#include "quakedef.h" cvar_t gl_transform = {"gl_transform", "1"}; cvar_t gl_lockarrays = {"gl_lockarrays", "1"}; typedef struct { float m[3][4]; } zymbonematrix; // LordHavoc: vertex array float *aliasvert; float *aliasvertnorm; byte *aliasvertcolor; byte *aliasvertcolor2; zymbonematrix *zymbonepose; int *aliasvertusage; rtexture_t *chrometexture; int arraylocked = false; void GL_LockArray(int first, int count) { if (gl_supportslockarrays && gl_lockarrays.value) { qglLockArraysEXT(first, count); arraylocked = true; } } void GL_UnlockArray(void) { if (arraylocked) { qglUnlockArraysEXT(); arraylocked = false; } } void GL_SetupModelTransform (vec3_t origin, vec3_t angles, vec_t scale) { glTranslatef (origin[0], origin[1], origin[2]); if (scale != 1) glScalef (scale, scale, scale); if (angles[1]) glRotatef (angles[1], 0, 0, 1); if (angles[0]) glRotatef (-angles[0], 0, 1, 0); if (angles[2]) glRotatef (angles[2], 1, 0, 0); } void makechrometexture(void) { int i; byte noise[64*64]; byte data[64*64][4]; fractalnoise(noise, 64, 8); // convert to RGBA data for (i = 0;i < 64*64;i++) { data[i][0] = data[i][1] = data[i][2] = noise[i]; data[i][3] = 255; } chrometexture = R_LoadTexture ("chrometexture", 64, 64, &data[0][0], TEXF_MIPMAP | TEXF_RGBA | TEXF_PRECACHE); } void gl_models_start(void) { // allocate vertex processing arrays aliasvert = qmalloc(sizeof(float[MD2MAX_VERTS][3])); aliasvertnorm = qmalloc(sizeof(float[MD2MAX_VERTS][3])); aliasvertcolor = qmalloc(sizeof(byte[MD2MAX_VERTS][4])); aliasvertcolor2 = qmalloc(sizeof(byte[MD2MAX_VERTS][4])); // used temporarily for tinted coloring zymbonepose = qmalloc(sizeof(zymbonematrix[256])); aliasvertusage = qmalloc(sizeof(int[MD2MAX_VERTS])); makechrometexture(); } void gl_models_shutdown(void) { qfree(aliasvert); qfree(aliasvertnorm); qfree(aliasvertcolor); qfree(aliasvertcolor2); qfree(zymbonepose); qfree(aliasvertusage); } void gl_models_newmap(void) { } void GL_Models_Init(void) { Cvar_RegisterVariable(&gl_transform); Cvar_RegisterVariable(&gl_lockarrays); R_RegisterModule("GL_Models", gl_models_start, gl_models_shutdown, gl_models_newmap); } void R_AliasTransformVerts(int vertcount) { int i; vec3_t point, matrix_x, matrix_y, matrix_z; float *av, *avn; av = aliasvert; avn = aliasvertnorm; matrix_x[0] = softwaretransform_x[0] * softwaretransform_scale; matrix_x[1] = softwaretransform_y[0] * softwaretransform_scale; matrix_x[2] = softwaretransform_z[0] * softwaretransform_scale; matrix_y[0] = softwaretransform_x[1] * softwaretransform_scale; matrix_y[1] = softwaretransform_y[1] * softwaretransform_scale; matrix_y[2] = softwaretransform_z[1] * softwaretransform_scale; matrix_z[0] = softwaretransform_x[2] * softwaretransform_scale; matrix_z[1] = softwaretransform_y[2] * softwaretransform_scale; matrix_z[2] = softwaretransform_z[2] * softwaretransform_scale; for (i = 0;i < vertcount;i++) { // rotate, scale, and translate the vertex locations VectorCopy(av, point); av[0] = DotProduct(point, matrix_x) + softwaretransform_offset[0]; av[1] = DotProduct(point, matrix_y) + softwaretransform_offset[1]; av[2] = DotProduct(point, matrix_z) + softwaretransform_offset[2]; // rotate the normals VectorCopy(avn, point); avn[0] = point[0] * softwaretransform_x[0] + point[1] * softwaretransform_y[0] + point[2] * softwaretransform_z[0]; avn[1] = point[0] * softwaretransform_x[1] + point[1] * softwaretransform_y[1] + point[2] * softwaretransform_z[1]; avn[2] = point[0] * softwaretransform_x[2] + point[1] * softwaretransform_y[2] + point[2] * softwaretransform_z[2]; av += 3; avn += 3; } } void R_AliasLerpVerts(int vertcount, float lerp1, trivertx_t *verts1, vec3_t fscale1, vec3_t translate1, float lerp2, trivertx_t *verts2, vec3_t fscale2, vec3_t translate2, float lerp3, trivertx_t *verts3, vec3_t fscale3, vec3_t translate3, float lerp4, trivertx_t *verts4, vec3_t fscale4, vec3_t translate4) { int i; vec3_t scale1, scale2, scale3, scale4, translate; float *n1, *n2, *n3, *n4; float *av, *avn; av = aliasvert; avn = aliasvertnorm; VectorScale(fscale1, lerp1, scale1); if (lerp2) { VectorScale(fscale2, lerp2, scale2); if (lerp3) { VectorScale(fscale3, lerp3, scale3); if (lerp4) { VectorScale(fscale4, lerp4, scale4); translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3 + translate4[0] * lerp4; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3 + translate4[1] * lerp4; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3 + translate4[2] * lerp4; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + verts4->v[0] * scale4[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + verts4->v[1] * scale4[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + verts4->v[2] * scale4[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; n3 = m_bytenormals[verts3->lightnormalindex]; n4 = m_bytenormals[verts4->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3 + n4[0] * lerp4; avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3 + n4[1] * lerp4; avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3 + n4[2] * lerp4; av += 3; avn += 3; verts1++;verts2++;verts3++;verts4++; } } else { translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2 + translate3[0] * lerp3; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2 + translate3[1] * lerp3; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2 + translate3[2] * lerp3; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + verts3->v[0] * scale3[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + verts3->v[1] * scale3[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + verts3->v[2] * scale3[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; n3 = m_bytenormals[verts3->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2 + n3[0] * lerp3; avn[1] = n1[1] * lerp1 + n2[1] * lerp2 + n3[1] * lerp3; avn[2] = n1[2] * lerp1 + n2[2] * lerp2 + n3[2] * lerp3; av += 3; avn += 3; verts1++;verts2++;verts3++; } } } else { translate[0] = translate1[0] * lerp1 + translate2[0] * lerp2; translate[1] = translate1[1] * lerp1 + translate2[1] * lerp2; translate[2] = translate1[2] * lerp1 + translate2[2] * lerp2; // generate vertices for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + verts2->v[0] * scale2[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + verts2->v[1] * scale2[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + verts2->v[2] * scale2[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; n2 = m_bytenormals[verts2->lightnormalindex]; avn[0] = n1[0] * lerp1 + n2[0] * lerp2; avn[1] = n1[1] * lerp1 + n2[1] * lerp2; avn[2] = n1[2] * lerp1 + n2[2] * lerp2; av += 3; avn += 3; verts1++;verts2++; } } } else { translate[0] = translate1[0] * lerp1; translate[1] = translate1[1] * lerp1; translate[2] = translate1[2] * lerp1; // generate vertices if (lerp1 != 1) { // general but almost never used case for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + translate[2]; n1 = m_bytenormals[verts1->lightnormalindex]; avn[0] = n1[0] * lerp1; avn[1] = n1[1] * lerp1; avn[2] = n1[2] * lerp1; av += 3; avn += 3; verts1++; } } else { // fast normal case for (i = 0;i < vertcount;i++) { av[0] = verts1->v[0] * scale1[0] + translate[0]; av[1] = verts1->v[1] * scale1[1] + translate[1]; av[2] = verts1->v[2] * scale1[2] + translate[2]; VectorCopy(m_bytenormals[verts1->lightnormalindex], avn); av += 3; avn += 3; verts1++; } } } } void GL_DrawModelMesh(rtexture_t *skin, byte *colors, maliashdr_t *maliashdr) { if (!r_render.value) return; glBindTexture(GL_TEXTURE_2D, R_GetTexture(skin)); if (!colors) { if (lighthalf) glColor3f(0.5f, 0.5f, 0.5f); else glColor3f(1.0f, 1.0f, 1.0f); } if (colors) { glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(byte[4]), colors); glEnableClientState(GL_COLOR_ARRAY); } glDrawElements(GL_TRIANGLES, maliashdr->numtris * 3, GL_UNSIGNED_SHORT, (void *)((int) maliashdr + maliashdr->tridata)); if (colors) glDisableClientState(GL_COLOR_ARRAY); // leave it in a state for additional passes glDepthMask(0); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE); // additive } void R_TintModel(byte *in, byte *out, int verts, byte *color) { int i; byte r = color[0]; byte g = color[1]; byte b = color[2]; for (i = 0;i < verts;i++) { out[0] = (byte) ((in[0] * r) >> 8); out[1] = (byte) ((in[1] * g) >> 8); out[2] = (byte) ((in[2] * b) >> 8); out[3] = in[3]; in += 4; out += 4; } } /* ================= R_DrawAliasFrame ================= */ void R_LightModel(entity_t *ent, int numverts, vec3_t center, vec3_t basecolor); void R_DrawAliasFrame (maliashdr_t *maliashdr, float alpha, vec3_t color, entity_t *ent, int shadow, vec3_t org, vec3_t angles, vec_t scale, frameblend_t *blend, rtexture_t **skin, int colormap, int effects, int flags) { if (gl_transform.value) { if (r_render.value) { glPushMatrix(); GL_SetupModelTransform(org, angles, scale); } } // always needed, for model lighting softwaretransformforentity(ent); R_AliasLerpVerts(maliashdr->numverts, blend[0].lerp, ((trivertx_t *)((int) maliashdr + maliashdr->posedata)) + blend[0].frame * maliashdr->numverts, maliashdr->scale, maliashdr->scale_origin, blend[1].lerp, ((trivertx_t *)((int) maliashdr + maliashdr->posedata)) + blend[1].frame * maliashdr->numverts, maliashdr->scale, maliashdr->scale_origin, blend[2].lerp, ((trivertx_t *)((int) maliashdr + maliashdr->posedata)) + blend[2].frame * maliashdr->numverts, maliashdr->scale, maliashdr->scale_origin, blend[3].lerp, ((trivertx_t *)((int) maliashdr + maliashdr->posedata)) + blend[3].frame * maliashdr->numverts, maliashdr->scale, maliashdr->scale_origin); if (!gl_transform.value) R_AliasTransformVerts(maliashdr->numverts); // prep the vertex array as early as possible if (r_render.value) { glVertexPointer(3, GL_FLOAT, sizeof(float[3]), aliasvert); glEnableClientState(GL_VERTEX_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(float[2]), (void *)((int) maliashdr->texdata + (int) maliashdr)); glEnableClientState(GL_TEXTURE_COORD_ARRAY); GL_LockArray(0, maliashdr->numverts); } R_LightModel(ent, maliashdr->numverts, org, color); if (!r_render.value) return; glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glShadeModel(GL_SMOOTH); if (effects & EF_ADDITIVE) { glBlendFunc(GL_SRC_ALPHA, GL_ONE); // additive rendering glEnable(GL_BLEND); glDepthMask(0); } else if (alpha != 1.0) { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); glDepthMask(0); } else { glDisable(GL_BLEND); glDepthMask(1); } if (skin[0] || skin[1] || skin[2] || skin[3] || skin[4]) { if (colormap >= 0 && (skin[0] || skin[1] || skin[2])) { int c; if (skin[0]) GL_DrawModelMesh(skin[0], aliasvertcolor, maliashdr); if (skin[1]) { c = (colormap & 0xF) << 4;c += (c >= 128 && c < 224) ? 4 : 12; // 128-224 are backwards ranges R_TintModel(aliasvertcolor, aliasvertcolor2, maliashdr->numverts, (byte *) (&d_8to24table[c])); GL_DrawModelMesh(skin[1], aliasvertcolor2, maliashdr); } if (skin[2]) { c = colormap & 0xF0 ;c += (c >= 128 && c < 224) ? 4 : 12; // 128-224 are backwards ranges R_TintModel(aliasvertcolor, aliasvertcolor2, maliashdr->numverts, (byte *) (&d_8to24table[c])); GL_DrawModelMesh(skin[2], aliasvertcolor2, maliashdr); } } else { if (skin[4]) GL_DrawModelMesh(skin[4], aliasvertcolor, maliashdr); else { if (skin[0]) GL_DrawModelMesh(skin[0], aliasvertcolor, maliashdr); if (skin[1]) GL_DrawModelMesh(skin[1], aliasvertcolor, maliashdr); if (skin[2]) GL_DrawModelMesh(skin[2], aliasvertcolor, maliashdr); } } if (skin[3]) GL_DrawModelMesh(skin[3], NULL, maliashdr); } else GL_DrawModelMesh(0, NULL, maliashdr); if (fogenabled) { vec3_t diff; glDisable (GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates VectorSubtract(org, r_origin, diff); glColor4f(fogcolor[0], fogcolor[1], fogcolor[2], exp(fogdensity/DotProduct(diff,diff))); glDrawElements(GL_TRIANGLES, maliashdr->numtris * 3, GL_UNSIGNED_SHORT, (void *)((int) maliashdr + maliashdr->tridata)); glEnable (GL_TEXTURE_2D); glColor3f (1,1,1); } GL_UnlockArray(); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(1); glPopMatrix(); } /* ================= R_DrawQ2AliasFrame ================= */ void R_DrawQ2AliasFrame (md2mem_t *pheader, float alpha, vec3_t color, entity_t *ent, int shadow, vec3_t org, vec3_t angles, vec_t scale, frameblend_t *blend, rtexture_t *skin, int effects, int flags) { int *order, count; md2frame_t *frame1, *frame2, *frame3, *frame4; if (r_render.value) glBindTexture(GL_TEXTURE_2D, R_GetTexture(skin)); if (gl_transform.value) { if (r_render.value) { glPushMatrix(); GL_SetupModelTransform(org, angles, scale); } } // always needed, for model lighting softwaretransformforentity(ent); frame1 = (void *)((int) pheader + pheader->ofs_frames + (pheader->framesize * blend[0].frame)); frame2 = (void *)((int) pheader + pheader->ofs_frames + (pheader->framesize * blend[1].frame)); frame3 = (void *)((int) pheader + pheader->ofs_frames + (pheader->framesize * blend[2].frame)); frame4 = (void *)((int) pheader + pheader->ofs_frames + (pheader->framesize * blend[3].frame)); R_AliasLerpVerts(pheader->num_xyz, blend[0].lerp, frame1->verts, frame1->scale, frame1->translate, blend[1].lerp, frame2->verts, frame2->scale, frame2->translate, blend[2].lerp, frame3->verts, frame3->scale, frame3->translate, blend[3].lerp, frame4->verts, frame4->scale, frame4->translate); if (!gl_transform.value) R_AliasTransformVerts(pheader->num_xyz); R_LightModel(ent, pheader->num_xyz, org, color); if (!r_render.value) return; // LordHavoc: big mess... // using vertex arrays only slightly, although it is enough to prevent duplicates // (saving half the transforms) glVertexPointer(3, GL_FLOAT, sizeof(float[3]), aliasvert); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(byte[4]), aliasvertcolor); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); order = (int *)((int)pheader + pheader->ofs_glcmds); while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { glTexCoord2f(((float *)order)[0], ((float *)order)[1]); glArrayElement(order[2]); order += 3; } while (count--); } glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); if (fogenabled) { glDisable (GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates { vec3_t diff; VectorSubtract(org, r_origin, diff); glColor4f(fogcolor[0], fogcolor[1], fogcolor[2], exp(fogdensity/DotProduct(diff,diff))); } // LordHavoc: big mess... // using vertex arrays only slightly, although it is enough to prevent duplicates // (saving half the transforms) glVertexPointer(3, GL_FLOAT, sizeof(float[3]), aliasvert); glEnableClientState(GL_VERTEX_ARRAY); order = (int *)((int)pheader + pheader->ofs_glcmds); while(1) { if (!(count = *order++)) break; if (count > 0) glBegin(GL_TRIANGLE_STRIP); else { glBegin(GL_TRIANGLE_FAN); count = -count; } do { glArrayElement(order[2]); order += 3; } while (count--); } glDisableClientState(GL_VERTEX_ARRAY); glEnable (GL_TEXTURE_2D); glColor3f (1,1,1); } glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(1); if (gl_transform.value) glPopMatrix(); } void ZymoticLerpBones(int count, zymbonematrix *bonebase, frameblend_t *blend, zymbone_t *bone, float rootorigin[3], float rootangles[3], float rootscale) { float lerp1, lerp2, lerp3, lerp4; zymbonematrix *out, rootmatrix, m, *bone1, *bone2, *bone3, *bone4; out = zymbonepose; AngleVectors(rootangles, rootmatrix.m[0], rootmatrix.m[1], rootmatrix.m[2]); VectorScale(rootmatrix.m[0], rootscale, rootmatrix.m[0]); VectorScale(rootmatrix.m[1], rootscale, rootmatrix.m[1]); VectorScale(rootmatrix.m[2], rootscale, rootmatrix.m[2]); rootmatrix.m[0][3] = rootorigin[0]; rootmatrix.m[1][3] = rootorigin[1]; rootmatrix.m[2][3] = rootorigin[2]; bone1 = bonebase + blend[0].frame * count; lerp1 = blend[0].lerp; if (blend[1].lerp) { bone2 = bonebase + blend[1].frame * count; lerp2 = blend[1].lerp; if (blend[2].lerp) { bone3 = bonebase + blend[2].frame * count; lerp3 = blend[2].lerp; if (blend[3].lerp) { // 4 poses bone4 = bonebase + blend[3].frame * count; lerp4 = blend[3].lerp; while(count--) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3 + bone4->m[0][0] * lerp4; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3 + bone4->m[0][1] * lerp4; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3 + bone4->m[0][2] * lerp4; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3 + bone4->m[0][3] * lerp4; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3 + bone4->m[1][0] * lerp4; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3 + bone4->m[1][1] * lerp4; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3 + bone4->m[1][2] * lerp4; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3 + bone4->m[1][3] * lerp4; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3 + bone4->m[2][0] * lerp4; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3 + bone4->m[2][1] * lerp4; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3 + bone4->m[2][2] * lerp4; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3 + bone4->m[2][3] * lerp4; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone2++; bone3++; bone4++; bone++; out++; } } else { // 3 poses while(count--) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2 + bone3->m[0][0] * lerp3; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2 + bone3->m[0][1] * lerp3; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2 + bone3->m[0][2] * lerp3; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2 + bone3->m[0][3] * lerp3; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2 + bone3->m[1][0] * lerp3; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2 + bone3->m[1][1] * lerp3; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2 + bone3->m[1][2] * lerp3; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2 + bone3->m[1][3] * lerp3; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2 + bone3->m[2][0] * lerp3; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2 + bone3->m[2][1] * lerp3; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2 + bone3->m[2][2] * lerp3; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2 + bone3->m[2][3] * lerp3; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone2++; bone3++; bone++; out++; } } } else { // 2 poses while(count--) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1 + bone2->m[0][0] * lerp2; m.m[0][1] = bone1->m[0][1] * lerp1 + bone2->m[0][1] * lerp2; m.m[0][2] = bone1->m[0][2] * lerp1 + bone2->m[0][2] * lerp2; m.m[0][3] = bone1->m[0][3] * lerp1 + bone2->m[0][3] * lerp2; m.m[1][0] = bone1->m[1][0] * lerp1 + bone2->m[1][0] * lerp2; m.m[1][1] = bone1->m[1][1] * lerp1 + bone2->m[1][1] * lerp2; m.m[1][2] = bone1->m[1][2] * lerp1 + bone2->m[1][2] * lerp2; m.m[1][3] = bone1->m[1][3] * lerp1 + bone2->m[1][3] * lerp2; m.m[2][0] = bone1->m[2][0] * lerp1 + bone2->m[2][0] * lerp2; m.m[2][1] = bone1->m[2][1] * lerp1 + bone2->m[2][1] * lerp2; m.m[2][2] = bone1->m[2][2] * lerp1 + bone2->m[2][2] * lerp2; m.m[2][3] = bone1->m[2][3] * lerp1 + bone2->m[2][3] * lerp2; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone2++; bone++; out++; } } } else { // 1 pose if (lerp1 != 1) { // lerp != 1.0 while(count--) { // interpolate matrices m.m[0][0] = bone1->m[0][0] * lerp1; m.m[0][1] = bone1->m[0][1] * lerp1; m.m[0][2] = bone1->m[0][2] * lerp1; m.m[0][3] = bone1->m[0][3] * lerp1; m.m[1][0] = bone1->m[1][0] * lerp1; m.m[1][1] = bone1->m[1][1] * lerp1; m.m[1][2] = bone1->m[1][2] * lerp1; m.m[1][3] = bone1->m[1][3] * lerp1; m.m[2][0] = bone1->m[2][0] * lerp1; m.m[2][1] = bone1->m[2][1] * lerp1; m.m[2][2] = bone1->m[2][2] * lerp1; m.m[2][3] = bone1->m[2][3] * lerp1; if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &m.m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &m.m[0], &out->m[0]); bone1++; bone++; out++; } } else { // lerp == 1.0 while(count--) { if (bone->parent >= 0) R_ConcatTransforms(&zymbonepose[bone->parent].m[0], &bone1->m[0], &out->m[0]); else R_ConcatTransforms(&rootmatrix.m[0], &bone1->m[0], &out->m[0]); bone1++; bone++; out++; } } } } void ZymoticTransformVerts(int vertcount, int *bonecounts, zymvertex_t *vert) { int c; float *out = aliasvert; zymbonematrix *matrix; while(vertcount--) { c = *bonecounts++; // FIXME: validate bonecounts at load time (must be >= 1) if (c == 1) { matrix = &zymbonepose[vert->bonenum]; out[0] = vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] = vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] = vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } else { VectorClear(out); while(c--) { matrix = &zymbonepose[vert->bonenum]; out[0] += vert->origin[0] * matrix->m[0][0] + vert->origin[1] * matrix->m[0][1] + vert->origin[2] * matrix->m[0][2] + matrix->m[0][3]; out[1] += vert->origin[0] * matrix->m[1][0] + vert->origin[1] * matrix->m[1][1] + vert->origin[2] * matrix->m[1][2] + matrix->m[1][3]; out[2] += vert->origin[0] * matrix->m[2][0] + vert->origin[1] * matrix->m[2][1] + vert->origin[2] * matrix->m[2][2] + matrix->m[2][3]; vert++; } } out += 3; } } void ZymoticCalcNormals(int vertcount, int shadercount, int *renderlist) { int a, b, c, d; float *out, v1[3], v2[3], normal[3]; int *u; // clear normals memset(aliasvertnorm, 0, sizeof(float[3]) * vertcount); memset(aliasvertusage, 0, sizeof(int) * vertcount); // parse render list and accumulate surface normals while(shadercount--) { d = *renderlist++; while (d--) { a = renderlist[0]*3; b = renderlist[1]*3; c = renderlist[2]*3; v1[0] = aliasvert[a+0] - aliasvert[b+0]; v1[1] = aliasvert[a+1] - aliasvert[b+1]; v1[2] = aliasvert[a+2] - aliasvert[b+2]; v2[0] = aliasvert[c+0] - aliasvert[b+0]; v2[1] = aliasvert[c+1] - aliasvert[b+1]; v2[2] = aliasvert[c+2] - aliasvert[b+2]; CrossProduct(v1, v2, normal); VectorNormalize(normal); // add surface normal to vertices aliasvertnorm[a+0] += normal[0]; aliasvertnorm[a+1] += normal[1]; aliasvertnorm[a+2] += normal[2]; aliasvertusage[a]++; aliasvertnorm[b+0] += normal[0]; aliasvertnorm[b+1] += normal[1]; aliasvertnorm[b+2] += normal[2]; aliasvertusage[b]++; aliasvertnorm[c+0] += normal[0]; aliasvertnorm[c+1] += normal[1]; aliasvertnorm[c+2] += normal[2]; aliasvertusage[c]++; renderlist += 3; } } // average surface normals out = aliasvertnorm; u = aliasvertusage; while(vertcount--) { if (*u > 1) { a = ixtable[*u]; out[0] *= a; out[1] *= a; out[2] *= a; } u++; out += 3; } } void GL_DrawZymoticModelMesh(byte *colors, zymtype1header_t *m) { int i, c, *renderlist; rtexture_t **texture; if (!r_render.value) return; renderlist = (int *)(m->lump_render.start + (int) m); texture = (rtexture_t **)(m->lump_shaders.start + (int) m); glVertexPointer(3, GL_FLOAT, sizeof(float[3]), aliasvert); glEnableClientState(GL_VERTEX_ARRAY); glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(byte[4]), colors); glEnableClientState(GL_COLOR_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(float[2]), (float *)(m->lump_texcoords.start + (int) m)); glEnableClientState(GL_TEXTURE_COORD_ARRAY); for (i = 0;i < m->numshaders;i++) { c = (*renderlist++) * 3; glBindTexture(GL_TEXTURE_2D, R_GetTexture(*texture)); texture++; glDrawElements(GL_TRIANGLES, c, GL_UNSIGNED_INT, renderlist); renderlist += c; } glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); } void GL_DrawZymoticModelMeshFog(vec3_t org, zymtype1header_t *m) { vec3_t diff; int i, c, *renderlist; if (!r_render.value) return; renderlist = (int *)(m->lump_render.start + (int) m); glDisable(GL_TEXTURE_2D); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(0); // disable zbuffer updates VectorSubtract(org, r_origin, diff); glColor4f(fogcolor[0], fogcolor[1], fogcolor[2], exp(fogdensity/DotProduct(diff,diff))); glVertexPointer(3, GL_FLOAT, sizeof(float[3]), aliasvert); glEnableClientState(GL_VERTEX_ARRAY); for (i = 0;i < m->numshaders;i++) { c = (*renderlist++) * 3; glDrawElements(GL_TRIANGLES, c, GL_UNSIGNED_INT, renderlist); renderlist += c; } glDisableClientState(GL_VERTEX_ARRAY); glEnable(GL_TEXTURE_2D); glColor3f (1,1,1); } /* ================= R_DrawZymoticFrame ================= */ void R_DrawZymoticFrame (zymtype1header_t *m, float alpha, vec3_t color, entity_t *ent, int shadow, vec3_t org, vec3_t angles, vec_t scale, frameblend_t *blend, int skinblah, int effects, int flags) { ZymoticLerpBones(m->numbones, (zymbonematrix *)(m->lump_poses.start + (int) m), blend, (zymbone_t *)(m->lump_bones.start + (int) m), org, angles, scale); ZymoticTransformVerts(m->numverts, (int *)(m->lump_vertbonecounts.start + (int) m), (zymvertex_t *)(m->lump_verts.start + (int) m)); ZymoticCalcNormals(m->numverts, m->numshaders, (int *)(m->lump_render.start + (int) m)); R_LightModel(ent, m->numverts, org, color); if (!r_render.value) return; glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glShadeModel(GL_SMOOTH); if (effects & EF_ADDITIVE) { glBlendFunc(GL_SRC_ALPHA, GL_ONE); // additive rendering glEnable(GL_BLEND); glDepthMask(0); } else if (alpha != 1.0) { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); glDepthMask(0); } else { glDisable(GL_BLEND); glDepthMask(1); } GL_DrawZymoticModelMesh(aliasvertcolor, m); if (fogenabled) GL_DrawZymoticModelMeshFog(org, m); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable (GL_BLEND); glDepthMask(1); } /* ================= R_DrawAliasModel ================= */ void R_DrawAliasModel (entity_t *ent, int cull, float alpha, model_t *clmodel, frameblend_t *blend, int skin, vec3_t org, vec3_t angles, vec_t scale, int effects, int flags, int colormap) { int i; vec3_t mins, maxs, color; void *modelheader; rtexture_t **skinset; if (alpha < (1.0 / 64.0)) return; // basically completely transparent VectorAdd (org, clmodel->mins, mins); VectorAdd (org, clmodel->maxs, maxs); // if (cull && R_CullBox (mins, maxs)) // return; c_models++; if (skin < 0 || skin >= clmodel->numskins) { skin = 0; Con_DPrintf("invalid skin number %d for model %s\n", skin, clmodel->name); } modelheader = Mod_Extradata (clmodel); { // int *skinanimrange = (int *) (clmodel->skinanimrange + (int) modelheader) + skin * 2; // int *skinanim = (int *) (clmodel->skinanim + (int) modelheader); int *skinanimrange = clmodel->skinanimrange + skin * 2; rtexture_t **skinanim = clmodel->skinanim; i = skinanimrange[0]; if (skinanimrange[1] > 1) // animated i += ((int) (cl.time * 10) % skinanimrange[1]); skinset = skinanim + i*5; } if (r_render.value) glEnable (GL_TEXTURE_2D); c_alias_polys += clmodel->numtris; if (clmodel->aliastype == ALIASTYPE_ZYM) R_DrawZymoticFrame (modelheader, alpha, color, ent, ent != &cl.viewent, org, angles, scale, blend, 0 , effects, flags); else if (clmodel->aliastype == ALIASTYPE_MD2) R_DrawQ2AliasFrame (modelheader, alpha, color, ent, ent != &cl.viewent, org, angles, scale, blend, skinset[0] , effects, flags); else R_DrawAliasFrame (modelheader, alpha, color, ent, ent != &cl.viewent, org, angles, scale, blend, skinset , colormap, effects, flags); }