// this code written by Forest Hale, on 2003-08-23, and placed into public domain // this code deals with quadratic splines (minimum of 3 points), the same kind used in Quake3 maps. // LordHavoc's rant on misuse of the name 'bezier': many people seem to think that bezier is a generic term for splines, but it is not, it is a term for a specific type of bspline (4 control points, cubic bspline), bsplines are the generalization of the bezier spline to support dimensions other than just cubic. // this implements Quadratic BSpline surfaces #include #include "curves.h" #include "zone.h" #if 0 void QuadraticSplineSubdivideFloat(int inpoints, int components, const float *in, int instride, float *out, int outstride) { int s; // the input (control points) is read as a stream of points, and buffered // by the cpprev, cpcurr, and cpnext variables (to allow subdivision in // overlapping memory buffers, even subdivision in-place with pre-spaced // control points in the buffer) // the output (resulting curve) is written as a stream of points // this subdivision is meant to be repeated until the desired flatness // level is reached if (components == 1 && instride == (int)sizeof(float) && outstride == instride) { // simple case, single component and no special stride float cpprev0 = 0, cpcurr0 = 0, cpnext0; cpnext0 = *in++; for (s = 0;s < inpoints - 1;s++) { cpprev0 = cpcurr0; cpcurr0 = cpnext0; if (s < inpoints - 1) cpnext0 = *in++; if (s > 0) { // 50% flattened control point // cp1 = average(cp1, average(cp0, cp2)); *out++ = (cpcurr0 + (cpprev0 + cpnext0) * 0.5f) * 0.5f; } else { // copy the control point directly *out++ = cpcurr0; } // midpoint // mid = average(cp0, cp1); *out++ = (cpcurr0 + cpnext0) * 0.5f; } // copy the final control point *out++ = cpnext0; } else { // multiple components or stride is used (complex case) int c; float cpprev[4], cpcurr[4], cpnext[4]; // check if there are too many components for the buffers if (components > 1) { // more components can be handled, but slowly, by calling self multiple times... for (c = 0;c < components;c++, in++, out++) QuadraticSplineSubdivideFloat(inpoints, 1, in, instride, out, outstride); return; } for (c = 0;c < components;c++) cpnext[c] = in[c]; (unsigned char *)in += instride; for (s = 0;s < inpoints - 1;s++) { for (c = 0;c < components;c++) cpprev[c] = cpcurr[c]; for (c = 0;c < components;c++) cpcurr[c] = cpnext[c]; for (c = 0;c < components;c++) cpnext[c] = in[c]; (unsigned char *)in += instride; // the end points are copied as-is if (s > 0) { // 50% flattened control point // cp1 = average(cp1, average(cp0, cp2)); for (c = 0;c < components;c++) out[c] = (cpcurr[c] + (cpprev[c] + cpnext[c]) * 0.5f) * 0.5f; } else { // copy the control point directly for (c = 0;c < components;c++) out[c] = cpcurr[c]; } (unsigned char *)out += outstride; // midpoint // mid = average(cp0, cp1); for (c = 0;c < components;c++) out[c] = (cpcurr[c] + cpnext[c]) * 0.5f; (unsigned char *)out += outstride; } // copy the final control point for (c = 0;c < components;c++) out[c] = cpnext[c]; //(unsigned char *)out += outstride; } } // note: out must have enough room! // (see finalwidth/finalheight calcs below) void QuadraticSplinePatchSubdivideFloatBuffer(int cpwidth, int cpheight, int xlevel, int ylevel, int components, const float *in, float *out) { int finalwidth, finalheight, xstep, ystep, x, y, c; float *o; // error out on various bogus conditions if (xlevel < 0 || ylevel < 0 || xlevel > 16 || ylevel > 16 || cpwidth < 3 || cpheight < 3) return; xstep = 1 << xlevel; ystep = 1 << ylevel; finalwidth = (cpwidth - 1) * xstep + 1; finalheight = (cpheight - 1) * ystep + 1; for (y = 0;y < finalheight;y++) for (x = 0;x < finalwidth;x++) for (c = 0, o = out + (y * finalwidth + x) * components;c < components;c++) o[c] = 0; if (xlevel == 1 && ylevel == 0) { for (y = 0;y < finalheight;y++) QuadraticSplineSubdivideFloat(cpwidth, components, in + y * cpwidth * components, sizeof(float) * components, out + y * finalwidth * components, sizeof(float) * components); return; } if (xlevel == 0 && ylevel == 1) { for (x = 0;x < finalwidth;x++) QuadraticSplineSubdivideFloat(cpheight, components, in + x * components, sizeof(float) * cpwidth * components, out + x * components, sizeof(float) * finalwidth * components); return; } // copy control points into correct positions in destination buffer for (y = 0;y < finalheight;y += ystep) for (x = 0;x < finalwidth;x += xstep) for (c = 0, o = out + (y * finalwidth + x) * components;c < components;c++) o[c] = *in++; // subdivide in place in the destination buffer while (xstep > 1 || ystep > 1) { if (xstep > 1) { xstep >>= 1; for (y = 0;y < finalheight;y += ystep) QuadraticSplineSubdivideFloat(cpwidth, components, out + y * finalwidth * components, sizeof(float) * xstep * 2 * components, out + y * finalwidth * components, sizeof(float) * xstep * components); cpwidth = (cpwidth - 1) * 2 + 1; } if (ystep > 1) { ystep >>= 1; for (x = 0;x < finalwidth;x += xstep) QuadraticSplineSubdivideFloat(cpheight, components, out + x * components, sizeof(float) * ystep * 2 * finalwidth * components, out + x * components, sizeof(float) * ystep * finalwidth * components); cpheight = (cpheight - 1) * 2 + 1; } } } #elif 1 void QuadraticSplinePatchSubdivideFloatBuffer(int cpwidth, int cpheight, int xlevel, int ylevel, int components, const float *in, float *out) { int c, x, y, outwidth, outheight, halfstep, xstep, ystep; float prev, curr, next; xstep = 1 << xlevel; ystep = 1 << ylevel; outwidth = ((cpwidth - 1) * xstep) + 1; outheight = ((cpheight - 1) * ystep) + 1; for (y = 0;y < cpheight;y++) for (x = 0;x < cpwidth;x++) for (c = 0;c < components;c++) out[(y * ystep * outwidth + x * xstep) * components + c] = in[(y * cpwidth + x) * components + c]; while (xstep > 1 || ystep > 1) { if (xstep >= ystep) { // subdivide on X halfstep = xstep >> 1; for (y = 0;y < outheight;y += ystep) { for (c = 0;c < components;c++) { x = xstep; // fetch first two control points prev = out[(y * outwidth + (x - xstep)) * components + c]; curr = out[(y * outwidth + x) * components + c]; // create first midpoint out[(y * outwidth + (x - halfstep)) * components + c] = (curr + prev) * 0.5f; for (;x < outwidth - xstep;x += xstep, prev = curr, curr = next) { // fetch next control point next = out[(y * outwidth + (x + xstep)) * components + c]; // flatten central control point out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f; // create following midpoint out[(y * outwidth + (x + halfstep)) * components + c] = (curr + next) * 0.5f; } } } xstep >>= 1; } else { // subdivide on Y halfstep = ystep >> 1; for (x = 0;x < outwidth;x += xstep) { for (c = 0;c < components;c++) { y = ystep; // fetch first two control points prev = out[((y - ystep) * outwidth + x) * components + c]; curr = out[(y * outwidth + x) * components + c]; // create first midpoint out[((y - halfstep) * outwidth + x) * components + c] = (curr + prev) * 0.5f; for (;y < outheight - ystep;y += ystep, prev = curr, curr = next) { // fetch next control point next = out[((y + ystep) * outwidth + x) * components + c]; // flatten central control point out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f; // create following midpoint out[((y + halfstep) * outwidth + x) * components + c] = (curr + next) * 0.5f; } } } ystep >>= 1; } } // flatten control points on X for (y = 0;y < outheight;y += ystep) { for (c = 0;c < components;c++) { x = xstep; // fetch first two control points prev = out[(y * outwidth + (x - xstep)) * components + c]; curr = out[(y * outwidth + x) * components + c]; for (;x < outwidth - xstep;x += xstep, prev = curr, curr = next) { // fetch next control point next = out[(y * outwidth + (x + xstep)) * components + c]; // flatten central control point out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f; } } } // flatten control points on Y for (x = 0;x < outwidth;x += xstep) { for (c = 0;c < components;c++) { y = ystep; // fetch first two control points prev = out[((y - ystep) * outwidth + x) * components + c]; curr = out[(y * outwidth + x) * components + c]; for (;y < outheight - ystep;y += ystep, prev = curr, curr = next) { // fetch next control point next = out[((y + ystep) * outwidth + x) * components + c]; // flatten central control point out[(y * outwidth + x) * components + c] = (curr + (prev + next) * 0.5f) * 0.5f; } } } /* for (y = ystep;y < outheight - ystep;y += ystep) { for (c = 0;c < components;c++) { for (x = xstep, outp = out + (y * outwidth + x) * components + c, prev = outp[-xstep * components], curr = outp[0], next = outp[xstep * components];x < outwidth;x += xstep, outp += ystep * outwidth * components, prev = curr, curr = next, next = outp[xstep * components]) { // midpoint outp[-halfstep * components] = (prev + curr) * 0.5f; // flatten control point outp[0] = (curr + (prev + next) * 0.5f) * 0.5f; // next midpoint (only needed for end segment) outp[halfstep * components] = (next + curr) * 0.5f; } } } */ } #else // unfinished code void QuadraticSplinePatchSubdivideFloatBuffer(int cpwidth, int cpheight, int xlevel, int ylevel, int components, const float *in, float *out) { int outwidth, outheight; outwidth = ((cpwidth - 1) << xlevel) + 1; outheight = ((cpheight - 1) << ylevel) + 1; for (y = 0;y < cpheight;y++) { for (x = 0;x < cpwidth;x++) { for (c = 0;c < components;c++) { inp = in + (y * cpwidth + x) * components + c; outp = out + ((y< level1tolerance;level++) deviation *= 0.25f; return level; } int QuadraticSplinePatchSubdivisionLevelOnX(int cpwidth, int cpheight, int components, const float *in, float level1tolerance, int levellimit) { return QuadraticSplinePatchSubdivisionLevelForDeviation(QuadraticSplinePatchLargestDeviationOnX(cpwidth, cpheight, components, in), level1tolerance, levellimit); } int QuadraticSplinePatchSubdivisionLevelOnY(int cpwidth, int cpheight, int components, const float *in, float level1tolerance, int levellimit) { return QuadraticSplinePatchSubdivisionLevelForDeviation(QuadraticSplinePatchLargestDeviationOnY(cpwidth, cpheight, components, in), level1tolerance, levellimit); } /* // 1: flat (0th dimension) o = a // 2: linear (1st dimension) o = a * (1 - t) + b * t // 3: quadratic bspline (2nd dimension) o = a * (1 - t) * (1 - t) + 2 * b * (1 - t) * t + c * t * t // 4: cubic (bezier) bspline (3rd dimension) o = a * (1 - t) * (1 - t) * (1 - t) + 3 * b * (1 - t) * (1 - t) * t + 3 * c * (1 - t) * t * t + d * t * t * t // 5: quartic bspline (4th dimension) o = a * (1 - t) * (1 - t) * (1 - t) * (1 - t) + 4 * b * (1 - t) * (1 - t) * (1 - t) * t + 6 * c * (1 - t) * (1 - t) * t * t + 4 * d * (1 - t) * t * t * t + e * t * t * t * t // n: arbitrary dimension bspline double factorial(int n) { int i; double f; f = 1; for (i = 1;i < n;i++) f = f * i; return f; } double bsplinesample(int dimensions, double t, double *param) { double o = 0; for (i = 0;i < dimensions + 1;i++) o += param[i] * factorial(dimensions)/(factorial(i)*factorial(dimensions-i)) * pow(t, i) * pow(1 - t, dimensions - i); } */