#include "quakedef.h" cvar_t r_quickmodels = {0, "r_quickmodels", "1"}; typedef struct { float m[3][4]; } zymbonematrix; // LordHavoc: vertex arrays float *aliasvertbuf; float *aliasvertcolorbuf; float *aliasvert; // this may point at aliasvertbuf or at vertex arrays in the mesh backend float *aliasvertcolor; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend float *aliasvertcolor2; float *aliasvertnorm; int *aliasvertusage; zymbonematrix *zymbonepose; mempool_t *gl_models_mempool; void gl_models_start(void) { // allocate vertex processing arrays gl_models_mempool = Mem_AllocPool("GL_Models"); aliasvert = aliasvertbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); aliasvertcolor = aliasvertcolorbuf = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); aliasvertnorm = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][3])); aliasvertcolor2 = Mem_Alloc(gl_models_mempool, sizeof(float[MD2MAX_VERTS][4])); // used temporarily for tinted coloring zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256])); aliasvertusage = Mem_Alloc(gl_models_mempool, sizeof(int[MD2MAX_VERTS])); } void gl_models_shutdown(void) { Mem_FreePool(&gl_models_mempool); } void gl_models_newmap(void) { } void GL_Models_Init(void) { Cvar_RegisterVariable(&r_quickmodels); R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap); } /* void R_AliasTransformVerts(int vertcount) { vec3_t point; float *av; av = aliasvert; while (vertcount >= 4) { VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(av, point);softwaretransform(point, av);av += 4; VectorCopy(av, point);softwaretransform(point, av);av += 4; vertcount -= 4; } while(vertcount > 0) { VectorCopy(av, point);softwaretransform(point, av);av += 4; vertcount--; } } */ void R_AliasLerpVerts(int vertcount, float lerp1, const trivertx_t *verts1, const vec3_t fscale1, const vec3_t translate1, float lerp2, const trivertx_t *verts2, const vec3_t fscale2, const vec3_t translate2, float lerp3, const trivertx_t *verts3, const vec3_t fscale3, const vec3_t translate3, float lerp4, const trivertx_t *verts4, const vec3_t fscale4, const vec3_t translate4) { int i; vec3_t scale1, scale2, scale3, scale4, translate; const float *n1, *n2, *n3, *n4; float *av, *avn; av = aliasvert; avn = aliasvertnorm; VectorScale(fscale1, lerp1, scale1); if (lerp2) { VectorScale(fscale2, lerp2, scale2); if (lerp3) { VectorScale(fscale3, lerp3, scale3); if (lerp4) { VectorScale(fscale4, lerp4, scale4); translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; n3 = m_bytenormals[verts3->lightnormalindex]; n4 = m_bytenormals[verts4->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4; avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4; avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4; av += 4; avn += 3; verts1++;verts2++;verts3++;verts4++; } } else { translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; n3 = m_bytenormals[verts3->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3; avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3; avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3; av += 4; avn += 3; verts1++;verts2++;verts3++; } } } else { translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2; avn[1] = n1[1] * lerp1 + n2[1] * lerp2; avn[2] = n1[2] * lerp1 + n2[2] * lerp2; av += 4; avn += 3; verts1++;verts2++; } } } else { translate[0] = translate1[0] * lerp1; translate[1] = translate1[1] * lerp1; translate[2] = translate1[2] * lerp1; // generate vertices if (lerp1 != 1) { // general but almost never used case for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; avn[0] = n1[0] * lerp1; avn[1] = n1[1] * lerp1; avn[2] = n1[2] * lerp1; av += 4; avn += 3; verts1++; } } else { // fast normal case for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + translate[2]; VectorCopy(m_bytenormals[verts1->lightnormalindex], avn); av += 4; avn += 3; verts1++; } } } } skinframe_t *R_FetchSkinFrame(const entity_render_t *ent) { model_t *model = ent->model; unsigned int s = (unsigned int) ent->skinnum; if (s >= model->numskins) s = 0; if (model->skinscenes[s].framecount > 1) return &model->skinframes[model->skinscenes[s].firstframe + (int) (cl.time * 10) % model->skinscenes[s].framecount]; else return &model->skinframes[model->skinscenes[s].firstframe]; } void R_SetupMDLMD2Frames(const entity_render_t *ent, float colorr, float colorg, float colorb) { const md2frame_t *frame1, *frame2, *frame3, *frame4; const trivertx_t *frame1verts, *frame2verts, *frame3verts, *frame4verts; const model_t *model = ent->model; frame1 = &model->mdlmd2data_frames[ent->frameblend[0].frame]; frame2 = &model->mdlmd2data_frames[ent->frameblend[1].frame]; frame3 = &model->mdlmd2data_frames[ent->frameblend[2].frame]; frame4 = &model->mdlmd2data_frames[ent->frameblend[3].frame]; frame1verts = &model->mdlmd2data_pose[ent->frameblend[0].frame * model->numverts]; frame2verts = &model->mdlmd2data_pose[ent->frameblend[1].frame * model->numverts]; frame3verts = &model->mdlmd2data_pose[ent->frameblend[2].frame * model->numverts]; frame4verts = &model->mdlmd2data_pose[ent->frameblend[3].frame * model->numverts]; R_AliasLerpVerts(model->numverts, ent->frameblend[0].lerp, frame1verts, frame1->scale, frame1->translate, ent->frameblend[1].lerp, frame2verts, frame2->scale, frame2->translate, ent->frameblend[2].lerp, frame3verts, frame3->scale, frame3->translate, ent->frameblend[3].lerp, frame4verts, frame4->scale, frame4->translate); R_LightModel(ent, model->numverts, colorr, colorg, colorb, false); //R_AliasTransformVerts(model->numverts); } void R_DrawQ1Q2AliasModelCallback (const void *calldata1, int calldata2) { int i, c, pantsfullbright, shirtfullbright, colormapped; float pantscolor[3], shirtcolor[3]; float fog; vec3_t diff; qbyte *bcolor; rmeshstate_t m; model_t *model; skinframe_t *skinframe; const entity_render_t *ent = calldata1; int blendfunc1, blendfunc2; // softwaretransformforentity(ent); R_Mesh_Matrix(&ent->matrix); fog = 0; if (fogenabled) { VectorSubtract(ent->origin, r_origin, diff); fog = DotProduct(diff,diff); if (fog < 0.01f) fog = 0.01f; fog = exp(fogdensity/fog); if (fog > 1) fog = 1; if (fog < 0.01f) fog = 0; // fog method: darken, additive fog // 1. render model as normal, scaled by inverse of fog alpha (darkens it) // 2. render fog as additive } model = ent->model; R_Mesh_ResizeCheck(model->numverts, model->numtris); skinframe = R_FetchSkinFrame(ent); if (ent->effects & EF_ADDITIVE) { blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE; } else if (ent->alpha != 1.0 || skinframe->fog != NULL) { blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; } else { blendfunc1 = GL_ONE; blendfunc2 = GL_ZERO; } if (!skinframe->base && !skinframe->pants && !skinframe->shirt && !skinframe->glow) { // untextured memset(&m, 0, sizeof(m)); m.blendfunc1 = blendfunc1; m.blendfunc2 = blendfunc2; m.wantoverbright = true; m.tex[0] = R_GetTexture(r_notexture); R_Mesh_State(&m); c_alias_polys += model->numtris; memcpy(varray_element, model->mdlmd2data_indices, model->numtris * sizeof(int[3])); for (i = 0;i < model->numverts * 2;i++) varray_texcoord[0][i] = model->mdlmd2data_texcoords[i] * 8.0f; aliasvert = varray_vertex; aliasvertcolor = varray_color; R_SetupMDLMD2Frames(ent, mesh_colorscale, mesh_colorscale, mesh_colorscale); aliasvert = aliasvertbuf; aliasvertcolor = aliasvertcolorbuf; R_Mesh_Draw(model->numverts, model->numtris); return; } colormapped = !skinframe->merged || (ent->colormap >= 0 && skinframe->base && (skinframe->pants || skinframe->shirt)); if (!colormapped && !fog && !skinframe->glow && !skinframe->fog) { // fastpath for the normal situation (one texture) memset(&m, 0, sizeof(m)); m.blendfunc1 = blendfunc1; m.blendfunc2 = blendfunc2; m.wantoverbright = true; m.tex[0] = R_GetTexture(skinframe->merged); R_Mesh_State(&m); c_alias_polys += model->numtris; memcpy(varray_element, model->mdlmd2data_indices, model->numtris * sizeof(int[3])); memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2])); aliasvert = varray_vertex; aliasvertcolor = varray_color; R_SetupMDLMD2Frames(ent, mesh_colorscale, mesh_colorscale, mesh_colorscale); aliasvert = aliasvertbuf; aliasvertcolor = aliasvertcolorbuf; R_Mesh_Draw(model->numverts, model->numtris); return; } R_SetupMDLMD2Frames(ent, 1 - fog, 1 - fog, 1 - fog); if (colormapped) { // 128-224 are backwards ranges c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12; bcolor = (qbyte *) (&d_8to24table[c]); pantsfullbright = c >= 224; VectorScale(bcolor, (1.0f / 255.0f), pantscolor); c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12; bcolor = (qbyte *) (&d_8to24table[c]); shirtfullbright = c >= 224; VectorScale(bcolor, (1.0f / 255.0f), shirtcolor); } else { pantscolor[0] = pantscolor[1] = pantscolor[2] = shirtcolor[0] = shirtcolor[1] = shirtcolor[2] = 1; pantsfullbright = shirtfullbright = false; } memset(&m, 0, sizeof(m)); m.blendfunc1 = blendfunc1; m.blendfunc2 = blendfunc2; m.wantoverbright = true; m.tex[0] = colormapped ? R_GetTexture(skinframe->base) : R_GetTexture(skinframe->merged); if (m.tex[0]) { R_Mesh_State(&m); blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE; c_alias_polys += model->numtris; R_ModulateColors(aliasvertcolor, varray_color, model->numverts, mesh_colorscale, mesh_colorscale, mesh_colorscale); memcpy(varray_element, model->mdlmd2data_indices, model->numtris * sizeof(int[3])); memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4])); memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2])); R_Mesh_Draw(model->numverts, model->numtris); } if (colormapped) { if (skinframe->pants) { memset(&m, 0, sizeof(m)); m.blendfunc1 = blendfunc1; m.blendfunc2 = blendfunc2; m.wantoverbright = true; m.tex[0] = R_GetTexture(skinframe->pants); if (m.tex[0]) { R_Mesh_State(&m); blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE; c_alias_polys += model->numtris; if (pantsfullbright) R_FillColors(varray_color, model->numverts, pantscolor[0] * mesh_colorscale, pantscolor[1] * mesh_colorscale, pantscolor[2] * mesh_colorscale, ent->alpha); else R_ModulateColors(aliasvertcolor, varray_color, model->numverts, pantscolor[0] * mesh_colorscale, pantscolor[1] * mesh_colorscale, pantscolor[2] * mesh_colorscale); memcpy(varray_element, model->mdlmd2data_indices, model->numtris * sizeof(int[3])); memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4])); memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2])); R_Mesh_Draw(model->numverts, model->numtris); } } if (skinframe->shirt) { memset(&m, 0, sizeof(m)); m.blendfunc1 = blendfunc1; m.blendfunc2 = blendfunc2; m.wantoverbright = true; m.tex[0] = R_GetTexture(skinframe->shirt); if (m.tex[0]) { R_Mesh_State(&m); blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE; c_alias_polys += model->numtris; if (shirtfullbright) R_FillColors(varray_color, model->numverts, shirtcolor[0] * mesh_colorscale, shirtcolor[1] * mesh_colorscale, shirtcolor[2] * mesh_colorscale, ent->alpha); else R_ModulateColors(aliasvertcolor, varray_color, model->numverts, shirtcolor[0] * mesh_colorscale, shirtcolor[1] * mesh_colorscale, shirtcolor[2] * mesh_colorscale); memcpy(varray_element, model->mdlmd2data_indices, model->numtris * sizeof(int[3])); memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4])); memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2])); R_Mesh_Draw(model->numverts, model->numtris); } } } if (skinframe->glow) { memset(&m, 0, sizeof(m)); m.blendfunc1 = blendfunc1; m.blendfunc2 = blendfunc2; m.wantoverbright = true; m.tex[0] = R_GetTexture(skinframe->glow); if (m.tex[0]) { R_Mesh_State(&m); blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE; c_alias_polys += model->numtris; R_FillColors(varray_color, model->numverts, (1 - fog) * mesh_colorscale, (1 - fog) * mesh_colorscale, (1 - fog) * mesh_colorscale, ent->alpha); memcpy(varray_element, model->mdlmd2data_indices, model->numtris * sizeof(int[3])); memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4])); memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2])); R_Mesh_Draw(model->numverts, model->numtris); } } if (fog) { memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_SRC_ALPHA; m.blendfunc2 = GL_ONE; m.wantoverbright = false; m.tex[0] = R_GetTexture(skinframe->fog); R_Mesh_State(&m); c_alias_polys += model->numtris; R_FillColors(varray_color, model->numverts, fogcolor[0] * fog * mesh_colorscale, fogcolor[1] * fog * mesh_colorscale, fogcolor[2] * fog * mesh_colorscale, ent->alpha); memcpy(varray_element, model->mdlmd2data_indices, model->numtris * sizeof(int[3])); memcpy(varray_vertex, aliasvert, model->numverts * sizeof(float[4])); memcpy(varray_texcoord[0], model->mdlmd2data_texcoords, model->numverts * sizeof(float[2])); R_Mesh_Draw(model->numverts, model->numtris); } } int ZymoticLerpBones(int count, const zymbonematrix *bonebase, const frameblend_t *blend, const zymbone_t *bone) { int i; float lerp1, lerp2, lerp3, lerp4; zymbonematrix *out, rootmatrix, m; const zymbonematrix *bone1, *bone2, *bone3, *bone4; /* // LordHavoc: combine transform from zym coordinate space to quake coordinate space with model to world transform matrix rootmatrix.m[0][0] = softwaretransform_matrix[0][1]; rootmatrix.m[0][1] = -softwaretransform_matrix[0][0]; rootmatrix.m[0][2] = softwaretransform_matrix[0][2]; rootmatrix.m[0][3] = softwaretransform_matrix[0][3]; rootmatrix.m[1][0] = softwaretransform_matrix[1][1]; rootmatrix.m[1][1] = -softwaretransform_matrix[1][0]; rootmatrix.m[1][2] = softwaretransform_matrix[1][2]; rootmatrix.m[1][3] = softwaretransform_matrix[1][3]; rootmatrix.m[2][0] = softwaretransform_matrix[2][1]; rootmatrix.m[2][1] = -softwaretransform_matrix[2][0]; rootmatrix.m[2][2] = softwaretransform_matrix[2][2]; rootmatrix.m[2][3] = softwaretransform_matrix[2][3]; */ rootmatrix.m[0][0] = 1; rootmatrix.m[0][1] = 0; rootmatrix.m[0][2] = 0; rootmatrix.m[0][3] = 0; rootmatrix.m[1][0] = 0; rootmatrix.m[1][1] = 1; rootmatrix.m[1][2] = 0; rootmatrix.m[1][3] = 0; rootmatrix.m[2][0] = 0; rootmatrix.m[2][1] = 0; rootmatrix.m[2][2] = 1; rootmatrix.m[2][3] = 0; bone1 = bonebase + blend[0].frame * count; lerp1 = blend[0].lerp; if (blend[1].lerp) { bone2 = bonebase + blend[1].frame * count; lerp2 = blend[1].lerp; if (blend[2].lerp) { bone3 = bonebase + blend[2].frame * count; lerp3 = blend[2].lerp; if (blend[3].lerp) { // 4 poses bone4 = bonebase + blend[3].frame * count; lerp4 = blend[3].lerp; for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone2++; bone3++; bone4++; bone++; } } else { // 3 poses for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone2++; bone3++; bone++; } } } else { // 2 poses for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone2++; bone++; } } } else { // 1 pose if (lerp1 != 1) { // lerp != 1.0 for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1; m.m[0][1] = bone1->m[0][1] * lerp1; m.m[0][2] = bone1->m[0][2] * lerp1; m.m[0][3] = bone1->m[0][3] * lerp1; m.m[1][0] = bone1->m[1][0] * lerp1; m.m[1][1] = bone1->m[1][1] * lerp1; m.m[1][2] = bone1->m[1][2] * lerp1; m.m[1][3] = bone1->m[1][3] * lerp1; m.m[2][0] = bone1->m[2][0] * lerp1; m.m[2][1] = bone1->m[2][1] * lerp1; m.m[2][2] = bone1->m[2][2] * lerp1; m.m[2][3] = bone1->m[2][3] * lerp1; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone++; } } else { // lerp == 1.0 for (i = 0, out = zymbonepose;i < count;i++, out++) { if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]); bone1++; bone++; } } } return true; } void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert) { int c; float *out = aliasvert; zymbonematrix *matrix; while(vertcount--) { c = *bonecounts++; // FIXME: validate bonecounts at load time (must be >= 1) // FIXME: need 4th component in origin, for how much of the translate to blend in if (c == 1) { matrix = &zymbonepose[vert->bonenum]; out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } else { VectorClear(out); while(c--) { matrix = &zymbonepose[vert->bonenum]; out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } } out += 4; } } void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist) { int a, b, c, d; float *out, v1[3], v2[3], normal[3], s; int *u; // clear normals memset(aliasvertnorm, 0, sizeof(float) * vertcount * 3); memset(aliasvertusage, 0, sizeof(int) * vertcount); // parse render list and accumulate surface normals while(shadercount--) { d = *renderlist++; while (d--) { a = renderlist[0]*4; b = renderlist[1]*4; c = renderlist[2]*4; v1[0] = aliasvert[a+0] - aliasvert[b+0]; v1[1] = aliasvert[a+1] - aliasvert[b+1]; v1[2] = aliasvert[a+2] - aliasvert[b+2]; v2[0] = aliasvert[c+0] - aliasvert[b+0]; v2[1] = aliasvert[c+1] - aliasvert[b+1]; v2[2] = aliasvert[c+2] - aliasvert[b+2]; CrossProduct(v1, v2, normal); VectorNormalizeFast(normal); // add surface normal to vertices a = renderlist[0] * 3; aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[renderlist[0]]++; a = renderlist[1] * 3; aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[renderlist[1]]++; a = renderlist[2] * 3; aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[renderlist[2]]++; renderlist += 3; } } // FIXME: precalc this // average surface normals out = aliasvertnorm; u = aliasvertusage; while(vertcount--) { if (*u > 1) { s = ixtable[*u]; out[0] *= s; out[1] *= s; out[2] *= s; } u++; out += 3; } } void R_DrawZymoticModelMeshCallback (const void *calldata1, int calldata2) { float fog; vec3_t diff; int i, *renderlist; zymtype1header_t *m; rtexture_t *texture; rmeshstate_t mstate; const entity_render_t *ent = calldata1; int shadernum = calldata2; int numverts, numtriangles; R_Mesh_Matrix(&ent->matrix); // find the vertex index list and texture m = ent->model->zymdata_header; renderlist = (int *)(m->lump_render.start + (int) m); for (i = 0;i < shadernum;i++) renderlist += renderlist[0] * 3 + 1; texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[shadernum]; numverts = m->numverts; numtriangles = renderlist[0]; R_Mesh_ResizeCheck(numverts, numtriangles); fog = 0; if (fogenabled) { VectorSubtract(ent->origin, r_origin, diff); fog = DotProduct(diff,diff); if (fog < 0.01f) fog = 0.01f; fog = exp(fogdensity/fog); if (fog > 1) fog = 1; if (fog < 0.01f) fog = 0; // fog method: darken, additive fog // 1. render model as normal, scaled by inverse of fog alpha (darkens it) // 2. render fog as additive } ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), ent->frameblend, (zymbone_t *)(m->lump_bones.start + (int) m)); ZymoticTransformVerts(numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m)); ZymoticCalcNormals(numverts, m->numshaders, (int *)(m->lump_render.start + (int) m)); R_LightModel(ent, numverts, 1 - fog, 1 - fog, 1 - fog, false); memset(&mstate, 0, sizeof(mstate)); mstate.wantoverbright = true; if (ent->effects & EF_ADDITIVE) { mstate.blendfunc1 = GL_SRC_ALPHA; mstate.blendfunc2 = GL_ONE; } else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture)) { mstate.blendfunc1 = GL_SRC_ALPHA; mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; } else { mstate.blendfunc1 = GL_ONE; mstate.blendfunc2 = GL_ZERO; } mstate.tex[0] = R_GetTexture(texture); R_Mesh_State(&mstate); c_alias_polys += numtriangles; memcpy(varray_element, renderlist + 1, numtriangles * sizeof(int[3])); memcpy(varray_vertex, aliasvert, numverts * sizeof(float[4])); R_ModulateColors(aliasvertcolor, varray_color, numverts, mesh_colorscale, mesh_colorscale, mesh_colorscale); memcpy(varray_texcoord[0], (float *)(m->lump_texcoords.start + (int) m), numverts * sizeof(float[2])); R_Mesh_Draw(numverts, numtriangles); if (fog) { memset(&mstate, 0, sizeof(mstate)); mstate.wantoverbright = false; mstate.blendfunc1 = GL_SRC_ALPHA; mstate.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; // FIXME: need alpha mask for fogging... //mstate.tex[0] = R_GetTexture(texture); R_Mesh_State(&mstate); c_alias_polys += numtriangles; memcpy(varray_element, renderlist + 1, numtriangles * sizeof(int[3])); memcpy(varray_vertex, aliasvert, numverts * sizeof(float[4])); R_FillColors(varray_color, numverts, fogcolor[0] * mesh_colorscale, fogcolor[1] * mesh_colorscale, fogcolor[2] * mesh_colorscale, ent->alpha * fog); //memcpy(mesh_texcoord[0], (float *)(m->lump_texcoords.start + (int) m), numverts * sizeof(float[2])); R_Mesh_Draw(numverts, numtriangles); } } void R_DrawZymoticModel (entity_render_t *ent) { int i; zymtype1header_t *m; rtexture_t *texture; if (ent->alpha < (1.0f / 64.0f)) return; // basically completely transparent c_models++; m = ent->model->zymdata_header; for (i = 0;i < m->numshaders;i++) { texture = ((rtexture_t **)(m->lump_shaders.start + (int) m))[i]; if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(texture)) R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i); else R_DrawZymoticModelMeshCallback(ent, i); } } void R_DrawQ1Q2AliasModel(entity_render_t *ent) { if (ent->alpha < (1.0f / 64.0f)) return; // basically completely transparent c_models++; if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchSkinFrame(ent)->fog != NULL) R_MeshQueue_AddTransparent(ent->origin, R_DrawQ1Q2AliasModelCallback, ent, 0); else R_DrawQ1Q2AliasModelCallback(ent, 0); }