/* this code written by Forest Hale, on 2004-10-17, and placed into public domain this implements Quadratic BSpline surfaces as seen in Quake3 by id Software a small rant on misuse of the name 'bezier': many people seem to think that bezier is a generic term for splines, but it is not, it is a term for a specific type of bspline (4 control points, cubic bspline), bsplines are the generalization of the bezier spline to support dimensions other than cubic. example equations for 1-5 control point bsplines being sampled as t=0...1 1: flat (0th dimension) o = a 2: linear (1st dimension) o = a * (1 - t) + b * t 3: quadratic bspline (2nd dimension) o = a * (1 - t) * (1 - t) + 2 * b * (1 - t) * t + c * t * t 4: cubic (bezier) bspline (3rd dimension) o = a * (1 - t) * (1 - t) * (1 - t) + 3 * b * (1 - t) * (1 - t) * t + 3 * c * (1 - t) * t * t + d * t * t * t 5: quartic bspline (4th dimension) o = a * (1 - t) * (1 - t) * (1 - t) * (1 - t) + 4 * b * (1 - t) * (1 - t) * (1 - t) * t + 6 * c * (1 - t) * (1 - t) * t * t + 4 * d * (1 - t) * t * t * t + e * t * t * t * t arbitrary dimension bspline double factorial(int n) { int i; double f; f = 1; for (i = 1;i < n;i++) f = f * i; return f; } double bsplinesample(int dimensions, double t, double *param) { double o = 0; for (i = 0;i < dimensions + 1;i++) o += param[i] * factorial(dimensions)/(factorial(i)*factorial(dimensions-i)) * pow(t, i) * pow(1 - t, dimensions - i); return o; } */ #include "quakedef.h" #include "mathlib.h" #include #include "curves.h" // Calculate number of resulting vertex rows/columns by given patch size and tesselation factor // tess=0 means that we reduce detalization of base 3x3 patches by removing middle row and column of vertices // "DimForTess" is "DIMension FOR TESSelation factor" // NB: tess=0 actually means that tess must be 0.5, but obviously it can't because it is of int type. (so "a*tess"-like code is replaced by "a/2" if tess=0) int Q3PatchDimForTess(int size, int tess) { if (tess > 0) return (size - 1) * tess + 1; else if (tess == 0) return (size - 1) / 2 + 1; else return 0; // Maybe warn about wrong tess here? } // usage: // to expand a 5x5 patch to 21x21 vertices (4x4 tesselation), one might use this call: // Q3PatchSubdivideFloat(3, sizeof(float[3]), outvertices, 5, 5, sizeof(float[3]), patchvertices, 4, 4); void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputvertices, int patchwidth, int patchheight, int inputstride, float *patchvertices, int tesselationwidth, int tesselationheight) { int k, l, x, y, component, outputwidth = Q3PatchDimForTess(patchwidth, tesselationwidth); float px, py, *v, a, b, c, *cp[3][3], temp[3][64]; int xmax = max(1, 2*tesselationwidth); int ymax = max(1, 2*tesselationheight); // iterate over the individual 3x3 quadratic spline surfaces one at a time // expanding them to fill the output array (with some overlap to ensure // the edges are filled) for (k = 0;k < patchheight-1;k += 2) { for (l = 0;l < patchwidth-1;l += 2) { // set up control point pointers for quicker lookup later for (y = 0;y < 3;y++) for (x = 0;x < 3;x++) cp[y][x] = (float *)((unsigned char *)patchvertices + ((k+y)*patchwidth+(l+x)) * inputstride); // for each row... for (y = 0;y <= ymax;y++) { // calculate control points for this row by collapsing the 3 // rows of control points to one row using py py = (float)y / (float)ymax; // calculate quadratic spline weights for py a = ((1.0f - py) * (1.0f - py)); b = ((1.0f - py) * (2.0f * py)); c = (( py) * ( py)); for (component = 0;component < numcomponents;component++) { temp[0][component] = cp[0][0][component] * a + cp[1][0][component] * b + cp[2][0][component] * c; temp[1][component] = cp[0][1][component] * a + cp[1][1][component] * b + cp[2][1][component] * c; temp[2][component] = cp[0][2][component] * a + cp[1][2][component] * b + cp[2][2][component] * c; } // fetch a pointer to the beginning of the output vertex row v = (float *)((unsigned char *)outputvertices + ((k * ymax / 2 + y) * outputwidth + l * xmax / 2) * outputstride); // for each column of the row... for (x = 0;x <= xmax;x++) { // calculate point based on the row control points px = (float)x / (float)xmax; // calculate quadratic spline weights for px // (could be precalculated) a = ((1.0f - px) * (1.0f - px)); b = ((1.0f - px) * (2.0f * px)); c = (( px) * ( px)); for (component = 0;component < numcomponents;component++) v[component] = temp[0][component] * a + temp[1][component] * b + temp[2][component] * c; // advance to next output vertex using outputstride // (the next vertex may not be directly following this // one, as this may be part of a larger structure) v = (float *)((unsigned char *)v + outputstride); } } } } #if 0 // enable this if you want results printed out printf("vertices[%i][%i] =\n{\n", (patchheight-1)*tesselationheight+1, (patchwidth-1)*tesselationwidth+1); for (y = 0;y < (patchheight-1)*tesselationheight+1;y++) { for (x = 0;x < (patchwidth-1)*tesselationwidth+1;x++) { printf("("); for (component = 0;component < numcomponents;component++) printf("%f ", outputvertices[(y*((patchwidth-1)*tesselationwidth+1)+x)*numcomponents+component]); printf(") "); } printf("\n"); } printf("}\n"); #endif } static int Q3PatchTesselation(float largestsquared3xcurvearea, float tolerance) { float f; // f is actually a squared 2x curve area... so the formula had to be adjusted to give roughly the same subdivisions f = pow(largestsquared3xcurvearea / 64.0f, 0.25f) / tolerance; //if(f < 0.25) // VERY flat patches if(f < 0.0001) // TOTALLY flat patches return 0; else if(f < 2) return 1; else return (int) floor(log(f) / log(2.0f)) + 1; // this is always at least 2 // maps [0.25..0.5[ to -1 (actually, 1 is returned) // maps [0.5..1[ to 0 (actually, 1 is returned) // maps [1..2[ to 1 // maps [2..4[ to 2 // maps [4..8[ to 4 } static float Squared3xCurveArea(const float *a, const float *control, const float *b, int components) { #if 0 // mimicing the old behaviour with the new code... float deviation; float quartercurvearea = 0; int c; for (c = 0;c < components;c++) { deviation = control[c] * 0.5f - a[c] * 0.25f - b[c] * 0.25f; quartercurvearea += deviation*deviation; } // But as the new code now works on the squared 2x curve area, let's scale the value return quartercurvearea * quartercurvearea * 64.0; #else // ideally, we'd like the area between the spline a->control->b and the line a->b. // but as this is hard to calculate, let's calculate an upper bound of it: // the area of the triangle a->control->b->a. // // one can prove that the area of a quadratic spline = 2/3 * the area of // the triangle of its control points! // to do it, first prove it for the spline through (0,0), (1,1), (2,0) // (which is a parabola) and then note that moving the control point // left/right is just shearing and keeps the area of both the spline and // the triangle invariant. // // why are we going for the spline area anyway? // we know that: // // the area between the spline and the line a->b is a measure of the // error of approximation of the spline by the line. // // also, on circle-like or parabola-like curves, you easily get that the // double amount of line approximation segments reduces the error to its quarter // (also, easy to prove for splines by doing it for one specific one, and using // affine transforms to get all other splines) // // so... // // let's calculate the area! but we have to avoid the cross product, as // components is not necessarily 3 // // the area of a triangle spanned by vectors a and b is // // 0.5 * |a| |b| sin gamma // // now, cos gamma is // // a.b / (|a| |b|) // // so the area is // // 0.5 * sqrt(|a|^2 |b|^2 - (a.b)^2) int c; float aa = 0, bb = 0, ab = 0; for (c = 0;c < components;c++) { float xa = a[c] - control[c]; float xb = b[c] - control[c]; aa += xa * xa; ab += xa * xb; bb += xb * xb; } // area is 0.5 * sqrt(aa*bb - ab*ab) // 2x TRIANGLE area is sqrt(aa*bb - ab*ab) // 3x CURVE area is sqrt(aa*bb - ab*ab) return aa * bb - ab * ab; #endif } // returns how much tesselation of each segment is needed to remain under tolerance int Q3PatchTesselationOnX(int patchwidth, int patchheight, int components, const float *in, float tolerance) { int x, y; const float *patch; float squared3xcurvearea, largestsquared3xcurvearea; largestsquared3xcurvearea = 0; for (y = 0;y < patchheight;y++) { for (x = 0;x < patchwidth-1;x += 2) { patch = in + ((y * patchwidth) + x) * components; squared3xcurvearea = Squared3xCurveArea(&patch[0], &patch[components], &patch[2*components], components); if (largestsquared3xcurvearea < squared3xcurvearea) largestsquared3xcurvearea = squared3xcurvearea; } } return Q3PatchTesselation(largestsquared3xcurvearea, tolerance); } // returns how much tesselation of each segment is needed to remain under tolerance int Q3PatchTesselationOnY(int patchwidth, int patchheight, int components, const float *in, float tolerance) { int x, y; const float *patch; float squared3xcurvearea, largestsquared3xcurvearea; largestsquared3xcurvearea = 0; for (y = 0;y < patchheight-1;y += 2) { for (x = 0;x < patchwidth;x++) { patch = in + ((y * patchwidth) + x) * components; squared3xcurvearea = Squared3xCurveArea(&patch[0], &patch[patchwidth*components], &patch[2*patchwidth*components], components); if (largestsquared3xcurvearea < squared3xcurvearea) largestsquared3xcurvearea = squared3xcurvearea; } } return Q3PatchTesselation(largestsquared3xcurvearea, tolerance); } // Find an equal vertex in array. Check only vertices with odd X and Y static int FindEqualOddVertexInArray(int numcomponents, float *vertex, float *vertices, int width, int height) { int x, y, j; for (y=0; y 0.05) // div0: this is notably smaller than the smallest radiant grid // but large enough so we don't need to get scared of roundoff // errors { found = false; break; } if(found) return y*width+x; vertices += numcomponents*2; } vertices += numcomponents*(width-1); } return -1; } #define SIDE_INVALID -1 #define SIDE_X 0 #define SIDE_Y 1 static int GetSide(int p1, int p2, int width, int height, int *pointdist) { int x1 = p1 % width, y1 = p1 / width; int x2 = p2 % width, y2 = p2 / width; if (p1 < 0 || p2 < 0) return SIDE_INVALID; if (x1 == x2) { if (y1 != y2) { *pointdist = abs(y2 - y1); return SIDE_Y; } else return SIDE_INVALID; } else if (y1 == y2) { *pointdist = abs(x2 - x1); return SIDE_X; } else return SIDE_INVALID; } // Increase tesselation of one of two touching patches to make a seamless connection between them // Returns 0 in case if patches were not modified, otherwise 1 int Q3PatchAdjustTesselation(int numcomponents, patchinfo_t *patch1, float *patchvertices1, patchinfo_t *patch2, float *patchvertices2) { // what we are doing here is: // we take for each corner of one patch // and check if the other patch contains that corner // once we have a pair of such matches struct {int id1,id2;} commonverts[8]; int i, j, k, side1, side2, *tess1, *tess2; int dist1 = 0, dist2 = 0; qboolean modified = false; // Potential paired vertices (corners of the first patch) commonverts[0].id1 = 0; commonverts[1].id1 = patch1->xsize-1; commonverts[2].id1 = patch1->xsize*(patch1->ysize-1); commonverts[3].id1 = patch1->xsize*patch1->ysize-1; for (i=0;i<4;++i) commonverts[i].id2 = FindEqualOddVertexInArray(numcomponents, patchvertices1+numcomponents*commonverts[i].id1, patchvertices2, patch2->xsize, patch2->ysize); // Corners of the second patch commonverts[4].id2 = 0; commonverts[5].id2 = patch2->xsize-1; commonverts[6].id2 = patch2->xsize*(patch2->ysize-1); commonverts[7].id2 = patch2->xsize*patch2->ysize-1; for (i=4;i<8;++i) commonverts[i].id1 = FindEqualOddVertexInArray(numcomponents, patchvertices2+numcomponents*commonverts[i].id2, patchvertices1, patch1->xsize, patch1->ysize); for (i=0;i<8;++i) for (j=i+1;j<8;++j) { side1 = GetSide(commonverts[i].id1,commonverts[j].id1,patch1->xsize,patch1->ysize,&dist1); side2 = GetSide(commonverts[i].id2,commonverts[j].id2,patch2->xsize,patch2->ysize,&dist2); if (side1 == SIDE_INVALID || side2 == SIDE_INVALID) continue; if(dist1 != dist2) { // no patch welding if the resolutions mismatch continue; } // Update every lod level for (k=0;klods[k].xtess : &patch1->lods[k].ytess; tess2 = side2 == SIDE_X ? &patch2->lods[k].xtess : &patch2->lods[k].ytess; if (*tess1 != *tess2) { if (*tess1 < *tess2) *tess1 = *tess2; else *tess2 = *tess1; modified = true; } } } return modified; } #undef SIDE_INVALID #undef SIDE_X #undef SIDE_Y // calculates elements for a grid of vertices // (such as those produced by Q3PatchTesselate) // (note: width and height are the actual vertex size, this produces // (width-1)*(height-1)*2 triangles, 3 elements each) void Q3PatchTriangleElements(int *elements, int width, int height, int firstvertex) { int x, y, row0, row1; for (y = 0;y < height - 1;y++) { if(y % 2) { // swap the triangle order in odd rows as optimization for collision stride row0 = firstvertex + (y + 0) * width + width - 2; row1 = firstvertex + (y + 1) * width + width - 2; for (x = 0;x < width - 1;x++) { *elements++ = row1; *elements++ = row1 + 1; *elements++ = row0 + 1; *elements++ = row0; *elements++ = row1; *elements++ = row0 + 1; row0--; row1--; } } else { row0 = firstvertex + (y + 0) * width; row1 = firstvertex + (y + 1) * width; for (x = 0;x < width - 1;x++) { *elements++ = row0; *elements++ = row1; *elements++ = row0 + 1; *elements++ = row1; *elements++ = row1 + 1; *elements++ = row0 + 1; row0++; row1++; } } } }