#include "quakedef.h" void fractalnoise(unsigned char *noise, int size, int startgrid) { int x, y, g, g2, amplitude, min, max, size1 = size - 1, sizepower, gridpower; int *noisebuf; #define n(x,y) noisebuf[((y)&size1)*size+((x)&size1)] for (sizepower = 0;(1 << sizepower) < size;sizepower++); if (size != (1 << sizepower)) { Con_Printf("fractalnoise: size must be power of 2\n"); return; } for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++); if (startgrid != (1 << gridpower)) { Con_Printf("fractalnoise: grid must be power of 2\n"); return; } startgrid = bound(0, startgrid, size); amplitude = 0xFFFF; // this gets halved before use noisebuf = (int *)Mem_Alloc(tempmempool, size*size*sizeof(int)); memset(noisebuf, 0, size*size*sizeof(int)); for (g2 = startgrid;g2;g2 >>= 1) { // brownian motion (at every smaller level there is random behavior) amplitude >>= 1; for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x,y) += (rand()&litude); g = g2 >> 1; if (g) { // subdivide, diamond-square algorithm (really this has little to do with squares) // diamond for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x+g,y+g) = (n(x,y) + n(x+g2,y) + n(x,y+g2) + n(x+g2,y+g2)) >> 2; // square for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) { n(x+g,y) = (n(x,y) + n(x+g2,y) + n(x+g,y-g) + n(x+g,y+g)) >> 2; n(x,y+g) = (n(x,y) + n(x,y+g2) + n(x-g,y+g) + n(x+g,y+g)) >> 2; } } } // find range of noise values min = max = 0; for (y = 0;y < size;y++) for (x = 0;x < size;x++) { if (n(x,y) < min) min = n(x,y); if (n(x,y) > max) max = n(x,y); } max -= min; max++; // normalize noise and copy to output for (y = 0;y < size;y++) for (x = 0;x < size;x++) *noise++ = (unsigned char) (((n(x,y) - min) * 256) / max); Mem_Free(noisebuf); #undef n } // unnormalized, used for explosions mainly, does not allocate/free memory (hence the name quick) void fractalnoisequick(unsigned char *noise, int size, int startgrid) { int x, y, g, g2, amplitude, size1 = size - 1, sizepower, gridpower; #define n(x,y) noise[((y)&size1)*size+((x)&size1)] for (sizepower = 0;(1 << sizepower) < size;sizepower++); if (size != (1 << sizepower)) { Con_Printf("fractalnoise: size must be power of 2\n"); return; } for (gridpower = 0;(1 << gridpower) < startgrid;gridpower++); if (startgrid != (1 << gridpower)) { Con_Printf("fractalnoise: grid must be power of 2\n"); return; } startgrid = bound(0, startgrid, size); amplitude = 255; // this gets halved before use memset(noise, 0, size*size); for (g2 = startgrid;g2;g2 >>= 1) { // brownian motion (at every smaller level there is random behavior) amplitude >>= 1; for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x,y) += (rand()&litude); g = g2 >> 1; if (g) { // subdivide, diamond-square algorithm (really this has little to do with squares) // diamond for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) n(x+g,y+g) = (unsigned char) (((int) n(x,y) + (int) n(x+g2,y) + (int) n(x,y+g2) + (int) n(x+g2,y+g2)) >> 2); // square for (y = 0;y < size;y += g2) for (x = 0;x < size;x += g2) { n(x+g,y) = (unsigned char) (((int) n(x,y) + (int) n(x+g2,y) + (int) n(x+g,y-g) + (int) n(x+g,y+g)) >> 2); n(x,y+g) = (unsigned char) (((int) n(x,y) + (int) n(x,y+g2) + (int) n(x-g,y+g) + (int) n(x+g,y+g)) >> 2); } } } #undef n } #define NOISE_SIZE 256 #define NOISE_MASK 255 float noise4f(float x, float y, float z, float w) { int i; int index[4][2]; float frac[4][2]; float v[4]; static float noisetable[NOISE_SIZE]; static int r[NOISE_SIZE]; // LordHavoc: this is inspired by code I saw in Quake3, however I think my // version is much cleaner and substantially faster as well // // the following changes were made: // 1. for the permutation indexing (r[] array in this code) I substituted // the ^ operator (which never overflows) for the original addition and // masking code, this should not have any effect on quality. // 2. removed the outermost randomization array lookup. // (it really wasn't necessary, it's fine if X indexes the array // directly without permutation indexing) // 3. reimplemented the blending using frac[] arrays rather than a macro. // (the original macro read one parameter twice - not good) // 4. cleaned up the code by using 4 nested loops to make it read nicer // (but then I unrolled it completely for speed, it still looks nicer). if (!noisetable[0]) { // noisetable is a random-ish series of float values in +/- 1 range for (i = 0;i < NOISE_SIZE;i++) noisetable[i] = (rand() / (double)RAND_MAX) * 2 - 1; // r is a remapping table to make each dimension of the index have different indexing behavior for (i = 0;i < NOISE_SIZE;i++) r[i] = (int)(rand() * (double)NOISE_SIZE / ((double)RAND_MAX + 1)) & NOISE_MASK; // that & is only needed if RAND_MAX is > the range of double, which isn't the case on most platforms } frac[0][1] = x - floor(x);index[0][0] = ((int)floor(x)) & NOISE_MASK; frac[1][1] = y - floor(y);index[1][0] = ((int)floor(y)) & NOISE_MASK; frac[2][1] = z - floor(z);index[2][0] = ((int)floor(z)) & NOISE_MASK; frac[3][1] = w - floor(w);index[3][0] = ((int)floor(w)) & NOISE_MASK; for (i = 0;i < 4;i++) frac[i][0] = 1 - frac[i][1]; for (i = 0;i < 4;i++) index[i][1] = (index[i][0] < NOISE_SIZE - 1) ? (index[i][0] + 1) : 0; #if 1 // short version v[0] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]]); v[1] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]]); v[2] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]]); v[3] = frac[1][0] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]]) + frac[1][1] * (frac[0][0] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]] + frac[0][1] * noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]]); return frac[3][0] * (frac[2][0] * v[0] + frac[2][1] * v[1]) + frac[3][1] * (frac[2][0] * v[2] + frac[2][1] * v[3]); #elif 1 // longer version v[ 0] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]]; v[ 1] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]]; v[ 2] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]]; v[ 3] = noisetable[r[r[r[index[3][0]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]]; v[ 4] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]]; v[ 5] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]]; v[ 6] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]]; v[ 7] = noisetable[r[r[r[index[3][0]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]]; v[ 8] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][0]]; v[ 9] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][0]] ^ index[0][1]]; v[10] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][0]]; v[11] = noisetable[r[r[r[index[3][1]] ^ index[2][0]] ^ index[1][1]] ^ index[0][1]]; v[12] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][0]]; v[13] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][0]] ^ index[0][1]]; v[14] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][0]]; v[15] = noisetable[r[r[r[index[3][1]] ^ index[2][1]] ^ index[1][1]] ^ index[0][1]]; v[16] = frac[0][0] * v[ 0] + frac[0][1] * v[ 1]; v[17] = frac[0][0] * v[ 2] + frac[0][1] * v[ 3]; v[18] = frac[0][0] * v[ 4] + frac[0][1] * v[ 5]; v[19] = frac[0][0] * v[ 6] + frac[0][1] * v[ 7]; v[20] = frac[0][0] * v[ 8] + frac[0][1] * v[ 9]; v[21] = frac[0][0] * v[10] + frac[0][1] * v[11]; v[22] = frac[0][0] * v[12] + frac[0][1] * v[13]; v[23] = frac[0][0] * v[14] + frac[0][1] * v[15]; v[24] = frac[1][0] * v[16] + frac[1][1] * v[17]; v[25] = frac[1][0] * v[18] + frac[1][1] * v[19]; v[26] = frac[1][0] * v[20] + frac[1][1] * v[21]; v[27] = frac[1][0] * v[22] + frac[1][1] * v[23]; v[28] = frac[2][0] * v[24] + frac[2][1] * v[25]; v[29] = frac[2][0] * v[26] + frac[2][1] * v[27]; return frac[3][0] * v[28] + frac[3][1] * v[29]; #else // the algorithm... for (l = 0;l < 2;l++) { for (k = 0;k < 2;k++) { for (j = 0;j < 2;j++) { for (i = 0;i < 2;i++) v[l][k][j][i] = noisetable[r[r[r[index[l][3]] ^ index[k][2]] ^ index[j][1]] ^ index[i][0]]; v[l][k][j][2] = frac[0][0] * v[l][k][j][0] + frac[0][1] * v[l][k][j][1]; } v[l][k][2][2] = frac[1][0] * v[l][k][0][2] + frac[1][1] * v[l][k][1][2]; } v[l][2][2][2] = frac[2][0] * v[l][0][2][2] + frac[2][1] * v[l][1][2][2]; } v[2][2][2][2] = frac[3][0] * v[0][2][2][2] + frac[3][1] * v[1][2][2][2]; #endif }