#include "quakedef.h" //cvar_t gl_transform = {0, "gl_transform", "1"}; cvar_t gl_lockarrays = {0, "gl_lockarrays", "1"}; typedef struct { float m[3][4]; } zymbonematrix; // LordHavoc: vertex array float *aliasvert; float *aliasvertnorm; float *aliasvertcolor; float *aliasvertcolor2; zymbonematrix *zymbonepose; int *aliasvertusage; rmeshinfo_t aliasmeshinfo; rtexture_t *chrometexture; int arraylocked = false; void GL_LockArray(int first, int count) { if (gl_supportslockarrays && gl_lockarrays.integer) { qglLockArraysEXT(first, count); arraylocked = true; } } void GL_UnlockArray(void) { if (arraylocked) { qglUnlockArraysEXT(); arraylocked = false; } } /* void GL_SetupModelTransform (vec3_t origin, vec3_t angles, vec_t scale) { glTranslatef (origin[0], origin[1], origin[2]); if (scale != 1) glScalef (scale, scale, scale); if (angles[1]) glRotatef (angles[1], 0, 0, 1); if (angles[0]) glRotatef (-angles[0], 0, 1, 0); if (angles[2]) glRotatef (angles[2], 1, 0, 0); } */ rtexturepool_t *chrometexturepool; // currently unused reflection effect texture void makechrometexture(void) { int i; qbyte noise[64*64]; qbyte data[64*64][4]; fractalnoise(noise, 64, 8); // convert to RGBA data for (i = 0;i < 64*64;i++) { data[i][0] = data[i][1] = data[i][2] = noise[i]; data[i][3] = 255; } chrometexture = R_LoadTexture (chrometexturepool, "chrometexture", 64, 64, &data[0][0], TEXTYPE_RGBA, TEXF_MIPMAP | TEXF_PRECACHE); } mempool_t *gl_models_mempool; void gl_models_start(void) { // allocate vertex processing arrays gl_models_mempool = Mem_AllocPool("GL_Models"); aliasvert = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3])); aliasvertcolor = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256])); aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS])); chrometexturepool = R_AllocTexturePool(); makechrometexture(); } void gl_models_shutdown(void) { R_FreeTexturePool(&chrometexturepool); Mem_FreePool(&gl_models_mempool); } void gl_models_newmap(void) { } void GL_Models_Init(void) { // Cvar_RegisterVariable(&gl_transform); Cvar_RegisterVariable(&gl_lockarrays); R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap); } void R_AliasTransformVerts(int vertcount) { vec3_t point; float *av, *avn; av = aliasvert; avn = aliasvertnorm; while (vertcount >= 4) { VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(avn, point);softwaretransformdirection(point, avn);avn += 3; VectorCopy(avn, point);softwaretransformdirection(point, avn);avn += 3; VectorCopy(avn, point);softwaretransformdirection(point, avn);avn += 3; VectorCopy(avn, point);softwaretransformdirection(point, avn);avn += 3; vertcount -= 4; } while(vertcount > 0) { VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(avn, point);softwaretransformdirection(point, avn);avn += 3; vertcount--; } } void R_AliasLerpVerts(int vertcount, float lerp1, trivertx_t *verts1, vec3_t fscale1, vec3_t translate1, float lerp2, trivertx_t *verts2, vec3_t fscale2, vec3_t translate2, float lerp3, trivertx_t *verts3, vec3_t fscale3, vec3_t translate3, float lerp4, trivertx_t *verts4, vec3_t fscale4, vec3_t translate4) { int i; vec3_t scale1, scale2, scale3, scale4, translate; float *n1, *n2, *n3, *n4; float *av, *avn; av = aliasvert; avn = aliasvertnorm; VectorScale(fscale1, lerp1, scale1); if (lerp2) { VectorScale(fscale2, lerp2, scale2); if (lerp3) { VectorScale(fscale3, lerp3, scale3); if (lerp4) { VectorScale(fscale4, lerp4, scale4); translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; n3 = m_bytenormals[verts3->lightnormalindex]; n4 = m_bytenormals[verts4->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4; avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4; avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4; av += 4; avn += 3; verts1++;verts2++;verts3++;verts4++; } } else { translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; n3 = m_bytenormals[verts3->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3; avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3; avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3; av += 4; avn += 3; verts1++;verts2++;verts3++; } } } else { translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2; avn[1] = n1[1] * lerp1 + n2[1] * lerp2; avn[2] = n1[2] * lerp1 + n2[2] * lerp2; av += 4; avn += 3; verts1++;verts2++; } } } else { translate[0] = translate1[0] * lerp1; translate[1] = translate1[1] * lerp1; translate[2] = translate1[2] * lerp1; // generate vertices if (lerp1 != 1) { // general but almost never used case for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; avn[0] = n1[0] * lerp1; avn[1] = n1[1] * lerp1; avn[2] = n1[2] * lerp1; av += 4; avn += 3; verts1++; } } else { // fast normal case for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + translate[2]; VectorCopy(m_bytenormals[verts1->lightnormalindex], avn); av += 4; avn += 3; verts1++; } } } } void R_DrawModelMesh(rtexture_t *skin, float *colors, float cred, float cgreen, float cblue) { aliasmeshinfo.tex[0] = R_GetTexture(skin); aliasmeshinfo.color = colors; if (colors == NULL) { aliasmeshinfo.cr = cred; aliasmeshinfo.cg = cgreen; aliasmeshinfo.cb = cblue; aliasmeshinfo.ca = currentrenderentity->alpha; } c_alias_polys += aliasmeshinfo.numtriangles; R_Mesh_Draw(&aliasmeshinfo); // leave it in a state for additional passes aliasmeshinfo.blendfunc1 = GL_SRC_ALPHA; aliasmeshinfo.blendfunc2 = GL_ONE; } void R_TintModel(float *in, float *out, int verts, float r, float g, float b) { int i; for (i = 0;i < verts;i++) { out[0] = in[0] * r; out[1] = in[1] * g; out[2] = in[2] * b; out[3] = in[3]; in += 4; out += 4; } } void R_SetupMDLMD2Frames(skinframe_t **skinframe) { md2frame_t *frame1, *frame2, *frame3, *frame4; trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts; model_t *model; model = currentrenderentity->model; if (model->skinscenes[currentrenderentity->skinnum].framecount > 1) *skinframe = &model->skinframes[model->skinscenes[currentrenderentity->skinnum].firstframe + (int) (cl.time * 10) % model->skinscenes[currentrenderentity->skinnum].framecount]; else *skinframe = &model->skinframes[model->skinscenes[currentrenderentity->skinnum].firstframe]; frame1 = &model->mdlmd2data_frames[currentrenderentity->frameblend[0].frame]; frame2 = &model->mdlmd2data_frames[currentrenderentity->frameblend[1].frame]; frame3 = &model->mdlmd2data_frames[currentrenderentity->frameblend[2].frame]; frame4 = &model->mdlmd2data_frames[currentrenderentity->frameblend[3].frame]; frame1verts = &model->mdlmd2data_pose[currentrenderentity->frameblend[0].frame * model->numverts]; frame2verts = &model->mdlmd2data_pose[currentrenderentity->frameblend[1].frame * model->numverts]; frame3verts = &model->mdlmd2data_pose[currentrenderentity->frameblend[2].frame * model->numverts]; frame4verts = &model->mdlmd2data_pose[currentrenderentity->frameblend[3].frame * model->numverts]; R_AliasLerpVerts(model->numverts, currentrenderentity->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate, currentrenderentity->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate, currentrenderentity->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate, currentrenderentity->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate); R_AliasTransformVerts(model->numverts); R_LightModel(model->numverts); } void R_DrawQ1Q2AliasModel (void) { float fog; vec3_t diff; model_t *model; skinframe_t *skinframe; model = currentrenderentity->model; R_SetupMDLMD2Frames(&skinframe); memset(&aliasmeshinfo, 0, sizeof(aliasmeshinfo)); aliasmeshinfo.vertex = aliasvert; aliasmeshinfo.vertexstep = sizeof(float[4]); aliasmeshinfo.numverts = model->numverts; aliasmeshinfo.numtriangles = model->numtris; aliasmeshinfo.index = model->mdlmd2data_indices; aliasmeshinfo.colorstep = sizeof(float[4]); aliasmeshinfo.texcoords[0] = model->mdlmd2data_texcoords; aliasmeshinfo.texcoordstep[0] = sizeof(float[2]); fog = 0; if (fogenabled) { VectorSubtract(currentrenderentity->origin, r_origin, diff); fog = DotProduct(diff,diff); if (fog < 0.01f) fog = 0.01f; fog = exp(fogdensity/fog); if (fog > 1) fog = 1; if (fog < 0.01f) fog = 0; // fog method: darken, additive fog // 1. render model as normal, scaled by inverse of fog alpha (darkens it) // 2. render fog as additive } if (currentrenderentity->effects & EF_ADDITIVE) { aliasmeshinfo.transparent = true; aliasmeshinfo.blendfunc1 = GL_SRC_ALPHA; aliasmeshinfo.blendfunc2 = GL_ONE; } else if (currentrenderentity->alpha != 1.0 || skinframe->fog != NULL) { aliasmeshinfo.transparent = true; aliasmeshinfo.blendfunc1 = GL_SRC_ALPHA; aliasmeshinfo.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; } else { aliasmeshinfo.transparent = false; aliasmeshinfo.blendfunc1 = GL_ONE; aliasmeshinfo.blendfunc2 = GL_ZERO; } // darken source if (fog) R_TintModel(aliasvertcolor, aliasvertcolor, model->numverts, 1 - fog, 1 - fog, 1 - fog); if (skinframe->base || skinframe->pants || skinframe->shirt || skinframe->glow || skinframe->merged) { if (currentrenderentity->colormap >= 0 && (skinframe->base || skinframe->pants || skinframe->shirt)) { int c; qbyte *color; if (skinframe->base) R_DrawModelMesh(skinframe->base, aliasvertcolor, 0, 0, 0); if (skinframe->pants) { c = (currentrenderentity->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12; // 128-224 are backwards ranges color = (qbyte *) (&d_8to24table[c]); if (c >= 224) // fullbright ranges R_DrawModelMesh(skinframe->pants, NULL, color[0] * (1.0f / 255.0f), color[1] * (1.0f / 255.0f), color[2] * (1.0f / 255.0f)); else { R_TintModel(aliasvertcolor, aliasvertcolor2, model->numverts, color[0] * (1.0f / 255.0f), color[1] * (1.0f / 255.0f), color[2] * (1.0f / 255.0f)); R_DrawModelMesh(skinframe->pants, aliasvertcolor2, 0, 0, 0); } } if (skinframe->shirt) { c = currentrenderentity->colormap & 0xF0 ;c += (c >= 128 && c < 224) ? 4 : 12; // 128-224 are backwards ranges color = (qbyte *) (&d_8to24table[c]); if (c >= 224) // fullbright ranges R_DrawModelMesh(skinframe->shirt, NULL, color[0] * (1.0f / 255.0f), color[1] * (1.0f / 255.0f), color[2] * (1.0f / 255.0f)); else { R_TintModel(aliasvertcolor, aliasvertcolor2, model->numverts, color[0] * (1.0f / 255.0f), color[1] * (1.0f / 255.0f), color[2] * (1.0f / 255.0f)); R_DrawModelMesh(skinframe->shirt, aliasvertcolor2, 0, 0, 0); } } } else { if (skinframe->merged) R_DrawModelMesh(skinframe->merged, aliasvertcolor, 0, 0, 0); else { if (skinframe->base) R_DrawModelMesh(skinframe->base, aliasvertcolor, 0, 0, 0); if (skinframe->pants) R_DrawModelMesh(skinframe->pants, aliasvertcolor, 0, 0, 0); if (skinframe->shirt) R_DrawModelMesh(skinframe->shirt, aliasvertcolor, 0, 0, 0); } } if (skinframe->glow) R_DrawModelMesh(skinframe->glow, NULL, 1 - fog, 1 - fog, 1 - fog); } else R_DrawModelMesh(0, NULL, 1 - fog, 1 - fog, 1 - fog); if (fog && aliasmeshinfo.blendfunc2 != GL_ONE) { aliasmeshinfo.tex[0] = R_GetTexture(skinframe->fog); aliasmeshinfo.blendfunc1 = GL_SRC_ALPHA; aliasmeshinfo.blendfunc2 = GL_ONE; aliasmeshinfo.color = NULL; aliasmeshinfo.cr = fogcolor[0]; aliasmeshinfo.cg = fogcolor[1]; aliasmeshinfo.cb = fogcolor[2]; aliasmeshinfo.ca = currentrenderentity->alpha * fog; c_alias_polys += aliasmeshinfo.numtriangles; R_Mesh_Draw(&aliasmeshinfo); } } int ZymoticLerpBones(int count, zymbonematrix *bonebase, frameblend_t *blend, zymbone_t *bone) { int i; float lerp1, lerp2, lerp3, lerp4; zymbonematrix *out, rootmatrix, m, *bone1, *bone2, *bone3, *bone4; /* m.m[0][0] = 0; m.m[0][1] = -1; m.m[0][2] = 0; m.m[0][3] = 0; m.m[1][0] = 1; m.m[1][1] = 0; m.m[1][2] = 0; m.m[1][3] = 0; m.m[2][0] = 0; m.m[2][1] = 0; m.m[2][2] = 1; m.m[2][3] = 0; R_ConcatTransforms(&softwaretransform_matrix[0], &m.m[0], &rootmatrix.m[0]); */ // LordHavoc: combine transform from zym coordinate space to quake coordinate space with model to world transform matrix rootmatrix.m[0][0] = softwaretransform_matrix[0][1]; rootmatrix.m[0][1] = -softwaretransform_matrix[0][0]; rootmatrix.m[0][2] = softwaretransform_matrix[0][2]; rootmatrix.m[0][3] = softwaretransform_matrix[0][3]; rootmatrix.m[1][0] = softwaretransform_matrix[1][1]; rootmatrix.m[1][1] = -softwaretransform_matrix[1][0]; rootmatrix.m[1][2] = softwaretransform_matrix[1][2]; rootmatrix.m[1][3] = softwaretransform_matrix[1][3]; rootmatrix.m[2][0] = softwaretransform_matrix[2][1]; rootmatrix.m[2][1] = -softwaretransform_matrix[2][0]; rootmatrix.m[2][2] = softwaretransform_matrix[2][2]; rootmatrix.m[2][3] = softwaretransform_matrix[2][3]; bone1 = bonebase + blend[0].frame * count; lerp1 = blend[0].lerp; if (blend[1].lerp) { bone2 = bonebase + blend[1].frame * count; lerp2 = blend[1].lerp; if (blend[2].lerp) { bone3 = bonebase + blend[2].frame * count; lerp3 = blend[2].lerp; if (blend[3].lerp) { // 4 poses bone4 = bonebase + blend[3].frame * count; lerp4 = blend[3].lerp; for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone2++; bone3++; bone4++; bone++; } } else { // 3 poses for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone2++; bone3++; bone++; } } } else { // 2 poses for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone2++; bone++; } } } else { // 1 pose if (lerp1 != 1) { // lerp != 1.0 for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1; m.m[0][1] = bone1->m[0][1] * lerp1; m.m[0][2] = bone1->m[0][2] * lerp1; m.m[0][3] = bone1->m[0][3] * lerp1; m.m[1][0] = bone1->m[1][0] * lerp1; m.m[1][1] = bone1->m[1][1] * lerp1; m.m[1][2] = bone1->m[1][2] * lerp1; m.m[1][3] = bone1->m[1][3] * lerp1; m.m[2][0] = bone1->m[2][0] * lerp1; m.m[2][1] = bone1->m[2][1] * lerp1; m.m[2][2] = bone1->m[2][2] * lerp1; m.m[2][3] = bone1->m[2][3] * lerp1; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone++; } } else { // lerp == 1.0 for (i = 0, out = zymbonepose;i < count;i++, out++) { if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &bone1->m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &bone1->m[0], &out->m[0]); bone1++; bone++; } } } return true; } void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert) { int c; float *out = aliasvert; zymbonematrix *matrix; while(vertcount--) { c = *bonecounts++; // FIXME: validate bonecounts at load time (must be >= 1) // FIXME: need 4th component in origin, for how much of the translate to blend in if (c == 1) { matrix = &zymbonepose[vert->bonenum]; out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } else { VectorClear(out); while(c--) { matrix = &zymbonepose[vert->bonenum]; out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } } out += 4; } } void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist) { int a, b, c, d; float *out, v1[3], v2[3], normal[3], s; int *u; // clear normals memset(aliasvertnorm, 0, sizeof(float) * vertcount * 3); memset(aliasvertusage, 0, sizeof(int) * vertcount); // parse render list and accumulate surface normals while(shadercount--) { d = *renderlist++; while (d--) { a = renderlist[0]*4; b = renderlist[1]*4; c = renderlist[2]*4; v1[0] = aliasvert[a+0] - aliasvert[b+0]; v1[1] = aliasvert[a+1] - aliasvert[b+1]; v1[2] = aliasvert[a+2] - aliasvert[b+2]; v2[0] = aliasvert[c+0] - aliasvert[b+0]; v2[1] = aliasvert[c+1] - aliasvert[b+1]; v2[2] = aliasvert[c+2] - aliasvert[b+2]; CrossProduct(v1, v2, normal); VectorNormalizeFast(normal); // add surface normal to vertices a = renderlist[0] * 3; aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[renderlist[0]]++; a = renderlist[1] * 3; aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[renderlist[1]]++; a = renderlist[2] * 3; aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[renderlist[2]]++; renderlist += 3; } } // FIXME: precalc this // average surface normals out = aliasvertnorm; u = aliasvertusage; while(vertcount--) { if (*u > 1) { s = ixtable[*u]; out[0] *= s; out[1] *= s; out[2] *= s; } u++; out += 3; } } void R_DrawZymoticModelMesh(zymtype1header_t *m) { int i, *renderlist; rtexture_t **texture; // FIXME: do better fog renderlist = (int *)(m->lump_render.start + (int) m); texture = (rtexture_t **)(m->lump_shaders.start + (int) m); aliasmeshinfo.vertex = aliasvert; aliasmeshinfo.vertexstep = sizeof(float[4]); aliasmeshinfo.color = aliasvertcolor; aliasmeshinfo.colorstep = sizeof(float[4]); aliasmeshinfo.texcoords[0] = (float *)(m->lump_texcoords.start + (int) m); aliasmeshinfo.texcoordstep[0] = sizeof(float[2]); for (i = 0;i < m->numshaders;i++) { aliasmeshinfo.tex[0] = R_GetTexture(texture[i]); if (currentrenderentity->effects & EF_ADDITIVE) { aliasmeshinfo.transparent = true; aliasmeshinfo.blendfunc1 = GL_SRC_ALPHA; aliasmeshinfo.blendfunc2 = GL_ONE; } else if (currentrenderentity->alpha != 1.0 || R_TextureHasAlpha(texture[i])) { aliasmeshinfo.transparent = true; aliasmeshinfo.blendfunc1 = GL_SRC_ALPHA; aliasmeshinfo.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; } else { aliasmeshinfo.transparent = false; aliasmeshinfo.blendfunc1 = GL_ONE; aliasmeshinfo.blendfunc2 = GL_ZERO; } aliasmeshinfo.numtriangles = *renderlist++; aliasmeshinfo.index = renderlist; c_alias_polys += aliasmeshinfo.numtriangles; R_Mesh_Draw(&aliasmeshinfo); renderlist += aliasmeshinfo.numtriangles * 3; } } void R_DrawZymoticModelMeshFog(vec3_t org, zymtype1header_t *m) { int i, *renderlist; vec3_t diff; // FIXME: do better fog renderlist = (int *)(m->lump_render.start + (int) m); aliasmeshinfo.tex[0] = 0; aliasmeshinfo.blendfunc1 = GL_SRC_ALPHA; aliasmeshinfo.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; VectorSubtract(org, r_origin, diff); aliasmeshinfo.cr = fogcolor[0]; aliasmeshinfo.cg = fogcolor[1]; aliasmeshinfo.cb = fogcolor[2]; aliasmeshinfo.ca = currentrenderentity->alpha * exp(fogdensity/DotProduct(diff,diff)); for (i = 0;i < m->numshaders;i++) { aliasmeshinfo.numtriangles = *renderlist++; aliasmeshinfo.index = renderlist; c_alias_polys += aliasmeshinfo.numtriangles; R_Mesh_Draw(&aliasmeshinfo); renderlist += aliasmeshinfo.numtriangles * 3; } } void R_DrawZymoticModel (void) { zymtype1header_t *m; // FIXME: do better fog m = currentrenderentity->model->zymdata_header; ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), currentrenderentity->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m)); ZymoticTransformVerts(m->numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m)); ZymoticCalcNormals(m->numverts, m->numshaders, (int *)(m->lump_render.start + (int) m)); R_LightModel(m->numverts); memset(&aliasmeshinfo, 0, sizeof(aliasmeshinfo)); aliasmeshinfo.numverts = m->numverts; R_DrawZymoticModelMesh(m); if (fogenabled) R_DrawZymoticModelMeshFog(currentrenderentity->origin, m); } void R_DrawAliasModel (void) { if (currentrenderentity->alpha < (1.0f / 64.0f)) return; // basically completely transparent c_models++; softwaretransformforentity(currentrenderentity); if (currentrenderentity->model->aliastype == ALIASTYPE_ZYM) R_DrawZymoticModel(); else R_DrawQ1Q2AliasModel(); }