#include "quakedef.h" #include "cl_collision.h" #include "r_shadow.h" typedef struct { float m[3][4]; } zymbonematrix; // LordHavoc: vertex arrays int aliasvertmax = 0; void *aliasvertarrays = NULL; float *aliasvertcolor4fbuf = NULL; float *aliasvertcolor4f = NULL; // this may point at aliasvertcolorbuf or at vertex arrays in the mesh backend float *aliasvert_vertex3f = NULL; float *aliasvert_svector3f = NULL; float *aliasvert_tvector3f = NULL; float *aliasvert_normal3f = NULL; float *aliasvertcolor2_4f = NULL; int *aliasvertusage; zymbonematrix *zymbonepose; mempool_t *gl_models_mempool; #define expandaliasvert(newmax) if ((newmax) > aliasvertmax) gl_models_allocarrays(newmax) void gl_models_allocarrays(int newmax) { qbyte *data; aliasvertmax = newmax; if (aliasvertarrays != NULL) Mem_Free(aliasvertarrays); aliasvertarrays = Mem_Alloc(gl_models_mempool, aliasvertmax * (sizeof(float[4+4+3+3+3+3]) + sizeof(int[3]))); data = aliasvertarrays; aliasvertcolor4f = aliasvertcolor4fbuf = (void *)data;data += aliasvertmax * sizeof(float[4]); aliasvertcolor2_4f = (void *)data;data += aliasvertmax * sizeof(float[4]); // used temporarily for tinted coloring aliasvert_vertex3f = (void *)data;data += aliasvertmax * sizeof(float[3]); aliasvert_svector3f = (void *)data;data += aliasvertmax * sizeof(float[3]); aliasvert_tvector3f = (void *)data;data += aliasvertmax * sizeof(float[3]); aliasvert_normal3f = (void *)data;data += aliasvertmax * sizeof(float[3]); aliasvertusage = (void *)data;data += aliasvertmax * sizeof(int[3]); } void gl_models_freearrays(void) { aliasvertmax = 0; if (aliasvertarrays != NULL) Mem_Free(aliasvertarrays); aliasvertarrays = NULL; aliasvertcolor4f = aliasvertcolor4fbuf = NULL; aliasvertcolor2_4f = NULL; aliasvert_vertex3f = NULL; aliasvert_svector3f = NULL; aliasvert_tvector3f = NULL; aliasvert_normal3f = NULL; aliasvertusage = NULL; } void gl_models_start(void) { // allocate vertex processing arrays gl_models_mempool = Mem_AllocPool("GL_Models"); zymbonepose = Mem_Alloc(gl_models_mempool, sizeof(zymbonematrix[256])); gl_models_allocarrays(4096); } void gl_models_shutdown(void) { gl_models_freearrays(); Mem_FreePool(&gl_models_mempool); } void gl_models_newmap(void) { } void GL_Models_Init(void) { R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap); } #define MODELARRAY_VERTEX 0 #define MODELARRAY_SVECTOR 1 #define MODELARRAY_TVECTOR 2 #define MODELARRAY_NORMAL 3 void R_Model_Alias_GetMesh_Array3f(const entity_render_t *ent, const aliasmesh_t *mesh, int whicharray, float *out3f) { int i, vertcount; float lerp1, lerp2, lerp3, lerp4; const float *vertsbase, *verts1, *verts2, *verts3, *verts4; switch(whicharray) { case MODELARRAY_VERTEX:vertsbase = mesh->data_aliasvertex3f;break; case MODELARRAY_SVECTOR:vertsbase = mesh->data_aliassvector3f;break; case MODELARRAY_TVECTOR:vertsbase = mesh->data_aliastvector3f;break; case MODELARRAY_NORMAL:vertsbase = mesh->data_aliasnormal3f;break; default: Host_Error("R_Model_Alias_GetBlendedArray: unknown whicharray %i\n", whicharray); return; } vertcount = mesh->num_vertices; verts1 = vertsbase + ent->frameblend[0].frame * vertcount * 3; lerp1 = ent->frameblend[0].lerp; if (ent->frameblend[1].lerp) { verts2 = vertsbase + ent->frameblend[1].frame * vertcount * 3; lerp2 = ent->frameblend[1].lerp; if (ent->frameblend[2].lerp) { verts3 = vertsbase + ent->frameblend[2].frame * vertcount * 3; lerp3 = ent->frameblend[2].lerp; if (ent->frameblend[3].lerp) { verts4 = vertsbase + ent->frameblend[3].frame * vertcount * 3; lerp4 = ent->frameblend[3].lerp; for (i = 0;i < vertcount * 3;i++) VectorMAMAMAM(lerp1, verts1 + i, lerp2, verts2 + i, lerp3, verts3 + i, lerp4, verts4 + i, out3f + i); } else for (i = 0;i < vertcount * 3;i++) VectorMAMAM(lerp1, verts1 + i, lerp2, verts2 + i, lerp3, verts3 + i, out3f + i); } else for (i = 0;i < vertcount * 3;i++) VectorMAM(lerp1, verts1 + i, lerp2, verts2 + i, out3f + i); } else memcpy(out3f, verts1, vertcount * sizeof(float[3])); } aliaslayer_t r_aliasnoskinlayers[2] = {{ALIASLAYER_DIFFUSE, NULL, NULL}, {ALIASLAYER_FOG | ALIASLAYER_FORCEDRAW_IF_FIRSTPASS, NULL, NULL}}; aliasskin_t r_aliasnoskin = {0, 2, r_aliasnoskinlayers}; aliasskin_t *R_FetchAliasSkin(const entity_render_t *ent, const aliasmesh_t *mesh) { model_t *model = ent->model; if (model->numskins) { int s = ent->skinnum; if ((unsigned int)s >= (unsigned int)model->numskins) s = 0; if (model->skinscenes[s].framecount > 1) s = model->skinscenes[s].firstframe + (int) (cl.time * model->skinscenes[s].framerate) % model->skinscenes[s].framecount; else s = model->skinscenes[s].firstframe; if (s >= mesh->num_skins) s = 0; return mesh->data_skins + s; } else { r_aliasnoskinlayers[0].texture = r_notexture; return &r_aliasnoskin; } } void R_DrawAliasModelCallback (const void *calldata1, int calldata2) { int c, fullbright, layernum, firstpass; float tint[3], fog, ifog, colorscale, ambientcolor4f[4], diffusecolor[3], diffusenormal[3]; vec3_t diff; qbyte *bcolor; rmeshstate_t m; const entity_render_t *ent = calldata1; aliasmesh_t *mesh = ent->model->alias.aliasdata_meshes + calldata2; aliaslayer_t *layer; aliasskin_t *skin; R_Mesh_Matrix(&ent->matrix); fog = 0; if (fogenabled) { VectorSubtract(ent->origin, r_vieworigin, diff); fog = DotProduct(diff,diff); if (fog < 0.01f) fog = 0.01f; fog = exp(fogdensity/fog); if (fog > 1) fog = 1; if (fog < 0.01f) fog = 0; // fog method: darken, additive fog // 1. render model as normal, scaled by inverse of fog alpha (darkens it) // 2. render fog as additive } ifog = 1 - fog; firstpass = true; skin = R_FetchAliasSkin(ent, mesh); for (layernum = 0, layer = skin->data_layers;layernum < skin->num_layers;layernum++, layer++) { if (!(layer->flags & ALIASLAYER_FORCEDRAW_IF_FIRSTPASS) || !firstpass) { if (((layer->flags & ALIASLAYER_NODRAW_IF_NOTCOLORMAPPED) && ent->colormap < 0) || ((layer->flags & ALIASLAYER_NODRAW_IF_COLORMAPPED) && ent->colormap >= 0) || ((layer->flags & ALIASLAYER_FOG) && !fogenabled) || (layer->flags & ALIASLAYER_SPECULAR) || ((layer->flags & ALIASLAYER_DIFFUSE) && (r_shadow_realtime_world.integer && r_shadow_realtime_world_lightmaps.value <= 0 && r_ambient.integer <= 0 && r_fullbright.integer == 0 && !(ent->effects & EF_FULLBRIGHT)))) continue; } if (!firstpass || (ent->effects & EF_ADDITIVE)) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); GL_DepthMask(false); } else if ((skin->flags & ALIASSKIN_TRANSPARENT) || ent->alpha != 1.0) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); } else { GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); } GL_DepthTest(true); firstpass = false; expandaliasvert(mesh->num_vertices); colorscale = 1.0f; memset(&m, 0, sizeof(m)); if (layer->texture != NULL) { m.tex[0] = R_GetTexture(layer->texture); m.pointer_texcoord[0] = mesh->data_texcoord2f; if (gl_combine.integer && layer->flags & (ALIASLAYER_DIFFUSE | ALIASLAYER_SPECULAR)) { colorscale *= 0.25f; m.texrgbscale[0] = 4; } } R_Mesh_State_Texture(&m); c_alias_polys += mesh->num_triangles; GL_VertexPointer(varray_vertex3f); R_Model_Alias_GetMesh_Array3f(ent, mesh, MODELARRAY_VERTEX, varray_vertex3f); if (layer->flags & ALIASLAYER_FOG) { colorscale *= fog; GL_Color(fogcolor[0] * colorscale, fogcolor[1] * colorscale, fogcolor[2] * colorscale, ent->alpha); } else { fullbright = !(layer->flags & ALIASLAYER_DIFFUSE) || r_fullbright.integer || (ent->effects & EF_FULLBRIGHT); if (layer->flags & (ALIASLAYER_COLORMAP_PANTS | ALIASLAYER_COLORMAP_SHIRT)) { // 128-224 are backwards ranges if (layer->flags & ALIASLAYER_COLORMAP_PANTS) c = (ent->colormap & 0xF) << 4; else //if (layer->flags & ALIASLAYER_COLORMAP_SHIRT) c = (ent->colormap & 0xF0); c += (c >= 128 && c < 224) ? 4 : 12; bcolor = (qbyte *) (&palette_complete[c]); fullbright = fullbright || c >= 224; VectorScale(bcolor, (1.0f / 255.0f), tint); } else tint[0] = tint[1] = tint[2] = 1; if (r_shadow_realtime_world.integer && !fullbright) VectorScale(tint, r_shadow_realtime_world_lightmaps.value, tint); colorscale *= ifog; if (fullbright) GL_Color(tint[0] * colorscale, tint[1] * colorscale, tint[2] * colorscale, ent->alpha); else { if (R_LightModel(ambientcolor4f, diffusecolor, diffusenormal, ent, tint[0] * colorscale, tint[1] * colorscale, tint[2] * colorscale, ent->alpha, false)) { GL_ColorPointer(varray_color4f); R_Model_Alias_GetMesh_Array3f(ent, mesh, MODELARRAY_NORMAL, varray_normal3f); R_LightModel_CalcVertexColors(ambientcolor4f, diffusecolor, diffusenormal, mesh->num_vertices, varray_vertex3f, varray_normal3f, varray_color4f); } else GL_Color(ambientcolor4f[0], ambientcolor4f[1], ambientcolor4f[2], ambientcolor4f[3]); } } R_Mesh_Draw(mesh->num_vertices, mesh->num_triangles, mesh->data_element3i); } } void R_Model_Alias_Draw(entity_render_t *ent) { int meshnum; aliasmesh_t *mesh; if (ent->alpha < (1.0f / 64.0f)) return; // basically completely transparent c_models++; for (meshnum = 0, mesh = ent->model->alias.aliasdata_meshes;meshnum < ent->model->alias.aliasnum_meshes;meshnum++, mesh++) { if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_FetchAliasSkin(ent, mesh)->flags & ALIASSKIN_TRANSPARENT) R_MeshQueue_AddTransparent(ent->origin, R_DrawAliasModelCallback, ent, meshnum); else R_DrawAliasModelCallback(ent, meshnum); } } void R_Model_Alias_DrawShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, float lightradius) { int meshnum; aliasmesh_t *mesh; aliasskin_t *skin; float projectdistance; if (ent->effects & EF_ADDITIVE || ent->alpha < 1) return; projectdistance = lightradius + ent->model->radius - sqrt(DotProduct(relativelightorigin, relativelightorigin)); if (projectdistance > 0.1) { R_Mesh_Matrix(&ent->matrix); for (meshnum = 0, mesh = ent->model->alias.aliasdata_meshes;meshnum < ent->model->alias.aliasnum_meshes;meshnum++, mesh++) { skin = R_FetchAliasSkin(ent, mesh); if (skin->flags & ALIASSKIN_TRANSPARENT) continue; R_Model_Alias_GetMesh_Array3f(ent, mesh, MODELARRAY_VERTEX, varray_vertex3f); R_Shadow_Volume(mesh->num_vertices, mesh->num_triangles, varray_vertex3f, mesh->data_element3i, mesh->data_neighbor3i, relativelightorigin, lightradius, projectdistance); } } } void R_Model_Alias_DrawLight(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativeeyeorigin, float lightradius, float *lightcolor, const matrix4x4_t *matrix_modeltolight, const matrix4x4_t *matrix_modeltoattenuationxyz, const matrix4x4_t *matrix_modeltoattenuationz, rtexture_t *lightcubemap) { int c, meshnum, layernum; float fog, ifog, lightcolor2[3]; vec3_t diff; qbyte *bcolor; aliasmesh_t *mesh; aliaslayer_t *layer; aliasskin_t *skin; if (ent->effects & (EF_ADDITIVE | EF_FULLBRIGHT) || ent->alpha < 1) return; R_Mesh_Matrix(&ent->matrix); fog = 0; if (fogenabled) { VectorSubtract(ent->origin, r_vieworigin, diff); fog = DotProduct(diff,diff); if (fog < 0.01f) fog = 0.01f; fog = exp(fogdensity/fog); if (fog > 1) fog = 1; if (fog < 0.01f) fog = 0; // fog method: darken, additive fog // 1. render model as normal, scaled by inverse of fog alpha (darkens it) // 2. render fog as additive } ifog = 1 - fog; for (meshnum = 0, mesh = ent->model->alias.aliasdata_meshes;meshnum < ent->model->alias.aliasnum_meshes;meshnum++, mesh++) { skin = R_FetchAliasSkin(ent, mesh); if (skin->flags & ALIASSKIN_TRANSPARENT) continue; expandaliasvert(mesh->num_vertices); R_Model_Alias_GetMesh_Array3f(ent, mesh, MODELARRAY_VERTEX, aliasvert_vertex3f); R_Model_Alias_GetMesh_Array3f(ent, mesh, MODELARRAY_SVECTOR, aliasvert_svector3f); R_Model_Alias_GetMesh_Array3f(ent, mesh, MODELARRAY_TVECTOR, aliasvert_tvector3f); R_Model_Alias_GetMesh_Array3f(ent, mesh, MODELARRAY_NORMAL, aliasvert_normal3f); for (layernum = 0, layer = skin->data_layers;layernum < skin->num_layers;layernum++, layer++) { if (!(layer->flags & (ALIASLAYER_DIFFUSE | ALIASLAYER_SPECULAR)) || ((layer->flags & ALIASLAYER_NODRAW_IF_NOTCOLORMAPPED) && ent->colormap < 0) || ((layer->flags & ALIASLAYER_NODRAW_IF_COLORMAPPED) && ent->colormap >= 0)) continue; lightcolor2[0] = lightcolor[0] * ifog; lightcolor2[1] = lightcolor[1] * ifog; lightcolor2[2] = lightcolor[2] * ifog; if (layer->flags & ALIASLAYER_SPECULAR) { c_alias_polys += mesh->num_triangles; R_Shadow_SpecularLighting(mesh->num_vertices, mesh->num_triangles, mesh->data_element3i, aliasvert_vertex3f, aliasvert_svector3f, aliasvert_tvector3f, aliasvert_normal3f, mesh->data_texcoord2f, relativelightorigin, relativeeyeorigin, lightradius, lightcolor2, matrix_modeltolight, matrix_modeltoattenuationxyz, matrix_modeltoattenuationz, layer->texture, layer->nmap, lightcubemap); } else if (layer->flags & ALIASLAYER_DIFFUSE) { if (layer->flags & ALIASLAYER_COLORMAP_PANTS) { // 128-224 are backwards ranges c = (ent->colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12; // fullbright passes were already taken care of, so skip them in realtime lighting passes if (c >= 224) continue; bcolor = (qbyte *) (&palette_complete[c]); lightcolor2[0] *= bcolor[0] * (1.0f / 255.0f); lightcolor2[1] *= bcolor[1] * (1.0f / 255.0f); lightcolor2[2] *= bcolor[2] * (1.0f / 255.0f); } else if (layer->flags & ALIASLAYER_COLORMAP_SHIRT) { // 128-224 are backwards ranges c = (ent->colormap & 0xF0);c += (c >= 128 && c < 224) ? 4 : 12; // fullbright passes were already taken care of, so skip them in realtime lighting passes if (c >= 224) continue; bcolor = (qbyte *) (&palette_complete[c]); lightcolor2[0] *= bcolor[0] * (1.0f / 255.0f); lightcolor2[1] *= bcolor[1] * (1.0f / 255.0f); lightcolor2[2] *= bcolor[2] * (1.0f / 255.0f); } c_alias_polys += mesh->num_triangles; R_Shadow_DiffuseLighting(mesh->num_vertices, mesh->num_triangles, mesh->data_element3i, aliasvert_vertex3f, aliasvert_svector3f, aliasvert_tvector3f, aliasvert_normal3f, mesh->data_texcoord2f, relativelightorigin, lightradius, lightcolor2, matrix_modeltolight, matrix_modeltoattenuationxyz, matrix_modeltoattenuationz, layer->texture, layer->nmap, lightcubemap); } } } } int ZymoticLerpBones(int count, const zymbonematrix *bonebase, const frameblend_t *blend, const zymbone_t *bone) { int i; float lerp1, lerp2, lerp3, lerp4; zymbonematrix *out, rootmatrix, m; const zymbonematrix *bone1, *bone2, *bone3, *bone4; rootmatrix.m[0][0] = 1; rootmatrix.m[0][1] = 0; rootmatrix.m[0][2] = 0; rootmatrix.m[0][3] = 0; rootmatrix.m[1][0] = 0; rootmatrix.m[1][1] = 1; rootmatrix.m[1][2] = 0; rootmatrix.m[1][3] = 0; rootmatrix.m[2][0] = 0; rootmatrix.m[2][1] = 0; rootmatrix.m[2][2] = 1; rootmatrix.m[2][3] = 0; bone1 = bonebase + blend[0].frame * count; lerp1 = blend[0].lerp; if (blend[1].lerp) { bone2 = bonebase + blend[1].frame * count; lerp2 = blend[1].lerp; if (blend[2].lerp) { bone3 = bonebase + blend[2].frame * count; lerp3 = blend[2].lerp; if (blend[3].lerp) { // 4 poses bone4 = bonebase + blend[3].frame * count; lerp4 = blend[3].lerp; for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone2++; bone3++; bone4++; bone++; } } else { // 3 poses for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone2++; bone3++; bone++; } } } else { // 2 poses for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone2++; bone++; } } } else { // 1 pose if (lerp1 != 1) { // lerp != 1.0 for (i = 0, out = zymbonepose;i < count;i++, out++) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1; m.m[0][1] = bone1->m[0][1] * lerp1; m.m[0][2] = bone1->m[0][2] * lerp1; m.m[0][3] = bone1->m[0][3] * lerp1; m.m[1][0] = bone1->m[1][0] * lerp1; m.m[1][1] = bone1->m[1][1] * lerp1; m.m[1][2] = bone1->m[1][2] * lerp1; m.m[1][3] = bone1->m[1][3] * lerp1; m.m[2][0] = bone1->m[2][0] * lerp1; m.m[2][1] = bone1->m[2][1] * lerp1; m.m[2][2] = bone1->m[2][2] * lerp1; m.m[2][3] = bone1->m[2][3] * lerp1; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &m.m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &m.m[0][0], &out->m[0][0]); bone1++; bone++; } } else { // lerp == 1.0 for (i = 0, out = zymbonepose;i < count;i++, out++) { if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0][0], &bone1->m[0][0], &out->m[0][0]); else R_ConcatTransforms(&rootmatrix.m[0][0], &bone1->m[0][0], &out->m[0][0]); bone1++; bone++; } } } return true; } void ZymoticTransformVerts(int vertcount, float *vertex, int *bonecounts, zymvertex_t *vert) { int c; float *out = vertex; zymbonematrix *matrix; while(vertcount--) { c = *bonecounts++; // FIXME: validate bonecounts at load time (must be >= 1) // FIXME: need 4th component in origin, for how much of the translate to blend in if (c == 1) { matrix = &zymbonepose[vert->bonenum]; out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } else { VectorClear(out); while(c--) { matrix = &zymbonepose[vert->bonenum]; out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } } out += 3; } } void ZymoticCalcNormal3f(int vertcount, float *vertex3f, float *normal3f, int shadercount, int *renderlist) { int a, b, c, d; float *out, v1[3], v2[3], normal[3], s; int *u; // clear normals memset(normal3f, 0, sizeof(float) * vertcount * 3); memset(aliasvertusage, 0, sizeof(int) * vertcount); // parse render list and accumulate surface normals while(shadercount--) { d = *renderlist++; while (d--) { a = renderlist[0]*4; b = renderlist[1]*4; c = renderlist[2]*4; v1[0] = vertex3f[a+0] - vertex3f[b+0]; v1[1] = vertex3f[a+1] - vertex3f[b+1]; v1[2] = vertex3f[a+2] - vertex3f[b+2]; v2[0] = vertex3f[c+0] - vertex3f[b+0]; v2[1] = vertex3f[c+1] - vertex3f[b+1]; v2[2] = vertex3f[c+2] - vertex3f[b+2]; CrossProduct(v1, v2, normal); VectorNormalizeFast(normal); // add surface normal to vertices a = renderlist[0] * 3; normal3f[a+0] += normal[0]; normal3f[a+1] += normal[1]; normal3f[a+2] += normal[2]; aliasvertusage[renderlist[0]]++; a = renderlist[1] * 3; normal3f[a+0] += normal[0]; normal3f[a+1] += normal[1]; normal3f[a+2] += normal[2]; aliasvertusage[renderlist[1]]++; a = renderlist[2] * 3; normal3f[a+0] += normal[0]; normal3f[a+1] += normal[1]; normal3f[a+2] += normal[2]; aliasvertusage[renderlist[2]]++; renderlist += 3; } } // FIXME: precalc this // average surface normals out = normal3f; u = aliasvertusage; while(vertcount--) { if (*u > 1) { s = ixtable[*u]; out[0] *= s; out[1] *= s; out[2] *= s; } u++; out += 3; } } void R_DrawZymoticModelMeshCallback (const void *calldata1, int calldata2) { float fog, ifog, colorscale, ambientcolor4f[4], diffusecolor[3], diffusenormal[3]; vec3_t diff; int i, *renderlist, *elements; rtexture_t *texture; rmeshstate_t mstate; const entity_render_t *ent = calldata1; int shadernum = calldata2; int numverts, numtriangles; R_Mesh_Matrix(&ent->matrix); // find the vertex index list and texture renderlist = ent->model->alias.zymdata_renderlist; for (i = 0;i < shadernum;i++) renderlist += renderlist[0] * 3 + 1; texture = ent->model->alias.zymdata_textures[shadernum]; numverts = ent->model->alias.zymnum_verts; numtriangles = *renderlist++; elements = renderlist; expandaliasvert(numverts); fog = 0; if (fogenabled) { VectorSubtract(ent->origin, r_vieworigin, diff); fog = DotProduct(diff,diff); if (fog < 0.01f) fog = 0.01f; fog = exp(fogdensity/fog); if (fog > 1) fog = 1; if (fog < 0.01f) fog = 0; // fog method: darken, additive fog // 1. render model as normal, scaled by inverse of fog alpha (darkens it) // 2. render fog as additive } ifog = 1 - fog; if (ent->effects & EF_ADDITIVE) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); GL_DepthMask(false); } else if (ent->alpha != 1.0 || R_TextureHasAlpha(texture)) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); } else { GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); } GL_DepthTest(true); GL_VertexPointer(varray_vertex3f); memset(&mstate, 0, sizeof(mstate)); colorscale = 1.0f; if (gl_combine.integer) { mstate.texrgbscale[0] = 4; colorscale *= 0.25f; } mstate.tex[0] = R_GetTexture(texture); mstate.pointer_texcoord[0] = ent->model->alias.zymdata_texcoords; R_Mesh_State_Texture(&mstate); ZymoticLerpBones(ent->model->alias.zymnum_bones, (zymbonematrix *) ent->model->alias.zymdata_poses, ent->frameblend, ent->model->alias.zymdata_bones); ZymoticTransformVerts(numverts, varray_vertex3f, ent->model->alias.zymdata_vertbonecounts, ent->model->alias.zymdata_verts); ZymoticCalcNormal3f(numverts, varray_vertex3f, aliasvert_normal3f, ent->model->alias.zymnum_shaders, ent->model->alias.zymdata_renderlist); if (R_LightModel(ambientcolor4f, diffusecolor, diffusenormal, ent, ifog * colorscale, ifog * colorscale, ifog * colorscale, ent->alpha, false)) { GL_ColorPointer(varray_color4f); R_LightModel_CalcVertexColors(ambientcolor4f, diffusecolor, diffusenormal, numverts, varray_vertex3f, aliasvert_normal3f, varray_color4f); } else GL_Color(ambientcolor4f[0], ambientcolor4f[1], ambientcolor4f[2], ambientcolor4f[3]); R_Mesh_Draw(numverts, numtriangles, elements); c_alias_polys += numtriangles; if (fog) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthTest(true); GL_VertexPointer(varray_vertex3f); memset(&mstate, 0, sizeof(mstate)); // FIXME: need alpha mask for fogging... //mstate.tex[0] = R_GetTexture(texture); //mstate.pointer_texcoord = ent->model->alias.zymdata_texcoords; R_Mesh_State_Texture(&mstate); GL_Color(fogcolor[0], fogcolor[1], fogcolor[2], ent->alpha * fog); ZymoticTransformVerts(numverts, varray_vertex3f, ent->model->alias.zymdata_vertbonecounts, ent->model->alias.zymdata_verts); R_Mesh_Draw(numverts, numtriangles, elements); c_alias_polys += numtriangles; } } void R_Model_Zymotic_Draw(entity_render_t *ent) { int i; if (ent->alpha < (1.0f / 64.0f)) return; // basically completely transparent c_models++; for (i = 0;i < ent->model->alias.zymnum_shaders;i++) { if (ent->effects & EF_ADDITIVE || ent->alpha != 1.0 || R_TextureHasAlpha(ent->model->alias.zymdata_textures[i])) R_MeshQueue_AddTransparent(ent->origin, R_DrawZymoticModelMeshCallback, ent, i); else R_DrawZymoticModelMeshCallback(ent, i); } } void R_Model_Zymotic_DrawShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, float lightradius) { // FIXME } void R_Model_Zymotic_DrawLight(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativeeyeorigin, float lightradius, float *lightcolor, const matrix4x4_t *matrix_modeltolight, const matrix4x4_t *matrix_modeltoattenuationxyz, const matrix4x4_t *matrix_modeltoattenuationz, rtexture_t *lightcubemap) { // FIXME }