (i = 0;i < brush->numplanes;i++) { int j; for (j = 0, p = brush->points;j < brush->numpoints;j++, p++) if (DotProduct(p->v, brush->planes[i].normal) > brush->planes[i].dist + COLLISION_PLANE_DIST_EPSILON) Con_Printf("Error in brush plane generation, plane %i\n", i); } } } colbrushf_t *Collision_AllocBrushFromPermanentPolygonFloat(mempool_t *mempool, int numpoints, float *points, int supercontents, int q3surfaceflags, texture_t *texture) { colbrushf_t *brush; brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colplanef_t) * (numpoints + 2) + sizeof(colpointf_t) * numpoints); brush->isaabb = false; brush->hasaabbplanes = false; brush->supercontents = supercontents; brush->numpoints = numpoints; brush->numedgedirs = numpoints; brush->numplanes = numpoints + 2; brush->planes = (colplanef_t *)(brush + 1); brush->points = (colpointf_t *)points; brush->edgedirs = (colpointf_t *)(brush->planes + brush->numplanes); brush->q3surfaceflags = q3surfaceflags; brush->texture = texture; Sys_Error("Collision_AllocBrushFromPermanentPolygonFloat: FIXME: this code needs to be updated to generate a mesh..."); return brush; } // NOTE: start and end of each brush pair must have same numplanes/numpoints void Collision_TraceBrushBrushFloat(trace_t *trace, const colbrushf_t *trace_start, const colbrushf_t *trace_end, const colbrushf_t *other_start, const colbrushf_t *other_end) { int nplane, nplane2, nedge1, nedge2, hitq3surfaceflags = 0; int tracenumedgedirs = trace_start->numedgedirs; //int othernumedgedirs = other_start->numedgedirs; int tracenumpoints = trace_start->numpoints; int othernumpoints = other_start->numpoints; int numplanes1 = other_start->numplanes; int numplanes2 = numplanes1 + trace_start->numplanes; int numplanes3 = numplanes2 + trace_start->numedgedirs * other_start->numedgedirs * 2; vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1; vec4_t startplane; vec4_t endplane; vec4_t newimpactplane; texture_t *hittexture = NULL; vec_t startdepth = 1; vec3_t startdepthnormal; VectorClear(startdepthnormal); Vector4Clear(newimpactplane); // fast case for AABB vs compiled brushes (which begin with AABB planes and also have precomputed bevels for AABB collisions) if (trace_start->isaabb && other_start->hasaabbplanes) numplanes3 = numplanes2 = numplanes1; // Separating Axis Theorem: // if a supporting vector (plane normal) can be found that separates two // objects, they are not colliding. // // Minkowski Sum: // reduce the size of one object to a point while enlarging the other to // represent the space that point can not occupy. // // try every plane we can construct between the two brushes and measure // the distance between them. for (nplane = 0;nplane < numplanes3;nplane++) { if (nplane < numplanes1) { nplane2 = nplane; VectorCopy(other_start->planes[nplane2].normal, startplane); VectorCopy(other_end->planes[nplane2].normal, endplane); } else if (nplane < numplanes2) { nplane2 = nplane - numplanes1; VectorCopy(trace_start->planes[nplane2].normal, startplane); VectorCopy(trace_end->planes[nplane2].normal, endplane); } else { // pick an edgedir from each brush and cross them nplane2 = nplane - numplanes2; nedge1 = nplane2 >> 1; nedge2 = nedge1 / tracenumedgedirs; nedge1 -= nedge2 * tracenumedgedirs; if (nplane2 & 1) { CrossProduct(trace_start->edgedirs[nedge1].v, other_start->edgedirs[nedge2].v, startplane); if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2) continue; // degenerate crossproduct CrossProduct(trace_end->edgedirs[nedge1].v, other_end->edgedirs[nedge2].v, endplane); if (VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2) continue; // degenerate crossproduct } else { CrossProduct(other_start->edgedirs[nedge2].v, trace_start->edgedirs[nedge1].v, startplane); if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2) continue; // degenerate crossproduct CrossProduct(other_end->edgedirs[nedge2].v, trace_end->edgedirs[nedge1].v, endplane); if (VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2) continue; // degenerate crossproduct } VectorNormalize(startplane); VectorNormalize(endplane); } startplane[3] = furthestplanedist_float(startplane, other_start->points, othernumpoints); endplane[3] = furthestplanedist_float(startplane, other_end->points, othernumpoints); startdist = nearestplanedist_float(startplane, trace_start->points, tracenumpoints) - startplane[3] - collision_startnudge.value; enddist = nearestplanedist_float(endplane, trace_end->points, tracenumpoints) - endplane[3] - collision_endnudge.value; //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist)); // aside from collisions, this is also used for error correction if (startdist < 0 && (startdepth < startdist || startdepth == 1)) { startdepth = startdist; VectorCopy(startplane, startdepthnormal); } if (startdist > enddist) { // moving into brush if (enddist >= collision_enternudge.value) return; if (startdist > 0) { // enter imove = 1 / (startdist - enddist); f = (startdist - collision_enternudge.value) * imove; if (f < 0) f = 0; // check if this will reduce the collision time range if (enterfrac < f) { // reduced collision time range enterfrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; // if the collision would be further away than the trace's // existing collision data, we don't care about this // collision if (enterfrac > trace->realfraction) return; // calculate the nudged fraction and impact normal we'll // need if we accept this collision later enterfrac2 = (startdist - collision_impactnudge.value) * imove; ie = 1.0f - enterfrac; newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac; newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac; newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac; newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac; if (nplane < numplanes1) { // use the plane from other nplane2 = nplane; hitq3surfaceflags = other_start->planes[nplane2].q3surfaceflags; hittexture = other_start->planes[nplane2].texture; } else if (nplane < numplanes2) { // use the plane from trace nplane2 = nplane - numplanes1; hitq3surfaceflags = trace_start->planes[nplane2].q3surfaceflags; hittexture = trace_start->planes[nplane2].texture; } else { hitq3surfaceflags = other_start->q3surfaceflags; hittexture = other_start->texture; } } } } else { // moving out of brush if (startdist > 0) return; if (enddist > 0) { // leave f = (startdist + collision_leavenudge.value) / (startdist - enddist); if (f > 1) f = 1; // check if this will reduce the collision time range if (leavefrac > f) { // reduced collision time range leavefrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; } } } } // at this point we know the trace overlaps the brush because it was not // rejected at any point in the loop above // see if the trace started outside the brush or not if (enterfrac > -1) { // started outside, and overlaps, therefore there is a collision here // store out the impact information if (trace->hitsupercontentsmask & other_start->supercontents) { trace->hitsupercontents = other_start->supercontents; trace->hitq3surfaceflags = hitq3surfaceflags; trace->hittexture = hittexture; trace->realfraction = bound(0, enterfrac, 1); trace->fraction = bound(0, enterfrac2, 1); if (collision_prefernudgedfraction.integer) trace->realfraction = trace->fraction; VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; } } else { // started inside, update startsolid and friends trace->startsupercontents |= other_start->supercontents; if (trace->hitsupercontentsmask & other_start->supercontents) { trace->startsolid = true; if (leavefrac < 1) trace->allsolid = true; VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; if (trace->startdepth > startdepth) { trace->startdepth = startdepth; VectorCopy(startdepthnormal, trace->startdepthnormal); } } } } // NOTE: start and end of each brush pair must have same numplanes/numpoints void Collision_TraceLineBrushFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const colbrushf_t *other_start, const colbrushf_t *other_end) { int nplane, hitq3surfaceflags = 0; int numplanes = other_start->numplanes; vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1; vec4_t startplane; vec4_t endplane; vec4_t newimpactplane; texture_t *hittexture = NULL; vec_t startdepth = 1; vec3_t startdepthnormal; VectorClear(startdepthnormal); Vector4Clear(newimpactplane); // Separating Axis Theorem: // if a supporting vector (plane normal) can be found that separates two // objects, they are not colliding. // // Minkowski Sum: // reduce the size of one object to a point while enlarging the other to // represent the space that point can not occupy. // // try every plane we can construct between the two brushes and measure // the distance between them. for (nplane = 0;nplane < numplanes;nplane++) { VectorCopy(other_start->planes[nplane].normal, startplane); startplane[3] = other_start->planes[nplane].dist; VectorCopy(other_end->planes[nplane].normal, endplane); endplane[3] = other_end->planes[nplane].dist; startdist = DotProduct(linestart, startplane) - startplane[3] - collision_startnudge.value; enddist = DotProduct(lineend, endplane) - endplane[3] - collision_endnudge.value; //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist)); // aside from collisions, this is also used for error correction if (startdist < 0 && (startdepth < startdist || startdepth == 1)) { startdepth = startdist; VectorCopy(startplane, startdepthnormal); } if (startdist > enddist) { // moving into brush if (enddist >= collision_enternudge.value) return; if (startdist > 0) { // enter imove = 1 / (startdist - enddist); f = (startdist - collision_enternudge.value) * imove; if (f < 0) f = 0; // check if this will reduce the collision time range if (enterfrac < f) { // reduced collision time range enterfrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; // if the collision would be further away than the trace's // existing collision data, we don't care about this // collision if (enterfrac > trace->realfraction) return; // calculate the nudged fraction and impact normal we'll // need if we accept this collision later enterfrac2 = (startdist - collision_impactnudge.value) * imove; ie = 1.0f - enterfrac; newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac; newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac; newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac; newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac; hitq3surfaceflags = other_start->planes[nplane].q3surfaceflags; hittexture = other_start->planes[nplane].texture; } } } else { // moving out of brush if (startdist > 0) return; if (enddist > 0) { // leave f = (startdist + collision_leavenudge.value) / (startdist - enddist); if (f > 1) f = 1; // check if this will reduce the collision time range if (leavefrac > f) { // reduced collision time range leavefrac = f; // if the collision time range is now empty, no collision if (enterfrac > leavefrac) return; } } } } // at this point we know the trace overlaps the brush because it was not // rejected at any point in the loop above // see if the trace started outside the brush or not if (enterfrac > -1) { // started outside, and overlaps, therefore there is a collision here // store out the impact information if (trace->hitsupercontentsmask & other_start->supercontents) { trace->hitsupercontents = other_start->supercontents; trace->hitq3surfaceflags = hitq3surfaceflags; trace->hittexture = hittexture; trace->realfraction = bound(0, enterfrac, 1); trace->fraction = bound(0, enterfrac2, 1); if (collision_prefernudgedfraction.integer) trace->realfraction = trace->fraction; VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; } } else { // started inside, update startsolid and friends trace->startsupercontents |= other_start->supercontents; if (trace->hitsupercontentsmask & other_start->supercontents) { trace->startsolid = true; if (leavefrac < 1) trace->allsolid = true; VectorCopy(newimpactplane, trace->plane.normal); trace->plane.dist = newimpactplane[3]; if (trace->startdepth > startdepth) { trace->startdepth = startdepth; VectorCopy(startdepthnormal, trace->startdepthnormal); } } } } qboolean Collision_PointInsideBrushFloat(const vec3_t point, const colbrushf_t *brush) { int nplane; const colplanef_t *plane; if (!BoxesOverlap(point, point, brush->mins, brush->maxs)) return false; for (nplane = 0, plane = brush->planes;nplane < brush->numplanes;nplane++, plane++) if (DotProduct(plane->normal, point) > plane->dist) return false; return true; } void Collision_TracePointBrushFloat(trace_t *trace, const vec3_t point, const colbrushf_t *thatbrush) { if (!Collision_PointInsideBrushFloat(point, thatbrush)) return; trace->startsupercontents |= thatbrush->supercontents; if (trace->hitsupercontentsmask & thatbrush->supercontents) { trace->startsolid = true; trace->allsolid = true; } } void Collision_SnapCopyPoints(int numpoints, const colpointf_t *in, colpointf_t *out, float fractionprecision, float invfractionprecision) { int i; for (i = 0;i < numpoints;i++) { out[i].v[0] = floor(in[i].v[0] * fractionprecision + 0.5f) * invfractionprecision; out[i].v[1] = floor(in[i].v[1] * fractionprecision + 0.5f) * invfractionprecision; out[i].v[2] = floor(in[i].v[2] * fractionprecision + 0.5f) * invfractionprecision; } } void Collision_TraceBrushTriangleMeshFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs) { int i; colpointf_t points[3]; colpointf_t edgedirs[3]; colplanef_t planes[5]; colbrushf_t brush; memset(&brush, 0, sizeof(brush)); brush.isaabb = false; brush.hasaabbplanes = false; brush.numpoints = 3; brush.numedgedirs = 3; brush.numplanes = 5; brush.points = points; brush.edgedirs = edgedirs; brush.planes = planes; brush.supercontents = supercontents; brush.q3surfaceflags = q3surfaceflags; brush.texture = texture; for (i = 0;i < brush.numplanes;i++) { brush.planes[i].q3surfaceflags = q3surfaceflags; brush.planes[i].texture = texture; } if(stride > 0) { int k, cnt, tri; cnt = (numtriangles + stride - 1) / stride; for(i = 0; i < cnt; ++i) { if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs)) { for(k = 0; k < stride; ++k) { tri = i * stride + k; if(tri >= numtriangles) break; VectorCopy(vertex3f + element3i[tri * 3 + 0] * 3, points[0].v); VectorCopy(vertex3f + element3i[tri * 3 + 1] * 3, points[1].v); VectorCopy(vertex3f + element3i[tri * 3 + 2] * 3, points[2].v); Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP); Collision_CalcEdgeDirsForPolygonBrushFloat(&brush); Collision_CalcPlanesForPolygonBrushFloat(&brush); //Collision_PrintBrushAsQHull(&brush, "brush"); Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush); } } } } else if(stride == 0) { for (i = 0;i < numtriangles;i++, element3i += 3) { if (TriangleOverlapsBox(vertex3f + element3i[0]*3, vertex3f + element3i[1]*3, vertex3f + element3i[2]*3, segmentmins, segmentmaxs)) { VectorCopy(vertex3f + element3i[0] * 3, points[0].v); VectorCopy(vertex3f + element3i[1] * 3, points[1].v); VectorCopy(vertex3f + element3i[2] * 3, points[2].v); Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP); Collision_CalcEdgeDirsForPolygonBrushFloat(&brush); Collision_CalcPlanesForPolygonBrushFloat(&brush); //Collision_PrintBrushAsQHull(&brush, "brush"); Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush); } } } else { for (i = 0;i < numtriangles;i++, element3i += 3) { VectorCopy(vertex3f + element3i[0] * 3, points[0].v); VectorCopy(vertex3f + element3i[1] * 3, points[1].v); VectorCopy(vertex3f + element3i[2] * 3, points[2].v); Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP); Collision_CalcEdgeDirsForPolygonBrushFloat(&brush); Collision_CalcPlanesForPolygonBrushFloat(&brush); //Collision_PrintBrushAsQHull(&brush, "brush"); Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush); } } } void Collision_TraceLineTriangleMeshFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs) { int i; // FIXME: snap vertices? if(stride > 0) { int k, cnt, tri; cnt = (numtriangles + stride - 1) / stride; for(i = 0; i < cnt; ++i) { if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs)) { for(k = 0; k < stride; ++k) { tri = i * stride + k; if(tri >= numtriangles) break; Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[tri * 3 + 0] * 3, vertex3f + element3i[tri * 3 + 1] * 3, vertex3f + element3i[tri * 3 + 2] * 3, supercontents, q3surfaceflags, texture); } } } } else { for (i = 0;i < numtriangles;i++, element3i += 3) Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[0] * 3, vertex3f + element3i[1] * 3, vertex3f + element3i[2] * 3, supercontents, q3surfaceflags, texture); } } void Collision_BrushForBox(colboxbrushf_t *boxbrush, const vec3_t mins, const vec3_t maxs, int supercontents, int q3surfaceflags, texture_t *texture) { int i; memset(boxbrush, 0, sizeof(*boxbrush)); boxbrush->brush.isaabb = true; boxbrush->brush.hasaabbplanes = true; boxbrush->brush.points = boxbrush->points; boxbrush->brush.edgedirs = boxbrush->edgedirs; boxbrush->brush.planes = boxbrush->planes; boxbrush->brush.supercontents = supercontents; boxbrush->brush.q3surfaceflags = q3surfaceflags; boxbrush->brush.texture = texture; if (VectorCompare(mins, maxs)) { // point brush boxbrush->brush.numpoints = 1; boxbrush->brush.numedgedirs = 0; boxbrush->brush.numplanes = 0; VectorCopy(mins, boxbrush->brush.points[0].v); } else { boxbrush->brush.numpoints = 8; boxbrush->brush.numedgedirs = 3; boxbrush->brush.numplanes = 6; // there are 8 points on a box // there are 3 edgedirs on a box (both signs are tested in collision) // there are 6 planes on a box VectorSet(boxbrush->brush.points[0].v, mins[0], mins[1], mins[2]); VectorSet(boxbrush->brush.points[1].v, maxs[0], mins[1], mins[2]); VectorSet(boxbrush->brush.points[2].v, mins[0], maxs[1], mins[2]); VectorSet(boxbrush->brush.points[3].v, maxs[0], maxs[1], mins[2]); VectorSet(boxbrush->brush.points[4].v, mins[0], mins[1], maxs[2]); VectorSet(boxbrush->brush.points[5].v, maxs[0], mins[1], maxs[2]); VectorSet(boxbrush->brush.points[6].v, mins[0], maxs[1], maxs[2]); VectorSet(boxbrush->brush.points[7].v, maxs[0], maxs[1], maxs[2]); VectorSet(boxbrush->brush.edgedirs[0].v, 1, 0, 0); VectorSet(boxbrush->brush.edgedirs[1].v, 0, 1, 0); VectorSet(boxbrush->brush.edgedirs[2].v, 0, 0, 1); VectorSet(boxbrush->brush.planes[0].normal, -1, 0, 0);boxbrush->brush.planes[0].dist = -mins[0]; VectorSet(boxbrush->brush.planes[1].normal, 1, 0, 0);boxbrush->brush.planes[1].dist = maxs[0]; VectorSet(boxbrush->brush.planes[2].normal, 0, -1, 0);boxbrush->brush.planes[2].dist = -mins[1]; VectorSet(boxbrush->brush.planes[3].normal, 0, 1, 0);boxbrush->brush.planes[3].dist = maxs[1]; VectorSet(boxbrush->brush.planes[4].normal, 0, 0, -1);boxbrush->brush.planes[4].dist = -mins[2]; VectorSet(boxbrush->brush.planes[5].normal, 0, 0, 1);boxbrush->brush.planes[5].dist = maxs[2]; for (i = 0;i < 6;i++) { boxbrush->brush.planes[i].q3surfaceflags = q3surfaceflags; boxbrush->brush.planes[i].texture = texture; } } boxbrush->brush.supercontents = supercontents; boxbrush->brush.q3surfaceflags = q3surfaceflags; boxbrush->brush.texture = texture; VectorSet(boxbrush->brush.mins, mins[0] - 1, mins[1] - 1, mins[2] - 1); VectorSet(boxbrush->brush.maxs, maxs[0] + 1, maxs[1] + 1, maxs[2] + 1); Collision_ValidateBrush(&boxbrush->brush); } void Collision_ClipTrace_BrushBox(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask, int supercontents, int q3surfaceflags, texture_t *texture) { colboxbrushf_t boxbrush, thisbrush_start, thisbrush_end; vec3_t startmins, startmaxs, endmins, endmaxs; // create brushes for the collision VectorAdd(start, mins, startmins); VectorAdd(start, maxs, startmaxs); VectorAdd(end, mins, endmins); VectorAdd(end, maxs, endmaxs); Collision_BrushForBox(&boxbrush, cmins, cmaxs, supercontents, q3surfaceflags, texture); Collision_BrushForBox(&thisbrush_start, startmins, startmaxs, 0, 0, NULL); Collision_BrushForBox(&thisbrush_end, endmins, endmaxs, 0, 0, NULL); memset(trace, 0, sizeof(trace_t)); trace->hitsupercontentsmask = hitsupercontentsmask; trace->fraction = 1; trace->realfraction = 1; trace->allsolid = true; Collision_TraceBrushBrushFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, &boxbrush.brush, &boxbrush.brush); } //pseudocode for detecting line/sphere overlap without calculating an impact point //linesphereorigin = sphereorigin - linestart;linediff = lineend - linestart;linespherefrac = DotProduct(linesphereorigin, linediff) / DotProduct(linediff, linediff);return VectorLength2(linesphereorigin - bound(0, linespherefrac, 1) * linediff) >= sphereradius*sphereradius; // LordHavoc: currently unused, but tested // note: this can be used for tracing a moving sphere vs a stationary sphere, // by simply adding the moving sphere's radius to the sphereradius parameter, // all the results are correct (impactpoint, impactnormal, and fraction) float Collision_ClipTrace_Line_Sphere(double *linestart, double *lineend, double *sphereorigin, double sphereradius, double *impactpoint, double *impactnormal) { double dir[3], scale, v[3], deviationdist, impactdist, linelength; // make sure the impactpoint and impactnormal are valid even if there is // no collision VectorCopy(lineend, impactpoint); VectorClear(impactnormal); // calculate line direction VectorSubtract(lineend, linestart, dir); // normalize direction linelength = VectorLength(dir); if (linelength) { scale = 1.0 / linelength; VectorScale(dir, scale, dir); } // this dotproduct calculates the distance along the line at which the // sphere origin is (nearest point to the sphere origin on the line) impactdist = DotProduct(sphereorigin, dir) - DotProduct(linestart, dir); // calculate point on line at that distance, and subtract the // sphereorigin from it, so we have a vector to measure for the distance // of the line from the sphereorigin (deviation, how off-center it is) VectorMA(linestart, impactdist, dir, v); VectorSubtract(v, sphereorigin, v); deviationdist = VectorLength2(v); // if outside the radius, it's a miss for sure // (we do this comparison using squared radius to avoid a sqrt) if (deviationdist > sphereradius*sphereradius) return 1; // miss (off to the side) // nudge back to find the correct impact distance impactdist -= sphereradius - deviationdist/sphereradius; if (impactdist >= linelength) return 1; // miss (not close enough) if (impactdist < 0) return 1; // miss (linestart is past or inside sphere) // calculate new impactpoint VectorMA(linestart, impactdist, dir, impactpoint); // calculate impactnormal (surface normal at point of impact) VectorSubtract(impactpoint, sphereorigin, impactnormal); // normalize impactnormal VectorNormalize(impactnormal); // return fraction of movement distance return impactdist / linelength; } void Collision_TraceLineTriangleFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const float *point0, const float *point1, const float *point2, int supercontents, int q3surfaceflags, texture_t *texture) { #if 1 // more optimized float d1, d2, d, f, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, faceplanenormallength2, edge01[3], edge21[3], edge02[3]; // this function executes: // 32 ops when line starts behind triangle // 38 ops when line ends infront of triangle // 43 ops when line fraction is already closer than this triangle // 72 ops when line is outside edge 01 // 92 ops when line is outside edge 21 // 115 ops when line is outside edge 02 // 123 ops when line impacts triangle and updates trace results // this code is designed for clockwise triangles, conversion to // counterclockwise would require swapping some things around... // it is easier to simply swap the point0 and point2 parameters to this // function when calling it than it is to rewire the internals. // calculate the faceplanenormal of the triangle, this represents the front side // 15 ops VectorSubtract(point0, point1, edge01); VectorSubtract(point2, point1, edge21); CrossProduct(edge01, edge21, faceplanenormal); // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out) // 6 ops faceplanenormallength2 = DotProduct(faceplanenormal, faceplanenormal); if (faceplanenormallength2 < 0.0001f) return; // calculate the distance // 5 ops faceplanedist = DotProduct(point0, faceplanenormal); // if start point is on the back side there is no collision // (we don't care about traces going through the triangle the wrong way) // calculate the start distance // 6 ops d1 = DotProduct(faceplanenormal, linestart); if (d1 <= faceplanedist) return; // calculate the end distance // 6 ops d2 = DotProduct(faceplanenormal, lineend); // if both are in front, there is no collision if (d2 >= faceplanedist) return; // from here on we know d1 is >= 0 and d2 is < 0 // this means the line starts infront and ends behind, passing through it // calculate the recipricol of the distance delta, // so we can use it multiple times cheaply (instead of division) // 2 ops d = 1.0f / (d1 - d2); // calculate the impact fraction by taking the start distance (> 0) // and subtracting the face plane distance (this is the distance of the // triangle along that same normal) // then multiply by the recipricol distance delta // 2 ops f = (d1 - faceplanedist) * d; // skip out if this impact is further away than previous ones // 1 ops if (f > trace->realfraction) return; // calculate the perfect impact point for classification of insidedness // 9 ops impact[0] = linestart[0] + f * (lineend[0] - linestart[0]); impact[1] = linestart[1] + f * (lineend[1] - linestart[1]); impact[2] = linestart[2] + f * (lineend[2] - linestart[2]); // calculate the edge normal and reject if impact is outside triangle // (an edge normal faces away from the triangle, to get the desired normal // a crossproduct with the faceplanenormal is used, and because of the way // the insidedness comparison is written it does not need to be normalized) // first use the two edges from the triangle plane math // the other edge only gets calculated if the point survives that long // 20 ops CrossProduct(edge01, faceplanenormal, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal)) return; // 20 ops CrossProduct(faceplanenormal, edge21, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal)) return; // 23 ops VectorSubtract(point0, point2, edge02); CrossProduct(faceplanenormal, edge02, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal)) return; // 8 ops (rare) // store the new trace fraction trace->realfraction = f; // calculate a nudged fraction to keep it out of the surface // (the main fraction remains perfect) trace->fraction = f - collision_impactnudge.value * d; if (collision_prefernudgedfraction.integer) trace->realfraction = trace->fraction; // store the new trace plane (because collisions only happen from // the front this is always simply the triangle normal, never flipped) d = 1.0 / sqrt(faceplanenormallength2); VectorScale(faceplanenormal, d, trace->plane.normal); trace->plane.dist = faceplanedist * d; trace->hitsupercontents = supercontents; trace->hitq3surfaceflags = q3surfaceflags; trace->hittexture = texture; #else float d1, d2, d, f, fnudged, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, edge[3]; // this code is designed for clockwise triangles, conversion to // counterclockwise would require swapping some things around... // it is easier to simply swap the point0 and point2 parameters to this // function when calling it than it is to rewire the internals. // calculate the unnormalized faceplanenormal of the triangle, // this represents the front side TriangleNormal(point0, point1, point2, faceplanenormal); // there's no point in processing a degenerate triangle // (GIGO - Garbage In, Garbage Out) if (DotProduct(faceplanenormal, faceplanenormal) < 0.0001f) return; // calculate the unnormalized distance faceplanedist = DotProduct(point0, faceplanenormal); // calculate the unnormalized start distance d1 = DotProduct(faceplanenormal, linestart) - faceplanedist; // if start point is on the back side there is no collision // (we don't care about traces going through the triangle the wrong way) if (d1 <= 0) return; // calculate the unnormalized end distance d2 = DotProduct(faceplanenormal, lineend) - faceplanedist; // if both are in front, there is no collision if (d2 >= 0) return; // from here on we know d1 is >= 0 and d2 is < 0 // this means the line starts infront and ends behind, passing through it // calculate the recipricol of the distance delta, // so we can use it multiple times cheaply (instead of division) d = 1.0f / (d1 - d2); // calculate the impact fraction by taking the start distance (> 0) // and subtracting the face plane distance (this is the distance of the // triangle along that same normal) // then multiply by the recipricol distance delta f = d1 * d; // skip out if this impact is further away than previous ones if (f > trace->realfraction) return; // calculate the perfect impact point for classification of insidedness impact[0] = linestart[0] + f * (lineend[0] - linestart[0]); impact[1] = linestart[1] + f * (lineend[1] - linestart[1]); impact[2] = linestart[2] + f * (lineend[2] - linestart[2]); // calculate the edge normal and reject if impact is outside triangle // (an edge normal faces away from the triangle, to get the desired normal // a crossproduct with the faceplanenormal is used, and because of the way // the insidedness comparison is written it does not need to be normalized) VectorSubtract(point2, point0, edge); CrossProduct(edge, faceplanenormal, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal)) return; VectorSubtract(point0, point1, edge); CrossProduct(edge, faceplanenormal, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal)) return; VectorSubtract(point1, point2, edge); CrossProduct(edge, faceplanenormal, edgenormal); if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal)) return; // store the new trace fraction trace->realfraction = bound(0, f, 1); // store the new trace plane (because collisions only happen from // the front this is always simply the triangle normal, never flipped) VectorNormalize(faceplanenormal); VectorCopy(faceplanenormal, trace->plane.normal); trace->plane.dist = DotProduct(point0, faceplanenormal); // calculate the normalized start and end distances d1 = DotProduct(trace->plane.normal, linestart) - trace->plane.dist; d2 = DotProduct(trace->plane.normal, lineend) - trace->plane.dist; // calculate a nudged fraction to keep it out of the surface // (the main fraction remains perfect) fnudged = (d1 - collision_impactnudge.value) / (d1 - d2); trace->fraction = bound(0, fnudged, 1); // store the new trace endpos // not needed, it's calculated later when the trace is finished //trace->endpos[0] = linestart[0] + fnudged * (lineend[0] - linestart[0]); //trace->endpos[1] = linestart[1] + fnudged * (lineend[1] - linestart[1]); //trace->endpos[2] = linestart[2] + fnudged * (lineend[2] - linestart[2]); trace->hitsupercontents = supercontents; trace->hitq3surfaceflags = q3surfaceflags; trace->hittexture = texture; #endif } typedef struct colbspnode_s { mplane_t plane; struct colbspnode_s *children[2]; // the node is reallocated or split if max is reached int numcolbrushf; int maxcolbrushf; colbrushf_t **colbrushflist; //int numcolbrushd; //int maxcolbrushd; //colbrushd_t **colbrushdlist; } colbspnode_t; typedef struct colbsp_s { mempool_t *mempool; colbspnode_t *nodes; } colbsp_t; colbsp_t *Collision_CreateCollisionBSP(mempool_t *mempool) { colbsp_t *bsp; bsp = (colbsp_t *)Mem_Alloc(mempool, sizeof(colbsp_t)); bsp->mempool = mempool; bsp->nodes = (colbspnode_t *)Mem_Alloc(bsp->mempool, sizeof(colbspnode_t)); return bsp; } void Collision_FreeCollisionBSPNode(colbspnode_t *node) { if (node->children[0]) Collision_FreeCollisionBSPNode(node->children[0]); if (node->children[1]) Collision_FreeCollisionBSPNode(node->children[1]); while (--node->numcolbrushf) Mem_Free(node->colbrushflist[node->numcolbrushf]); //while (--node->numcolbrushd) // Mem_Free(node->colbrushdlist[node->numcolbrushd]); Mem_Free(node); } void Collision_FreeCollisionBSP(colbsp_t *bsp) { Collision_FreeCollisionBSPNode(bsp->nodes); Mem_Free(bsp); } void Collision_BoundingBoxOfBrushTraceSegment(const colbrushf_t *start, const colbrushf_t *end, vec3_t mins, vec3_t maxs, float startfrac, float endfrac) { int i; colpointf_t *ps, *pe; float tempstart[3], tempend[3]; VectorLerp(start->points[0].v, startfrac, end->points[0].v, mins); VectorCopy(mins, maxs); for (i = 0, ps = start->points, pe = end->points;i < start->numpoints;i++, ps++, pe++) { VectorLerp(ps->v, startfrac, pe->v, tempstart); VectorLerp(ps->v, endfrac, pe->v, tempend); mins[0] = min(mins[0], min(tempstart[0], tempend[0])); mins[1] = min(mins[1], min(tempstart[1], tempend[1])); mins[2] = min(mins[2], min(tempstart[2], tempend[2])); maxs[0] = min(maxs[0], min(tempstart[0], tempend[0])); maxs[1] = min(maxs[1], min(tempstart[1], tempend[1])); maxs[2] = min(maxs[2], min(tempstart[2], tempend[2])); } mins[0] -= 1; mins[1] -= 1; mins[2] -= 1; maxs[0] += 1; maxs[1] += 1; maxs[2] += 1; } //=========================================== void Collision_ClipToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask) { float starttransformed[3], endtransformed[3]; memset(trace, 0, sizeof(*trace)); trace->fraction = trace->realfraction = 1; Matrix4x4_Transform(inversematrix, start, starttransformed); Matrix4x4_Transform(inversematrix, end, endtransformed); #if COLLISIONPARANOID >= 3 Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2], end[0], end[1], end[2], endtransformed[0], endtransformed[1], endtransformed[2]); #endif if (model && model->TraceBox) model->TraceBox(model, frameblend, skeleton, trace, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask); else Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL); trace->fraction = bound(0, trace->fraction, 1); trace->realfraction = bound(0, trace->realfraction, 1); VectorLerp(start, trace->fraction, end, trace->endpos); // transform plane // NOTE: this relies on plane.dist being directly after plane.normal Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal); } void Collision_ClipToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontents) { memset(trace, 0, sizeof(*trace)); trace->fraction = trace->realfraction = 1; if (model && model->TraceBox) model->TraceBox(model, NULL, NULL, trace, start, mins, maxs, end, hitsupercontents); trace->fraction = bound(0, trace->fraction, 1); trace->realfraction = bound(0, trace->realfraction, 1); VectorLerp(start, trace->fraction, end, trace->endpos); } void Collision_ClipLineToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask) { float starttransformed[3], endtransformed[3]; memset(trace, 0, sizeof(*trace)); trace->fraction = trace->realfraction = 1; Matrix4x4_Transform(inversematrix, start, starttransformed); Matrix4x4_Transform(inversematrix, end, endtransformed); #if COLLISIONPARANOID >= 3 Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2], end[0], end[1], end[2], endtransformed[0], endtransformed[1], endtransformed[2]); #endif if (model && model->TraceLine) model->TraceLine(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask); else Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, vec3_origin, vec3_origin, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL); trace->fraction = bound(0, trace->fraction, 1); trace->realfraction = bound(0, trace->realfraction, 1); VectorLerp(start, trace->fraction, end, trace->endpos); // transform plane // NOTE: this relies on plane.dist being directly after plane.normal Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal); } void Collision_ClipLineToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t end, int hitsupercontents) { memset(trace, 0, sizeof(*trace)); trace->fraction = trace->realfraction = 1; if (model && model->TraceLine) model->TraceLine(model, NULL, NULL, trace, start, end, hitsupercontents); trace->fraction = bound(0, trace->fraction, 1); trace->realfraction = bound(0, trace->realfraction, 1); VectorLerp(start, trace->fraction, end, trace->endpos); } void Collision_ClipPointToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, int hitsupercontentsmask) { float starttransformed[3]; memset(trace, 0, sizeof(*trace)); trace->fraction = trace->realfraction = 1; Matrix4x4_Transform(inversematrix, start, starttransformed); #if COLLISIONPARANOID >= 3 Con_Printf("trans(%f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2]); #endif if (model && model->TracePoint) model->TracePoint(model, NULL, NULL, trace, starttransformed, hitsupercontentsmask); else Collision_ClipTrace_Point(trace, bodymins, bodymaxs, starttransformed, hitsupercontentsmask, bodysupercontents, 0, NULL); VectorCopy(start, trace->endpos); // transform plane // NOTE: this relies on plane.dist being directly after plane.normal Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal); } void Collision_ClipPointToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, int hitsupercontents) { memset(trace, 0, sizeof(*trace)); trace->fraction = trace->realfraction = 1; if (model && model->TracePoint) model->TracePoint(model, NULL, NULL, trace, start, hitsupercontents); VectorCopy(start, trace->endpos); } void Collision_CombineTraces(trace_t *cliptrace, const trace_t *trace, void *touch, qboolean isbmodel) { // take the 'best' answers from the new trace and combine with existing data if (trace->allsolid) cliptrace->allsolid = true; if (trace->startsolid) { if (isbmodel) cliptrace->bmodelstartsolid = true; cliptrace->startsolid = true; if (cliptrace->realfraction == 1) cliptrace->ent = touch; if (cliptrace->startdepth > trace->startdepth) { cliptrace->startdepth = trace->startdepth; VectorCopy(trace->startdepthnormal, cliptrace->startdepthnormal); } } // don't set this except on the world, because it can easily confuse // monsters underwater if there's a bmodel involved in the trace // (inopen && inwater is how they check water visibility) //if (trace->inopen) // cliptrace->inopen = true; if (trace->inwater) cliptrace->inwater = true; if ((trace->realfraction <= cliptrace->realfraction) && (VectorLength2(trace->plane.normal) > 0)) { cliptrace->fraction = trace->fraction; cliptrace->realfraction = trace->realfraction; VectorCopy(trace->endpos, cliptrace->endpos); cliptrace->plane = trace->plane; cliptrace->ent = touch; cliptrace->hitsupercontents = trace->hitsupercontents; cliptrace->hitq3surfaceflags = trace->hitq3surfaceflags; cliptrace->hittexture = trace->hittexture; } cliptrace->startsupercontents |= trace->startsupercontents; } void Collision_ShortenTrace(trace_t *trace, float shorten_factor, const vec3_t end) { // now undo our moving end 1 qu farther... trace->fraction = bound(trace->fraction, trace->fraction / shorten_factor - 1e-6, 1); // we subtract 1e-6 to guard for roundoff errors trace->realfraction = bound(trace->realfraction, trace->realfraction / shorten_factor - 1e-6, 1); // we subtract 1e-6 to guard for roundoff errors if(trace->fraction >= 1) // trace would NOT hit if not expanded! { trace->fraction = 1; trace->realfraction = 1; VectorCopy(end, trace->endpos); memset(&trace->plane, 0, sizeof(trace->plane)); trace->ent = NULL; trace->hitsupercontentsmask = 0; trace->hitsupercontents = 0; trace->hitq3surfaceflags = 0; trace->hittexture = NULL; } }