/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_main.c #include "quakedef.h" #include "cl_dyntexture.h" #include "r_shadow.h" #include "polygon.h" #include "image.h" #include "ft2.h" #include "csprogs.h" #include "cl_video.h" #ifdef SUPPORTD3D #include extern LPDIRECT3DDEVICE9 vid_d3d9dev; #endif mempool_t *r_main_mempool; rtexturepool_t *r_main_texturepool; static int r_textureframe = 0; ///< used only by R_GetCurrentTexture static qboolean r_loadnormalmap; static qboolean r_loadgloss; qboolean r_loadfog; static qboolean r_loaddds; static qboolean r_savedds; // // screen size info // r_refdef_t r_refdef; cvar_t r_motionblur = {CVAR_SAVE, "r_motionblur", "0", "motionblur value scale - 0.5 recommended"}; cvar_t r_damageblur = {CVAR_SAVE, "r_damageblur", "0", "motionblur based on damage"}; cvar_t r_motionblur_vmin = {CVAR_SAVE, "r_motionblur_vmin", "300", "minimum influence from velocity"}; cvar_t r_motionblur_vmax = {CVAR_SAVE, "r_motionblur_vmax", "600", "maximum influence from velocity"}; cvar_t r_motionblur_bmin = {CVAR_SAVE, "r_motionblur_bmin", "0.5", "velocity at which there is no blur yet (may be negative to always have some blur)"}; cvar_t r_motionblur_vcoeff = {CVAR_SAVE, "r_motionblur_vcoeff", "0.05", "sliding average reaction time for velocity"}; cvar_t r_motionblur_maxblur = {CVAR_SAVE, "r_motionblur_maxblur", "0.88", "cap for motionblur alpha value"}; cvar_t r_motionblur_randomize = {CVAR_SAVE, "r_motionblur_randomize", "0.1", "randomizing coefficient to workaround ghosting"}; // TODO do we want a r_equalize_entities cvar that works on all ents, or would that be a cheat? cvar_t r_equalize_entities_fullbright = {CVAR_SAVE, "r_equalize_entities_fullbright", "0", "render fullbright entities by equalizing their lightness, not by not rendering light"}; cvar_t r_equalize_entities_minambient = {CVAR_SAVE, "r_equalize_entities_minambient", "0.5", "light equalizing: ensure at least this ambient/diffuse ratio"}; cvar_t r_equalize_entities_by = {CVAR_SAVE, "r_equalize_entities_by", "0.7", "light equalizing: exponent of dynamics compression (0 = no compression, 1 = full compression)"}; cvar_t r_equalize_entities_to = {CVAR_SAVE, "r_equalize_entities_to", "0.8", "light equalizing: target light level"}; cvar_t r_depthfirst = {CVAR_SAVE, "r_depthfirst", "0", "renders a depth-only version of the scene before normal rendering begins to eliminate overdraw, values: 0 = off, 1 = world depth, 2 = world and model depth"}; cvar_t r_useinfinitefarclip = {CVAR_SAVE, "r_useinfinitefarclip", "1", "enables use of a special kind of projection matrix that has an extremely large farclip"}; cvar_t r_farclip_base = {0, "r_farclip_base", "65536", "farclip (furthest visible distance) for rendering when r_useinfinitefarclip is 0"}; cvar_t r_farclip_world = {0, "r_farclip_world", "2", "adds map size to farclip multiplied by this value"}; cvar_t r_nearclip = {0, "r_nearclip", "1", "distance from camera of nearclip plane" }; cvar_t r_showbboxes = {0, "r_showbboxes", "0", "shows bounding boxes of server entities, value controls opacity scaling (1 = 10%, 10 = 100%)"}; cvar_t r_showsurfaces = {0, "r_showsurfaces", "0", "1 shows surfaces as different colors, or a value of 2 shows triangle draw order (for analyzing whether meshes are optimized for vertex cache)"}; cvar_t r_showtris = {0, "r_showtris", "0", "shows triangle outlines, value controls brightness (can be above 1)"}; cvar_t r_shownormals = {0, "r_shownormals", "0", "shows per-vertex surface normals and tangent vectors for bumpmapped lighting"}; cvar_t r_showlighting = {0, "r_showlighting", "0", "shows areas lit by lights, useful for finding out why some areas of a map render slowly (bright orange = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"}; cvar_t r_showshadowvolumes = {0, "r_showshadowvolumes", "0", "shows areas shadowed by lights, useful for finding out why some areas of a map render slowly (bright blue = lots of passes = slow), a value of 2 disables depth testing which can be interesting but not very useful"}; cvar_t r_showcollisionbrushes = {0, "r_showcollisionbrushes", "0", "draws collision brushes in quake3 maps (mode 1), mode 2 disables rendering of world (trippy!)"}; cvar_t r_showcollisionbrushes_polygonfactor = {0, "r_showcollisionbrushes_polygonfactor", "-1", "expands outward the brush polygons a little bit, used to make collision brushes appear infront of walls"}; cvar_t r_showcollisionbrushes_polygonoffset = {0, "r_showcollisionbrushes_polygonoffset", "0", "nudges brush polygon depth in hardware depth units, used to make collision brushes appear infront of walls"}; cvar_t r_showdisabledepthtest = {0, "r_showdisabledepthtest", "0", "disables depth testing on r_show* cvars, allowing you to see what hidden geometry the graphics card is processing"}; cvar_t r_drawportals = {0, "r_drawportals", "0", "shows portals (separating polygons) in world interior in quake1 maps"}; cvar_t r_drawentities = {0, "r_drawentities","1", "draw entities (doors, players, projectiles, etc)"}; cvar_t r_draw2d = {0, "r_draw2d","1", "draw 2D stuff (dangerous to turn off)"}; cvar_t r_drawworld = {0, "r_drawworld","1", "draw world (most static stuff)"}; cvar_t r_drawviewmodel = {0, "r_drawviewmodel","1", "draw your weapon model"}; cvar_t r_drawexteriormodel = {0, "r_drawexteriormodel","1", "draw your player model (e.g. in chase cam, reflections)"}; cvar_t r_cullentities_trace = {0, "r_cullentities_trace", "1", "probabistically cull invisible entities"}; cvar_t r_cullentities_trace_samples = {0, "r_cullentities_trace_samples", "2", "number of samples to test for entity culling (in addition to center sample)"}; cvar_t r_cullentities_trace_tempentitysamples = {0, "r_cullentities_trace_tempentitysamples", "-1", "number of samples to test for entity culling of temp entities (including all CSQC entities), -1 disables trace culling on these entities to prevent flicker (pvs still applies)"}; cvar_t r_cullentities_trace_enlarge = {0, "r_cullentities_trace_enlarge", "0", "box enlargement for entity culling"}; cvar_t r_cullentities_trace_delay = {0, "r_cullentities_trace_delay", "1", "number of seconds until the entity gets actually culled"}; cvar_t r_speeds = {0, "r_speeds","0", "displays rendering statistics and per-subsystem timings"}; cvar_t r_fullbright = {0, "r_fullbright","0", "makes map very bright and renders faster"}; cvar_t r_fakelight = {0, "r_fakelight","0", "render 'fake' lighting instead of real lightmaps"}; cvar_t r_fakelight_intensity = {0, "r_fakelight_intensity","0.75", "fakelight intensity modifier"}; #define FAKELIGHT_ENABLED (r_fakelight.integer >= 2 || (r_fakelight.integer && r_refdef.scene.worldmodel && !r_refdef.scene.worldmodel->lit)) cvar_t r_wateralpha = {CVAR_SAVE, "r_wateralpha","1", "opacity of water polygons"}; cvar_t r_dynamic = {CVAR_SAVE, "r_dynamic","1", "enables dynamic lights (rocket glow and such)"}; cvar_t r_fullbrights = {CVAR_SAVE, "r_fullbrights", "1", "enables glowing pixels in quake textures (changes need r_restart to take effect)"}; cvar_t r_shadows = {CVAR_SAVE, "r_shadows", "0", "casts fake stencil shadows from models onto the world (rtlights are unaffected by this); when set to 2, always cast the shadows in the direction set by r_shadows_throwdirection, otherwise use the model lighting."}; cvar_t r_shadows_darken = {CVAR_SAVE, "r_shadows_darken", "0.5", "how much shadowed areas will be darkened"}; cvar_t r_shadows_throwdistance = {CVAR_SAVE, "r_shadows_throwdistance", "500", "how far to cast shadows from models"}; cvar_t r_shadows_throwdirection = {CVAR_SAVE, "r_shadows_throwdirection", "0 0 -1", "override throwing direction for r_shadows 2"}; cvar_t r_shadows_drawafterrtlighting = {CVAR_SAVE, "r_shadows_drawafterrtlighting", "0", "draw fake shadows AFTER realtime lightning is drawn. May be useful for simulating fast sunlight on large outdoor maps with only one noshadow rtlight. The price is less realistic appearance of dynamic light shadows."}; cvar_t r_shadows_castfrombmodels = {CVAR_SAVE, "r_shadows_castfrombmodels", "0", "do cast shadows from bmodels"}; cvar_t r_shadows_focus = {CVAR_SAVE, "r_shadows_focus", "0 0 0", "offset the shadowed area focus"}; cvar_t r_shadows_shadowmapscale = {CVAR_SAVE, "r_shadows_shadowmapscale", "1", "increases shadowmap quality (multiply global shadowmap precision) for fake shadows. Needs shadowmapping ON."}; cvar_t r_q1bsp_skymasking = {0, "r_q1bsp_skymasking", "1", "allows sky polygons in quake1 maps to obscure other geometry"}; cvar_t r_polygonoffset_submodel_factor = {0, "r_polygonoffset_submodel_factor", "0", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"}; cvar_t r_polygonoffset_submodel_offset = {0, "r_polygonoffset_submodel_offset", "14", "biases depth values of world submodels such as doors, to prevent z-fighting artifacts in Quake maps"}; cvar_t r_polygonoffset_decals_factor = {0, "r_polygonoffset_decals_factor", "0", "biases depth values of decals to prevent z-fighting artifacts"}; cvar_t r_polygonoffset_decals_offset = {0, "r_polygonoffset_decals_offset", "-14", "biases depth values of decals to prevent z-fighting artifacts"}; cvar_t r_fog_exp2 = {0, "r_fog_exp2", "0", "uses GL_EXP2 fog (as in Nehahra) rather than realistic GL_EXP fog"}; cvar_t r_drawfog = {CVAR_SAVE, "r_drawfog", "1", "allows one to disable fog rendering"}; cvar_t r_transparentdepthmasking = {CVAR_SAVE, "r_transparentdepthmasking", "0", "enables depth writes on transparent meshes whose materially is normally opaque, this prevents seeing the inside of a transparent mesh"}; cvar_t gl_fogenable = {0, "gl_fogenable", "0", "nehahra fog enable (for Nehahra compatibility only)"}; cvar_t gl_fogdensity = {0, "gl_fogdensity", "0.25", "nehahra fog density (recommend values below 0.1) (for Nehahra compatibility only)"}; cvar_t gl_fogred = {0, "gl_fogred","0.3", "nehahra fog color red value (for Nehahra compatibility only)"}; cvar_t gl_foggreen = {0, "gl_foggreen","0.3", "nehahra fog color green value (for Nehahra compatibility only)"}; cvar_t gl_fogblue = {0, "gl_fogblue","0.3", "nehahra fog color blue value (for Nehahra compatibility only)"}; cvar_t gl_fogstart = {0, "gl_fogstart", "0", "nehahra fog start distance (for Nehahra compatibility only)"}; cvar_t gl_fogend = {0, "gl_fogend","0", "nehahra fog end distance (for Nehahra compatibility only)"}; cvar_t gl_skyclip = {0, "gl_skyclip", "4608", "nehahra farclip distance - the real fog end (for Nehahra compatibility only)"}; cvar_t r_texture_dds_load = {CVAR_SAVE, "r_texture_dds_load", "0", "load compressed dds/filename.dds texture instead of filename.tga, if the file exists (requires driver support)"}; cvar_t r_texture_dds_save = {CVAR_SAVE, "r_texture_dds_save", "0", "save compressed dds/filename.dds texture when filename.tga is loaded, so that it can be loaded instead next time"}; cvar_t r_texture_convertsRGB_2d = {0, "r_texture_convertsRGB_2d", "0", "load textures as sRGB and convert to linear for proper shading"}; cvar_t r_texture_convertsRGB_skin = {0, "r_texture_convertsRGB_skin", "0", "load textures as sRGB and convert to linear for proper shading"}; cvar_t r_texture_convertsRGB_cubemap = {0, "r_texture_convertsRGB_cubemap", "0", "load textures as sRGB and convert to linear for proper shading"}; cvar_t r_texture_convertsRGB_skybox = {0, "r_texture_convertsRGB_skybox", "0", "load textures as sRGB and convert to linear for proper shading"}; cvar_t r_texture_convertsRGB_particles = {0, "r_texture_convertsRGB_particles", "0", "load textures as sRGB and convert to linear for proper shading"}; cvar_t r_textureunits = {0, "r_textureunits", "32", "number of texture units to use in GL 1.1 and GL 1.3 rendering paths"}; static cvar_t gl_combine = {CVAR_READONLY, "gl_combine", "1", "indicates whether the OpenGL 1.3 rendering path is active"}; static cvar_t r_glsl = {CVAR_READONLY, "r_glsl", "1", "indicates whether the OpenGL 2.0 rendering path is active"}; cvar_t r_glsl_deluxemapping = {CVAR_SAVE, "r_glsl_deluxemapping", "1", "use per pixel lighting on deluxemap-compiled q3bsp maps (or a value of 2 forces deluxemap shading even without deluxemaps)"}; cvar_t r_glsl_offsetmapping = {CVAR_SAVE, "r_glsl_offsetmapping", "0", "offset mapping effect (also known as parallax mapping or virtual displacement mapping)"}; cvar_t r_glsl_offsetmapping_reliefmapping = {CVAR_SAVE, "r_glsl_offsetmapping_reliefmapping", "0", "relief mapping effect (higher quality)"}; cvar_t r_glsl_offsetmapping_scale = {CVAR_SAVE, "r_glsl_offsetmapping_scale", "0.04", "how deep the offset mapping effect is"}; cvar_t r_glsl_postprocess = {CVAR_SAVE, "r_glsl_postprocess", "0", "use a GLSL postprocessing shader"}; cvar_t r_glsl_postprocess_uservec1 = {CVAR_SAVE, "r_glsl_postprocess_uservec1", "0 0 0 0", "a 4-component vector to pass as uservec1 to the postprocessing shader (only useful if default.glsl has been customized)"}; cvar_t r_glsl_postprocess_uservec2 = {CVAR_SAVE, "r_glsl_postprocess_uservec2", "0 0 0 0", "a 4-component vector to pass as uservec2 to the postprocessing shader (only useful if default.glsl has been customized)"}; cvar_t r_glsl_postprocess_uservec3 = {CVAR_SAVE, "r_glsl_postprocess_uservec3", "0 0 0 0", "a 4-component vector to pass as uservec3 to the postprocessing shader (only useful if default.glsl has been customized)"}; cvar_t r_glsl_postprocess_uservec4 = {CVAR_SAVE, "r_glsl_postprocess_uservec4", "0 0 0 0", "a 4-component vector to pass as uservec4 to the postprocessing shader (only useful if default.glsl has been customized)"}; cvar_t r_glsl_postprocess_uservec1_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec1_enable", "1", "enables postprocessing uservec1 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"}; cvar_t r_glsl_postprocess_uservec2_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec2_enable", "1", "enables postprocessing uservec2 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"}; cvar_t r_glsl_postprocess_uservec3_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec3_enable", "1", "enables postprocessing uservec3 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"}; cvar_t r_glsl_postprocess_uservec4_enable = {CVAR_SAVE, "r_glsl_postprocess_uservec4_enable", "1", "enables postprocessing uservec4 usage, creates USERVEC1 define (only useful if default.glsl has been customized)"}; cvar_t r_water = {CVAR_SAVE, "r_water", "0", "whether to use reflections and refraction on water surfaces (note: r_wateralpha must be set below 1)"}; cvar_t r_water_clippingplanebias = {CVAR_SAVE, "r_water_clippingplanebias", "1", "a rather technical setting which avoids black pixels around water edges"}; cvar_t r_water_resolutionmultiplier = {CVAR_SAVE, "r_water_resolutionmultiplier", "0.5", "multiplier for screen resolution when rendering refracted/reflected scenes, 1 is full quality, lower values are faster"}; cvar_t r_water_refractdistort = {CVAR_SAVE, "r_water_refractdistort", "0.01", "how much water refractions shimmer"}; cvar_t r_water_reflectdistort = {CVAR_SAVE, "r_water_reflectdistort", "0.01", "how much water reflections shimmer"}; cvar_t r_water_scissormode = {0, "r_water_scissormode", "3", "scissor (1) or cull (2) or both (3) water renders"}; cvar_t r_lerpsprites = {CVAR_SAVE, "r_lerpsprites", "0", "enables animation smoothing on sprites"}; cvar_t r_lerpmodels = {CVAR_SAVE, "r_lerpmodels", "1", "enables animation smoothing on models"}; cvar_t r_lerplightstyles = {CVAR_SAVE, "r_lerplightstyles", "0", "enable animation smoothing on flickering lights"}; cvar_t r_waterscroll = {CVAR_SAVE, "r_waterscroll", "1", "makes water scroll around, value controls how much"}; cvar_t r_bloom = {CVAR_SAVE, "r_bloom", "0", "enables bloom effect (makes bright pixels affect neighboring pixels)"}; cvar_t r_bloom_colorscale = {CVAR_SAVE, "r_bloom_colorscale", "1", "how bright the glow is"}; cvar_t r_bloom_brighten = {CVAR_SAVE, "r_bloom_brighten", "2", "how bright the glow is, after subtract/power"}; cvar_t r_bloom_blur = {CVAR_SAVE, "r_bloom_blur", "4", "how large the glow is"}; cvar_t r_bloom_resolution = {CVAR_SAVE, "r_bloom_resolution", "320", "what resolution to perform the bloom effect at (independent of screen resolution)"}; cvar_t r_bloom_colorexponent = {CVAR_SAVE, "r_bloom_colorexponent", "1", "how exagerated the glow is"}; cvar_t r_bloom_colorsubtract = {CVAR_SAVE, "r_bloom_colorsubtract", "0.125", "reduces bloom colors by a certain amount"}; cvar_t r_hdr = {CVAR_SAVE, "r_hdr", "0", "enables High Dynamic Range bloom effect (higher quality version of r_bloom)"}; cvar_t r_hdr_scenebrightness = {CVAR_SAVE, "r_hdr_scenebrightness", "1", "global rendering brightness"}; cvar_t r_hdr_glowintensity = {CVAR_SAVE, "r_hdr_glowintensity", "1", "how bright light emitting textures should appear"}; cvar_t r_hdr_range = {CVAR_SAVE, "r_hdr_range", "4", "how much dynamic range to render bloom with (equivilant to multiplying r_bloom_brighten by this value and dividing r_bloom_colorscale by this value)"}; cvar_t r_smoothnormals_areaweighting = {0, "r_smoothnormals_areaweighting", "1", "uses significantly faster (and supposedly higher quality) area-weighted vertex normals and tangent vectors rather than summing normalized triangle normals and tangents"}; cvar_t developer_texturelogging = {0, "developer_texturelogging", "0", "produces a textures.log file containing names of skins and map textures the engine tried to load"}; cvar_t gl_lightmaps = {0, "gl_lightmaps", "0", "draws only lightmaps, no texture (for level designers)"}; cvar_t r_test = {0, "r_test", "0", "internal development use only, leave it alone (usually does nothing anyway)"}; cvar_t r_track_sprites = {CVAR_SAVE, "r_track_sprites", "1", "track SPR_LABEL* sprites by putting them as indicator at the screen border to rotate to"}; cvar_t r_track_sprites_flags = {CVAR_SAVE, "r_track_sprites_flags", "1", "1: Rotate sprites accodringly, 2: Make it a continuous rotation"}; cvar_t r_track_sprites_scalew = {CVAR_SAVE, "r_track_sprites_scalew", "1", "width scaling of tracked sprites"}; cvar_t r_track_sprites_scaleh = {CVAR_SAVE, "r_track_sprites_scaleh", "1", "height scaling of tracked sprites"}; cvar_t r_overheadsprites_perspective = {CVAR_SAVE, "r_overheadsprites_perspective", "0.15", "fake perspective effect for SPR_OVERHEAD sprites"}; cvar_t r_overheadsprites_pushback = {CVAR_SAVE, "r_overheadsprites_pushback", "16", "how far to pull the SPR_OVERHEAD sprites toward the eye (used to avoid intersections with 3D models)"}; cvar_t r_glsl_saturation = {CVAR_SAVE, "r_glsl_saturation", "1", "saturation multiplier (only working in glsl!)"}; cvar_t r_glsl_saturation_redcompensate = {CVAR_SAVE, "r_glsl_saturation_redcompensate", "0", "a 'vampire sight' addition to desaturation effect, does compensation for red color, r_glsl_restart is required"}; cvar_t r_framedatasize = {CVAR_SAVE, "r_framedatasize", "1", "size of renderer data cache used during one frame (for skeletal animation caching, light processing, etc)"}; extern cvar_t v_glslgamma; extern qboolean v_flipped_state; static struct r_bloomstate_s { qboolean enabled; qboolean hdr; int bloomwidth, bloomheight; int screentexturewidth, screentextureheight; rtexture_t *texture_screen; /// \note also used for motion blur if enabled! int bloomtexturewidth, bloomtextureheight; rtexture_t *texture_bloom; // arrays for rendering the screen passes float screentexcoord2f[8]; float bloomtexcoord2f[8]; float offsettexcoord2f[8]; r_viewport_t viewport; } r_bloomstate; r_waterstate_t r_waterstate; /// shadow volume bsp struct with automatically growing nodes buffer svbsp_t r_svbsp; rtexture_t *r_texture_blanknormalmap; rtexture_t *r_texture_white; rtexture_t *r_texture_grey128; rtexture_t *r_texture_black; rtexture_t *r_texture_notexture; rtexture_t *r_texture_whitecube; rtexture_t *r_texture_normalizationcube; rtexture_t *r_texture_fogattenuation; rtexture_t *r_texture_fogheighttexture; rtexture_t *r_texture_gammaramps; unsigned int r_texture_gammaramps_serial; //rtexture_t *r_texture_fogintensity; rtexture_t *r_texture_reflectcube; // TODO: hash lookups? typedef struct cubemapinfo_s { char basename[64]; rtexture_t *texture; } cubemapinfo_t; int r_texture_numcubemaps; cubemapinfo_t r_texture_cubemaps[MAX_CUBEMAPS]; unsigned int r_queries[MAX_OCCLUSION_QUERIES]; unsigned int r_numqueries; unsigned int r_maxqueries; typedef struct r_qwskincache_s { char name[MAX_QPATH]; skinframe_t *skinframe; } r_qwskincache_t; static r_qwskincache_t *r_qwskincache; static int r_qwskincache_size; /// vertex coordinates for a quad that covers the screen exactly extern const float r_screenvertex3f[12]; extern const float r_d3dscreenvertex3f[12]; const float r_screenvertex3f[12] = { 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0 }; const float r_d3dscreenvertex3f[12] = { 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0 }; void R_ModulateColors(float *in, float *out, int verts, float r, float g, float b) { int i; for (i = 0;i < verts;i++) { out[0] = in[0] * r; out[1] = in[1] * g; out[2] = in[2] * b; out[3] = in[3]; in += 4; out += 4; } } void R_FillColors(float *out, int verts, float r, float g, float b, float a) { int i; for (i = 0;i < verts;i++) { out[0] = r; out[1] = g; out[2] = b; out[3] = a; out += 4; } } // FIXME: move this to client? void FOG_clear(void) { if (gamemode == GAME_NEHAHRA) { Cvar_Set("gl_fogenable", "0"); Cvar_Set("gl_fogdensity", "0.2"); Cvar_Set("gl_fogred", "0.3"); Cvar_Set("gl_foggreen", "0.3"); Cvar_Set("gl_fogblue", "0.3"); } r_refdef.fog_density = 0; r_refdef.fog_red = 0; r_refdef.fog_green = 0; r_refdef.fog_blue = 0; r_refdef.fog_alpha = 1; r_refdef.fog_start = 0; r_refdef.fog_end = 16384; r_refdef.fog_height = 1<<30; r_refdef.fog_fadedepth = 128; memset(r_refdef.fog_height_texturename, 0, sizeof(r_refdef.fog_height_texturename)); } static void R_BuildBlankTextures(void) { unsigned char data[4]; data[2] = 128; // normal X data[1] = 128; // normal Y data[0] = 255; // normal Z data[3] = 128; // height r_texture_blanknormalmap = R_LoadTexture2D(r_main_texturepool, "blankbump", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL); data[0] = 255; data[1] = 255; data[2] = 255; data[3] = 255; r_texture_white = R_LoadTexture2D(r_main_texturepool, "blankwhite", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL); data[0] = 128; data[1] = 128; data[2] = 128; data[3] = 255; r_texture_grey128 = R_LoadTexture2D(r_main_texturepool, "blankgrey128", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL); data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 255; r_texture_black = R_LoadTexture2D(r_main_texturepool, "blankblack", 1, 1, data, TEXTYPE_BGRA, TEXF_PERSISTENT, -1, NULL); } static void R_BuildNoTexture(void) { int x, y; unsigned char pix[16][16][4]; // this makes a light grey/dark grey checkerboard texture for (y = 0;y < 16;y++) { for (x = 0;x < 16;x++) { if ((y < 8) ^ (x < 8)) { pix[y][x][0] = 128; pix[y][x][1] = 128; pix[y][x][2] = 128; pix[y][x][3] = 255; } else { pix[y][x][0] = 64; pix[y][x][1] = 64; pix[y][x][2] = 64; pix[y][x][3] = 255; } } } r_texture_notexture = R_LoadTexture2D(r_main_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_BGRA, TEXF_MIPMAP | TEXF_PERSISTENT, -1, NULL); } static void R_BuildWhiteCube(void) { unsigned char data[6*1*1*4]; memset(data, 255, sizeof(data)); r_texture_whitecube = R_LoadTextureCubeMap(r_main_texturepool, "whitecube", 1, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL); } static void R_BuildNormalizationCube(void) { int x, y, side; vec3_t v; vec_t s, t, intensity; #define NORMSIZE 64 unsigned char *data; data = (unsigned char *)Mem_Alloc(tempmempool, 6*NORMSIZE*NORMSIZE*4); for (side = 0;side < 6;side++) { for (y = 0;y < NORMSIZE;y++) { for (x = 0;x < NORMSIZE;x++) { s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f; t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f; switch(side) { default: case 0: v[0] = 1; v[1] = -t; v[2] = -s; break; case 1: v[0] = -1; v[1] = -t; v[2] = s; break; case 2: v[0] = s; v[1] = 1; v[2] = t; break; case 3: v[0] = s; v[1] = -1; v[2] = -t; break; case 4: v[0] = s; v[1] = -t; v[2] = 1; break; case 5: v[0] = -s; v[1] = -t; v[2] = -1; break; } intensity = 127.0f / sqrt(DotProduct(v, v)); data[((side*64+y)*64+x)*4+2] = (unsigned char)(128.0f + intensity * v[0]); data[((side*64+y)*64+x)*4+1] = (unsigned char)(128.0f + intensity * v[1]); data[((side*64+y)*64+x)*4+0] = (unsigned char)(128.0f + intensity * v[2]); data[((side*64+y)*64+x)*4+3] = 255; } } } r_texture_normalizationcube = R_LoadTextureCubeMap(r_main_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL); Mem_Free(data); } static void R_BuildFogTexture(void) { int x, b; #define FOGWIDTH 256 unsigned char data1[FOGWIDTH][4]; //unsigned char data2[FOGWIDTH][4]; double d, r, alpha; r_refdef.fogmasktable_start = r_refdef.fog_start; r_refdef.fogmasktable_alpha = r_refdef.fog_alpha; r_refdef.fogmasktable_range = r_refdef.fogrange; r_refdef.fogmasktable_density = r_refdef.fog_density; r = r_refdef.fogmasktable_range / FOGMASKTABLEWIDTH; for (x = 0;x < FOGMASKTABLEWIDTH;x++) { d = (x * r - r_refdef.fogmasktable_start); if(developer_extra.integer) Con_DPrintf("%f ", d); d = max(0, d); if (r_fog_exp2.integer) alpha = exp(-r_refdef.fogmasktable_density * r_refdef.fogmasktable_density * 0.0001 * d * d); else alpha = exp(-r_refdef.fogmasktable_density * 0.004 * d); if(developer_extra.integer) Con_DPrintf(" : %f ", alpha); alpha = 1 - (1 - alpha) * r_refdef.fogmasktable_alpha; if(developer_extra.integer) Con_DPrintf(" = %f\n", alpha); r_refdef.fogmasktable[x] = bound(0, alpha, 1); } for (x = 0;x < FOGWIDTH;x++) { b = (int)(r_refdef.fogmasktable[x * (FOGMASKTABLEWIDTH - 1) / (FOGWIDTH - 1)] * 255); data1[x][0] = b; data1[x][1] = b; data1[x][2] = b; data1[x][3] = 255; //data2[x][0] = 255 - b; //data2[x][1] = 255 - b; //data2[x][2] = 255 - b; //data2[x][3] = 255; } if (r_texture_fogattenuation) { R_UpdateTexture(r_texture_fogattenuation, &data1[0][0], 0, 0, FOGWIDTH, 1); //R_UpdateTexture(r_texture_fogattenuation, &data2[0][0], 0, 0, FOGWIDTH, 1); } else { r_texture_fogattenuation = R_LoadTexture2D(r_main_texturepool, "fogattenuation", FOGWIDTH, 1, &data1[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL); //r_texture_fogintensity = R_LoadTexture2D(r_main_texturepool, "fogintensity", FOGWIDTH, 1, &data2[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP, NULL); } } static void R_BuildFogHeightTexture(void) { unsigned char *inpixels; int size; int x; int y; int j; float c[4]; float f; inpixels = NULL; strlcpy(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename, sizeof(r_refdef.fogheighttexturename)); if (r_refdef.fogheighttexturename[0]) inpixels = loadimagepixelsbgra(r_refdef.fogheighttexturename, true, false, false, NULL); if (!inpixels) { r_refdef.fog_height_tablesize = 0; if (r_texture_fogheighttexture) R_FreeTexture(r_texture_fogheighttexture); r_texture_fogheighttexture = NULL; if (r_refdef.fog_height_table2d) Mem_Free(r_refdef.fog_height_table2d); r_refdef.fog_height_table2d = NULL; if (r_refdef.fog_height_table1d) Mem_Free(r_refdef.fog_height_table1d); r_refdef.fog_height_table1d = NULL; return; } size = image_width; r_refdef.fog_height_tablesize = size; r_refdef.fog_height_table1d = (unsigned char *)Mem_Alloc(r_main_mempool, size * 4); r_refdef.fog_height_table2d = (unsigned char *)Mem_Alloc(r_main_mempool, size * size * 4); memcpy(r_refdef.fog_height_table1d, inpixels, size * 4); Mem_Free(inpixels); // LordHavoc: now the magic - what is that table2d for? it is a cooked // average fog color table accounting for every fog layer between a point // and the camera. (Note: attenuation is handled separately!) for (y = 0;y < size;y++) { for (x = 0;x < size;x++) { Vector4Clear(c); f = 0; if (x < y) { for (j = x;j <= y;j++) { Vector4Add(c, r_refdef.fog_height_table1d + j*4, c); f++; } } else { for (j = x;j >= y;j--) { Vector4Add(c, r_refdef.fog_height_table1d + j*4, c); f++; } } f = 1.0f / f; r_refdef.fog_height_table2d[(y*size+x)*4+0] = (unsigned char)(c[0] * f); r_refdef.fog_height_table2d[(y*size+x)*4+1] = (unsigned char)(c[1] * f); r_refdef.fog_height_table2d[(y*size+x)*4+2] = (unsigned char)(c[2] * f); r_refdef.fog_height_table2d[(y*size+x)*4+3] = (unsigned char)(c[3] * f); } } r_texture_fogheighttexture = R_LoadTexture2D(r_main_texturepool, "fogheighttable", size, size, r_refdef.fog_height_table2d, TEXTYPE_BGRA, TEXF_ALPHA | TEXF_CLAMP, -1, NULL); } //======================================================================================================================================================= static const char *builtinshaderstring = "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n" "// written by Forest 'LordHavoc' Hale\n" "// shadowmapping enhancements by Lee 'eihrul' Salzman\n" "\n" "#if defined(USEFOGINSIDE) || defined(USEFOGOUTSIDE) || defined(USEFOGHEIGHTTEXTURE)\n" "# define USEFOG\n" "#endif\n" "#if defined(MODE_LIGHTMAP) || defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(MODE_LIGHTDIRECTIONMAP_TANGENTSPACE)\n" "#define USELIGHTMAP\n" "#endif\n" "#if defined(USESPECULAR) || defined(USEOFFSETMAPPING) || defined(USEREFLECTCUBE) || defined(MODE_FAKELIGHT)\n" "#define USEEYEVECTOR\n" "#endif\n" "\n" "#ifdef USESHADOWMAP2D\n" "# ifdef GL_EXT_gpu_shader4\n" "# extension GL_EXT_gpu_shader4 : enable\n" "# endif\n" "# ifdef GL_ARB_texture_gather\n" "# extension GL_ARB_texture_gather : enable\n" "# else\n" "# ifdef GL_AMD_texture_texture4\n" "# extension GL_AMD_texture_texture4 : enable\n" "# endif\n" "# endif\n" "#endif\n" "\n" "//#ifdef USESHADOWSAMPLER\n" "//# extension GL_ARB_shadow : enable\n" "//#endif\n" "\n" "//#ifdef __GLSL_CG_DATA_TYPES\n" "//# define myhalf half\n" "//# define myhalf2 half2\n" "//# define myhalf3 half3\n" "//# define myhalf4 half4\n" "//#else\n" "# define myhalf float\n" "# define myhalf2 vec2\n" "# define myhalf3 vec3\n" "# define myhalf4 vec4\n" "//#endif\n" "\n" "#ifdef VERTEX_SHADER\n" "uniform mat4 ModelViewProjectionMatrix;\n" "#endif\n" "\n" "#ifdef MODE_DEPTH_OR_SHADOW\n" "#ifdef VERTEX_SHADER\n" "void main(void)\n" "{\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" "}\n" "#endif\n" "#else // !MODE_DEPTH_ORSHADOW\n" "\n" "\n" "\n" "\n" "#ifdef MODE_SHOWDEPTH\n" "#ifdef VERTEX_SHADER\n" "void main(void)\n" "{\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" " gl_FrontColor = vec4(gl_Position.z, gl_Position.z, gl_Position.z, 1.0);\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main(void)\n" "{\n" " gl_FragColor = gl_Color;\n" "}\n" "#endif\n" "#else // !MODE_SHOWDEPTH\n" "\n" "\n" "\n" "\n" "#ifdef MODE_POSTPROCESS\n" "varying vec2 TexCoord1;\n" "varying vec2 TexCoord2;\n" "\n" "#ifdef VERTEX_SHADER\n" "void main(void)\n" "{\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" " TexCoord1 = gl_MultiTexCoord0.xy;\n" "#ifdef USEBLOOM\n" " TexCoord2 = gl_MultiTexCoord4.xy;\n" "#endif\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "uniform sampler2D Texture_First;\n" "#ifdef USEBLOOM\n" "uniform sampler2D Texture_Second;\n" "uniform vec4 BloomColorSubtract;\n" "#endif\n" "#ifdef USEGAMMARAMPS\n" "uniform sampler2D Texture_GammaRamps;\n" "#endif\n" "#ifdef USESATURATION\n" "uniform float Saturation;\n" "#endif\n" "#ifdef USEVIEWTINT\n" "uniform vec4 ViewTintColor;\n" "#endif\n" "//uncomment these if you want to use them:\n" "uniform vec4 UserVec1;\n" "uniform vec4 UserVec2;\n" "// uniform vec4 UserVec3;\n" "// uniform vec4 UserVec4;\n" "// uniform float ClientTime;\n" "uniform vec2 PixelSize;\n" "void main(void)\n" "{\n" " gl_FragColor = texture2D(Texture_First, TexCoord1);\n" "#ifdef USEBLOOM\n" " gl_FragColor += max(vec4(0,0,0,0), texture2D(Texture_Second, TexCoord2) - BloomColorSubtract);\n" "#endif\n" "#ifdef USEVIEWTINT\n" " gl_FragColor = mix(gl_FragColor, ViewTintColor, ViewTintColor.a);\n" "#endif\n" "\n" "#ifdef USEPOSTPROCESSING\n" "// do r_glsl_dumpshader, edit glsl/default.glsl, and replace this by your own postprocessing if you want\n" "// this code does a blur with the radius specified in the first component of r_glsl_postprocess_uservec1 and blends it using the second component\n" " float sobel = 1.0;\n" " // vec2 ts = textureSize(Texture_First, 0);\n" " // vec2 px = vec2(1/ts.x, 1/ts.y);\n" " vec2 px = PixelSize;\n" " vec3 x1 = texture2D(Texture_First, TexCoord1 + vec2(-px.x, px.y)).rgb;\n" " vec3 x2 = texture2D(Texture_First, TexCoord1 + vec2(-px.x, 0.0)).rgb;\n" " vec3 x3 = texture2D(Texture_First, TexCoord1 + vec2(-px.x,-px.y)).rgb;\n" " vec3 x4 = texture2D(Texture_First, TexCoord1 + vec2( px.x, px.y)).rgb;\n" " vec3 x5 = texture2D(Texture_First, TexCoord1 + vec2( px.x, 0.0)).rgb;\n" " vec3 x6 = texture2D(Texture_First, TexCoord1 + vec2( px.x,-px.y)).rgb;\n" " vec3 y1 = texture2D(Texture_First, TexCoord1 + vec2( px.x,-px.y)).rgb;\n" " vec3 y2 = texture2D(Texture_First, TexCoord1 + vec2( 0.0,-px.y)).rgb;\n" " vec3 y3 = texture2D(Texture_First, TexCoord1 + vec2(-px.x,-px.y)).rgb;\n" " vec3 y4 = texture2D(Texture_First, TexCoord1 + vec2( px.x, px.y)).rgb;\n" " vec3 y5 = texture2D(Texture_First, TexCoord1 + vec2( 0.0, px.y)).rgb;\n" " vec3 y6 = texture2D(Texture_First, TexCoord1 + vec2(-px.x, px.y)).rgb;\n" " float px1 = -1.0 * dot(vec3(0.3, 0.59, 0.11), x1);\n" " float px2 = -2.0 * dot(vec3(0.3, 0.59, 0.11), x2);\n" " float px3 = -1.0 * dot(vec3(0.3, 0.59, 0.11), x3);\n" " float px4 = 1.0 * dot(vec3(0.3, 0.59, 0.11), x4);\n" " float px5 = 2.0 * dot(vec3(0.3, 0.59, 0.11), x5);\n" " float px6 = 1.0 * dot(vec3(0.3, 0.59, 0.11), x6);\n" " float py1 = -1.0 * dot(vec3(0.3, 0.59, 0.11), y1);\n" " float py2 = -2.0 * dot(vec3(0.3, 0.59, 0.11), y2);\n" " float py3 = -1.0 * dot(vec3(0.3, 0.59, 0.11), y3);\n" " float py4 = 1.0 * dot(vec3(0.3, 0.59, 0.11), y4);\n" " float py5 = 2.0 * dot(vec3(0.3, 0.59, 0.11), y5);\n" " float py6 = 1.0 * dot(vec3(0.3, 0.59, 0.11), y6);\n" " sobel = 0.25 * abs(px1 + px2 + px3 + px4 + px5 + px6) + 0.25 * abs(py1 + py2 + py3 + py4 + py5 + py6);\n" " gl_FragColor += texture2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*vec2(-0.987688, -0.156434)) * UserVec1.y;\n" " gl_FragColor += texture2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*vec2(-0.156434, -0.891007)) * UserVec1.y;\n" " gl_FragColor += texture2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*vec2( 0.891007, -0.453990)) * UserVec1.y;\n" " gl_FragColor += texture2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*vec2( 0.707107, 0.707107)) * UserVec1.y;\n" " gl_FragColor += texture2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*vec2(-0.453990, 0.891007)) * UserVec1.y;\n" " gl_FragColor /= (1.0 + 5.0 * UserVec1.y);\n" " gl_FragColor.rgb = gl_FragColor.rgb * (1.0 + UserVec2.x) + vec3(max(0.0, sobel - UserVec2.z))*UserVec2.y;\n" "#endif\n" "\n" "#ifdef USESATURATION\n" " //apply saturation BEFORE gamma ramps, so v_glslgamma value does not matter\n" " float y = dot(gl_FragColor.rgb, vec3(0.299, 0.587, 0.114));\n" " // 'vampire sight' effect, wheres red is compensated\n" " #ifdef SATURATION_REDCOMPENSATE\n" " float rboost = max(0.0, (gl_FragColor.r - max(gl_FragColor.g, gl_FragColor.b))*(1.0 - Saturation));\n" " gl_FragColor.rgb = mix(vec3(y), gl_FragColor.rgb, Saturation);\n" " gl_FragColor.r += rboost;\n" " #else\n" " // normal desaturation\n" " //gl_FragColor = vec3(y) + (gl_FragColor.rgb - vec3(y)) * Saturation;\n" " gl_FragColor.rgb = mix(vec3(y), gl_FragColor.rgb, Saturation);\n" " #endif\n" "#endif\n" "\n" "#ifdef USEGAMMARAMPS\n" " gl_FragColor.r = texture2D(Texture_GammaRamps, vec2(gl_FragColor.r, 0)).r;\n" " gl_FragColor.g = texture2D(Texture_GammaRamps, vec2(gl_FragColor.g, 0)).g;\n" " gl_FragColor.b = texture2D(Texture_GammaRamps, vec2(gl_FragColor.b, 0)).b;\n" "#endif\n" "}\n" "#endif\n" "#else // !MODE_POSTPROCESS\n" "\n" "\n" "\n" "\n" "#ifdef MODE_GENERIC\n" "#ifdef USEDIFFUSE\n" "varying vec2 TexCoord1;\n" "#endif\n" "#ifdef USESPECULAR\n" "varying vec2 TexCoord2;\n" "#endif\n" "#ifdef VERTEX_SHADER\n" "void main(void)\n" "{\n" " gl_FrontColor = gl_Color;\n" "#ifdef USEDIFFUSE\n" " TexCoord1 = gl_MultiTexCoord0.xy;\n" "#endif\n" "#ifdef USESPECULAR\n" " TexCoord2 = gl_MultiTexCoord1.xy;\n" "#endif\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "#ifdef USEDIFFUSE\n" "uniform sampler2D Texture_First;\n" "#endif\n" "#ifdef USESPECULAR\n" "uniform sampler2D Texture_Second;\n" "#endif\n" "\n" "void main(void)\n" "{\n" "#ifdef USEVIEWTINT\n" " gl_FragColor = gl_Color;\n" "#else\n" " gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);\n" "#endif\n" "#ifdef USEDIFFUSE\n" " gl_FragColor *= texture2D(Texture_First, TexCoord1);\n" "#endif\n" "\n" "#ifdef USESPECULAR\n" " vec4 tex2 = texture2D(Texture_Second, TexCoord2);\n" "# ifdef USECOLORMAPPING\n" " gl_FragColor *= tex2;\n" "# endif\n" "# ifdef USEGLOW\n" " gl_FragColor += tex2;\n" "# endif\n" "# ifdef USEVERTEXTEXTUREBLEND\n" " gl_FragColor = mix(gl_FragColor, tex2, tex2.a);\n" "# endif\n" "#endif\n" "}\n" "#endif\n" "#else // !MODE_GENERIC\n" "\n" "\n" "\n" "\n" "#ifdef MODE_BLOOMBLUR\n" "varying TexCoord;\n" "#ifdef VERTEX_SHADER\n" "void main(void)\n" "{\n" " gl_FrontColor = gl_Color;\n" " TexCoord = gl_MultiTexCoord0.xy;\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "uniform sampler2D Texture_First;\n" "uniform vec4 BloomBlur_Parameters;\n" "\n" "void main(void)\n" "{\n" " int i;\n" " vec2 tc = TexCoord;\n" " vec3 color = texture2D(Texture_First, tc).rgb;\n" " tc += BloomBlur_Parameters.xy;\n" " for (i = 1;i < SAMPLES;i++)\n" " {\n" " color += texture2D(Texture_First, tc).rgb;\n" " tc += BloomBlur_Parameters.xy;\n" " }\n" " gl_FragColor = vec4(color * BloomBlur_Parameters.z + vec3(BloomBlur_Parameters.w), 1);\n" "}\n" "#endif\n" "#else // !MODE_BLOOMBLUR\n" "#ifdef MODE_REFRACTION\n" "varying vec2 TexCoord;\n" "varying vec4 ModelViewProjectionPosition;\n" "uniform mat4 TexMatrix;\n" "#ifdef VERTEX_SHADER\n" "\n" "void main(void)\n" "{\n" " TexCoord = vec2(TexMatrix * gl_MultiTexCoord0);\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" " ModelViewProjectionPosition = gl_Position;\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "uniform sampler2D Texture_Normal;\n" "uniform sampler2D Texture_Refraction;\n" "uniform sampler2D Texture_Reflection;\n" "\n" "uniform vec4 DistortScaleRefractReflect;\n" "uniform vec4 ScreenScaleRefractReflect;\n" "uniform vec4 ScreenCenterRefractReflect;\n" "uniform vec4 RefractColor;\n" "uniform vec4 ReflectColor;\n" "uniform float ReflectFactor;\n" "uniform float ReflectOffset;\n" "\n" "void main(void)\n" "{\n" " vec2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n" " //vec2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(vec3(texture2D(Texture_Normal, TexCoord)) - vec3(0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n" " vec2 SafeScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n" " vec2 ScreenTexCoord = SafeScreenTexCoord + vec2(normalize(vec3(texture2D(Texture_Normal, TexCoord)) - vec3(0.5))).xy * DistortScaleRefractReflect.xy;\n" " // FIXME temporary hack to detect the case that the reflection\n" " // gets blackened at edges due to leaving the area that contains actual\n" " // content.\n" " // Remove this 'ack once we have a better way to stop this thing from\n" " // 'appening.\n" " float f = min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord + vec2(0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord + vec2(0.01, -0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord + vec2(-0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord + vec2(-0.01, -0.01)).rgb) / 0.05);\n" " ScreenTexCoord = mix(SafeScreenTexCoord, ScreenTexCoord, f);\n" " gl_FragColor = vec4(texture2D(Texture_Refraction, ScreenTexCoord).rgb, 1.0) * RefractColor;\n" "}\n" "#endif\n" "#else // !MODE_REFRACTION\n" "\n" "\n" "\n" "\n" "#ifdef MODE_WATER\n" "varying vec2 TexCoord;\n" "varying vec3 EyeVector;\n" "varying vec4 ModelViewProjectionPosition;\n" "#ifdef VERTEX_SHADER\n" "uniform vec3 EyePosition;\n" "uniform mat4 TexMatrix;\n" "\n" "void main(void)\n" "{\n" " TexCoord = vec2(TexMatrix * gl_MultiTexCoord0);\n" " vec3 EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n" " EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n" " EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n" " EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" " ModelViewProjectionPosition = gl_Position;\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "uniform sampler2D Texture_Normal;\n" "uniform sampler2D Texture_Refraction;\n" "uniform sampler2D Texture_Reflection;\n" "\n" "uniform vec4 DistortScaleRefractReflect;\n" "uniform vec4 ScreenScaleRefractReflect;\n" "uniform vec4 ScreenCenterRefractReflect;\n" "uniform vec4 RefractColor;\n" "uniform vec4 ReflectColor;\n" "uniform float ReflectFactor;\n" "uniform float ReflectOffset;\n" "uniform float ClientTime;\n" "#ifdef USENORMALMAPSCROLLBLEND\n" "uniform vec2 NormalmapScrollBlend;\n" "#endif\n" "\n" "void main(void)\n" "{\n" " vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n" " //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(vec3(texture2D(Texture_Normal, TexCoord)) - vec3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n" " vec4 SafeScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n" " //SafeScreenTexCoord = gl_FragCoord.xyxy * vec4(1.0 / 1920.0, 1.0 / 1200.0, 1.0 / 1920.0, 1.0 / 1200.0);\n" " // slight water animation via 2 layer scrolling (todo: tweak)\n" " #ifdef USENORMALMAPSCROLLBLEND\n" " vec3 normal = texture2D(Texture_Normal, (TexCoord + vec2(0.08, 0.08)*ClientTime*NormalmapScrollBlend.x*0.5)*NormalmapScrollBlend.y).rgb - vec3(1.0);\n" " normal += texture2D(Texture_Normal, (TexCoord + vec2(-0.06, -0.09)*ClientTime*NormalmapScrollBlend.x)*NormalmapScrollBlend.y*0.75).rgb;\n" " vec4 ScreenTexCoord = SafeScreenTexCoord + vec2(normalize(normal) + vec3(0.15)).xyxy * DistortScaleRefractReflect;\n" " #else\n" " vec4 ScreenTexCoord = SafeScreenTexCoord + vec2(normalize(vec3(texture2D(Texture_Normal, TexCoord)) - vec3(0.5))).xyxy * DistortScaleRefractReflect;\n" " #endif\n" " // FIXME temporary hack to detect the case that the reflection\n" " // gets blackened at edges due to leaving the area that contains actual\n" " // content.\n" " // Remove this 'ack once we have a better way to stop this thing from\n" " // 'appening.\n" " float f1 = min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord.xy + vec2(0.005, 0.01)).rgb) / 0.002);\n" " f1 *= min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord.xy + vec2(0.005, -0.01)).rgb) / 0.002);\n" " f1 *= min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord.xy + vec2(-0.005, 0.01)).rgb) / 0.002);\n" " f1 *= min(1.0, length(texture2D(Texture_Refraction, ScreenTexCoord.xy + vec2(-0.005, -0.01)).rgb) / 0.002);\n" " ScreenTexCoord.xy = mix(SafeScreenTexCoord.xy, ScreenTexCoord.xy, f1);\n" " float f = min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord.zw + vec2(0.005, 0.005)).rgb) / 0.002);\n" " f *= min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord.zw + vec2(0.005, -0.005)).rgb) / 0.002);\n" " f *= min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord.zw + vec2(-0.005, 0.005)).rgb) / 0.002);\n" " f *= min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord.zw + vec2(-0.005, -0.005)).rgb) / 0.002);\n" " ScreenTexCoord.zw = mix(SafeScreenTexCoord.zw, ScreenTexCoord.zw, f);\n" " float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 2.0) * ReflectFactor + ReflectOffset;\n" " gl_FragColor = mix(vec4(texture2D(Texture_Refraction, ScreenTexCoord.xy).rgb, 1) * RefractColor, vec4(texture2D(Texture_Reflection, ScreenTexCoord.zw).rgb, 1) * ReflectColor, Fresnel);\n" " gl_FragColor.a = f1 + 0.5;\n" "}\n" "#endif\n" "#else // !MODE_WATER\n" "\n" "\n" "\n" "\n" "// common definitions between vertex shader and fragment shader:\n" "\n" "varying vec2 TexCoord;\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "varying vec2 TexCoord2;\n" "#endif\n" "#ifdef USELIGHTMAP\n" "varying vec2 TexCoordLightmap;\n" "#endif\n" "\n" "#ifdef MODE_LIGHTSOURCE\n" "varying vec3 CubeVector;\n" "#endif\n" "\n" "#if (defined(MODE_LIGHTSOURCE) || defined(MODE_LIGHTDIRECTION)) && defined(USEDIFFUSE)\n" "varying vec3 LightVector;\n" "#endif\n" "\n" "#ifdef USEEYEVECTOR\n" "varying vec3 EyeVector;\n" "#endif\n" "#ifdef USEFOG\n" "varying vec4 EyeVectorModelSpaceFogPlaneVertexDist;\n" "#endif\n" "\n" "#if defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(MODE_DEFERREDGEOMETRY) || defined(USEREFLECTCUBE)\n" "varying vec3 VectorS; // direction of S texcoord (sometimes crudely called tangent)\n" "varying vec3 VectorT; // direction of T texcoord (sometimes crudely called binormal)\n" "varying vec3 VectorR; // direction of R texcoord (surface normal)\n" "#endif\n" "\n" "#ifdef USEREFLECTION\n" "varying vec4 ModelViewProjectionPosition;\n" "#endif\n" "#ifdef MODE_DEFERREDLIGHTSOURCE\n" "uniform vec3 LightPosition;\n" "varying vec4 ModelViewPosition;\n" "#endif\n" "\n" "#ifdef MODE_LIGHTSOURCE\n" "uniform vec3 LightPosition;\n" "#endif\n" "uniform vec3 EyePosition;\n" "#ifdef MODE_LIGHTDIRECTION\n" "uniform vec3 LightDir;\n" "#endif\n" "uniform vec4 FogPlane;\n" "\n" "#ifdef USESHADOWMAPORTHO\n" "varying vec3 ShadowMapTC;\n" "#endif\n" "\n" "\n" "\n" "\n" "\n" "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3), this would require sending a 4 component texcoord1 with W as 1 or -1 according to which side the texcoord2 should be on\n" "\n" "// fragment shader specific:\n" "#ifdef FRAGMENT_SHADER\n" "\n" "uniform sampler2D Texture_Normal;\n" "uniform sampler2D Texture_Color;\n" "uniform sampler2D Texture_Gloss;\n" "#ifdef USEGLOW\n" "uniform sampler2D Texture_Glow;\n" "#endif\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "uniform sampler2D Texture_SecondaryNormal;\n" "uniform sampler2D Texture_SecondaryColor;\n" "uniform sampler2D Texture_SecondaryGloss;\n" "#ifdef USEGLOW\n" "uniform sampler2D Texture_SecondaryGlow;\n" "#endif\n" "#endif\n" "#ifdef USECOLORMAPPING\n" "uniform sampler2D Texture_Pants;\n" "uniform sampler2D Texture_Shirt;\n" "#endif\n" "#ifdef USEFOG\n" "#ifdef USEFOGHEIGHTTEXTURE\n" "uniform sampler2D Texture_FogHeightTexture;\n" "#endif\n" "uniform sampler2D Texture_FogMask;\n" "#endif\n" "#ifdef USELIGHTMAP\n" "uniform sampler2D Texture_Lightmap;\n" "#endif\n" "#if defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(MODE_LIGHTDIRECTIONMAP_TANGENTSPACE)\n" "uniform sampler2D Texture_Deluxemap;\n" "#endif\n" "#ifdef USEREFLECTION\n" "uniform sampler2D Texture_Reflection;\n" "#endif\n" "\n" "#ifdef MODE_DEFERREDLIGHTSOURCE\n" "uniform sampler2D Texture_ScreenDepth;\n" "uniform sampler2D Texture_ScreenNormalMap;\n" "#endif\n" "#ifdef USEDEFERREDLIGHTMAP\n" "uniform sampler2D Texture_ScreenDiffuse;\n" "uniform sampler2D Texture_ScreenSpecular;\n" "#endif\n" "\n" "uniform myhalf3 Color_Pants;\n" "uniform myhalf3 Color_Shirt;\n" "uniform myhalf3 FogColor;\n" "\n" "#ifdef USEFOG\n" "uniform float FogRangeRecip;\n" "uniform float FogPlaneViewDist;\n" "uniform float FogHeightFade;\n" "vec3 FogVertex(vec3 surfacecolor)\n" "{\n" " vec3 EyeVectorModelSpace = EyeVectorModelSpaceFogPlaneVertexDist.xyz;\n" " float FogPlaneVertexDist = EyeVectorModelSpaceFogPlaneVertexDist.w;\n" " float fogfrac;\n" "#ifdef USEFOGHEIGHTTEXTURE\n" " vec4 fogheightpixel = texture2D(Texture_FogHeightTexture, vec2(1,1) + vec2(FogPlaneVertexDist, FogPlaneViewDist) * (-2.0 * FogHeightFade));\n" " fogfrac = fogheightpixel.a;\n" " return mix(fogheightpixel.rgb * FogColor, surfacecolor, texture2D(Texture_FogMask, myhalf2(length(EyeVectorModelSpace)*fogfrac*FogRangeRecip, 0.0)).r);\n" "#else\n" "# ifdef USEFOGOUTSIDE\n" " fogfrac = min(0.0, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0, min(0.0, FogPlaneVertexDist) * FogHeightFade);\n" "# else\n" " fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0, FogPlaneVertexDist)) * min(1.0, (min(0.0, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);\n" "# endif\n" " return mix(FogColor, surfacecolor, texture2D(Texture_FogMask, myhalf2(length(EyeVectorModelSpace)*fogfrac*FogRangeRecip, 0.0)).r);\n" "#endif\n" "}\n" "#endif\n" "\n" "#ifdef USEOFFSETMAPPING\n" "uniform float OffsetMapping_Scale;\n" "vec2 OffsetMapping(vec2 TexCoord)\n" "{\n" "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n" " // 14 sample relief mapping: linear search and then binary search\n" " // this basically steps forward a small amount repeatedly until it finds\n" " // itself inside solid, then jitters forward and back using decreasing\n" " // amounts to find the impact\n" " //vec3 OffsetVector = vec3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1), -1);\n" " //vec3 OffsetVector = vec3(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1), -1);\n" " vec3 OffsetVector = vec3(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1), -1);\n" " vec3 RT = vec3(TexCoord, 1);\n" " OffsetVector *= 0.1;\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(texture2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) - 0.5);\n" " RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.5 - 0.25);\n" " RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.25 - 0.125);\n" " RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.125 - 0.0625);\n" " RT += OffsetVector * (step(texture2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n" " return RT.xy;\n" "#else\n" " // 2 sample offset mapping (only 2 samples because of ATI Radeon 9500-9800/X300 limits)\n" " // this basically moves forward the full distance, and then backs up based\n" " // on height of samples\n" " //vec2 OffsetVector = vec2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * vec2(-1, 1));\n" " //vec2 OffsetVector = vec2(normalize(EyeVector.xy) * OffsetMapping_Scale * vec2(-1, 1));\n" " vec2 OffsetVector = vec2(normalize(EyeVector).xy * OffsetMapping_Scale * vec2(-1, 1));\n" " TexCoord += OffsetVector;\n" " OffsetVector *= 0.5;\n" " TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n" " TexCoord -= OffsetVector * texture2D(Texture_Normal, TexCoord).a;\n" " return TexCoord;\n" "#endif\n" "}\n" "#endif // USEOFFSETMAPPING\n" "\n" "#if defined(MODE_LIGHTSOURCE) || defined(MODE_DEFERREDLIGHTSOURCE)\n" "uniform sampler2D Texture_Attenuation;\n" "uniform samplerCube Texture_Cube;\n" "#endif\n" "\n" "#if defined(MODE_LIGHTSOURCE) || defined(MODE_DEFERREDLIGHTSOURCE) || defined(USESHADOWMAPORTHO)\n" "\n" "#ifdef USESHADOWMAP2D\n" "# ifdef USESHADOWSAMPLER\n" "uniform sampler2DShadow Texture_ShadowMap2D;\n" "# else\n" "uniform sampler2D Texture_ShadowMap2D;\n" "# endif\n" "#endif\n" "\n" "#ifdef USESHADOWMAPVSDCT\n" "uniform samplerCube Texture_CubeProjection;\n" "#endif\n" "\n" "#if defined(USESHADOWMAP2D)\n" "uniform vec2 ShadowMap_TextureScale;\n" "uniform vec4 ShadowMap_Parameters;\n" "#endif\n" "\n" "#if defined(USESHADOWMAP2D)\n" "# ifdef USESHADOWMAPORTHO\n" "# define GetShadowMapTC2D(dir) (min(dir, ShadowMap_Parameters.xyz))\n" "# else\n" "# ifdef USESHADOWMAPVSDCT\n" "vec3 GetShadowMapTC2D(vec3 dir)\n" "{\n" " vec3 adir = abs(dir);\n" " vec2 aparams = ShadowMap_Parameters.xy / max(max(adir.x, adir.y), adir.z);\n" " vec4 proj = textureCube(Texture_CubeProjection, dir);\n" " return vec3(mix(dir.xy, dir.zz, proj.xy) * aparams.x + proj.zw * ShadowMap_Parameters.z, aparams.y + ShadowMap_Parameters.w);\n" "}\n" "# else\n" "vec3 GetShadowMapTC2D(vec3 dir)\n" "{\n" " vec3 adir = abs(dir);\n" " float ma = adir.z;\n" " vec4 proj = vec4(dir, 2.5);\n" " if (adir.x > ma) { ma = adir.x; proj = vec4(dir.zyx, 0.5); }\n" " if (adir.y > ma) { ma = adir.y; proj = vec4(dir.xzy, 1.5); }\n" " vec2 aparams = ShadowMap_Parameters.xy / ma;\n" " return vec3(proj.xy * aparams.x + vec2(proj.z < 0.0 ? 1.5 : 0.5, proj.w) * ShadowMap_Parameters.z, aparams.y + ShadowMap_Parameters.w);\n" "}\n" "# endif\n" "# endif\n" "#endif // defined(USESHADOWMAP2D)\n" "\n" "# ifdef USESHADOWMAP2D\n" "float ShadowMapCompare(vec3 dir)\n" "{\n" " vec3 shadowmaptc = GetShadowMapTC2D(dir);\n" " float f;\n" "\n" "# ifdef USESHADOWSAMPLER\n" "# ifdef USESHADOWMAPPCF\n" "# define texval(x, y) shadow2D(Texture_ShadowMap2D, vec3(center + vec2(x, y)*ShadowMap_TextureScale, shadowmaptc.z)).r \n" " vec2 center = shadowmaptc.xy*ShadowMap_TextureScale;\n" " f = dot(vec4(0.25), vec4(texval(-0.4, 1.0), texval(-1.0, -0.4), texval(0.4, -1.0), texval(1.0, 0.4)));\n" "# else\n" " f = shadow2D(Texture_ShadowMap2D, vec3(shadowmaptc.xy*ShadowMap_TextureScale, shadowmaptc.z)).r;\n" "# endif\n" "# else\n" "# ifdef USESHADOWMAPPCF\n" "# if defined(GL_ARB_texture_gather) || defined(GL_AMD_texture_texture4)\n" "# ifdef GL_ARB_texture_gather\n" "# define texval(x, y) textureGatherOffset(Texture_ShadowMap2D, center, ivec2(x, y))\n" "# else\n" "# define texval(x, y) texture4(Texture_ShadowMap2D, center + vec2(x, y)*ShadowMap_TextureScale)\n" "# endif\n" " vec2 offset = fract(shadowmaptc.xy - 0.5), center = (shadowmaptc.xy - offset)*ShadowMap_TextureScale;\n" "# if USESHADOWMAPPCF > 1\n" " vec4 group1 = step(shadowmaptc.z, texval(-2.0, -2.0));\n" " vec4 group2 = step(shadowmaptc.z, texval( 0.0, -2.0));\n" " vec4 group3 = step(shadowmaptc.z, texval( 2.0, -2.0));\n" " vec4 group4 = step(shadowmaptc.z, texval(-2.0, 0.0));\n" " vec4 group5 = step(shadowmaptc.z, texval( 0.0, 0.0));\n" " vec4 group6 = step(shadowmaptc.z, texval( 2.0, 0.0));\n" " vec4 group7 = step(shadowmaptc.z, texval(-2.0, 2.0));\n" " vec4 group8 = step(shadowmaptc.z, texval( 0.0, 2.0));\n" " vec4 group9 = step(shadowmaptc.z, texval( 2.0, 2.0));\n" " vec4 locols = vec4(group1.ab, group3.ab);\n" " vec4 hicols = vec4(group7.rg, group9.rg);\n" " locols.yz += group2.ab;\n" " hicols.yz += group8.rg;\n" " vec4 midcols = vec4(group1.rg, group3.rg) + vec4(group7.ab, group9.ab) +\n" " vec4(group4.rg, group6.rg) + vec4(group4.ab, group6.ab) +\n" " mix(locols, hicols, offset.y);\n" " vec4 cols = group5 + vec4(group2.rg, group8.ab);\n" " cols.xyz += mix(midcols.xyz, midcols.yzw, offset.x);\n" " f = dot(cols, vec4(1.0/25.0));\n" "# else\n" " vec4 group1 = step(shadowmaptc.z, texval(-1.0, -1.0));\n" " vec4 group2 = step(shadowmaptc.z, texval( 1.0, -1.0));\n" " vec4 group3 = step(shadowmaptc.z, texval(-1.0, 1.0));\n" " vec4 group4 = step(shadowmaptc.z, texval( 1.0, 1.0));\n" " vec4 cols = vec4(group1.rg, group2.rg) + vec4(group3.ab, group4.ab) +\n" " mix(vec4(group1.ab, group2.ab), vec4(group3.rg, group4.rg), offset.y);\n" " f = dot(mix(cols.xyz, cols.yzw, offset.x), vec3(1.0/9.0));\n" "# endif\n" "# else\n" "# ifdef GL_EXT_gpu_shader4\n" "# define texval(x, y) texture2DOffset(Texture_ShadowMap2D, center, ivec2(x, y)).r\n" "# else\n" "# define texval(x, y) texture2D(Texture_ShadowMap2D, center + vec2(x, y)*ShadowMap_TextureScale).r \n" "# endif\n" "# if USESHADOWMAPPCF > 1\n" " vec2 center = shadowmaptc.xy - 0.5, offset = fract(center);\n" " center *= ShadowMap_TextureScale;\n" " vec4 row1 = step(shadowmaptc.z, vec4(texval(-1.0, -1.0), texval( 0.0, -1.0), texval( 1.0, -1.0), texval( 2.0, -1.0)));\n" " vec4 row2 = step(shadowmaptc.z, vec4(texval(-1.0, 0.0), texval( 0.0, 0.0), texval( 1.0, 0.0), texval( 2.0, 0.0)));\n" " vec4 row3 = step(shadowmaptc.z, vec4(texval(-1.0, 1.0), texval( 0.0, 1.0), texval( 1.0, 1.0), texval( 2.0, 1.0)));\n" " vec4 row4 = step(shadowmaptc.z, vec4(texval(-1.0, 2.0), texval( 0.0, 2.0), texval( 1.0, 2.0), texval( 2.0, 2.0)));\n" " vec4 cols = row2 + row3 + mix(row1, row4, offset.y);\n" " f = dot(mix(cols.xyz, cols.yzw, offset.x), vec3(1.0/9.0));\n" "# else\n" " vec2 center = shadowmaptc.xy*ShadowMap_TextureScale, offset = fract(shadowmaptc.xy);\n" " vec3 row1 = step(shadowmaptc.z, vec3(texval(-1.0, -1.0), texval( 0.0, -1.0), texval( 1.0, -1.0)));\n" " vec3 row2 = step(shadowmaptc.z, vec3(texval(-1.0, 0.0), texval( 0.0, 0.0), texval( 1.0, 0.0)));\n" " vec3 row3 = step(shadowmaptc.z, vec3(texval(-1.0, 1.0), texval( 0.0, 1.0), texval( 1.0, 1.0)));\n" " vec3 cols = row2 + mix(row1, row3, offset.y);\n" " f = dot(mix(cols.xy, cols.yz, offset.x), vec2(0.25));\n" "# endif\n" "# endif\n" "# else\n" " f = step(shadowmaptc.z, texture2D(Texture_ShadowMap2D, shadowmaptc.xy*ShadowMap_TextureScale).r);\n" "# endif\n" "# endif\n" "# ifdef USESHADOWMAPORTHO\n" " return mix(ShadowMap_Parameters.w, 1.0, f);\n" "# else\n" " return f;\n" "# endif\n" "}\n" "# endif\n" "#endif // !defined(MODE_LIGHTSOURCE) && !defined(MODE_DEFERREDLIGHTSOURCE) && !defined(USESHADOWMAPORTHO)\n" "#endif // FRAGMENT_SHADER\n" "\n" "\n" "\n" "\n" "#ifdef MODE_DEFERREDGEOMETRY\n" "#ifdef VERTEX_SHADER\n" "uniform mat4 TexMatrix;\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "uniform mat4 BackgroundTexMatrix;\n" "#endif\n" "uniform mat4 ModelViewMatrix;\n" "void main(void)\n" "{\n" " TexCoord = vec2(TexMatrix * gl_MultiTexCoord0);\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " gl_FrontColor = gl_Color;\n" " TexCoord2 = vec2(BackgroundTexMatrix * gl_MultiTexCoord0);\n" "#endif\n" "\n" " // transform unnormalized eye direction into tangent space\n" "#ifdef USEOFFSETMAPPING\n" " vec3 EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n" " EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n" " EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n" " EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n" "#endif\n" "\n" " VectorS = (ModelViewMatrix * vec4(gl_MultiTexCoord1.xyz, 0)).xyz;\n" " VectorT = (ModelViewMatrix * vec4(gl_MultiTexCoord2.xyz, 0)).xyz;\n" " VectorR = (ModelViewMatrix * vec4(gl_MultiTexCoord3.xyz, 0)).xyz;\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" "}\n" "#endif // VERTEX_SHADER\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main(void)\n" "{\n" "#ifdef USEOFFSETMAPPING\n" " // apply offsetmapping\n" " vec2 TexCoordOffset = OffsetMapping(TexCoord);\n" "#define TexCoord TexCoordOffset\n" "#endif\n" "\n" "#ifdef USEALPHAKILL\n" " if (texture2D(Texture_Color, TexCoord).a < 0.5)\n" " discard;\n" "#endif\n" "\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " float alpha = texture2D(Texture_Color, TexCoord).a;\n" " float terrainblend = clamp(float(gl_Color.a) * alpha * 2.0 - 0.5, float(0.0), float(1.0));\n" " //float terrainblend = min(float(gl_Color.a) * alpha * 2.0, float(1.0));\n" " //float terrainblend = float(gl_Color.a) * alpha > 0.5;\n" "#endif\n" "\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " vec3 surfacenormal = mix(vec3(texture2D(Texture_SecondaryNormal, TexCoord2)), vec3(texture2D(Texture_Normal, TexCoord)), terrainblend) - vec3(0.5, 0.5, 0.5);\n" " float a = mix(texture2D(Texture_SecondaryGloss, TexCoord2).a, texture2D(Texture_Gloss, TexCoord).a, terrainblend);\n" "#else\n" " vec3 surfacenormal = vec3(texture2D(Texture_Normal, TexCoord)) - vec3(0.5, 0.5, 0.5);\n" " float a = texture2D(Texture_Gloss, TexCoord).a;\n" "#endif\n" "\n" " gl_FragColor = vec4(normalize(surfacenormal.x * VectorS + surfacenormal.y * VectorT + surfacenormal.z * VectorR) * 0.5 + vec3(0.5, 0.5, 0.5), a);\n" "}\n" "#endif // FRAGMENT_SHADER\n" "#else // !MODE_DEFERREDGEOMETRY\n" "\n" "\n" "\n" "\n" "#ifdef MODE_DEFERREDLIGHTSOURCE\n" "#ifdef VERTEX_SHADER\n" "uniform mat4 ModelViewMatrix;\n" "void main(void)\n" "{\n" " ModelViewPosition = ModelViewMatrix * gl_Vertex;\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" "}\n" "#endif // VERTEX_SHADER\n" "\n" "#ifdef FRAGMENT_SHADER\n" "uniform mat4 ViewToLight;\n" "// ScreenToDepth = vec2(Far / (Far - Near), Far * Near / (Near - Far));\n" "uniform vec2 ScreenToDepth;\n" "uniform myhalf3 DeferredColor_Ambient;\n" "uniform myhalf3 DeferredColor_Diffuse;\n" "#ifdef USESPECULAR\n" "uniform myhalf3 DeferredColor_Specular;\n" "uniform myhalf SpecularPower;\n" "#endif\n" "uniform myhalf2 PixelToScreenTexCoord;\n" "void main(void)\n" "{\n" " // calculate viewspace pixel position\n" " vec2 ScreenTexCoord = gl_FragCoord.xy * PixelToScreenTexCoord;\n" " vec3 position;\n" " position.z = ScreenToDepth.y / (texture2D(Texture_ScreenDepth, ScreenTexCoord).r + ScreenToDepth.x);\n" " position.xy = ModelViewPosition.xy * (position.z / ModelViewPosition.z);\n" " // decode viewspace pixel normal\n" " myhalf4 normalmap = texture2D(Texture_ScreenNormalMap, ScreenTexCoord);\n" " myhalf3 surfacenormal = normalize(normalmap.rgb - myhalf3(0.5,0.5,0.5));\n" " // surfacenormal = pixel normal in viewspace\n" " // LightVector = pixel to light in viewspace\n" " // CubeVector = position in lightspace\n" " // eyevector = pixel to view in viewspace\n" " vec3 CubeVector = vec3(ViewToLight * vec4(position,1));\n" " myhalf fade = myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n" "#ifdef USEDIFFUSE\n" " // calculate diffuse shading\n" " myhalf3 lightnormal = myhalf3(normalize(LightPosition - position));\n" " myhalf diffuse = myhalf(max(float(dot(surfacenormal, lightnormal)), 0.0));\n" "#endif\n" "#ifdef USESPECULAR\n" " // calculate directional shading\n" " vec3 eyevector = position * -1.0;\n" "# ifdef USEEXACTSPECULARMATH\n" " myhalf specular = pow(myhalf(max(float(dot(reflect(lightnormal, surfacenormal), normalize(eyevector)))*-1.0, 0.0)), SpecularPower * normalmap.a);\n" "# else\n" " myhalf3 specularnormal = normalize(lightnormal + myhalf3(normalize(eyevector)));\n" " myhalf specular = pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower * normalmap.a);\n" "# endif\n" "#endif\n" "\n" "#if defined(USESHADOWMAP2D)\n" " fade *= ShadowMapCompare(CubeVector);\n" "#endif\n" "\n" "#ifdef USEDIFFUSE\n" " gl_FragData[0] = vec4((DeferredColor_Ambient + DeferredColor_Diffuse * diffuse) * fade, 1.0);\n" "#else\n" " gl_FragData[0] = vec4(DeferredColor_Ambient * fade, 1.0);\n" "#endif\n" "#ifdef USESPECULAR\n" " gl_FragData[1] = vec4(DeferredColor_Specular * (specular * fade), 1.0);\n" "#else\n" " gl_FragData[1] = vec4(0.0, 0.0, 0.0, 1.0);\n" "#endif\n" "\n" "# ifdef USECUBEFILTER\n" " vec3 cubecolor = textureCube(Texture_Cube, CubeVector).rgb;\n" " gl_FragData[0].rgb *= cubecolor;\n" " gl_FragData[1].rgb *= cubecolor;\n" "# endif\n" "}\n" "#endif // FRAGMENT_SHADER\n" "#else // !MODE_DEFERREDLIGHTSOURCE\n" "\n" "\n" "\n" "\n" "#ifdef VERTEX_SHADER\n" "uniform mat4 TexMatrix;\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "uniform mat4 BackgroundTexMatrix;\n" "#endif\n" "#ifdef MODE_LIGHTSOURCE\n" "uniform mat4 ModelToLight;\n" "#endif\n" "#ifdef USESHADOWMAPORTHO\n" "uniform mat4 ShadowMapMatrix;\n" "#endif\n" "void main(void)\n" "{\n" "#if defined(MODE_VERTEXCOLOR) || defined(USEVERTEXTEXTUREBLEND)\n" " gl_FrontColor = gl_Color;\n" "#endif\n" " // copy the surface texcoord\n" " TexCoord = vec2(TexMatrix * gl_MultiTexCoord0);\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " TexCoord2 = vec2(BackgroundTexMatrix * gl_MultiTexCoord0);\n" "#endif\n" "#ifdef USELIGHTMAP\n" " TexCoordLightmap = vec2(gl_MultiTexCoord4);\n" "#endif\n" "\n" "#ifdef MODE_LIGHTSOURCE\n" " // transform vertex position into light attenuation/cubemap space\n" " // (-1 to +1 across the light box)\n" " CubeVector = vec3(ModelToLight * gl_Vertex);\n" "\n" "# ifdef USEDIFFUSE\n" " // transform unnormalized light direction into tangent space\n" " // (we use unnormalized to ensure that it interpolates correctly and then\n" " // normalize it per pixel)\n" " vec3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n" " LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n" " LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n" " LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n" "# endif\n" "#endif\n" "\n" "#if defined(MODE_LIGHTDIRECTION) && defined(USEDIFFUSE)\n" " LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n" " LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n" " LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n" "#endif\n" "\n" " // transform unnormalized eye direction into tangent space\n" "#ifdef USEEYEVECTOR\n" " vec3 EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n" " EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n" " EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n" " EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n" "#endif\n" "\n" "#ifdef USEFOG\n" " EyeVectorModelSpaceFogPlaneVertexDist.xyz = EyePosition - gl_Vertex.xyz;\n" " EyeVectorModelSpaceFogPlaneVertexDist.w = dot(FogPlane, gl_Vertex);\n" "#endif\n" "\n" "#if defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(USEREFLECTCUBE)\n" " VectorS = gl_MultiTexCoord1.xyz;\n" " VectorT = gl_MultiTexCoord2.xyz;\n" " VectorR = gl_MultiTexCoord3.xyz;\n" "#endif\n" "\n" " // transform vertex to camera space, using ftransform to match non-VS rendering\n" " gl_Position = ModelViewProjectionMatrix * gl_Vertex;\n" "\n" "#ifdef USESHADOWMAPORTHO\n" " ShadowMapTC = vec3(ShadowMapMatrix * gl_Position);\n" "#endif\n" "\n" "#ifdef USEREFLECTION\n" " ModelViewProjectionPosition = gl_Position;\n" "#endif\n" "}\n" "#endif // VERTEX_SHADER\n" "\n" "\n" "\n" "\n" "#ifdef FRAGMENT_SHADER\n" "#ifdef USEDEFERREDLIGHTMAP\n" "uniform myhalf2 PixelToScreenTexCoord;\n" "uniform myhalf3 DeferredMod_Diffuse;\n" "uniform myhalf3 DeferredMod_Specular;\n" "#endif\n" "uniform myhalf3 Color_Ambient;\n" "uniform myhalf3 Color_Diffuse;\n" "uniform myhalf3 Color_Specular;\n" "uniform myhalf SpecularPower;\n" "#ifdef USEGLOW\n" "uniform myhalf3 Color_Glow;\n" "#endif\n" "uniform myhalf Alpha;\n" "#ifdef USEREFLECTION\n" "uniform vec4 DistortScaleRefractReflect;\n" "uniform vec4 ScreenScaleRefractReflect;\n" "uniform vec4 ScreenCenterRefractReflect;\n" "uniform myhalf4 ReflectColor;\n" "#endif\n" "#ifdef USEREFLECTCUBE\n" "uniform mat4 ModelToReflectCube;\n" "uniform sampler2D Texture_ReflectMask;\n" "uniform samplerCube Texture_ReflectCube;\n" "#endif\n" "#ifdef MODE_LIGHTDIRECTION\n" "uniform myhalf3 LightColor;\n" "#endif\n" "#ifdef MODE_LIGHTSOURCE\n" "uniform myhalf3 LightColor;\n" "#endif\n" "void main(void)\n" "{\n" "#ifdef USEOFFSETMAPPING\n" " // apply offsetmapping\n" " vec2 TexCoordOffset = OffsetMapping(TexCoord);\n" "#define TexCoord TexCoordOffset\n" "#endif\n" "\n" " // combine the diffuse textures (base, pants, shirt)\n" " myhalf4 color = myhalf4(texture2D(Texture_Color, TexCoord));\n" "#ifdef USEALPHAKILL\n" " if (color.a < 0.5)\n" " discard;\n" "#endif\n" " color.a *= Alpha;\n" "#ifdef USECOLORMAPPING\n" " color.rgb += myhalf3(texture2D(Texture_Pants, TexCoord)) * Color_Pants + myhalf3(texture2D(Texture_Shirt, TexCoord)) * Color_Shirt;\n" "#endif\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " myhalf terrainblend = clamp(myhalf(gl_Color.a) * color.a * 2.0 - 0.5, myhalf(0.0), myhalf(1.0));\n" " //myhalf terrainblend = min(myhalf(gl_Color.a) * color.a * 2.0, myhalf(1.0));\n" " //myhalf terrainblend = myhalf(gl_Color.a) * color.a > 0.5;\n" " color.rgb = mix(myhalf3(texture2D(Texture_SecondaryColor, TexCoord2)), color.rgb, terrainblend);\n" " color.a = 1.0;\n" " //color = mix(myhalf4(1, 0, 0, 1), color, terrainblend);\n" "#endif\n" "\n" " // get the surface normal\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " myhalf3 surfacenormal = normalize(mix(myhalf3(texture2D(Texture_SecondaryNormal, TexCoord2)), myhalf3(texture2D(Texture_Normal, TexCoord)), terrainblend) - myhalf3(0.5, 0.5, 0.5));\n" "#else\n" " myhalf3 surfacenormal = normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5, 0.5, 0.5));\n" "#endif\n" "\n" " // get the material colors\n" " myhalf3 diffusetex = color.rgb;\n" "#if defined(USESPECULAR) || defined(USEDEFERREDLIGHTMAP)\n" "# ifdef USEVERTEXTEXTUREBLEND\n" " myhalf4 glosstex = mix(myhalf4(texture2D(Texture_SecondaryGloss, TexCoord2)), myhalf4(texture2D(Texture_Gloss, TexCoord)), terrainblend);\n" "# else\n" " myhalf4 glosstex = myhalf4(texture2D(Texture_Gloss, TexCoord));\n" "# endif\n" "#endif\n" "\n" "#ifdef USEREFLECTCUBE\n" " vec3 TangentReflectVector = reflect(-EyeVector, surfacenormal);\n" " vec3 ModelReflectVector = TangentReflectVector.x * VectorS + TangentReflectVector.y * VectorT + TangentReflectVector.z * VectorR;\n" " vec3 ReflectCubeTexCoord = vec3(ModelToReflectCube * vec4(ModelReflectVector, 0));\n" " diffusetex += myhalf3(texture2D(Texture_ReflectMask, TexCoord)) * myhalf3(textureCube(Texture_ReflectCube, ReflectCubeTexCoord));\n" "#endif\n" "\n" "\n" "\n" "\n" "#ifdef MODE_LIGHTSOURCE\n" " // light source\n" "#ifdef USEDIFFUSE\n" " myhalf3 lightnormal = myhalf3(normalize(LightVector));\n" " myhalf diffuse = myhalf(max(float(dot(surfacenormal, lightnormal)), 0.0));\n" " color.rgb = diffusetex * (Color_Ambient + diffuse * Color_Diffuse);\n" "#ifdef USESPECULAR\n" "#ifdef USEEXACTSPECULARMATH\n" " myhalf specular = pow(myhalf(max(float(dot(reflect(lightnormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower * glosstex.a);\n" "#else\n" " myhalf3 specularnormal = normalize(lightnormal + myhalf3(normalize(EyeVector)));\n" " myhalf specular = pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower * glosstex.a);\n" "#endif\n" " color.rgb += glosstex.rgb * (specular * Color_Specular);\n" "#endif\n" "#else\n" " color.rgb = diffusetex * Color_Ambient;\n" "#endif\n" " color.rgb *= LightColor;\n" " color.rgb *= myhalf(texture2D(Texture_Attenuation, vec2(length(CubeVector), 0.0)));\n" "#if defined(USESHADOWMAP2D)\n" " color.rgb *= ShadowMapCompare(CubeVector);\n" "#endif\n" "# ifdef USECUBEFILTER\n" " color.rgb *= myhalf3(textureCube(Texture_Cube, CubeVector));\n" "# endif\n" "#endif // MODE_LIGHTSOURCE\n" "\n" "\n" "\n" "\n" "#ifdef MODE_LIGHTDIRECTION\n" "#define SHADING\n" "#ifdef USEDIFFUSE\n" " myhalf3 lightnormal = myhalf3(normalize(LightVector));\n" "#endif\n" "#define lightcolor LightColor\n" "#endif // MODE_LIGHTDIRECTION\n" "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n" "#define SHADING\n" " // deluxemap lightmapping using light vectors in modelspace (q3map2 -light -deluxe)\n" " myhalf3 lightnormal_modelspace = myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) * 2.0 + myhalf3(-1.0, -1.0, -1.0);\n" " myhalf3 lightcolor = myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n" " // convert modelspace light vector to tangentspace\n" " myhalf3 lightnormal;\n" " lightnormal.x = dot(lightnormal_modelspace, myhalf3(VectorS));\n" " lightnormal.y = dot(lightnormal_modelspace, myhalf3(VectorT));\n" " lightnormal.z = dot(lightnormal_modelspace, myhalf3(VectorR));\n" " lightnormal = normalize(lightnormal); // VectorS/T/R are not always perfectly normalized, and EXACTSPECULARMATH is very picky about this\n" " // calculate directional shading (and undoing the existing angle attenuation on the lightmap by the division)\n" " // note that q3map2 is too stupid to calculate proper surface normals when q3map_nonplanar\n" " // is used (the lightmap and deluxemap coords correspond to virtually random coordinates\n" " // on that luxel, and NOT to its center, because recursive triangle subdivision is used\n" " // to map the luxels to coordinates on the draw surfaces), which also causes\n" " // deluxemaps to be wrong because light contributions from the wrong side of the surface\n" " // are added up. To prevent divisions by zero or strong exaggerations, a max()\n" " // nudge is done here at expense of some additional fps. This is ONLY needed for\n" " // deluxemaps, tangentspace deluxemap avoid this problem by design.\n" " lightcolor *= 1.0 / max(0.25, lightnormal.z);\n" "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n" "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n" "#define SHADING\n" " // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n" " myhalf3 lightnormal = myhalf3(texture2D(Texture_Deluxemap, TexCoordLightmap)) * 2.0 + myhalf3(-1.0, -1.0, -1.0);\n" " myhalf3 lightcolor = myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap));\n" "#endif\n" "\n" "\n" "\n" "\n" "#ifdef MODE_FAKELIGHT\n" "#define SHADING\n" "myhalf3 lightnormal = myhalf3(normalize(EyeVector));\n" "myhalf3 lightcolor = myhalf3(1.0);\n" "#endif // MODE_FAKELIGHT\n" "\n" "\n" "\n" "\n" "#ifdef MODE_LIGHTMAP\n" " color.rgb = diffusetex * (Color_Ambient + myhalf3(texture2D(Texture_Lightmap, TexCoordLightmap)) * Color_Diffuse);\n" "#endif // MODE_LIGHTMAP\n" "#ifdef MODE_VERTEXCOLOR\n" " color.rgb = diffusetex * (Color_Ambient + myhalf3(gl_Color.rgb) * Color_Diffuse);\n" "#endif // MODE_VERTEXCOLOR\n" "#ifdef MODE_FLATCOLOR\n" " color.rgb = diffusetex * Color_Ambient;\n" "#endif // MODE_FLATCOLOR\n" "\n" "\n" "\n" "\n" "#ifdef SHADING\n" "# ifdef USEDIFFUSE\n" " myhalf diffuse = myhalf(max(float(dot(surfacenormal, lightnormal)), 0.0));\n" "# ifdef USESPECULAR\n" "# ifdef USEEXACTSPECULARMATH\n" " myhalf specular = pow(myhalf(max(float(dot(reflect(lightnormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower * glosstex.a);\n" "# else\n" " myhalf3 specularnormal = normalize(lightnormal + myhalf3(normalize(EyeVector)));\n" " myhalf specular = pow(myhalf(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower * glosstex.a);\n" "# endif\n" " color.rgb = diffusetex * Color_Ambient + (diffusetex * Color_Diffuse * diffuse + glosstex.rgb * Color_Specular * specular) * lightcolor;\n" "# else\n" " color.rgb = diffusetex * (Color_Ambient + Color_Diffuse * diffuse * lightcolor);\n" "# endif\n" "# else\n" " color.rgb = diffusetex * Color_Ambient;\n" "# endif\n" "#endif\n" "\n" "#ifdef USESHADOWMAPORTHO\n" " color.rgb *= ShadowMapCompare(ShadowMapTC);\n" "#endif\n" "\n" "#ifdef USEDEFERREDLIGHTMAP\n" " vec2 ScreenTexCoord = gl_FragCoord.xy * PixelToScreenTexCoord;\n" " color.rgb += diffusetex * myhalf3(texture2D(Texture_ScreenDiffuse, ScreenTexCoord)) * DeferredMod_Diffuse;\n" " color.rgb += glosstex.rgb * myhalf3(texture2D(Texture_ScreenSpecular, ScreenTexCoord)) * DeferredMod_Specular;\n" "#endif\n" "\n" "#ifdef USEGLOW\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " color.rgb += mix(myhalf3(texture2D(Texture_SecondaryGlow, TexCoord2)), myhalf3(texture2D(Texture_Glow, TexCoord)), terrainblend) * Color_Glow;\n" "#else\n" " color.rgb += myhalf3(texture2D(Texture_Glow, TexCoord)) * Color_Glow;\n" "#endif\n" "#endif\n" "\n" "#ifdef USEFOG\n" " color.rgb = FogVertex(color.rgb);\n" "#endif\n" "\n" " // reflection must come last because it already contains exactly the correct fog (the reflection render preserves camera distance from the plane, it only flips the side) and ContrastBoost/SceneBrightness\n" "#ifdef USEREFLECTION\n" " vec4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n" " //vec4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n" " vec2 SafeScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW.zw + ScreenCenterRefractReflect.zw;\n" " vec2 ScreenTexCoord = SafeScreenTexCoord + vec3(normalize(myhalf3(texture2D(Texture_Normal, TexCoord)) - myhalf3(0.5))).xy * DistortScaleRefractReflect.zw;\n" " // FIXME temporary hack to detect the case that the reflection\n" " // gets blackened at edges due to leaving the area that contains actual\n" " // content.\n" " // Remove this 'ack once we have a better way to stop this thing from\n" " // 'appening.\n" " float f = min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord + vec2(0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord + vec2(0.01, -0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord + vec2(-0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(texture2D(Texture_Reflection, ScreenTexCoord + vec2(-0.01, -0.01)).rgb) / 0.05);\n" " ScreenTexCoord = mix(SafeScreenTexCoord, ScreenTexCoord, f);\n" " color.rgb = mix(color.rgb, myhalf3(texture2D(Texture_Reflection, ScreenTexCoord)) * ReflectColor.rgb, ReflectColor.a);\n" "#endif\n" "\n" " gl_FragColor = vec4(color);\n" "}\n" "#endif // FRAGMENT_SHADER\n" "\n" "#endif // !MODE_DEFERREDLIGHTSOURCE\n" "#endif // !MODE_DEFERREDGEOMETRY\n" "#endif // !MODE_WATER\n" "#endif // !MODE_REFRACTION\n" "#endif // !MODE_BLOOMBLUR\n" "#endif // !MODE_GENERIC\n" "#endif // !MODE_POSTPROCESS\n" "#endif // !MODE_SHOWDEPTH\n" "#endif // !MODE_DEPTH_OR_SHADOW\n" ; /* ========================================================================================================================================================= ========================================================================================================================================================= ========================================================================================================================================================= ========================================================================================================================================================= ========================================================================================================================================================= ========================================================================================================================================================= ========================================================================================================================================================= */ const char *builtincgshaderstring = "// ambient+diffuse+specular+normalmap+attenuation+cubemap+fog shader\n" "// written by Forest 'LordHavoc' Hale\n" "// shadowmapping enhancements by Lee 'eihrul' Salzman\n" "\n" "// FIXME: we need to get rid of ModelViewProjectionPosition to make room for the texcoord for this\n" "#if defined(USEREFLECTION)\n" "#undef USESHADOWMAPORTHO\n" "#endif\n" "\n" "#if defined(USEFOGINSIDE) || defined(USEFOGOUTSIDE) || defined(USEFOGHEIGHTTEXTURE)\n" "# define USEFOG\n" "#endif\n" "#if defined(MODE_LIGHTMAP) || defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(MODE_LIGHTDIRECTIONMAP_TANGENTSPACE)\n" "#define USELIGHTMAP\n" "#endif\n" "#if defined(USESPECULAR) || defined(USEOFFSETMAPPING) || defined(USEREFLECTCUBE) || defined(MODE_FAKELIGHT)\n" "#define USEEYEVECTOR\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "#ifdef HLSL\n" "//#undef USESHADOWMAPPCF\n" "//#define texDepth2D(tex,texcoord) tex2D(tex,texcoord).r\n" "#define texDepth2D(tex,texcoord) dot(tex2D(tex,texcoord).rgb, float3(1.0, 255.0/65536.0, 255.0/16777216.0))\n" "#else\n" "#define texDepth2D(tex,texcoord) tex2D(tex,texcoord).r\n" "#endif\n" "#endif\n" "\n" "#ifdef MODE_DEPTH_OR_SHADOW\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "out float4 gl_Position : POSITION,\n" "out float Depth : TEXCOORD0\n" ")\n" "{\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" " Depth = gl_Position.z;\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "float Depth : TEXCOORD0,\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" "// float4 temp = float4(Depth,Depth*(65536.0/255.0),Depth*(16777216.0/255.0),0.0);\n" " float4 temp = float4(Depth,Depth*256.0,Depth*65536.0,0.0);\n" " temp.yz -= floor(temp.yz);\n" " gl_FragColor = temp;\n" "// gl_FragColor = float4(Depth,0,0,0);\n" "}\n" "#endif\n" "#else // !MODE_DEPTH_ORSHADOW\n" "\n" "\n" "\n" "\n" "#ifdef MODE_SHOWDEPTH\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "out float4 gl_Position : POSITION,\n" "out float4 gl_FrontColor : COLOR0\n" ")\n" "{\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" " gl_FrontColor = float4(gl_Position.z, gl_Position.z, gl_Position.z, 1.0);\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "float4 gl_FrontColor : COLOR0,\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" " gl_FragColor = gl_FrontColor;\n" "}\n" "#endif\n" "#else // !MODE_SHOWDEPTH\n" "\n" "\n" "\n" "\n" "#ifdef MODE_POSTPROCESS\n" "\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "float4 gl_MultiTexCoord0 : TEXCOORD0,\n" "float4 gl_MultiTexCoord4 : TEXCOORD4,\n" "out float4 gl_Position : POSITION,\n" "out float2 TexCoord1 : TEXCOORD0,\n" "out float2 TexCoord2 : TEXCOORD1\n" ")\n" "{\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" " TexCoord1 = gl_MultiTexCoord0.xy;\n" "#ifdef USEBLOOM\n" " TexCoord2 = gl_MultiTexCoord4.xy;\n" "#endif\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "float2 TexCoord1 : TEXCOORD0,\n" "float2 TexCoord2 : TEXCOORD1,\n" "uniform sampler Texture_First : register(s0),\n" "#ifdef USEBLOOM\n" "uniform sampler Texture_Second : register(s1),\n" "#endif\n" "#ifdef USEGAMMARAMPS\n" "uniform sampler Texture_GammaRamps : register(s2),\n" "#endif\n" "#ifdef USESATURATION\n" "uniform float Saturation : register(c30),\n" "#endif\n" "#ifdef USEVIEWTINT\n" "uniform float4 ViewTintColor : register(c41),\n" "#endif\n" "uniform float4 UserVec1 : register(c37),\n" "uniform float4 UserVec2 : register(c38),\n" "uniform float4 UserVec3 : register(c39),\n" "uniform float4 UserVec4 : register(c40),\n" "uniform float ClientTime : register(c2),\n" "uniform float2 PixelSize : register(c25),\n" "uniform float4 BloomColorSubtract : register(c43),\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" " gl_FragColor = tex2D(Texture_First, TexCoord1);\n" "#ifdef USEBLOOM\n" " gl_FragColor += max(float4(0,0,0,0), tex2D(Texture_Second, TexCoord2) - BloomColorSubtract);\n" "#endif\n" "#ifdef USEVIEWTINT\n" " gl_FragColor = lerp(gl_FragColor, ViewTintColor, ViewTintColor.a);\n" "#endif\n" "\n" "#ifdef USEPOSTPROCESSING\n" "// do r_glsl_dumpshader, edit glsl/default.glsl, and replace this by your own postprocessing if you want\n" "// this code does a blur with the radius specified in the first component of r_glsl_postprocess_uservec1 and blends it using the second component\n" " float sobel = 1.0;\n" " // float2 ts = textureSize(Texture_First, 0);\n" " // float2 px = float2(1/ts.x, 1/ts.y);\n" " float2 px = PixelSize;\n" " float3 x1 = tex2D(Texture_First, TexCoord1 + float2(-px.x, px.y)).rgb;\n" " float3 x2 = tex2D(Texture_First, TexCoord1 + float2(-px.x, 0.0)).rgb;\n" " float3 x3 = tex2D(Texture_First, TexCoord1 + float2(-px.x,-px.y)).rgb;\n" " float3 x4 = tex2D(Texture_First, TexCoord1 + float2( px.x, px.y)).rgb;\n" " float3 x5 = tex2D(Texture_First, TexCoord1 + float2( px.x, 0.0)).rgb;\n" " float3 x6 = tex2D(Texture_First, TexCoord1 + float2( px.x,-px.y)).rgb;\n" " float3 y1 = tex2D(Texture_First, TexCoord1 + float2( px.x,-px.y)).rgb;\n" " float3 y2 = tex2D(Texture_First, TexCoord1 + float2( 0.0,-px.y)).rgb;\n" " float3 y3 = tex2D(Texture_First, TexCoord1 + float2(-px.x,-px.y)).rgb;\n" " float3 y4 = tex2D(Texture_First, TexCoord1 + float2( px.x, px.y)).rgb;\n" " float3 y5 = tex2D(Texture_First, TexCoord1 + float2( 0.0, px.y)).rgb;\n" " float3 y6 = tex2D(Texture_First, TexCoord1 + float2(-px.x, px.y)).rgb;\n" " float px1 = -1.0 * dot(float3(0.3, 0.59, 0.11), x1);\n" " float px2 = -2.0 * dot(float3(0.3, 0.59, 0.11), x2);\n" " float px3 = -1.0 * dot(float3(0.3, 0.59, 0.11), x3);\n" " float px4 = 1.0 * dot(float3(0.3, 0.59, 0.11), x4);\n" " float px5 = 2.0 * dot(float3(0.3, 0.59, 0.11), x5);\n" " float px6 = 1.0 * dot(float3(0.3, 0.59, 0.11), x6);\n" " float py1 = -1.0 * dot(float3(0.3, 0.59, 0.11), y1);\n" " float py2 = -2.0 * dot(float3(0.3, 0.59, 0.11), y2);\n" " float py3 = -1.0 * dot(float3(0.3, 0.59, 0.11), y3);\n" " float py4 = 1.0 * dot(float3(0.3, 0.59, 0.11), y4);\n" " float py5 = 2.0 * dot(float3(0.3, 0.59, 0.11), y5);\n" " float py6 = 1.0 * dot(float3(0.3, 0.59, 0.11), y6);\n" " sobel = 0.25 * abs(px1 + px2 + px3 + px4 + px5 + px6) + 0.25 * abs(py1 + py2 + py3 + py4 + py5 + py6);\n" " gl_FragColor += tex2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*float2(-0.987688, -0.156434)) * UserVec1.y;\n" " gl_FragColor += tex2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*float2(-0.156434, -0.891007)) * UserVec1.y;\n" " gl_FragColor += tex2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*float2( 0.891007, -0.453990)) * UserVec1.y;\n" " gl_FragColor += tex2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*float2( 0.707107, 0.707107)) * UserVec1.y;\n" " gl_FragColor += tex2D(Texture_First, TexCoord1 + PixelSize*UserVec1.x*float2(-0.453990, 0.891007)) * UserVec1.y;\n" " gl_FragColor /= (1.0 + 5.0 * UserVec1.y);\n" " gl_FragColor.rgb = gl_FragColor.rgb * (1.0 + UserVec2.x) + float3(1,1,1)*max(0.0, sobel - UserVec2.z)*UserVec2.y;\n" "#endif\n" "\n" "#ifdef USESATURATION\n" " //apply saturation BEFORE gamma ramps, so v_glslgamma value does not matter\n" " float y = dot(gl_FragColor.rgb, float3(0.299, 0.587, 0.114));\n" " // 'vampire sight' effect, wheres red is compensated\n" " #ifdef SATURATION_REDCOMPENSATE\n" " float rboost = max(0.0, (gl_FragColor.r - max(gl_FragColor.g, gl_FragColor.b))*(1.0 - Saturation));\n" " gl_FragColor.rgb = mix(float3(y,y,y), gl_FragColor.rgb, Saturation);\n" " gl_FragColor.r += r;\n" " #else\n" " // normal desaturation\n" " //gl_FragColor = float3(y,y,y) + (gl_FragColor.rgb - float3(y)) * Saturation;\n" " gl_FragColor.rgb = lerp(float3(y,y,y), gl_FragColor.rgb, Saturation);\n" " #endif\n" "#endif\n" "\n" "#ifdef USEGAMMARAMPS\n" " gl_FragColor.r = tex2D(Texture_GammaRamps, float2(gl_FragColor.r, 0)).r;\n" " gl_FragColor.g = tex2D(Texture_GammaRamps, float2(gl_FragColor.g, 0)).g;\n" " gl_FragColor.b = tex2D(Texture_GammaRamps, float2(gl_FragColor.b, 0)).b;\n" "#endif\n" "}\n" "#endif\n" "#else // !MODE_POSTPROCESS\n" "\n" "\n" "\n" "\n" "#ifdef MODE_GENERIC\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "float4 gl_Color : COLOR0,\n" "float4 gl_MultiTexCoord0 : TEXCOORD0,\n" "float4 gl_MultiTexCoord1 : TEXCOORD1,\n" "out float4 gl_Position : POSITION,\n" "#ifdef USEDIFFUSE\n" "out float2 TexCoord1 : TEXCOORD0,\n" "#endif\n" "#ifdef USESPECULAR\n" "out float2 TexCoord2 : TEXCOORD1,\n" "#endif\n" "out float4 gl_FrontColor : COLOR\n" ")\n" "{\n" "#ifdef HLSL\n" " gl_FrontColor = gl_Color.bgra; // NOTE: D3DCOLOR is backwards\n" "#else\n" " gl_FrontColor = gl_Color; // Cg is forward\n" "#endif\n" "#ifdef USEDIFFUSE\n" " TexCoord1 = gl_MultiTexCoord0.xy;\n" "#endif\n" "#ifdef USESPECULAR\n" " TexCoord2 = gl_MultiTexCoord1.xy;\n" "#endif\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "\n" "void main\n" "(\n" "float4 gl_FrontColor : COLOR0,\n" "float2 TexCoord1 : TEXCOORD0,\n" "float2 TexCoord2 : TEXCOORD1,\n" "#ifdef USEDIFFUSE\n" "uniform sampler Texture_First : register(s0),\n" "#endif\n" "#ifdef USESPECULAR\n" "uniform sampler Texture_Second : register(s1),\n" "#endif\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" "#ifdef USEVIEWTINT\n" " gl_FragColor = gl_FrontColor;\n" "#else\n" " gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);\n" "#endif\n" "#ifdef USEDIFFUSE\n" " gl_FragColor *= tex2D(Texture_First, TexCoord1);\n" "#endif\n" "\n" "#ifdef USESPECULAR\n" " float4 tex2 = tex2D(Texture_Second, TexCoord2);\n" "# ifdef USECOLORMAPPING\n" " gl_FragColor *= tex2;\n" "# endif\n" "# ifdef USEGLOW\n" " gl_FragColor += tex2;\n" "# endif\n" "# ifdef USEVERTEXTEXTUREBLEND\n" " gl_FragColor = lerp(gl_FragColor, tex2, tex2.a);\n" "# endif\n" "#endif\n" "}\n" "#endif\n" "#else // !MODE_GENERIC\n" "\n" "\n" "\n" "\n" "#ifdef MODE_BLOOMBLUR\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "float4 gl_MultiTexCoord0 : TEXCOORD0,\n" "out float4 gl_Position : POSITION,\n" "out float2 TexCoord : TEXCOORD0\n" ")\n" "{\n" " TexCoord = gl_MultiTexCoord0.xy;\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "\n" "void main\n" "(\n" "float2 TexCoord : TEXCOORD0,\n" "uniform sampler Texture_First : register(s0),\n" "uniform float4 BloomBlur_Parameters : register(c1),\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" " int i;\n" " float2 tc = TexCoord;\n" " float3 color = tex2D(Texture_First, tc).rgb;\n" " tc += BloomBlur_Parameters.xy;\n" " for (i = 1;i < SAMPLES;i++)\n" " {\n" " color += tex2D(Texture_First, tc).rgb;\n" " tc += BloomBlur_Parameters.xy;\n" " }\n" " gl_FragColor = float4(color * BloomBlur_Parameters.z + float3(BloomBlur_Parameters.w), 1);\n" "}\n" "#endif\n" "#else // !MODE_BLOOMBLUR\n" "#ifdef MODE_REFRACTION\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "float4 gl_MultiTexCoord0 : TEXCOORD0,\n" "uniform float4x4 TexMatrix : register(c0),\n" "uniform float3 EyePosition : register(c24),\n" "out float4 gl_Position : POSITION,\n" "out float2 TexCoord : TEXCOORD0,\n" "out float3 EyeVector : TEXCOORD1,\n" "out float4 ModelViewProjectionPosition : TEXCOORD2\n" ")\n" "{\n" " TexCoord = mul(TexMatrix, gl_MultiTexCoord0).xy;\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" " ModelViewProjectionPosition = gl_Position;\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "float2 TexCoord : TEXCOORD0,\n" "float3 EyeVector : TEXCOORD1,\n" "float4 ModelViewProjectionPosition : TEXCOORD2,\n" "uniform sampler Texture_Normal : register(s0),\n" "uniform sampler Texture_Refraction : register(s3),\n" "uniform sampler Texture_Reflection : register(s7),\n" "uniform float4 DistortScaleRefractReflect : register(c14),\n" "uniform float4 ScreenScaleRefractReflect : register(c32),\n" "uniform float4 ScreenCenterRefractReflect : register(c31),\n" "uniform float4 RefractColor : register(c29),\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" " float2 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect.xy * (1.0 / ModelViewProjectionPosition.w);\n" " //float2 ScreenTexCoord = (ModelViewProjectionPosition.xy + normalize(tex2D(Texture_Normal, TexCoord).rgb - float3(0.5,0.5,0.5)).xy * DistortScaleRefractReflect.xy * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n" " float2 SafeScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect.xy;\n" " float2 ScreenTexCoord = SafeScreenTexCoord + normalize(tex2D(Texture_Normal, TexCoord).rgb - float3(0.5,0.5,0.5)).xy * DistortScaleRefractReflect.xy;\n" " // FIXME temporary hack to detect the case that the reflection\n" " // gets blackened at edges due to leaving the area that contains actual\n" " // content.\n" " // Remove this 'ack once we have a better way to stop this thing from\n" " // 'appening.\n" " float f = min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord + float2(0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord + float2(0.01, -0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord + float2(-0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord + float2(-0.01, -0.01)).rgb) / 0.05);\n" " ScreenTexCoord = lerp(SafeScreenTexCoord, ScreenTexCoord, f);\n" " gl_FragColor = float4(tex2D(Texture_Refraction, ScreenTexCoord).rgb, 1) * RefractColor;\n" "}\n" "#endif\n" "#else // !MODE_REFRACTION\n" "\n" "\n" "\n" "\n" "#ifdef MODE_WATER\n" "#ifdef VERTEX_SHADER\n" "\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "float4 gl_MultiTexCoord0 : TEXCOORD0,\n" "float4 gl_MultiTexCoord1 : TEXCOORD1,\n" "float4 gl_MultiTexCoord2 : TEXCOORD2,\n" "float4 gl_MultiTexCoord3 : TEXCOORD3,\n" "uniform float4x4 TexMatrix : register(c0),\n" "uniform float3 EyePosition : register(c24),\n" "out float4 gl_Position : POSITION,\n" "out float2 TexCoord : TEXCOORD0,\n" "out float3 EyeVector : TEXCOORD1,\n" "out float4 ModelViewProjectionPosition : TEXCOORD2\n" ")\n" "{\n" " TexCoord = mul(TexMatrix, gl_MultiTexCoord0).xy;\n" " float3 EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n" " EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n" " EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n" " EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" " ModelViewProjectionPosition = gl_Position;\n" "}\n" "#endif\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "float2 TexCoord : TEXCOORD0,\n" "float3 EyeVector : TEXCOORD1,\n" "float4 ModelViewProjectionPosition : TEXCOORD2,\n" "uniform sampler Texture_Normal : register(s0),\n" "uniform sampler Texture_Refraction : register(s3),\n" "uniform sampler Texture_Reflection : register(s7),\n" "uniform float4 DistortScaleRefractReflect : register(c14),\n" "uniform float4 ScreenScaleRefractReflect : register(c32),\n" "uniform float4 ScreenCenterRefractReflect : register(c31),\n" "uniform float4 RefractColor : register(c29),\n" "uniform float4 ReflectColor : register(c26),\n" "uniform float ReflectFactor : register(c27),\n" "uniform float ReflectOffset : register(c28),\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" " float4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n" " //float4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(tex2D(Texture_Normal, TexCoord).rgb - float3(0.5,0.5,0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n" " float4 SafeScreenTexCoord = ModelViewProjectionPosition.xyxy * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n" " //SafeScreenTexCoord = gl_FragCoord.xyxy * float4(1.0 / 1920.0, 1.0 / 1200.0, 1.0 / 1920.0, 1.0 / 1200.0);\n" " float4 ScreenTexCoord = SafeScreenTexCoord + float2(normalize(tex2D(Texture_Normal, TexCoord).rgb - float3(0.5,0.5,0.5)).xy).xyxy * DistortScaleRefractReflect;\n" " // FIXME temporary hack to detect the case that the reflection\n" " // gets blackened at edges due to leaving the area that contains actual\n" " // content.\n" " // Remove this 'ack once we have a better way to stop this thing from\n" " // 'appening.\n" " float f = min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord.xy + float2(0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord.xy + float2(0.01, -0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord.xy + float2(-0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Refraction, ScreenTexCoord.xy + float2(-0.01, -0.01)).rgb) / 0.05);\n" " ScreenTexCoord.xy = lerp(SafeScreenTexCoord.xy, ScreenTexCoord.xy, f);\n" " f = min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord.zw + float2(0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord.zw + float2(0.01, -0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord.zw + float2(-0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord.zw + float2(-0.01, -0.01)).rgb) / 0.05);\n" " ScreenTexCoord.zw = lerp(SafeScreenTexCoord.zw, ScreenTexCoord.zw, f);\n" " float Fresnel = pow(min(1.0, 1.0 - float(normalize(EyeVector).z)), 2.0) * ReflectFactor + ReflectOffset;\n" " gl_FragColor = lerp(float4(tex2D(Texture_Refraction, ScreenTexCoord.xy).rgb, 1) * RefractColor, float4(tex2D(Texture_Reflection, ScreenTexCoord.zw).rgb, 1) * ReflectColor, Fresnel);\n" "}\n" "#endif\n" "#else // !MODE_WATER\n" "\n" "\n" "\n" "\n" "// TODO: get rid of tangentt (texcoord2) and use a crossproduct to regenerate it from tangents (texcoord1) and normal (texcoord3), this would require sending a 4 component texcoord1 with W as 1 or -1 according to which side the texcoord2 should be on\n" "\n" "// fragment shader specific:\n" "#ifdef FRAGMENT_SHADER\n" "\n" "#ifdef USEFOG\n" "float3 FogVertex(float3 surfacecolor, float3 FogColor, float3 EyeVectorModelSpace, float FogPlaneVertexDist, float FogRangeRecip, float FogPlaneViewDist, float FogHeightFade, sampler Texture_FogMask, sampler Texture_FogHeightTexture)\n" "{\n" " float fogfrac;\n" "#ifdef USEFOGHEIGHTTEXTURE\n" " float4 fogheightpixel = tex2D(Texture_FogHeightTexture, float2(1,1) + float2(FogPlaneVertexDist, FogPlaneViewDist) * (-2.0 * FogHeightFade));\n" " fogfrac = fogheightpixel.a;\n" " return lerp(fogheightpixel.rgb * FogColor, surfacecolor, tex2D(Texture_FogMask, float2(length(EyeVectorModelSpace)*fogfrac*FogRangeRecip, 0.0)).r);\n" "#else\n" "# ifdef USEFOGOUTSIDE\n" " fogfrac = min(0.0, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0, min(0.0, FogPlaneVertexDist) * FogHeightFade);\n" "# else\n" " fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0, FogPlaneVertexDist)) * min(1.0, (min(0.0, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade);\n" "# endif\n" " return lerp(FogColor, surfacecolor, tex2D(Texture_FogMask, float2(length(EyeVectorModelSpace)*fogfrac*FogRangeRecip, 0.0)).r);\n" "#endif\n" "}\n" "#endif\n" "\n" "#ifdef USEOFFSETMAPPING\n" "float2 OffsetMapping(float2 TexCoord, float OffsetMapping_Scale, float3 EyeVector, sampler Texture_Normal)\n" "{\n" "#ifdef USEOFFSETMAPPING_RELIEFMAPPING\n" " // 14 sample relief mapping: linear search and then binary search\n" " // this basically steps forward a small amount repeatedly until it finds\n" " // itself inside solid, then jitters forward and back using decreasing\n" " // amounts to find the impact\n" " //float3 OffsetVector = float3(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * float2(-1, 1), -1);\n" " //float3 OffsetVector = float3(normalize(EyeVector.xy) * OffsetMapping_Scale * float2(-1, 1), -1);\n" " float3 OffsetVector = float3(normalize(EyeVector).xy * OffsetMapping_Scale * float2(-1, 1), -1);\n" " float3 RT = float3(TexCoord, 1);\n" " OffsetVector *= 0.1;\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * step(tex2D(Texture_Normal, RT.xy).a, RT.z);\n" " RT += OffsetVector * (step(tex2D(Texture_Normal, RT.xy).a, RT.z) - 0.5);\n" " RT += OffsetVector * (step(tex2D(Texture_Normal, RT.xy).a, RT.z) * 0.5 - 0.25);\n" " RT += OffsetVector * (step(tex2D(Texture_Normal, RT.xy).a, RT.z) * 0.25 - 0.125);\n" " RT += OffsetVector * (step(tex2D(Texture_Normal, RT.xy).a, RT.z) * 0.125 - 0.0625);\n" " RT += OffsetVector * (step(tex2D(Texture_Normal, RT.xy).a, RT.z) * 0.0625 - 0.03125);\n" " return RT.xy;\n" "#else\n" " // 3 sample offset mapping (only 3 samples because of ATI Radeon 9500-9800/X300 limits)\n" " // this basically moves forward the full distance, and then backs up based\n" " // on height of samples\n" " //float2 OffsetVector = float2(EyeVector.xy * ((1.0 / EyeVector.z) * OffsetMapping_Scale) * float2(-1, 1));\n" " //float2 OffsetVector = float2(normalize(EyeVector.xy) * OffsetMapping_Scale * float2(-1, 1));\n" " float2 OffsetVector = float2(normalize(EyeVector).xy * OffsetMapping_Scale * float2(-1, 1));\n" " TexCoord += OffsetVector;\n" " OffsetVector *= 0.333;\n" " TexCoord -= OffsetVector * tex2D(Texture_Normal, TexCoord).a;\n" " TexCoord -= OffsetVector * tex2D(Texture_Normal, TexCoord).a;\n" " TexCoord -= OffsetVector * tex2D(Texture_Normal, TexCoord).a;\n" " return TexCoord;\n" "#endif\n" "}\n" "#endif // USEOFFSETMAPPING\n" "\n" "#if defined(MODE_LIGHTSOURCE) || defined(MODE_DEFERREDLIGHTSOURCE) || defined(USESHADOWMAPORTHO)\n" "#if defined(USESHADOWMAP2D)\n" "# ifdef USESHADOWMAPORTHO\n" "# define GetShadowMapTC2D(dir, ShadowMap_Parameters) (min(dir, ShadowMap_Parameters.xyz))\n" "# else\n" "# ifdef USESHADOWMAPVSDCT\n" "float3 GetShadowMapTC2D(float3 dir, float4 ShadowMap_Parameters, samplerCUBE Texture_CubeProjection)\n" "{\n" " float3 adir = abs(dir);\n" " float2 aparams = ShadowMap_Parameters.xy / max(max(adir.x, adir.y), adir.z);\n" " float4 proj = texCUBE(Texture_CubeProjection, dir);\n" " return float3(lerp(dir.xy, dir.zz, proj.xy) * aparams.x + proj.zw * ShadowMap_Parameters.z, aparams.y + ShadowMap_Parameters.w);\n" "}\n" "# else\n" "float3 GetShadowMapTC2D(float3 dir, float4 ShadowMap_Parameters)\n" "{\n" " float3 adir = abs(dir);\n" " float ma = adir.z;\n" " float4 proj = float4(dir, 2.5);\n" " if (adir.x > ma) { ma = adir.x; proj = float4(dir.zyx, 0.5); }\n" " if (adir.y > ma) { ma = adir.y; proj = float4(dir.xzy, 1.5); }\n" "#ifdef HLSL\n" " return float3(proj.xy * ShadowMap_Parameters.x / ma + float2(0.5,0.5) + float2(proj.z < 0.0 ? 1.5 : 0.5, proj.w) * ShadowMap_Parameters.z, ma + 64 * ShadowMap_Parameters.w);\n" "#else\n" " float2 aparams = ShadowMap_Parameters.xy / ma;\n" " return float3(proj.xy * aparams.x + float2(proj.z < 0.0 ? 1.5 : 0.5, proj.w) * ShadowMap_Parameters.z, aparams.y + ShadowMap_Parameters.w);\n" "#endif\n" "}\n" "# endif\n" "# endif\n" "#endif // defined(USESHADOWMAP2D)\n" "\n" "# ifdef USESHADOWMAP2D\n" "#ifdef USESHADOWMAPVSDCT\n" "float ShadowMapCompare(float3 dir, sampler Texture_ShadowMap2D, float4 ShadowMap_Parameters, float2 ShadowMap_TextureScale, samplerCUBE Texture_CubeProjection)\n" "#else\n" "float ShadowMapCompare(float3 dir, sampler Texture_ShadowMap2D, float4 ShadowMap_Parameters, float2 ShadowMap_TextureScale)\n" "#endif\n" "{\n" "#ifdef USESHADOWMAPVSDCT\n" " float3 shadowmaptc = GetShadowMapTC2D(dir, ShadowMap_Parameters, Texture_CubeProjection);\n" "#else\n" " float3 shadowmaptc = GetShadowMapTC2D(dir, ShadowMap_Parameters);\n" "#endif\n" " float f;\n" "\n" "# ifdef USESHADOWSAMPLER\n" "# ifdef USESHADOWMAPPCF\n" "# define texval(x, y) tex2Dproj(Texture_ShadowMap2D, float4(center + float2(x, y)*ShadowMap_TextureScale, shadowmaptc.z, 1.0)).r \n" " float2 center = shadowmaptc.xy*ShadowMap_TextureScale;\n" " f = dot(float4(0.25,0.25,0.25,0.25), float4(texval(-0.4, 1.0), texval(-1.0, -0.4), texval(0.4, -1.0), texval(1.0, 0.4)));\n" "# else\n" " f = tex2Dproj(Texture_ShadowMap2D, float4(shadowmaptc.xy*ShadowMap_TextureScale, shadowmaptc.z, 1.0)).r;\n" "# endif\n" "# else\n" "# ifdef USESHADOWMAPPCF\n" "# if defined(GL_ARB_texture_gather) || defined(GL_AMD_texture_texture4)\n" "# ifdef GL_ARB_texture_gather\n" "# define texval(x, y) textureGatherOffset(Texture_ShadowMap2D, center, int2(x, y))\n" "# else\n" "# define texval(x, y) texture4(Texture_ShadowMap2D, center + float2(x, y)*ShadowMap_TextureScale)\n" "# endif\n" " float2 offset = frac(shadowmaptc.xy - 0.5), center = (shadowmaptc.xy - offset)*ShadowMap_TextureScale;\n" "# if USESHADOWMAPPCF > 1\n" " float4 group1 = step(shadowmaptc.z, texval(-2.0, -2.0));\n" " float4 group2 = step(shadowmaptc.z, texval( 0.0, -2.0));\n" " float4 group3 = step(shadowmaptc.z, texval( 2.0, -2.0));\n" " float4 group4 = step(shadowmaptc.z, texval(-2.0, 0.0));\n" " float4 group5 = step(shadowmaptc.z, texval( 0.0, 0.0));\n" " float4 group6 = step(shadowmaptc.z, texval( 2.0, 0.0));\n" " float4 group7 = step(shadowmaptc.z, texval(-2.0, 2.0));\n" " float4 group8 = step(shadowmaptc.z, texval( 0.0, 2.0));\n" " float4 group9 = step(shadowmaptc.z, texval( 2.0, 2.0));\n" " float4 locols = float4(group1.ab, group3.ab);\n" " float4 hicols = float4(group7.rg, group9.rg);\n" " locols.yz += group2.ab;\n" " hicols.yz += group8.rg;\n" " float4 midcols = float4(group1.rg, group3.rg) + float4(group7.ab, group9.ab) +\n" " float4(group4.rg, group6.rg) + float4(group4.ab, group6.ab) +\n" " lerp(locols, hicols, offset.y);\n" " float4 cols = group5 + float4(group2.rg, group8.ab);\n" " cols.xyz += lerp(midcols.xyz, midcols.yzw, offset.x);\n" " f = dot(cols, float4(1.0/25.0));\n" "# else\n" " float4 group1 = step(shadowmaptc.z, texval(-1.0, -1.0));\n" " float4 group2 = step(shadowmaptc.z, texval( 1.0, -1.0));\n" " float4 group3 = step(shadowmaptc.z, texval(-1.0, 1.0));\n" " float4 group4 = step(shadowmaptc.z, texval( 1.0, 1.0));\n" " float4 cols = float4(group1.rg, group2.rg) + float4(group3.ab, group4.ab) +\n" " lerp(float4(group1.ab, group2.ab), float4(group3.rg, group4.rg), offset.y);\n" " f = dot(lerp(cols.xyz, cols.yzw, offset.x), float3(1.0/9.0));\n" "# endif\n" "# else\n" "# ifdef GL_EXT_gpu_shader4\n" "# define texval(x, y) tex2DOffset(Texture_ShadowMap2D, center, int2(x, y)).r\n" "# else\n" "# define texval(x, y) texDepth2D(Texture_ShadowMap2D, center + float2(x, y)*ShadowMap_TextureScale).r \n" "# endif\n" "# if USESHADOWMAPPCF > 1\n" " float2 center = shadowmaptc.xy - 0.5, offset = frac(center);\n" " center *= ShadowMap_TextureScale;\n" " float4 row1 = step(shadowmaptc.z, float4(texval(-1.0, -1.0), texval( 0.0, -1.0), texval( 1.0, -1.0), texval( 2.0, -1.0)));\n" " float4 row2 = step(shadowmaptc.z, float4(texval(-1.0, 0.0), texval( 0.0, 0.0), texval( 1.0, 0.0), texval( 2.0, 0.0)));\n" " float4 row3 = step(shadowmaptc.z, float4(texval(-1.0, 1.0), texval( 0.0, 1.0), texval( 1.0, 1.0), texval( 2.0, 1.0)));\n" " float4 row4 = step(shadowmaptc.z, float4(texval(-1.0, 2.0), texval( 0.0, 2.0), texval( 1.0, 2.0), texval( 2.0, 2.0)));\n" " float4 cols = row2 + row3 + lerp(row1, row4, offset.y);\n" " f = dot(lerp(cols.xyz, cols.yzw, offset.x), float3(1.0/9.0));\n" "# else\n" " float2 center = shadowmaptc.xy*ShadowMap_TextureScale, offset = frac(shadowmaptc.xy);\n" " float3 row1 = step(shadowmaptc.z, float3(texval(-1.0, -1.0), texval( 0.0, -1.0), texval( 1.0, -1.0)));\n" " float3 row2 = step(shadowmaptc.z, float3(texval(-1.0, 0.0), texval( 0.0, 0.0), texval( 1.0, 0.0)));\n" " float3 row3 = step(shadowmaptc.z, float3(texval(-1.0, 1.0), texval( 0.0, 1.0), texval( 1.0, 1.0)));\n" " float3 cols = row2 + lerp(row1, row3, offset.y);\n" " f = dot(lerp(cols.xy, cols.yz, offset.x), float2(0.25,0.25));\n" "# endif\n" "# endif\n" "# else\n" " f = step(shadowmaptc.z, tex2D(Texture_ShadowMap2D, shadowmaptc.xy*ShadowMap_TextureScale).r);\n" "# endif\n" "# endif\n" "# ifdef USESHADOWMAPORTHO\n" " return lerp(ShadowMap_Parameters.w, 1.0, f);\n" "# else\n" " return f;\n" "# endif\n" "}\n" "# endif\n" "#endif // !defined(MODE_LIGHTSOURCE) && !defined(MODE_DEFERREDLIGHTSOURCE) && !defined(USESHADOWMAPORTHO)\n" "#endif // FRAGMENT_SHADER\n" "\n" "\n" "\n" "\n" "#ifdef MODE_DEFERREDGEOMETRY\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "float4 gl_Color : COLOR0,\n" "#endif\n" "float4 gl_MultiTexCoord0 : TEXCOORD0,\n" "float4 gl_MultiTexCoord1 : TEXCOORD1,\n" "float4 gl_MultiTexCoord2 : TEXCOORD2,\n" "float4 gl_MultiTexCoord3 : TEXCOORD3,\n" "uniform float4x4 TexMatrix : register(c0),\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "uniform float4x4 BackgroundTexMatrix : register(c4),\n" "#endif\n" "uniform float4x4 ModelViewMatrix : register(c12),\n" "#ifdef USEOFFSETMAPPING\n" "uniform float3 EyePosition : register(c24),\n" "#endif\n" "out float4 gl_Position : POSITION,\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "out float4 gl_FrontColor : COLOR,\n" "#endif\n" "out float4 TexCoordBoth : TEXCOORD0,\n" "#ifdef USEOFFSETMAPPING\n" "out float3 EyeVector : TEXCOORD2,\n" "#endif\n" "out float3 VectorS : TEXCOORD5, // direction of S texcoord (sometimes crudely called tangent)\n" "out float3 VectorT : TEXCOORD6, // direction of T texcoord (sometimes crudely called binormal)\n" "out float4 VectorR : TEXCOORD7 // direction of R texcoord (surface normal), Depth value\n" ")\n" "{\n" " TexCoordBoth = mul(TexMatrix, gl_MultiTexCoord0);\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "#ifdef HLSL\n" " gl_FrontColor = gl_Color.bgra; // NOTE: D3DCOLOR is backwards\n" "#else\n" " gl_FrontColor = gl_Color; // Cg is forward\n" "#endif\n" " TexCoordBoth.zw = float2(Backgroundmul(TexMatrix, gl_MultiTexCoord0));\n" "#endif\n" "\n" " // transform unnormalized eye direction into tangent space\n" "#ifdef USEOFFSETMAPPING\n" " float3 EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n" " EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n" " EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n" " EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n" "#endif\n" "\n" " VectorS = mul(ModelViewMatrix, float4(gl_MultiTexCoord1.xyz, 0)).xyz;\n" " VectorT = mul(ModelViewMatrix, float4(gl_MultiTexCoord2.xyz, 0)).xyz;\n" " VectorR.xyz = mul(ModelViewMatrix, float4(gl_MultiTexCoord3.xyz, 0)).xyz;\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" " VectorR.w = gl_Position.z;\n" "}\n" "#endif // VERTEX_SHADER\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "float4 TexCoordBoth : TEXCOORD0,\n" "float3 EyeVector : TEXCOORD2,\n" "float3 VectorS : TEXCOORD5, // direction of S texcoord (sometimes crudely called tangent)\n" "float3 VectorT : TEXCOORD6, // direction of T texcoord (sometimes crudely called binormal)\n" "float4 VectorR : TEXCOORD7, // direction of R texcoord (surface normal), Depth value\n" "uniform sampler Texture_Normal : register(s0),\n" "#ifdef USEALPHAKILL\n" "uniform sampler Texture_Color : register(s1),\n" "#endif\n" "uniform sampler Texture_Gloss : register(s2),\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "uniform sampler Texture_SecondaryNormal : register(s4),\n" "uniform sampler Texture_SecondaryGloss : register(s6),\n" "#endif\n" "#ifdef USEOFFSETMAPPING\n" "uniform float OffsetMapping_Scale : register(c24),\n" "#endif\n" "uniform half SpecularPower : register(c36),\n" "#ifdef HLSL\n" "out float4 gl_FragData0 : COLOR0,\n" "out float4 gl_FragData1 : COLOR1\n" "#else\n" "out float4 gl_FragColor : COLOR\n" "#endif\n" ")\n" "{\n" " float2 TexCoord = TexCoordBoth.xy;\n" "#ifdef USEOFFSETMAPPING\n" " // apply offsetmapping\n" " float2 TexCoordOffset = OffsetMapping(TexCoord, OffsetMapping_Scale, EyeVector, Texture_Normal);\n" "#define TexCoord TexCoordOffset\n" "#endif\n" "\n" "#ifdef USEALPHAKILL\n" " if (tex2D(Texture_Color, TexCoord).a < 0.5)\n" " discard;\n" "#endif\n" "\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " float alpha = tex2D(Texture_Color, TexCoord).a;\n" " float terrainblend = clamp(float(gl_FrontColor.a) * alpha * 2.0 - 0.5, float(0.0), float(1.0));\n" " //float terrainblend = min(float(gl_FrontColor.a) * alpha * 2.0, float(1.0));\n" " //float terrainblend = float(gl_FrontColor.a) * alpha > 0.5;\n" "#endif\n" "\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " float3 surfacenormal = lerp(tex2D(Texture_SecondaryNormal, TexCoord2).rgb, tex2D(Texture_Normal, TexCoord).rgb, terrainblend) - float3(0.5, 0.5, 0.5);\n" " float a = lerp(tex2D(Texture_SecondaryGloss, TexCoord2).a, tex2D(Texture_Gloss, TexCoord).a, terrainblend);\n" "#else\n" " float3 surfacenormal = tex2D(Texture_Normal, TexCoord).rgb - float3(0.5, 0.5, 0.5);\n" " float a = tex2D(Texture_Gloss, TexCoord).a;\n" "#endif\n" "\n" "#ifdef HLSL\n" " gl_FragData0 = float4(normalize(surfacenormal.x * VectorS + surfacenormal.y * VectorT + surfacenormal.z * VectorR.xyz) * 0.5 + float3(0.5, 0.5, 0.5), a);\n" " float Depth = VectorR.w / 256.0;\n" " float4 depthcolor = float4(Depth,Depth*65536.0/255.0,Depth*16777216.0/255.0,0.0);\n" "// float4 depthcolor = float4(Depth,Depth*256.0,Depth*65536.0,0.0);\n" " depthcolor.yz -= floor(depthcolor.yz);\n" " gl_FragData1 = depthcolor;\n" "#else\n" " gl_FragColor = float4(normalize(surfacenormal.x * VectorS + surfacenormal.y * VectorT + surfacenormal.z * VectorR) * 0.5 + float3(0.5, 0.5, 0.5), a);\n" "#endif\n" "}\n" "#endif // FRAGMENT_SHADER\n" "#else // !MODE_DEFERREDGEOMETRY\n" "\n" "\n" "\n" "\n" "#ifdef MODE_DEFERREDLIGHTSOURCE\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "uniform float4x4 ModelViewMatrix : register(c12),\n" "out float4 gl_Position : POSITION,\n" "out float4 ModelViewPosition : TEXCOORD0\n" ")\n" "{\n" " ModelViewPosition = mul(ModelViewMatrix, gl_Vertex);\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" "}\n" "#endif // VERTEX_SHADER\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "#ifdef HLSL\n" "float2 Pixel : VPOS,\n" "#else\n" "float2 Pixel : WPOS,\n" "#endif\n" "float4 ModelViewPosition : TEXCOORD0,\n" "uniform float4x4 ViewToLight : register(c44),\n" "uniform float2 ScreenToDepth : register(c33), // ScreenToDepth = float2(Far / (Far - Near), Far * Near / (Near - Far));\n" "uniform float3 LightPosition : register(c23),\n" "uniform half2 PixelToScreenTexCoord : register(c42),\n" "uniform half3 DeferredColor_Ambient : register(c9),\n" "uniform half3 DeferredColor_Diffuse : register(c10),\n" "#ifdef USESPECULAR\n" "uniform half3 DeferredColor_Specular : register(c11),\n" "uniform half SpecularPower : register(c36),\n" "#endif\n" "uniform sampler Texture_Attenuation : register(s9),\n" "uniform sampler Texture_ScreenDepth : register(s13),\n" "uniform sampler Texture_ScreenNormalMap : register(s14),\n" "\n" "#ifdef USECUBEFILTER\n" "uniform samplerCUBE Texture_Cube : register(s10),\n" "#endif\n" "\n" "#ifdef USESHADOWMAP2D\n" "# ifdef USESHADOWSAMPLER\n" "uniform sampler Texture_ShadowMap2D : register(s15),\n" "# else\n" "uniform sampler Texture_ShadowMap2D : register(s15),\n" "# endif\n" "#endif\n" "\n" "#ifdef USESHADOWMAPVSDCT\n" "uniform samplerCUBE Texture_CubeProjection : register(s12),\n" "#endif\n" "\n" "#if defined(USESHADOWMAP2D)\n" "uniform float2 ShadowMap_TextureScale : register(c35),\n" "uniform float4 ShadowMap_Parameters : register(c34),\n" "#endif\n" "\n" "out float4 gl_FragData0 : COLOR0,\n" "out float4 gl_FragData1 : COLOR1\n" ")\n" "{\n" " // calculate viewspace pixel position\n" " float2 ScreenTexCoord = Pixel * PixelToScreenTexCoord;\n" " //ScreenTexCoord.y = ScreenTexCoord.y * -1 + 1; // Cg is opposite?\n" " float3 position;\n" "#ifdef HLSL\n" " position.z = texDepth2D(Texture_ScreenDepth, ScreenTexCoord) * 256.0;\n" "#else\n" " position.z = ScreenToDepth.y / (texDepth2D(Texture_ScreenDepth, ScreenTexCoord) + ScreenToDepth.x);\n" "#endif\n" " position.xy = ModelViewPosition.xy * (position.z / ModelViewPosition.z);\n" " // decode viewspace pixel normal\n" " half4 normalmap = half4(tex2D(Texture_ScreenNormalMap, ScreenTexCoord));\n" " half3 surfacenormal = half3(normalize(normalmap.rgb - half3(0.5,0.5,0.5)));\n" " // surfacenormal = pixel normal in viewspace\n" " // LightVector = pixel to light in viewspace\n" " // CubeVector = position in lightspace\n" " // eyevector = pixel to view in viewspace\n" " float3 CubeVector = mul(ViewToLight, float4(position,1)).xyz;\n" " half fade = half(tex2D(Texture_Attenuation, float2(length(CubeVector), 0.0)).r);\n" "#ifdef USEDIFFUSE\n" " // calculate diffuse shading\n" " half3 lightnormal = half3(normalize(LightPosition - position));\n" " half diffuse = half(max(float(dot(surfacenormal, lightnormal)), 0.0));\n" "#endif\n" "#ifdef USESPECULAR\n" " // calculate directional shading\n" " float3 eyevector = position * -1.0;\n" "# ifdef USEEXACTSPECULARMATH\n" " half specular = half(pow(half(max(float(dot(reflect(lightnormal, surfacenormal), normalize(eyevector)))*-1.0, 0.0)), SpecularPower * normalmap.a));\n" "# else\n" " half3 specularnormal = half3(normalize(lightnormal + half3(normalize(eyevector))));\n" " half specular = half(pow(half(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower * normalmap.a));\n" "# endif\n" "#endif\n" "\n" "#if defined(USESHADOWMAP2D)\n" " fade *= half(ShadowMapCompare(CubeVector, Texture_ShadowMap2D, ShadowMap_Parameters, ShadowMap_TextureScale\n" "#ifdef USESHADOWMAPVSDCT\n" ", Texture_CubeProjection\n" "#endif\n" " ));\n" "#endif\n" "\n" "#ifdef USEDIFFUSE\n" " gl_FragData0 = float4((DeferredColor_Ambient + DeferredColor_Diffuse * diffuse) * fade, 1.0);\n" "#else\n" " gl_FragData0 = float4(DeferredColor_Ambient * fade, 1.0);\n" "#endif\n" "#ifdef USESPECULAR\n" " gl_FragData1 = float4(DeferredColor_Specular * (specular * fade), 1.0);\n" "#else\n" " gl_FragData1 = float4(0.0, 0.0, 0.0, 1.0);\n" "#endif\n" "\n" "# ifdef USECUBEFILTER\n" " float3 cubecolor = texCUBE(Texture_Cube, CubeVector).rgb;\n" " gl_FragData0.rgb *= cubecolor;\n" " gl_FragData1.rgb *= cubecolor;\n" "# endif\n" "}\n" "#endif // FRAGMENT_SHADER\n" "#else // !MODE_DEFERREDLIGHTSOURCE\n" "\n" "\n" "\n" "\n" "#ifdef VERTEX_SHADER\n" "void main\n" "(\n" "float4 gl_Vertex : POSITION,\n" "uniform float4x4 ModelViewProjectionMatrix : register(c8),\n" "#if defined(USEVERTEXTEXTUREBLEND) || defined(MODE_VERTEXCOLOR)\n" "float4 gl_Color : COLOR0,\n" "#endif\n" "float4 gl_MultiTexCoord0 : TEXCOORD0,\n" "float4 gl_MultiTexCoord1 : TEXCOORD1,\n" "float4 gl_MultiTexCoord2 : TEXCOORD2,\n" "float4 gl_MultiTexCoord3 : TEXCOORD3,\n" "float4 gl_MultiTexCoord4 : TEXCOORD4,\n" "\n" "uniform float3 EyePosition : register(c24),\n" "uniform float4x4 TexMatrix : register(c0),\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "uniform float4x4 BackgroundTexMatrix : register(c4),\n" "#endif\n" "#ifdef MODE_LIGHTSOURCE\n" "uniform float4x4 ModelToLight : register(c20),\n" "#endif\n" "#ifdef MODE_LIGHTSOURCE\n" "uniform float3 LightPosition : register(c27),\n" "#endif\n" "#ifdef MODE_LIGHTDIRECTION\n" "uniform float3 LightDir : register(c26),\n" "#endif\n" "uniform float4 FogPlane : register(c25),\n" "#ifdef MODE_DEFERREDLIGHTSOURCE\n" "uniform float3 LightPosition : register(c27),\n" "#endif\n" "#ifdef USESHADOWMAPORTHO\n" "uniform float4x4 ShadowMapMatrix : register(c16),\n" "#endif\n" "#if defined(MODE_VERTEXCOLOR) || defined(USEVERTEXTEXTUREBLEND)\n" "out float4 gl_FrontColor : COLOR,\n" "#endif\n" "out float4 TexCoordBoth : TEXCOORD0,\n" "#ifdef USELIGHTMAP\n" "out float2 TexCoordLightmap : TEXCOORD1,\n" "#endif\n" "#ifdef USEEYEVECTOR\n" "out float3 EyeVector : TEXCOORD2,\n" "#endif\n" "#ifdef USEREFLECTION\n" "out float4 ModelViewProjectionPosition : TEXCOORD3,\n" "#endif\n" "#ifdef USEFOG\n" "out float4 EyeVectorModelSpaceFogPlaneVertexDist : TEXCOORD4,\n" "#endif\n" "#if defined(MODE_LIGHTDIRECTION) && defined(USEDIFFUSE) || defined(USEDIFFUSE)\n" "out float3 LightVector : TEXCOORD1,\n" "#endif\n" "#ifdef MODE_LIGHTSOURCE\n" "out float3 CubeVector : TEXCOORD3,\n" "#endif\n" "#if defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(MODE_DEFERREDGEOMETRY) || defined(USEREFLECTCUBE)\n" "out float3 VectorS : TEXCOORD5, // direction of S texcoord (sometimes crudely called tangent)\n" "out float3 VectorT : TEXCOORD6, // direction of T texcoord (sometimes crudely called binormal)\n" "out float3 VectorR : TEXCOORD7, // direction of R texcoord (surface normal)\n" "#endif\n" "#ifdef USESHADOWMAPORTHO\n" "out float3 ShadowMapTC : TEXCOORD3, // CONFLICTS WITH USEREFLECTION!\n" "#endif\n" "out float4 gl_Position : POSITION\n" ")\n" "{\n" "#if defined(MODE_VERTEXCOLOR) || defined(USEVERTEXTEXTUREBLEND)\n" "#ifdef HLSL\n" " gl_FrontColor = gl_Color.bgra; // NOTE: D3DCOLOR is backwards\n" "#else\n" " gl_FrontColor = gl_Color; // Cg is forward\n" "#endif\n" "#endif\n" " // copy the surface texcoord\n" " TexCoordBoth = mul(TexMatrix, gl_MultiTexCoord0);\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " TexCoordBoth.zw = mul(BackgroundTexMatrix, gl_MultiTexCoord0).xy;\n" "#endif\n" "#ifdef USELIGHTMAP\n" " TexCoordLightmap = gl_MultiTexCoord4.xy;\n" "#endif\n" "\n" "#ifdef MODE_LIGHTSOURCE\n" " // transform vertex position into light attenuation/cubemap space\n" " // (-1 to +1 across the light box)\n" " CubeVector = mul(ModelToLight, gl_Vertex).xyz;\n" "\n" "# ifdef USEDIFFUSE\n" " // transform unnormalized light direction into tangent space\n" " // (we use unnormalized to ensure that it interpolates correctly and then\n" " // normalize it per pixel)\n" " float3 lightminusvertex = LightPosition - gl_Vertex.xyz;\n" " LightVector.x = dot(lightminusvertex, gl_MultiTexCoord1.xyz);\n" " LightVector.y = dot(lightminusvertex, gl_MultiTexCoord2.xyz);\n" " LightVector.z = dot(lightminusvertex, gl_MultiTexCoord3.xyz);\n" "# endif\n" "#endif\n" "\n" "#if defined(MODE_LIGHTDIRECTION) && defined(USEDIFFUSE)\n" " LightVector.x = dot(LightDir, gl_MultiTexCoord1.xyz);\n" " LightVector.y = dot(LightDir, gl_MultiTexCoord2.xyz);\n" " LightVector.z = dot(LightDir, gl_MultiTexCoord3.xyz);\n" "#endif\n" "\n" " // transform unnormalized eye direction into tangent space\n" "#ifdef USEEYEVECTOR\n" " float3 EyeVectorModelSpace = EyePosition - gl_Vertex.xyz;\n" " EyeVector.x = dot(EyeVectorModelSpace, gl_MultiTexCoord1.xyz);\n" " EyeVector.y = dot(EyeVectorModelSpace, gl_MultiTexCoord2.xyz);\n" " EyeVector.z = dot(EyeVectorModelSpace, gl_MultiTexCoord3.xyz);\n" "#endif\n" "\n" "#ifdef USEFOG\n" " EyeVectorModelSpaceFogPlaneVertexDist.xyz = EyePosition - gl_Vertex.xyz;\n" " EyeVectorModelSpaceFogPlaneVertexDist.w = dot(FogPlane, gl_Vertex);\n" "#endif\n" "\n" "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n" " VectorS = gl_MultiTexCoord1.xyz;\n" " VectorT = gl_MultiTexCoord2.xyz;\n" " VectorR = gl_MultiTexCoord3.xyz;\n" "#endif\n" "\n" " // transform vertex to camera space, using ftransform to match non-VS rendering\n" " gl_Position = mul(ModelViewProjectionMatrix, gl_Vertex);\n" "\n" "#ifdef USESHADOWMAPORTHO\n" " ShadowMapTC = mul(ShadowMapMatrix, gl_Position).xyz;\n" "#endif\n" "\n" "#ifdef USEREFLECTION\n" " ModelViewProjectionPosition = gl_Position;\n" "#endif\n" "}\n" "#endif // VERTEX_SHADER\n" "\n" "\n" "\n" "\n" "#ifdef FRAGMENT_SHADER\n" "void main\n" "(\n" "#ifdef USEDEFERREDLIGHTMAP\n" "#ifdef HLSL\n" "float2 Pixel : VPOS,\n" "#else\n" "float2 Pixel : WPOS,\n" "#endif\n" "#endif\n" "float4 gl_FrontColor : COLOR,\n" "float4 TexCoordBoth : TEXCOORD0,\n" "#ifdef USELIGHTMAP\n" "float2 TexCoordLightmap : TEXCOORD1,\n" "#endif\n" "#ifdef USEEYEVECTOR\n" "float3 EyeVector : TEXCOORD2,\n" "#endif\n" "#ifdef USEREFLECTION\n" "float4 ModelViewProjectionPosition : TEXCOORD3,\n" "#endif\n" "#ifdef USEFOG\n" "float4 EyeVectorModelSpaceFogPlaneVertexDist : TEXCOORD4,\n" "#endif\n" "#if defined(MODE_LIGHTSOURCE) || defined(MODE_LIGHTDIRECTION)\n" "float3 LightVector : TEXCOORD1,\n" "#endif\n" "#ifdef MODE_LIGHTSOURCE\n" "float3 CubeVector : TEXCOORD3,\n" "#endif\n" "#ifdef MODE_DEFERREDLIGHTSOURCE\n" "float4 ModelViewPosition : TEXCOORD0,\n" "#endif\n" "#if defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(MODE_DEFERREDGEOMETRY) || defined(USEREFLECTCUBE)\n" "float3 VectorS : TEXCOORD5, // direction of S texcoord (sometimes crudely called tangent)\n" "float3 VectorT : TEXCOORD6, // direction of T texcoord (sometimes crudely called binormal)\n" "float3 VectorR : TEXCOORD7, // direction of R texcoord (surface normal)\n" "#endif\n" "#ifdef USESHADOWMAPORTHO\n" "float3 ShadowMapTC : TEXCOORD3, // CONFLICTS WITH USEREFLECTION!\n" "#endif\n" "\n" "uniform sampler Texture_Normal : register(s0),\n" "uniform sampler Texture_Color : register(s1),\n" "#if defined(USESPECULAR) || defined(USEDEFERREDLIGHTMAP)\n" "uniform sampler Texture_Gloss : register(s2),\n" "#endif\n" "#ifdef USEGLOW\n" "uniform sampler Texture_Glow : register(s3),\n" "#endif\n" "#ifdef USEVERTEXTEXTUREBLEND\n" "uniform sampler Texture_SecondaryNormal : register(s4),\n" "uniform sampler Texture_SecondaryColor : register(s5),\n" "#if defined(USESPECULAR) || defined(USEDEFERREDLIGHTMAP)\n" "uniform sampler Texture_SecondaryGloss : register(s6),\n" "#endif\n" "#ifdef USEGLOW\n" "uniform sampler Texture_SecondaryGlow : register(s7),\n" "#endif\n" "#endif\n" "#ifdef USECOLORMAPPING\n" "uniform sampler Texture_Pants : register(s4),\n" "uniform sampler Texture_Shirt : register(s7),\n" "#endif\n" "#ifdef USEFOG\n" "uniform sampler Texture_FogHeightTexture : register(s14),\n" "uniform sampler Texture_FogMask : register(s8),\n" "#endif\n" "#ifdef USELIGHTMAP\n" "uniform sampler Texture_Lightmap : register(s9),\n" "#endif\n" "#if defined(MODE_LIGHTDIRECTIONMAP_MODELSPACE) || defined(MODE_LIGHTDIRECTIONMAP_TANGENTSPACE)\n" "uniform sampler Texture_Deluxemap : register(s10),\n" "#endif\n" "#ifdef USEREFLECTION\n" "uniform sampler Texture_Reflection : register(s7),\n" "#endif\n" "\n" "#ifdef MODE_DEFERREDLIGHTSOURCE\n" "uniform sampler Texture_ScreenDepth : register(s13),\n" "uniform sampler Texture_ScreenNormalMap : register(s14),\n" "#endif\n" "#ifdef USEDEFERREDLIGHTMAP\n" "uniform sampler Texture_ScreenDepth : register(s13),\n" "uniform sampler Texture_ScreenNormalMap : register(s14),\n" "uniform sampler Texture_ScreenDiffuse : register(s11),\n" "uniform sampler Texture_ScreenSpecular : register(s12),\n" "#endif\n" "\n" "#ifdef USECOLORMAPPING\n" "uniform half3 Color_Pants : register(c7),\n" "uniform half3 Color_Shirt : register(c8),\n" "#endif\n" "#ifdef USEFOG\n" "uniform float3 FogColor : register(c16),\n" "uniform float FogRangeRecip : register(c20),\n" "uniform float FogPlaneViewDist : register(c19),\n" "uniform float FogHeightFade : register(c17),\n" "#endif\n" "\n" "#ifdef USEOFFSETMAPPING\n" "uniform float OffsetMapping_Scale : register(c24),\n" "#endif\n" "\n" "#ifdef USEDEFERREDLIGHTMAP\n" "uniform half2 PixelToScreenTexCoord : register(c42),\n" "uniform half3 DeferredMod_Diffuse : register(c12),\n" "uniform half3 DeferredMod_Specular : register(c13),\n" "#endif\n" "uniform half3 Color_Ambient : register(c3),\n" "uniform half3 Color_Diffuse : register(c4),\n" "uniform half3 Color_Specular : register(c5),\n" "uniform half SpecularPower : register(c36),\n" "#ifdef USEGLOW\n" "uniform half3 Color_Glow : register(c6),\n" "#endif\n" "uniform half Alpha : register(c0),\n" "#ifdef USEREFLECTION\n" "uniform float4 DistortScaleRefractReflect : register(c14),\n" "uniform float4 ScreenScaleRefractReflect : register(c32),\n" "uniform float4 ScreenCenterRefractReflect : register(c31),\n" "uniform half4 ReflectColor : register(c26),\n" "#endif\n" "#ifdef USEREFLECTCUBE\n" "uniform float4x4 ModelToReflectCube : register(c48),\n" "uniform sampler Texture_ReflectMask : register(s5),\n" "uniform samplerCUBE Texture_ReflectCube : register(s6),\n" "#endif\n" "#ifdef MODE_LIGHTDIRECTION\n" "uniform half3 LightColor : register(c21),\n" "#endif\n" "#ifdef MODE_LIGHTSOURCE\n" "uniform half3 LightColor : register(c21),\n" "#endif\n" "\n" "#if defined(MODE_LIGHTSOURCE) || defined(MODE_DEFERREDLIGHTSOURCE)\n" "uniform sampler Texture_Attenuation : register(s9),\n" "uniform samplerCUBE Texture_Cube : register(s10),\n" "#endif\n" "\n" "#if defined(MODE_LIGHTSOURCE) || defined(MODE_DEFERREDLIGHTSOURCE) || defined(USESHADOWMAPORTHO)\n" "\n" "#ifdef USESHADOWMAP2D\n" "# ifdef USESHADOWSAMPLER\n" "uniform sampler Texture_ShadowMap2D : register(s15),\n" "# else\n" "uniform sampler Texture_ShadowMap2D : register(s15),\n" "# endif\n" "#endif\n" "\n" "#ifdef USESHADOWMAPVSDCT\n" "uniform samplerCUBE Texture_CubeProjection : register(s12),\n" "#endif\n" "\n" "#if defined(USESHADOWMAP2D)\n" "uniform float2 ShadowMap_TextureScale : register(c35),\n" "uniform float4 ShadowMap_Parameters : register(c34),\n" "#endif\n" "#endif // !defined(MODE_LIGHTSOURCE) && !defined(MODE_DEFERREDLIGHTSOURCE) && !defined(USESHADOWMAPORTHO)\n" "\n" "out float4 gl_FragColor : COLOR\n" ")\n" "{\n" " float2 TexCoord = TexCoordBoth.xy;\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " float2 TexCoord2 = TexCoordBoth.zw;\n" "#endif\n" "#ifdef USEOFFSETMAPPING\n" " // apply offsetmapping\n" " float2 TexCoordOffset = OffsetMapping(TexCoord, OffsetMapping_Scale, EyeVector, Texture_Normal);\n" "#define TexCoord TexCoordOffset\n" "#endif\n" "\n" " // combine the diffuse textures (base, pants, shirt)\n" " half4 color = half4(tex2D(Texture_Color, TexCoord));\n" "#ifdef USEALPHAKILL\n" " if (color.a < 0.5)\n" " discard;\n" "#endif\n" " color.a *= Alpha;\n" "#ifdef USECOLORMAPPING\n" " color.rgb += half3(tex2D(Texture_Pants, TexCoord).rgb) * Color_Pants + half3(tex2D(Texture_Shirt, TexCoord).rgb) * Color_Shirt;\n" "#endif\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " half terrainblend = clamp(half(gl_FrontColor.a) * color.a * 2.0 - 0.5, half(0.0), half(1.0));\n" " //half terrainblend = min(half(gl_FrontColor.a) * color.a * 2.0, half(1.0));\n" " //half terrainblend = half(gl_FrontColor.a) * color.a > 0.5;\n" " color.rgb = half3(lerp(tex2D(Texture_SecondaryColor, TexCoord2).rgb, float3(color.rgb), terrainblend));\n" " color.a = 1.0;\n" " //color = half4(lerp(float4(1, 0, 0, 1), color, terrainblend));\n" "#endif\n" "\n" " // get the surface normal\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " half3 surfacenormal = normalize(half3(lerp(tex2D(Texture_SecondaryNormal, TexCoord2).rgb, tex2D(Texture_Normal, TexCoord).rgb, terrainblend)) - half3(0.5, 0.5, 0.5));\n" "#else\n" " half3 surfacenormal = half3(normalize(half3(tex2D(Texture_Normal, TexCoord).rgb) - half3(0.5, 0.5, 0.5)));\n" "#endif\n" "\n" " // get the material colors\n" " half3 diffusetex = color.rgb;\n" "#if defined(USESPECULAR) || defined(USEDEFERREDLIGHTMAP)\n" "# ifdef USEVERTEXTEXTUREBLEND\n" " half4 glosstex = half4(lerp(tex2D(Texture_SecondaryGloss, TexCoord2), tex2D(Texture_Gloss, TexCoord), terrainblend));\n" "# else\n" " half4 glosstex = half4(tex2D(Texture_Gloss, TexCoord));\n" "# endif\n" "#endif\n" "\n" "#ifdef USEREFLECTCUBE\n" " float3 TangentReflectVector = reflect(-EyeVector, surfacenormal);\n" " float3 ModelReflectVector = TangentReflectVector.x * VectorS + TangentReflectVector.y * VectorT + TangentReflectVector.z * VectorR;\n" " float3 ReflectCubeTexCoord = mul(ModelToReflectCube, float4(ModelReflectVector, 0)).xyz;\n" " diffusetex += half3(tex2D(Texture_ReflectMask, TexCoord).rgb) * half3(texCUBE(Texture_ReflectCube, ReflectCubeTexCoord).rgb);\n" "#endif\n" "\n" "\n" "\n" "\n" "#ifdef MODE_LIGHTSOURCE\n" " // light source\n" "#ifdef USEDIFFUSE\n" " half3 lightnormal = half3(normalize(LightVector));\n" " half diffuse = half(max(float(dot(surfacenormal, lightnormal)), 0.0));\n" " color.rgb = diffusetex * (Color_Ambient + diffuse * Color_Diffuse);\n" "#ifdef USESPECULAR\n" "#ifdef USEEXACTSPECULARMATH\n" " half specular = half(pow(half(max(float(dot(reflect(lightnormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower * glosstex.a));\n" "#else\n" " half3 specularnormal = half3(normalize(lightnormal + half3(normalize(EyeVector))));\n" " half specular = half(pow(half(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower * glosstex.a));\n" "#endif\n" " color.rgb += glosstex.rgb * (specular * Color_Specular);\n" "#endif\n" "#else\n" " color.rgb = diffusetex * Color_Ambient;\n" "#endif\n" " color.rgb *= LightColor;\n" " color.rgb *= half(tex2D(Texture_Attenuation, float2(length(CubeVector), 0.0)).r);\n" "#if defined(USESHADOWMAP2D)\n" " color.rgb *= half(ShadowMapCompare(CubeVector, Texture_ShadowMap2D, ShadowMap_Parameters, ShadowMap_TextureScale\n" "#ifdef USESHADOWMAPVSDCT\n" ", Texture_CubeProjection\n" "#endif\n" " ));\n" "\n" "#endif\n" "# ifdef USECUBEFILTER\n" " color.rgb *= half3(texCUBE(Texture_Cube, CubeVector).rgb);\n" "# endif\n" "\n" "#ifdef USESHADOWMAP2D\n" "#ifdef USESHADOWMAPVSDCT\n" "// float3 shadowmaptc = GetShadowMapTC2D(CubeVector, ShadowMap_Parameters, Texture_CubeProjection);\n" "#else\n" "// float3 shadowmaptc = GetShadowMapTC2D(CubeVector, ShadowMap_Parameters);\n" "#endif\n" "// color.rgb = half3(tex2D(Texture_ShadowMap2D, float2(0.1,0.1)).rgb);\n" "// color.rgb = half3(tex2D(Texture_ShadowMap2D, shadowmaptc.xy * ShadowMap_TextureScale).rgb);\n" "// color.rgb = half3(shadowmaptc.xyz * float3(ShadowMap_TextureScale,1.0));\n" "// color.r = half(texDepth2D(Texture_ShadowMap2D, shadowmaptc.xy * ShadowMap_TextureScale));\n" "// color.rgb = half3(tex2D(Texture_ShadowMap2D, float2(0.1,0.1)).rgb);\n" "// color.rgb = half3(tex2D(Texture_ShadowMap2D, shadowmaptc.xy * ShadowMap_TextureScale).rgb);\n" "// color.rgb = half3(shadowmaptc.xyz * float3(ShadowMap_TextureScale,1.0));\n" "// color.r = half(texDepth2D(Texture_ShadowMap2D, shadowmaptc.xy * ShadowMap_TextureScale));\n" "// color.r = half(shadowmaptc.z - texDepth2D(Texture_ShadowMap2D, shadowmaptc.xy * ShadowMap_TextureScale));\n" "// color.r = half(shadowmaptc.z);\n" "// color.r = half(texDepth2D(Texture_ShadowMap2D, shadowmaptc.xy * ShadowMap_TextureScale));\n" "// color.r = half(shadowmaptc.z);\n" "// color.r = 1;\n" "// color.rgb = abs(CubeVector);\n" "#endif\n" "// color.rgb = half3(1,1,1);\n" "#endif // MODE_LIGHTSOURCE\n" "\n" "\n" "\n" "\n" "#ifdef MODE_LIGHTDIRECTION\n" "#define SHADING\n" "#ifdef USEDIFFUSE\n" " half3 lightnormal = half3(normalize(LightVector));\n" "#endif\n" "#define lightcolor LightColor\n" "#endif // MODE_LIGHTDIRECTION\n" "#ifdef MODE_LIGHTDIRECTIONMAP_MODELSPACE\n" "#define SHADING\n" " // deluxemap lightmapping using light vectors in modelspace (q3map2 -light -deluxe)\n" " half3 lightnormal_modelspace = half3(tex2D(Texture_Deluxemap, TexCoordLightmap).rgb) * 2.0 + half3(-1.0, -1.0, -1.0);\n" " half3 lightcolor = half3(tex2D(Texture_Lightmap, TexCoordLightmap).rgb);\n" " // convert modelspace light vector to tangentspace\n" " half3 lightnormal;\n" " lightnormal.x = dot(lightnormal_modelspace, half3(VectorS));\n" " lightnormal.y = dot(lightnormal_modelspace, half3(VectorT));\n" " lightnormal.z = dot(lightnormal_modelspace, half3(VectorR));\n" " // calculate directional shading (and undoing the existing angle attenuation on the lightmap by the division)\n" " // note that q3map2 is too stupid to calculate proper surface normals when q3map_nonplanar\n" " // is used (the lightmap and deluxemap coords correspond to virtually random coordinates\n" " // on that luxel, and NOT to its center, because recursive triangle subdivision is used\n" " // to map the luxels to coordinates on the draw surfaces), which also causes\n" " // deluxemaps to be wrong because light contributions from the wrong side of the surface\n" " // are added up. To prevent divisions by zero or strong exaggerations, a max()\n" " // nudge is done here at expense of some additional fps. This is ONLY needed for\n" " // deluxemaps, tangentspace deluxemap avoid this problem by design.\n" " lightcolor *= 1.0 / max(0.25, lightnormal.z);\n" "#endif // MODE_LIGHTDIRECTIONMAP_MODELSPACE\n" "#ifdef MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n" "#define SHADING\n" " // deluxemap lightmapping using light vectors in tangentspace (hmap2 -light)\n" " half3 lightnormal = half3(tex2D(Texture_Deluxemap, TexCoordLightmap).rgb) * 2.0 + half3(-1.0, -1.0, -1.0);\n" " half3 lightcolor = half3(tex2D(Texture_Lightmap, TexCoordLightmap).rgb);\n" "#endif\n" "\n" "\n" "\n" "\n" "#ifdef MODE_FAKELIGHT\n" "#define SHADING\n" "half3 lightnormal = half3(normalize(EyeVector));\n" "half3 lightcolor = half3(1.0,1.0,1.0);\n" "#endif // MODE_FAKELIGHT\n" "\n" "\n" "\n" "\n" "#ifdef MODE_LIGHTMAP\n" " color.rgb = diffusetex * (Color_Ambient + half3(tex2D(Texture_Lightmap, TexCoordLightmap).rgb) * Color_Diffuse);\n" "#endif // MODE_LIGHTMAP\n" "#ifdef MODE_VERTEXCOLOR\n" " color.rgb = diffusetex * (Color_Ambient + half3(gl_FrontColor.rgb) * Color_Diffuse);\n" "#endif // MODE_VERTEXCOLOR\n" "#ifdef MODE_FLATCOLOR\n" " color.rgb = diffusetex * Color_Ambient;\n" "#endif // MODE_FLATCOLOR\n" "\n" "\n" "\n" "\n" "#ifdef SHADING\n" "# ifdef USEDIFFUSE\n" " half diffuse = half(max(float(dot(surfacenormal, lightnormal)), 0.0));\n" "# ifdef USESPECULAR\n" "# ifdef USEEXACTSPECULARMATH\n" " half specular = half(pow(half(max(float(dot(reflect(lightnormal, surfacenormal), normalize(EyeVector)))*-1.0, 0.0)), SpecularPower * glosstex.a));\n" "# else\n" " half3 specularnormal = half3(normalize(lightnormal + half3(normalize(EyeVector))));\n" " half specular = half(pow(half(max(float(dot(surfacenormal, specularnormal)), 0.0)), SpecularPower * glosstex.a));\n" "# endif\n" " color.rgb = diffusetex * Color_Ambient + (diffusetex * Color_Diffuse * diffuse + glosstex.rgb * Color_Specular * specular) * lightcolor;\n" "# else\n" " color.rgb = diffusetex * (Color_Ambient + Color_Diffuse * diffuse * lightcolor);\n" "# endif\n" "# else\n" " color.rgb = diffusetex * Color_Ambient;\n" "# endif\n" "#endif\n" "\n" "#ifdef USESHADOWMAPORTHO\n" " color.rgb *= half(ShadowMapCompare(ShadowMapTC, Texture_ShadowMap2D, ShadowMap_Parameters, ShadowMap_TextureScale));\n" "#endif\n" "\n" "#ifdef USEDEFERREDLIGHTMAP\n" " float2 ScreenTexCoord = Pixel * PixelToScreenTexCoord;\n" " color.rgb += diffusetex * half3(tex2D(Texture_ScreenDiffuse, ScreenTexCoord).rgb) * DeferredMod_Diffuse;\n" " color.rgb += glosstex.rgb * half3(tex2D(Texture_ScreenSpecular, ScreenTexCoord).rgb) * DeferredMod_Specular;\n" "// color.rgb = half3(tex2D(Texture_ScreenDepth, ScreenTexCoord).rgb);\n" "// color.r = half(texDepth2D(Texture_ScreenDepth, ScreenTexCoord)) * 1.0;\n" "#endif\n" "\n" "#ifdef USEGLOW\n" "#ifdef USEVERTEXTEXTUREBLEND\n" " color.rgb += half3(lerp(tex2D(Texture_SecondaryGlow, TexCoord2).rgb, tex2D(Texture_Glow, TexCoord).rgb, terrainblend)) * Color_Glow;\n" "#else\n" " color.rgb += half3(tex2D(Texture_Glow, TexCoord).rgb) * Color_Glow;\n" "#endif\n" "#endif\n" "\n" "#ifdef USEFOG\n" " color.rgb = FogVertex(color.rgb, FogColor, EyeVectorModelSpaceFogPlaneVertexDist.xyz, EyeVectorModelSpaceFogPlaneVertexDist.w, FogRangeRecip, FogPlaneViewDist, FogHeightFade, Texture_FogMask, Texture_FogHeightTexture);\n" "#endif\n" "\n" " // reflection must come last because it already contains exactly the correct fog (the reflection render preserves camera distance from the plane, it only flips the side) and ContrastBoost/SceneBrightness\n" "#ifdef USEREFLECTION\n" " float4 ScreenScaleRefractReflectIW = ScreenScaleRefractReflect * (1.0 / ModelViewProjectionPosition.w);\n" " //float4 ScreenTexCoord = (ModelViewProjectionPosition.xyxy + normalize(half3(tex2D(Texture_Normal, TexCoord).rgb) - half3(0.5,0.5,0.5)).xyxy * DistortScaleRefractReflect * 100) * ScreenScaleRefractReflectIW + ScreenCenterRefractReflect;\n" " float2 SafeScreenTexCoord = ModelViewProjectionPosition.xy * ScreenScaleRefractReflectIW.zw + ScreenCenterRefractReflect.zw;\n" " float2 ScreenTexCoord = SafeScreenTexCoord + float3(normalize(half3(tex2D(Texture_Normal, TexCoord).rgb) - half3(0.5,0.5,0.5))).xy * DistortScaleRefractReflect.zw;\n" " // FIXME temporary hack to detect the case that the reflection\n" " // gets blackened at edges due to leaving the area that contains actual\n" " // content.\n" " // Remove this 'ack once we have a better way to stop this thing from\n" " // 'appening.\n" " float f = min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord + float2(0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord + float2(0.01, -0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord + float2(-0.01, 0.01)).rgb) / 0.05);\n" " f *= min(1.0, length(tex2D(Texture_Reflection, ScreenTexCoord + float2(-0.01, -0.01)).rgb) / 0.05);\n" " ScreenTexCoord = lerp(SafeScreenTexCoord, ScreenTexCoord, f);\n" " color.rgb = lerp(color.rgb, half3(tex2D(Texture_Reflection, ScreenTexCoord).rgb) * ReflectColor.rgb, ReflectColor.a);\n" "#endif\n" "\n" " gl_FragColor = float4(color);\n" "}\n" "#endif // FRAGMENT_SHADER\n" "\n" "#endif // !MODE_DEFERREDLIGHTSOURCE\n" "#endif // !MODE_DEFERREDGEOMETRY\n" "#endif // !MODE_WATER\n" "#endif // !MODE_REFRACTION\n" "#endif // !MODE_BLOOMBLUR\n" "#endif // !MODE_GENERIC\n" "#endif // !MODE_POSTPROCESS\n" "#endif // !MODE_SHOWDEPTH\n" "#endif // !MODE_DEPTH_OR_SHADOW\n" ; char *glslshaderstring = NULL; char *cgshaderstring = NULL; char *hlslshaderstring = NULL; //======================================================================================================================================================= typedef struct shaderpermutationinfo_s { const char *pretext; const char *name; } shaderpermutationinfo_t; typedef struct shadermodeinfo_s { const char *vertexfilename; const char *geometryfilename; const char *fragmentfilename; const char *pretext; const char *name; } shadermodeinfo_t; typedef enum shaderpermutation_e { SHADERPERMUTATION_DIFFUSE = 1<<0, ///< (lightsource) whether to use directional shading SHADERPERMUTATION_VERTEXTEXTUREBLEND = 1<<1, ///< indicates this is a two-layer material blend based on vertex alpha (q3bsp) SHADERPERMUTATION_VIEWTINT = 1<<2, ///< view tint (postprocessing only), use vertex colors (generic only) SHADERPERMUTATION_COLORMAPPING = 1<<3, ///< indicates this is a colormapped skin SHADERPERMUTATION_SATURATION = 1<<4, ///< saturation (postprocessing only) SHADERPERMUTATION_FOGINSIDE = 1<<5, ///< tint the color by fog color or black if using additive blend mode SHADERPERMUTATION_FOGOUTSIDE = 1<<6, ///< tint the color by fog color or black if using additive blend mode SHADERPERMUTATION_FOGHEIGHTTEXTURE = 1<<7, ///< fog color and density determined by texture mapped on vertical axis SHADERPERMUTATION_GAMMARAMPS = 1<<8, ///< gamma (postprocessing only) SHADERPERMUTATION_CUBEFILTER = 1<<9, ///< (lightsource) use cubemap light filter SHADERPERMUTATION_GLOW = 1<<10, ///< (lightmap) blend in an additive glow texture SHADERPERMUTATION_BLOOM = 1<<11, ///< bloom (postprocessing only) SHADERPERMUTATION_SPECULAR = 1<<12, ///< (lightsource or deluxemapping) render specular effects SHADERPERMUTATION_POSTPROCESSING = 1<<13, ///< user defined postprocessing (postprocessing only) SHADERPERMUTATION_REFLECTION = 1<<14, ///< normalmap-perturbed reflection of the scene infront of the surface, preformed as an overlay on the surface SHADERPERMUTATION_OFFSETMAPPING = 1<<15, ///< adjust texcoords to roughly simulate a displacement mapped surface SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING = 1<<16, ///< adjust texcoords to accurately simulate a displacement mapped surface (requires OFFSETMAPPING to also be set!) SHADERPERMUTATION_SHADOWMAP2D = 1<<17, ///< (lightsource) use shadowmap texture as light filter SHADERPERMUTATION_SHADOWMAPPCF = 1<<18, ///< (lightsource) use percentage closer filtering on shadowmap test results SHADERPERMUTATION_SHADOWMAPPCF2 = 1<<19, ///< (lightsource) use higher quality percentage closer filtering on shadowmap test results SHADERPERMUTATION_SHADOWSAMPLER = 1<<20, ///< (lightsource) use hardware shadowmap test SHADERPERMUTATION_SHADOWMAPVSDCT = 1<<21, ///< (lightsource) use virtual shadow depth cube texture for shadowmap indexing SHADERPERMUTATION_SHADOWMAPORTHO = 1<<22, //< (lightsource) use orthographic shadowmap projection SHADERPERMUTATION_DEFERREDLIGHTMAP = 1<<23, ///< (lightmap) read Texture_ScreenDiffuse/Specular textures and add them on top of lightmapping SHADERPERMUTATION_ALPHAKILL = 1<<24, ///< (deferredgeometry) discard pixel if diffuse texture alpha below 0.5 SHADERPERMUTATION_REFLECTCUBE = 1<<25, ///< fake reflections using global cubemap (not HDRI light probe) SHADERPERMUTATION_NORMALMAPSCROLLBLEND = 1<<26, // (water) counter-direction normalmaps scrolling SHADERPERMUTATION_LIMIT = 1<<27, ///< size of permutations array SHADERPERMUTATION_COUNT = 27 ///< size of shaderpermutationinfo array } shaderpermutation_t; // NOTE: MUST MATCH ORDER OF SHADERPERMUTATION_* DEFINES! shaderpermutationinfo_t shaderpermutationinfo[SHADERPERMUTATION_COUNT] = { {"#define USEDIFFUSE\n", " diffuse"}, {"#define USEVERTEXTEXTUREBLEND\n", " vertextextureblend"}, {"#define USEVIEWTINT\n", " viewtint"}, {"#define USECOLORMAPPING\n", " colormapping"}, {"#define USESATURATION\n", " saturation"}, {"#define USEFOGINSIDE\n", " foginside"}, {"#define USEFOGOUTSIDE\n", " fogoutside"}, {"#define USEFOGHEIGHTTEXTURE\n", " fogheighttexture"}, {"#define USEGAMMARAMPS\n", " gammaramps"}, {"#define USECUBEFILTER\n", " cubefilter"}, {"#define USEGLOW\n", " glow"}, {"#define USEBLOOM\n", " bloom"}, {"#define USESPECULAR\n", " specular"}, {"#define USEPOSTPROCESSING\n", " postprocessing"}, {"#define USEREFLECTION\n", " reflection"}, {"#define USEOFFSETMAPPING\n", " offsetmapping"}, {"#define USEOFFSETMAPPING_RELIEFMAPPING\n", " reliefmapping"}, {"#define USESHADOWMAP2D\n", " shadowmap2d"}, {"#define USESHADOWMAPPCF 1\n", " shadowmappcf"}, {"#define USESHADOWMAPPCF 2\n", " shadowmappcf2"}, {"#define USESHADOWSAMPLER\n", " shadowsampler"}, {"#define USESHADOWMAPVSDCT\n", " shadowmapvsdct"}, {"#define USESHADOWMAPORTHO\n", " shadowmaportho"}, {"#define USEDEFERREDLIGHTMAP\n", " deferredlightmap"}, {"#define USEALPHAKILL\n", " alphakill"}, {"#define USEREFLECTCUBE\n", " reflectcube"}, {"#define USENORMALMAPSCROLLBLEND\n", " normalmapscrollblend"}, }; // this enum selects which of the glslshadermodeinfo entries should be used typedef enum shadermode_e { SHADERMODE_GENERIC, ///< (particles/HUD/etc) vertex color, optionally multiplied by one texture SHADERMODE_POSTPROCESS, ///< postprocessing shader (r_glsl_postprocess) SHADERMODE_DEPTH_OR_SHADOW, ///< (depthfirst/shadows) vertex shader only SHADERMODE_FLATCOLOR, ///< (lightmap) modulate texture by uniform color (q1bsp, q3bsp) SHADERMODE_VERTEXCOLOR, ///< (lightmap) modulate texture by vertex colors (q3bsp) SHADERMODE_LIGHTMAP, ///< (lightmap) modulate texture by lightmap texture (q1bsp, q3bsp) SHADERMODE_FAKELIGHT, ///< (fakelight) modulate texture by "fake" lighting (no lightmaps, no nothing) SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE, ///< (lightmap) use directional pixel shading from texture containing modelspace light directions (q3bsp deluxemap) SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE, ///< (lightmap) use directional pixel shading from texture containing tangentspace light directions (q1bsp deluxemap) SHADERMODE_LIGHTDIRECTION, ///< (lightmap) use directional pixel shading from fixed light direction (q3bsp) SHADERMODE_LIGHTSOURCE, ///< (lightsource) use directional pixel shading from light source (rtlight) SHADERMODE_REFRACTION, ///< refract background (the material is rendered normally after this pass) SHADERMODE_WATER, ///< refract background and reflection (the material is rendered normally after this pass) SHADERMODE_SHOWDEPTH, ///< (debugging) renders depth as color SHADERMODE_DEFERREDGEOMETRY, ///< (deferred) render material properties to screenspace geometry buffers SHADERMODE_DEFERREDLIGHTSOURCE, ///< (deferred) use directional pixel shading from light source (rtlight) on screenspace geometry buffers SHADERMODE_COUNT } shadermode_t; // NOTE: MUST MATCH ORDER OF SHADERMODE_* ENUMS! shadermodeinfo_t glslshadermodeinfo[SHADERMODE_COUNT] = { {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_GENERIC\n", " generic"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_POSTPROCESS\n", " postprocess"}, {"glsl/default.glsl", NULL, NULL , "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_FLATCOLOR\n", " flatcolor"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_VERTEXCOLOR\n", " vertexcolor"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTMAP\n", " lightmap"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_FAKELIGHT\n", " fakelight"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTDIRECTION\n", " lightdirection"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_LIGHTSOURCE\n", " lightsource"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_REFRACTION\n", " refraction"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_WATER\n", " water"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_SHOWDEPTH\n", " showdepth"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"}, {"glsl/default.glsl", NULL, "glsl/default.glsl", "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"}, }; #ifdef SUPPORTCG shadermodeinfo_t cgshadermodeinfo[SHADERMODE_COUNT] = { {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_GENERIC\n", " generic"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_POSTPROCESS\n", " postprocess"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_FLATCOLOR\n", " flatcolor"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_VERTEXCOLOR\n", " vertexcolor"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_LIGHTMAP\n", " lightmap"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_FAKELIGHT\n", " fakelight"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_LIGHTDIRECTION\n", " lightdirection"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_LIGHTSOURCE\n", " lightsource"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_REFRACTION\n", " refraction"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_WATER\n", " water"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_SHOWDEPTH\n", " showdepth"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"}, {"cg/default.cg", NULL, "cg/default.cg", "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"}, }; #endif #ifdef SUPPORTD3D shadermodeinfo_t hlslshadermodeinfo[SHADERMODE_COUNT] = { {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_GENERIC\n", " generic"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_POSTPROCESS\n", " postprocess"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_DEPTH_OR_SHADOW\n", " depth/shadow"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_FLATCOLOR\n", " flatcolor"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_VERTEXCOLOR\n", " vertexcolor"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_LIGHTMAP\n", " lightmap"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_FAKELIGHT\n", " fakelight"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_LIGHTDIRECTIONMAP_MODELSPACE\n", " lightdirectionmap_modelspace"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_LIGHTDIRECTIONMAP_TANGENTSPACE\n", " lightdirectionmap_tangentspace"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_LIGHTDIRECTION\n", " lightdirection"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_LIGHTSOURCE\n", " lightsource"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_REFRACTION\n", " refraction"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_WATER\n", " water"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_SHOWDEPTH\n", " showdepth"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_DEFERREDGEOMETRY\n", " deferredgeometry"}, {"hlsl/default.hlsl", NULL, "hlsl/default.hlsl", "#define MODE_DEFERREDLIGHTSOURCE\n", " deferredlightsource"}, }; #endif struct r_glsl_permutation_s; typedef struct r_glsl_permutation_s { /// hash lookup data struct r_glsl_permutation_s *hashnext; unsigned int mode; unsigned int permutation; /// indicates if we have tried compiling this permutation already qboolean compiled; /// 0 if compilation failed int program; /// locations of detected uniforms in program object, or -1 if not found int loc_Texture_First; int loc_Texture_Second; int loc_Texture_GammaRamps; int loc_Texture_Normal; int loc_Texture_Color; int loc_Texture_Gloss; int loc_Texture_Glow; int loc_Texture_SecondaryNormal; int loc_Texture_SecondaryColor; int loc_Texture_SecondaryGloss; int loc_Texture_SecondaryGlow; int loc_Texture_Pants; int loc_Texture_Shirt; int loc_Texture_FogHeightTexture; int loc_Texture_FogMask; int loc_Texture_Lightmap; int loc_Texture_Deluxemap; int loc_Texture_Attenuation; int loc_Texture_Cube; int loc_Texture_Refraction; int loc_Texture_Reflection; int loc_Texture_ShadowMap2D; int loc_Texture_CubeProjection; int loc_Texture_ScreenDepth; int loc_Texture_ScreenNormalMap; int loc_Texture_ScreenDiffuse; int loc_Texture_ScreenSpecular; int loc_Texture_ReflectMask; int loc_Texture_ReflectCube; int loc_Alpha; int loc_BloomBlur_Parameters; int loc_ClientTime; int loc_Color_Ambient; int loc_Color_Diffuse; int loc_Color_Specular; int loc_Color_Glow; int loc_Color_Pants; int loc_Color_Shirt; int loc_DeferredColor_Ambient; int loc_DeferredColor_Diffuse; int loc_DeferredColor_Specular; int loc_DeferredMod_Diffuse; int loc_DeferredMod_Specular; int loc_DistortScaleRefractReflect; int loc_EyePosition; int loc_FogColor; int loc_FogHeightFade; int loc_FogPlane; int loc_FogPlaneViewDist; int loc_FogRangeRecip; int loc_LightColor; int loc_LightDir; int loc_LightPosition; int loc_OffsetMapping_Scale; int loc_PixelSize; int loc_ReflectColor; int loc_ReflectFactor; int loc_ReflectOffset; int loc_RefractColor; int loc_Saturation; int loc_ScreenCenterRefractReflect; int loc_ScreenScaleRefractReflect; int loc_ScreenToDepth; int loc_ShadowMap_Parameters; int loc_ShadowMap_TextureScale; int loc_SpecularPower; int loc_UserVec1; int loc_UserVec2; int loc_UserVec3; int loc_UserVec4; int loc_ViewTintColor; int loc_ViewToLight; int loc_ModelToLight; int loc_TexMatrix; int loc_BackgroundTexMatrix; int loc_ModelViewProjectionMatrix; int loc_ModelViewMatrix; int loc_PixelToScreenTexCoord; int loc_ModelToReflectCube; int loc_ShadowMapMatrix; int loc_BloomColorSubtract; int loc_NormalmapScrollBlend; } r_glsl_permutation_t; #define SHADERPERMUTATION_HASHSIZE 256 // non-degradable "lightweight" shader parameters to keep the permutations simpler // these can NOT degrade! only use for simple stuff enum { SHADERSTATICPARM_SATURATION_REDCOMPENSATE = 0, ///< red compensation filter for saturation SHADERSTATICPARM_EXACTSPECULARMATH = 1, ///< (lightsource or deluxemapping) use exact reflection map for specular effects, as opposed to the usual OpenGL approximation SHADERSTATICPARM_POSTPROCESS_USERVEC1 = 2, ///< postprocess uservec1 is enabled SHADERSTATICPARM_POSTPROCESS_USERVEC2 = 3, ///< postprocess uservec2 is enabled SHADERSTATICPARM_POSTPROCESS_USERVEC3 = 4, ///< postprocess uservec3 is enabled SHADERSTATICPARM_POSTPROCESS_USERVEC4 = 5 ///< postprocess uservec4 is enabled }; #define SHADERSTATICPARMS_COUNT 6 static const char *shaderstaticparmstrings_list[SHADERSTATICPARMS_COUNT]; static int shaderstaticparms_count = 0; static unsigned int r_compileshader_staticparms[(SHADERSTATICPARMS_COUNT + 0x1F) >> 5] = {0}; #define R_COMPILESHADER_STATICPARM_ENABLE(p) r_compileshader_staticparms[(p) >> 5] |= (1 << ((p) & 0x1F)) qboolean R_CompileShader_CheckStaticParms(void) { static int r_compileshader_staticparms_save[1]; memcpy(r_compileshader_staticparms_save, r_compileshader_staticparms, sizeof(r_compileshader_staticparms)); memset(r_compileshader_staticparms, 0, sizeof(r_compileshader_staticparms)); // detect all if (r_glsl_saturation_redcompensate.integer) R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_SATURATION_REDCOMPENSATE); if (r_shadow_glossexact.integer) R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_EXACTSPECULARMATH); if (r_glsl_postprocess.integer) { if (r_glsl_postprocess_uservec1_enable.integer) R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC1); if (r_glsl_postprocess_uservec2_enable.integer) R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC2); if (r_glsl_postprocess_uservec3_enable.integer) R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC3); if (r_glsl_postprocess_uservec4_enable.integer) R_COMPILESHADER_STATICPARM_ENABLE(SHADERSTATICPARM_POSTPROCESS_USERVEC4); } return memcmp(r_compileshader_staticparms, r_compileshader_staticparms_save, sizeof(r_compileshader_staticparms)) != 0; } #define R_COMPILESHADER_STATICPARM_EMIT(p, n) \ if(r_compileshader_staticparms[(p) >> 5] & (1 << ((p) & 0x1F))) \ shaderstaticparmstrings_list[shaderstaticparms_count++] = "#define " n "\n"; \ else \ shaderstaticparmstrings_list[shaderstaticparms_count++] = "\n" void R_CompileShader_AddStaticParms(unsigned int mode, unsigned int permutation) { shaderstaticparms_count = 0; // emit all R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_SATURATION_REDCOMPENSATE, "SATURATION_REDCOMPENSATE"); R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_EXACTSPECULARMATH, "USEEXACTSPECULARMATH"); R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC1, "USERVEC1"); R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC2, "USERVEC2"); R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC3, "USERVEC3"); R_COMPILESHADER_STATICPARM_EMIT(SHADERSTATICPARM_POSTPROCESS_USERVEC4, "USERVEC4"); } /// information about each possible shader permutation r_glsl_permutation_t *r_glsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE]; /// currently selected permutation r_glsl_permutation_t *r_glsl_permutation; /// storage for permutations linked in the hash table memexpandablearray_t r_glsl_permutationarray; static r_glsl_permutation_t *R_GLSL_FindPermutation(unsigned int mode, unsigned int permutation) { //unsigned int hashdepth = 0; unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1); r_glsl_permutation_t *p; for (p = r_glsl_permutationhash[mode][hashindex];p;p = p->hashnext) { if (p->mode == mode && p->permutation == permutation) { //if (hashdepth > 10) // Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth); return p; } //hashdepth++; } p = (r_glsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_glsl_permutationarray); p->mode = mode; p->permutation = permutation; p->hashnext = r_glsl_permutationhash[mode][hashindex]; r_glsl_permutationhash[mode][hashindex] = p; //if (hashdepth > 10) // Con_Printf("R_GLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth); return p; } static char *R_GLSL_GetText(const char *filename, qboolean printfromdisknotice) { char *shaderstring; if (!filename || !filename[0]) return NULL; if (!strcmp(filename, "glsl/default.glsl")) { if (!glslshaderstring) { glslshaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL); if (glslshaderstring) Con_DPrintf("Loading shaders from file %s...\n", filename); else glslshaderstring = (char *)builtinshaderstring; } shaderstring = (char *) Mem_Alloc(r_main_mempool, strlen(glslshaderstring) + 1); memcpy(shaderstring, glslshaderstring, strlen(glslshaderstring) + 1); return shaderstring; } shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL); if (shaderstring) { if (printfromdisknotice) Con_DPrintf("from disk %s... ", filename); return shaderstring; } return shaderstring; } static void R_GLSL_CompilePermutation(r_glsl_permutation_t *p, unsigned int mode, unsigned int permutation) { int i; shadermodeinfo_t *modeinfo = glslshadermodeinfo + mode; char *vertexstring, *geometrystring, *fragmentstring; char permutationname[256]; int vertstrings_count = 0; int geomstrings_count = 0; int fragstrings_count = 0; const char *vertstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; const char *geomstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; const char *fragstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; if (p->compiled) return; p->compiled = true; p->program = 0; permutationname[0] = 0; vertexstring = R_GLSL_GetText(modeinfo->vertexfilename, true); geometrystring = R_GLSL_GetText(modeinfo->geometryfilename, false); fragmentstring = R_GLSL_GetText(modeinfo->fragmentfilename, false); strlcat(permutationname, modeinfo->vertexfilename, sizeof(permutationname)); // the first pretext is which type of shader to compile as // (later these will all be bound together as a program object) vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n"; geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n"; fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n"; // the second pretext is the mode (for example a light source) vertstrings_list[vertstrings_count++] = modeinfo->pretext; geomstrings_list[geomstrings_count++] = modeinfo->pretext; fragstrings_list[fragstrings_count++] = modeinfo->pretext; strlcat(permutationname, modeinfo->name, sizeof(permutationname)); // now add all the permutation pretexts for (i = 0;i < SHADERPERMUTATION_COUNT;i++) { if (permutation & (1<program = GL_Backend_CompileProgram(vertstrings_count, vertstrings_list, geomstrings_count, geomstrings_list, fragstrings_count, fragstrings_list); if (p->program) { CHECKGLERROR qglUseProgramObjectARB(p->program);CHECKGLERROR // look up all the uniform variable names we care about, so we don't // have to look them up every time we set them p->loc_Texture_First = qglGetUniformLocationARB(p->program, "Texture_First"); p->loc_Texture_Second = qglGetUniformLocationARB(p->program, "Texture_Second"); p->loc_Texture_GammaRamps = qglGetUniformLocationARB(p->program, "Texture_GammaRamps"); p->loc_Texture_Normal = qglGetUniformLocationARB(p->program, "Texture_Normal"); p->loc_Texture_Color = qglGetUniformLocationARB(p->program, "Texture_Color"); p->loc_Texture_Gloss = qglGetUniformLocationARB(p->program, "Texture_Gloss"); p->loc_Texture_Glow = qglGetUniformLocationARB(p->program, "Texture_Glow"); p->loc_Texture_SecondaryNormal = qglGetUniformLocationARB(p->program, "Texture_SecondaryNormal"); p->loc_Texture_SecondaryColor = qglGetUniformLocationARB(p->program, "Texture_SecondaryColor"); p->loc_Texture_SecondaryGloss = qglGetUniformLocationARB(p->program, "Texture_SecondaryGloss"); p->loc_Texture_SecondaryGlow = qglGetUniformLocationARB(p->program, "Texture_SecondaryGlow"); p->loc_Texture_Pants = qglGetUniformLocationARB(p->program, "Texture_Pants"); p->loc_Texture_Shirt = qglGetUniformLocationARB(p->program, "Texture_Shirt"); p->loc_Texture_FogHeightTexture = qglGetUniformLocationARB(p->program, "Texture_FogHeightTexture"); p->loc_Texture_FogMask = qglGetUniformLocationARB(p->program, "Texture_FogMask"); p->loc_Texture_Lightmap = qglGetUniformLocationARB(p->program, "Texture_Lightmap"); p->loc_Texture_Deluxemap = qglGetUniformLocationARB(p->program, "Texture_Deluxemap"); p->loc_Texture_Attenuation = qglGetUniformLocationARB(p->program, "Texture_Attenuation"); p->loc_Texture_Cube = qglGetUniformLocationARB(p->program, "Texture_Cube"); p->loc_Texture_Refraction = qglGetUniformLocationARB(p->program, "Texture_Refraction"); p->loc_Texture_Reflection = qglGetUniformLocationARB(p->program, "Texture_Reflection"); p->loc_Texture_ShadowMap2D = qglGetUniformLocationARB(p->program, "Texture_ShadowMap2D"); p->loc_Texture_CubeProjection = qglGetUniformLocationARB(p->program, "Texture_CubeProjection"); p->loc_Texture_ScreenDepth = qglGetUniformLocationARB(p->program, "Texture_ScreenDepth"); p->loc_Texture_ScreenNormalMap = qglGetUniformLocationARB(p->program, "Texture_ScreenNormalMap"); p->loc_Texture_ScreenDiffuse = qglGetUniformLocationARB(p->program, "Texture_ScreenDiffuse"); p->loc_Texture_ScreenSpecular = qglGetUniformLocationARB(p->program, "Texture_ScreenSpecular"); p->loc_Texture_ReflectMask = qglGetUniformLocationARB(p->program, "Texture_ReflectMask"); p->loc_Texture_ReflectCube = qglGetUniformLocationARB(p->program, "Texture_ReflectCube"); p->loc_Alpha = qglGetUniformLocationARB(p->program, "Alpha"); p->loc_BloomBlur_Parameters = qglGetUniformLocationARB(p->program, "BloomBlur_Parameters"); p->loc_ClientTime = qglGetUniformLocationARB(p->program, "ClientTime"); p->loc_Color_Ambient = qglGetUniformLocationARB(p->program, "Color_Ambient"); p->loc_Color_Diffuse = qglGetUniformLocationARB(p->program, "Color_Diffuse"); p->loc_Color_Specular = qglGetUniformLocationARB(p->program, "Color_Specular"); p->loc_Color_Glow = qglGetUniformLocationARB(p->program, "Color_Glow"); p->loc_Color_Pants = qglGetUniformLocationARB(p->program, "Color_Pants"); p->loc_Color_Shirt = qglGetUniformLocationARB(p->program, "Color_Shirt"); p->loc_DeferredColor_Ambient = qglGetUniformLocationARB(p->program, "DeferredColor_Ambient"); p->loc_DeferredColor_Diffuse = qglGetUniformLocationARB(p->program, "DeferredColor_Diffuse"); p->loc_DeferredColor_Specular = qglGetUniformLocationARB(p->program, "DeferredColor_Specular"); p->loc_DeferredMod_Diffuse = qglGetUniformLocationARB(p->program, "DeferredMod_Diffuse"); p->loc_DeferredMod_Specular = qglGetUniformLocationARB(p->program, "DeferredMod_Specular"); p->loc_DistortScaleRefractReflect = qglGetUniformLocationARB(p->program, "DistortScaleRefractReflect"); p->loc_EyePosition = qglGetUniformLocationARB(p->program, "EyePosition"); p->loc_FogColor = qglGetUniformLocationARB(p->program, "FogColor"); p->loc_FogHeightFade = qglGetUniformLocationARB(p->program, "FogHeightFade"); p->loc_FogPlane = qglGetUniformLocationARB(p->program, "FogPlane"); p->loc_FogPlaneViewDist = qglGetUniformLocationARB(p->program, "FogPlaneViewDist"); p->loc_FogRangeRecip = qglGetUniformLocationARB(p->program, "FogRangeRecip"); p->loc_LightColor = qglGetUniformLocationARB(p->program, "LightColor"); p->loc_LightDir = qglGetUniformLocationARB(p->program, "LightDir"); p->loc_LightPosition = qglGetUniformLocationARB(p->program, "LightPosition"); p->loc_OffsetMapping_Scale = qglGetUniformLocationARB(p->program, "OffsetMapping_Scale"); p->loc_PixelSize = qglGetUniformLocationARB(p->program, "PixelSize"); p->loc_ReflectColor = qglGetUniformLocationARB(p->program, "ReflectColor"); p->loc_ReflectFactor = qglGetUniformLocationARB(p->program, "ReflectFactor"); p->loc_ReflectOffset = qglGetUniformLocationARB(p->program, "ReflectOffset"); p->loc_RefractColor = qglGetUniformLocationARB(p->program, "RefractColor"); p->loc_Saturation = qglGetUniformLocationARB(p->program, "Saturation"); p->loc_ScreenCenterRefractReflect = qglGetUniformLocationARB(p->program, "ScreenCenterRefractReflect"); p->loc_ScreenScaleRefractReflect = qglGetUniformLocationARB(p->program, "ScreenScaleRefractReflect"); p->loc_ScreenToDepth = qglGetUniformLocationARB(p->program, "ScreenToDepth"); p->loc_ShadowMap_Parameters = qglGetUniformLocationARB(p->program, "ShadowMap_Parameters"); p->loc_ShadowMap_TextureScale = qglGetUniformLocationARB(p->program, "ShadowMap_TextureScale"); p->loc_SpecularPower = qglGetUniformLocationARB(p->program, "SpecularPower"); p->loc_UserVec1 = qglGetUniformLocationARB(p->program, "UserVec1"); p->loc_UserVec2 = qglGetUniformLocationARB(p->program, "UserVec2"); p->loc_UserVec3 = qglGetUniformLocationARB(p->program, "UserVec3"); p->loc_UserVec4 = qglGetUniformLocationARB(p->program, "UserVec4"); p->loc_ViewTintColor = qglGetUniformLocationARB(p->program, "ViewTintColor"); p->loc_ViewToLight = qglGetUniformLocationARB(p->program, "ViewToLight"); p->loc_ModelToLight = qglGetUniformLocationARB(p->program, "ModelToLight"); p->loc_TexMatrix = qglGetUniformLocationARB(p->program, "TexMatrix"); p->loc_BackgroundTexMatrix = qglGetUniformLocationARB(p->program, "BackgroundTexMatrix"); p->loc_ModelViewMatrix = qglGetUniformLocationARB(p->program, "ModelViewMatrix"); p->loc_ModelViewProjectionMatrix = qglGetUniformLocationARB(p->program, "ModelViewProjectionMatrix"); p->loc_PixelToScreenTexCoord = qglGetUniformLocationARB(p->program, "PixelToScreenTexCoord"); p->loc_ModelToReflectCube = qglGetUniformLocationARB(p->program, "ModelToReflectCube"); p->loc_ShadowMapMatrix = qglGetUniformLocationARB(p->program, "ShadowMapMatrix"); p->loc_BloomColorSubtract = qglGetUniformLocationARB(p->program, "BloomColorSubtract"); p->loc_NormalmapScrollBlend = qglGetUniformLocationARB(p->program, "NormalmapScrollBlend"); // initialize the samplers to refer to the texture units we use if (p->loc_Texture_First >= 0) qglUniform1iARB(p->loc_Texture_First , GL20TU_FIRST); if (p->loc_Texture_Second >= 0) qglUniform1iARB(p->loc_Texture_Second , GL20TU_SECOND); if (p->loc_Texture_GammaRamps >= 0) qglUniform1iARB(p->loc_Texture_GammaRamps , GL20TU_GAMMARAMPS); if (p->loc_Texture_Normal >= 0) qglUniform1iARB(p->loc_Texture_Normal , GL20TU_NORMAL); if (p->loc_Texture_Color >= 0) qglUniform1iARB(p->loc_Texture_Color , GL20TU_COLOR); if (p->loc_Texture_Gloss >= 0) qglUniform1iARB(p->loc_Texture_Gloss , GL20TU_GLOSS); if (p->loc_Texture_Glow >= 0) qglUniform1iARB(p->loc_Texture_Glow , GL20TU_GLOW); if (p->loc_Texture_SecondaryNormal >= 0) qglUniform1iARB(p->loc_Texture_SecondaryNormal, GL20TU_SECONDARY_NORMAL); if (p->loc_Texture_SecondaryColor >= 0) qglUniform1iARB(p->loc_Texture_SecondaryColor , GL20TU_SECONDARY_COLOR); if (p->loc_Texture_SecondaryGloss >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGloss , GL20TU_SECONDARY_GLOSS); if (p->loc_Texture_SecondaryGlow >= 0) qglUniform1iARB(p->loc_Texture_SecondaryGlow , GL20TU_SECONDARY_GLOW); if (p->loc_Texture_Pants >= 0) qglUniform1iARB(p->loc_Texture_Pants , GL20TU_PANTS); if (p->loc_Texture_Shirt >= 0) qglUniform1iARB(p->loc_Texture_Shirt , GL20TU_SHIRT); if (p->loc_Texture_FogHeightTexture>= 0) qglUniform1iARB(p->loc_Texture_FogHeightTexture, GL20TU_FOGHEIGHTTEXTURE); if (p->loc_Texture_FogMask >= 0) qglUniform1iARB(p->loc_Texture_FogMask , GL20TU_FOGMASK); if (p->loc_Texture_Lightmap >= 0) qglUniform1iARB(p->loc_Texture_Lightmap , GL20TU_LIGHTMAP); if (p->loc_Texture_Deluxemap >= 0) qglUniform1iARB(p->loc_Texture_Deluxemap , GL20TU_DELUXEMAP); if (p->loc_Texture_Attenuation >= 0) qglUniform1iARB(p->loc_Texture_Attenuation , GL20TU_ATTENUATION); if (p->loc_Texture_Cube >= 0) qglUniform1iARB(p->loc_Texture_Cube , GL20TU_CUBE); if (p->loc_Texture_Refraction >= 0) qglUniform1iARB(p->loc_Texture_Refraction , GL20TU_REFRACTION); if (p->loc_Texture_Reflection >= 0) qglUniform1iARB(p->loc_Texture_Reflection , GL20TU_REFLECTION); if (p->loc_Texture_ShadowMap2D >= 0) qglUniform1iARB(p->loc_Texture_ShadowMap2D , GL20TU_SHADOWMAP2D); if (p->loc_Texture_CubeProjection >= 0) qglUniform1iARB(p->loc_Texture_CubeProjection , GL20TU_CUBEPROJECTION); if (p->loc_Texture_ScreenDepth >= 0) qglUniform1iARB(p->loc_Texture_ScreenDepth , GL20TU_SCREENDEPTH); if (p->loc_Texture_ScreenNormalMap >= 0) qglUniform1iARB(p->loc_Texture_ScreenNormalMap, GL20TU_SCREENNORMALMAP); if (p->loc_Texture_ScreenDiffuse >= 0) qglUniform1iARB(p->loc_Texture_ScreenDiffuse , GL20TU_SCREENDIFFUSE); if (p->loc_Texture_ScreenSpecular >= 0) qglUniform1iARB(p->loc_Texture_ScreenSpecular , GL20TU_SCREENSPECULAR); if (p->loc_Texture_ReflectMask >= 0) qglUniform1iARB(p->loc_Texture_ReflectMask , GL20TU_REFLECTMASK); if (p->loc_Texture_ReflectCube >= 0) qglUniform1iARB(p->loc_Texture_ReflectCube , GL20TU_REFLECTCUBE); CHECKGLERROR Con_DPrintf("^5GLSL shader %s compiled.\n", permutationname); } else Con_Printf("^1GLSL shader %s failed! some features may not work properly.\n", permutationname); // free the strings if (vertexstring) Mem_Free(vertexstring); if (geometrystring) Mem_Free(geometrystring); if (fragmentstring) Mem_Free(fragmentstring); } void R_SetupShader_SetPermutationGLSL(unsigned int mode, unsigned int permutation) { r_glsl_permutation_t *perm = R_GLSL_FindPermutation(mode, permutation); if (r_glsl_permutation != perm) { r_glsl_permutation = perm; if (!r_glsl_permutation->program) { if (!r_glsl_permutation->compiled) R_GLSL_CompilePermutation(perm, mode, permutation); if (!r_glsl_permutation->program) { // remove features until we find a valid permutation int i; for (i = 0;i < SHADERPERMUTATION_COUNT;i++) { // reduce i more quickly whenever it would not remove any bits int j = 1<<(SHADERPERMUTATION_COUNT-1-i); if (!(permutation & j)) continue; permutation -= j; r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation); if (!r_glsl_permutation->compiled) R_GLSL_CompilePermutation(perm, mode, permutation); if (r_glsl_permutation->program) break; } if (i >= SHADERPERMUTATION_COUNT) { //Con_Printf("Could not find a working OpenGL 2.0 shader for permutation %s %s\n", shadermodeinfo[mode].vertexfilename, shadermodeinfo[mode].pretext); r_glsl_permutation = R_GLSL_FindPermutation(mode, permutation); qglUseProgramObjectARB(0);CHECKGLERROR return; // no bit left to clear, entire mode is broken } } } CHECKGLERROR qglUseProgramObjectARB(r_glsl_permutation->program);CHECKGLERROR } if (r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fvARB(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f); if (r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fvARB(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f); if (r_glsl_permutation->loc_ClientTime >= 0) qglUniform1fARB(r_glsl_permutation->loc_ClientTime, cl.time); } #ifdef SUPPORTCG #include struct r_cg_permutation_s; typedef struct r_cg_permutation_s { /// hash lookup data struct r_cg_permutation_s *hashnext; unsigned int mode; unsigned int permutation; /// indicates if we have tried compiling this permutation already qboolean compiled; /// 0 if compilation failed CGprogram vprogram; CGprogram fprogram; /// locations of detected parameters in programs, or NULL if not found CGparameter vp_EyePosition; CGparameter vp_FogPlane; CGparameter vp_LightDir; CGparameter vp_LightPosition; CGparameter vp_ModelToLight; CGparameter vp_TexMatrix; CGparameter vp_BackgroundTexMatrix; CGparameter vp_ModelViewProjectionMatrix; CGparameter vp_ModelViewMatrix; CGparameter vp_ShadowMapMatrix; CGparameter fp_Texture_First; CGparameter fp_Texture_Second; CGparameter fp_Texture_GammaRamps; CGparameter fp_Texture_Normal; CGparameter fp_Texture_Color; CGparameter fp_Texture_Gloss; CGparameter fp_Texture_Glow; CGparameter fp_Texture_SecondaryNormal; CGparameter fp_Texture_SecondaryColor; CGparameter fp_Texture_SecondaryGloss; CGparameter fp_Texture_SecondaryGlow; CGparameter fp_Texture_Pants; CGparameter fp_Texture_Shirt; CGparameter fp_Texture_FogHeightTexture; CGparameter fp_Texture_FogMask; CGparameter fp_Texture_Lightmap; CGparameter fp_Texture_Deluxemap; CGparameter fp_Texture_Attenuation; CGparameter fp_Texture_Cube; CGparameter fp_Texture_Refraction; CGparameter fp_Texture_Reflection; CGparameter fp_Texture_ShadowMap2D; CGparameter fp_Texture_CubeProjection; CGparameter fp_Texture_ScreenDepth; CGparameter fp_Texture_ScreenNormalMap; CGparameter fp_Texture_ScreenDiffuse; CGparameter fp_Texture_ScreenSpecular; CGparameter fp_Texture_ReflectMask; CGparameter fp_Texture_ReflectCube; CGparameter fp_Alpha; CGparameter fp_BloomBlur_Parameters; CGparameter fp_ClientTime; CGparameter fp_Color_Ambient; CGparameter fp_Color_Diffuse; CGparameter fp_Color_Specular; CGparameter fp_Color_Glow; CGparameter fp_Color_Pants; CGparameter fp_Color_Shirt; CGparameter fp_DeferredColor_Ambient; CGparameter fp_DeferredColor_Diffuse; CGparameter fp_DeferredColor_Specular; CGparameter fp_DeferredMod_Diffuse; CGparameter fp_DeferredMod_Specular; CGparameter fp_DistortScaleRefractReflect; CGparameter fp_EyePosition; CGparameter fp_FogColor; CGparameter fp_FogHeightFade; CGparameter fp_FogPlane; CGparameter fp_FogPlaneViewDist; CGparameter fp_FogRangeRecip; CGparameter fp_LightColor; CGparameter fp_LightDir; CGparameter fp_LightPosition; CGparameter fp_OffsetMapping_Scale; CGparameter fp_PixelSize; CGparameter fp_ReflectColor; CGparameter fp_ReflectFactor; CGparameter fp_ReflectOffset; CGparameter fp_RefractColor; CGparameter fp_Saturation; CGparameter fp_ScreenCenterRefractReflect; CGparameter fp_ScreenScaleRefractReflect; CGparameter fp_ScreenToDepth; CGparameter fp_ShadowMap_Parameters; CGparameter fp_ShadowMap_TextureScale; CGparameter fp_SpecularPower; CGparameter fp_UserVec1; CGparameter fp_UserVec2; CGparameter fp_UserVec3; CGparameter fp_UserVec4; CGparameter fp_ViewTintColor; CGparameter fp_ViewToLight; CGparameter fp_PixelToScreenTexCoord; CGparameter fp_ModelToReflectCube; CGparameter fp_BloomColorSubtract; CGparameter fp_NormalmapScrollBlend; } r_cg_permutation_t; /// information about each possible shader permutation r_cg_permutation_t *r_cg_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE]; /// currently selected permutation r_cg_permutation_t *r_cg_permutation; /// storage for permutations linked in the hash table memexpandablearray_t r_cg_permutationarray; #define CHECKCGERROR {CGerror err = cgGetError(), err2 = err;if (err){Con_Printf("%s:%i CG error %i: %s : %s\n", __FILE__, __LINE__, err, cgGetErrorString(err), cgGetLastErrorString(&err2));if (err == 1) Con_Printf("last listing:\n%s\n", cgGetLastListing(vid.cgcontext));}} static r_cg_permutation_t *R_CG_FindPermutation(unsigned int mode, unsigned int permutation) { //unsigned int hashdepth = 0; unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1); r_cg_permutation_t *p; for (p = r_cg_permutationhash[mode][hashindex];p;p = p->hashnext) { if (p->mode == mode && p->permutation == permutation) { //if (hashdepth > 10) // Con_Printf("R_CG_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth); return p; } //hashdepth++; } p = (r_cg_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_cg_permutationarray); p->mode = mode; p->permutation = permutation; p->hashnext = r_cg_permutationhash[mode][hashindex]; r_cg_permutationhash[mode][hashindex] = p; //if (hashdepth > 10) // Con_Printf("R_CG_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth); return p; } static char *R_CG_GetText(const char *filename, qboolean printfromdisknotice) { char *shaderstring; if (!filename || !filename[0]) return NULL; if (!strcmp(filename, "cg/default.cg")) { if (!cgshaderstring) { cgshaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL); if (cgshaderstring) Con_DPrintf("Loading shaders from file %s...\n", filename); else cgshaderstring = (char *)builtincgshaderstring; } shaderstring = (char *) Mem_Alloc(r_main_mempool, strlen(cgshaderstring) + 1); memcpy(shaderstring, cgshaderstring, strlen(cgshaderstring) + 1); return shaderstring; } shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL); if (shaderstring) { if (printfromdisknotice) Con_DPrintf("from disk %s... ", filename); return shaderstring; } return shaderstring; } static void R_CG_CacheShader(r_cg_permutation_t *p, const char *cachename, const char *vertstring, const char *fragstring) { // TODO: load or create .fp and .vp shader files } static void R_CG_CompilePermutation(r_cg_permutation_t *p, unsigned int mode, unsigned int permutation) { int i; shadermodeinfo_t *modeinfo = cgshadermodeinfo + mode; int vertstring_length = 0; int geomstring_length = 0; int fragstring_length = 0; char *t; char *vertexstring, *geometrystring, *fragmentstring; char *vertstring, *geomstring, *fragstring; char permutationname[256]; char cachename[256]; CGprofile vertexProfile; CGprofile fragmentProfile; int vertstrings_count = 0; int geomstrings_count = 0; int fragstrings_count = 0; const char *vertstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; const char *geomstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; const char *fragstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; if (p->compiled) return; p->compiled = true; p->vprogram = NULL; p->fprogram = NULL; permutationname[0] = 0; cachename[0] = 0; vertexstring = R_CG_GetText(modeinfo->vertexfilename, true); geometrystring = R_CG_GetText(modeinfo->geometryfilename, false); fragmentstring = R_CG_GetText(modeinfo->fragmentfilename, false); strlcat(permutationname, modeinfo->vertexfilename, sizeof(permutationname)); strlcat(cachename, "cg/", sizeof(cachename)); // the first pretext is which type of shader to compile as // (later these will all be bound together as a program object) vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n"; geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n"; fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n"; // the second pretext is the mode (for example a light source) vertstrings_list[vertstrings_count++] = modeinfo->pretext; geomstrings_list[geomstrings_count++] = modeinfo->pretext; fragstrings_list[fragstrings_count++] = modeinfo->pretext; strlcat(permutationname, modeinfo->name, sizeof(permutationname)); strlcat(cachename, modeinfo->name, sizeof(cachename)); // now add all the permutation pretexts for (i = 0;i < SHADERPERMUTATION_COUNT;i++) { if (permutation & (1<vprogram) p->vprogram = cgCreateProgram(vid.cgcontext, CG_SOURCE, vertstring, vertexProfile, NULL, NULL); CHECKCGERROR if (fragstring[0] && !p->fprogram) p->fprogram = cgCreateProgram(vid.cgcontext, CG_SOURCE, fragstring, fragmentProfile, NULL, NULL); CHECKCGERROR // look up all the uniform variable names we care about, so we don't // have to look them up every time we set them if (p->vprogram) { CHECKCGERROR cgGLLoadProgram(p->vprogram);CHECKCGERROR CHECKGLERROR cgGLEnableProfile(vertexProfile);CHECKCGERROR CHECKGLERROR p->vp_EyePosition = cgGetNamedParameter(p->vprogram, "EyePosition"); p->vp_FogPlane = cgGetNamedParameter(p->vprogram, "FogPlane"); p->vp_LightDir = cgGetNamedParameter(p->vprogram, "LightDir"); p->vp_LightPosition = cgGetNamedParameter(p->vprogram, "LightPosition"); p->vp_ModelToLight = cgGetNamedParameter(p->vprogram, "ModelToLight"); p->vp_TexMatrix = cgGetNamedParameter(p->vprogram, "TexMatrix"); p->vp_BackgroundTexMatrix = cgGetNamedParameter(p->vprogram, "BackgroundTexMatrix"); p->vp_ModelViewProjectionMatrix = cgGetNamedParameter(p->vprogram, "ModelViewProjectionMatrix"); p->vp_ModelViewMatrix = cgGetNamedParameter(p->vprogram, "ModelViewMatrix"); p->vp_ShadowMapMatrix = cgGetNamedParameter(p->vprogram, "ShadowMapMatrix"); CHECKCGERROR } if (p->fprogram) { CHECKCGERROR cgGLLoadProgram(p->fprogram);CHECKCGERROR CHECKGLERROR cgGLEnableProfile(fragmentProfile);CHECKCGERROR CHECKGLERROR p->fp_Texture_First = cgGetNamedParameter(p->fprogram, "Texture_First"); p->fp_Texture_Second = cgGetNamedParameter(p->fprogram, "Texture_Second"); p->fp_Texture_GammaRamps = cgGetNamedParameter(p->fprogram, "Texture_GammaRamps"); p->fp_Texture_Normal = cgGetNamedParameter(p->fprogram, "Texture_Normal"); p->fp_Texture_Color = cgGetNamedParameter(p->fprogram, "Texture_Color"); p->fp_Texture_Gloss = cgGetNamedParameter(p->fprogram, "Texture_Gloss"); p->fp_Texture_Glow = cgGetNamedParameter(p->fprogram, "Texture_Glow"); p->fp_Texture_SecondaryNormal = cgGetNamedParameter(p->fprogram, "Texture_SecondaryNormal"); p->fp_Texture_SecondaryColor = cgGetNamedParameter(p->fprogram, "Texture_SecondaryColor"); p->fp_Texture_SecondaryGloss = cgGetNamedParameter(p->fprogram, "Texture_SecondaryGloss"); p->fp_Texture_SecondaryGlow = cgGetNamedParameter(p->fprogram, "Texture_SecondaryGlow"); p->fp_Texture_Pants = cgGetNamedParameter(p->fprogram, "Texture_Pants"); p->fp_Texture_Shirt = cgGetNamedParameter(p->fprogram, "Texture_Shirt"); p->fp_Texture_FogHeightTexture = cgGetNamedParameter(p->fprogram, "Texture_FogHeightTexture"); p->fp_Texture_FogMask = cgGetNamedParameter(p->fprogram, "Texture_FogMask"); p->fp_Texture_Lightmap = cgGetNamedParameter(p->fprogram, "Texture_Lightmap"); p->fp_Texture_Deluxemap = cgGetNamedParameter(p->fprogram, "Texture_Deluxemap"); p->fp_Texture_Attenuation = cgGetNamedParameter(p->fprogram, "Texture_Attenuation"); p->fp_Texture_Cube = cgGetNamedParameter(p->fprogram, "Texture_Cube"); p->fp_Texture_Refraction = cgGetNamedParameter(p->fprogram, "Texture_Refraction"); p->fp_Texture_Reflection = cgGetNamedParameter(p->fprogram, "Texture_Reflection"); p->fp_Texture_ShadowMap2D = cgGetNamedParameter(p->fprogram, "Texture_ShadowMap2D"); p->fp_Texture_CubeProjection = cgGetNamedParameter(p->fprogram, "Texture_CubeProjection"); p->fp_Texture_ScreenDepth = cgGetNamedParameter(p->fprogram, "Texture_ScreenDepth"); p->fp_Texture_ScreenNormalMap = cgGetNamedParameter(p->fprogram, "Texture_ScreenNormalMap"); p->fp_Texture_ScreenDiffuse = cgGetNamedParameter(p->fprogram, "Texture_ScreenDiffuse"); p->fp_Texture_ScreenSpecular = cgGetNamedParameter(p->fprogram, "Texture_ScreenSpecular"); p->fp_Texture_ReflectMask = cgGetNamedParameter(p->fprogram, "Texture_ReflectMask"); p->fp_Texture_ReflectCube = cgGetNamedParameter(p->fprogram, "Texture_ReflectCube"); p->fp_Alpha = cgGetNamedParameter(p->fprogram, "Alpha"); p->fp_BloomBlur_Parameters = cgGetNamedParameter(p->fprogram, "BloomBlur_Parameters"); p->fp_ClientTime = cgGetNamedParameter(p->fprogram, "ClientTime"); p->fp_Color_Ambient = cgGetNamedParameter(p->fprogram, "Color_Ambient"); p->fp_Color_Diffuse = cgGetNamedParameter(p->fprogram, "Color_Diffuse"); p->fp_Color_Specular = cgGetNamedParameter(p->fprogram, "Color_Specular"); p->fp_Color_Glow = cgGetNamedParameter(p->fprogram, "Color_Glow"); p->fp_Color_Pants = cgGetNamedParameter(p->fprogram, "Color_Pants"); p->fp_Color_Shirt = cgGetNamedParameter(p->fprogram, "Color_Shirt"); p->fp_DeferredColor_Ambient = cgGetNamedParameter(p->fprogram, "DeferredColor_Ambient"); p->fp_DeferredColor_Diffuse = cgGetNamedParameter(p->fprogram, "DeferredColor_Diffuse"); p->fp_DeferredColor_Specular = cgGetNamedParameter(p->fprogram, "DeferredColor_Specular"); p->fp_DeferredMod_Diffuse = cgGetNamedParameter(p->fprogram, "DeferredMod_Diffuse"); p->fp_DeferredMod_Specular = cgGetNamedParameter(p->fprogram, "DeferredMod_Specular"); p->fp_DistortScaleRefractReflect = cgGetNamedParameter(p->fprogram, "DistortScaleRefractReflect"); p->fp_EyePosition = cgGetNamedParameter(p->fprogram, "EyePosition"); p->fp_FogColor = cgGetNamedParameter(p->fprogram, "FogColor"); p->fp_FogHeightFade = cgGetNamedParameter(p->fprogram, "FogHeightFade"); p->fp_FogPlane = cgGetNamedParameter(p->fprogram, "FogPlane"); p->fp_FogPlaneViewDist = cgGetNamedParameter(p->fprogram, "FogPlaneViewDist"); p->fp_FogRangeRecip = cgGetNamedParameter(p->fprogram, "FogRangeRecip"); p->fp_LightColor = cgGetNamedParameter(p->fprogram, "LightColor"); p->fp_LightDir = cgGetNamedParameter(p->fprogram, "LightDir"); p->fp_LightPosition = cgGetNamedParameter(p->fprogram, "LightPosition"); p->fp_OffsetMapping_Scale = cgGetNamedParameter(p->fprogram, "OffsetMapping_Scale"); p->fp_PixelSize = cgGetNamedParameter(p->fprogram, "PixelSize"); p->fp_ReflectColor = cgGetNamedParameter(p->fprogram, "ReflectColor"); p->fp_ReflectFactor = cgGetNamedParameter(p->fprogram, "ReflectFactor"); p->fp_ReflectOffset = cgGetNamedParameter(p->fprogram, "ReflectOffset"); p->fp_RefractColor = cgGetNamedParameter(p->fprogram, "RefractColor"); p->fp_Saturation = cgGetNamedParameter(p->fprogram, "Saturation"); p->fp_ScreenCenterRefractReflect = cgGetNamedParameter(p->fprogram, "ScreenCenterRefractReflect"); p->fp_ScreenScaleRefractReflect = cgGetNamedParameter(p->fprogram, "ScreenScaleRefractReflect"); p->fp_ScreenToDepth = cgGetNamedParameter(p->fprogram, "ScreenToDepth"); p->fp_ShadowMap_Parameters = cgGetNamedParameter(p->fprogram, "ShadowMap_Parameters"); p->fp_ShadowMap_TextureScale = cgGetNamedParameter(p->fprogram, "ShadowMap_TextureScale"); p->fp_SpecularPower = cgGetNamedParameter(p->fprogram, "SpecularPower"); p->fp_UserVec1 = cgGetNamedParameter(p->fprogram, "UserVec1"); p->fp_UserVec2 = cgGetNamedParameter(p->fprogram, "UserVec2"); p->fp_UserVec3 = cgGetNamedParameter(p->fprogram, "UserVec3"); p->fp_UserVec4 = cgGetNamedParameter(p->fprogram, "UserVec4"); p->fp_ViewTintColor = cgGetNamedParameter(p->fprogram, "ViewTintColor"); p->fp_ViewToLight = cgGetNamedParameter(p->fprogram, "ViewToLight"); p->fp_PixelToScreenTexCoord = cgGetNamedParameter(p->fprogram, "PixelToScreenTexCoord"); p->fp_ModelToReflectCube = cgGetNamedParameter(p->fprogram, "ModelToReflectCube"); p->fp_BloomColorSubtract = cgGetNamedParameter(p->fprogram, "BloomColorSubtract"); p->fp_NormalmapScrollBlend = cgGetNamedParameter(p->fprogram, "NormalmapScrollBlend"); CHECKCGERROR } if ((p->vprogram || !vertstring[0]) && (p->fprogram || !fragstring[0])) Con_DPrintf("^5CG shader %s compiled.\n", permutationname); else Con_Printf("^1CG shader %s failed! some features may not work properly.\n", permutationname); // free the strings if (vertstring) Mem_Free(vertstring); if (geomstring) Mem_Free(geomstring); if (fragstring) Mem_Free(fragstring); if (vertexstring) Mem_Free(vertexstring); if (geometrystring) Mem_Free(geometrystring); if (fragmentstring) Mem_Free(fragmentstring); } void R_SetupShader_SetPermutationCG(unsigned int mode, unsigned int permutation) { r_cg_permutation_t *perm = R_CG_FindPermutation(mode, permutation); CHECKGLERROR CHECKCGERROR if (r_cg_permutation != perm) { r_cg_permutation = perm; if (!r_cg_permutation->vprogram && !r_cg_permutation->fprogram) { if (!r_cg_permutation->compiled) R_CG_CompilePermutation(perm, mode, permutation); if (!r_cg_permutation->vprogram && !r_cg_permutation->fprogram) { // remove features until we find a valid permutation int i; for (i = 0;i < SHADERPERMUTATION_COUNT;i++) { // reduce i more quickly whenever it would not remove any bits int j = 1<<(SHADERPERMUTATION_COUNT-1-i); if (!(permutation & j)) continue; permutation -= j; r_cg_permutation = R_CG_FindPermutation(mode, permutation); if (!r_cg_permutation->compiled) R_CG_CompilePermutation(perm, mode, permutation); if (r_cg_permutation->vprogram || r_cg_permutation->fprogram) break; } if (i >= SHADERPERMUTATION_COUNT) { //Con_Printf("Could not find a working Cg shader for permutation %s %s\n", shadermodeinfo[mode].vertexfilename, shadermodeinfo[mode].pretext); r_cg_permutation = R_CG_FindPermutation(mode, permutation); return; // no bit left to clear, entire mode is broken } } } CHECKGLERROR CHECKCGERROR if (r_cg_permutation->vprogram) { cgGLLoadProgram(r_cg_permutation->vprogram);CHECKCGERROR CHECKGLERROR cgGLBindProgram(r_cg_permutation->vprogram);CHECKCGERROR CHECKGLERROR cgGLEnableProfile(cgGLGetLatestProfile(CG_GL_VERTEX));CHECKCGERROR CHECKGLERROR } else { cgGLDisableProfile(cgGLGetLatestProfile(CG_GL_VERTEX));CHECKCGERROR CHECKGLERROR cgGLUnbindProgram(cgGLGetLatestProfile(CG_GL_VERTEX));CHECKCGERROR CHECKGLERROR } if (r_cg_permutation->fprogram) { cgGLLoadProgram(r_cg_permutation->fprogram);CHECKCGERROR CHECKGLERROR cgGLBindProgram(r_cg_permutation->fprogram);CHECKCGERROR CHECKGLERROR cgGLEnableProfile(cgGLGetLatestProfile(CG_GL_FRAGMENT));CHECKCGERROR CHECKGLERROR } else { cgGLDisableProfile(cgGLGetLatestProfile(CG_GL_FRAGMENT));CHECKCGERROR CHECKGLERROR cgGLUnbindProgram(cgGLGetLatestProfile(CG_GL_FRAGMENT));CHECKCGERROR CHECKGLERROR } } CHECKCGERROR if (r_cg_permutation->vp_ModelViewProjectionMatrix) cgGLSetMatrixParameterfc(r_cg_permutation->vp_ModelViewProjectionMatrix, gl_modelviewprojection16f);CHECKCGERROR if (r_cg_permutation->vp_ModelViewMatrix) cgGLSetMatrixParameterfc(r_cg_permutation->vp_ModelViewMatrix, gl_modelview16f);CHECKCGERROR if (r_cg_permutation->fp_ClientTime) cgGLSetParameter1f(r_cg_permutation->fp_ClientTime, cl.time);CHECKCGERROR } void CG_BindTexture(CGparameter param, rtexture_t *tex) { cgGLSetTextureParameter(param, R_GetTexture(tex)); cgGLEnableTextureParameter(param); } #endif #ifdef SUPPORTD3D #ifdef SUPPORTD3D #include extern LPDIRECT3DDEVICE9 vid_d3d9dev; extern D3DCAPS9 vid_d3d9caps; #endif struct r_hlsl_permutation_s; typedef struct r_hlsl_permutation_s { /// hash lookup data struct r_hlsl_permutation_s *hashnext; unsigned int mode; unsigned int permutation; /// indicates if we have tried compiling this permutation already qboolean compiled; /// NULL if compilation failed IDirect3DVertexShader9 *vertexshader; IDirect3DPixelShader9 *pixelshader; } r_hlsl_permutation_t; typedef enum D3DVSREGISTER_e { D3DVSREGISTER_TexMatrix = 0, // float4x4 D3DVSREGISTER_BackgroundTexMatrix = 4, // float4x4 D3DVSREGISTER_ModelViewProjectionMatrix = 8, // float4x4 D3DVSREGISTER_ModelViewMatrix = 12, // float4x4 D3DVSREGISTER_ShadowMapMatrix = 16, // float4x4 D3DVSREGISTER_ModelToLight = 20, // float4x4 D3DVSREGISTER_EyePosition = 24, D3DVSREGISTER_FogPlane = 25, D3DVSREGISTER_LightDir = 26, D3DVSREGISTER_LightPosition = 27, } D3DVSREGISTER_t; typedef enum D3DPSREGISTER_e { D3DPSREGISTER_Alpha = 0, D3DPSREGISTER_BloomBlur_Parameters = 1, D3DPSREGISTER_ClientTime = 2, D3DPSREGISTER_Color_Ambient = 3, D3DPSREGISTER_Color_Diffuse = 4, D3DPSREGISTER_Color_Specular = 5, D3DPSREGISTER_Color_Glow = 6, D3DPSREGISTER_Color_Pants = 7, D3DPSREGISTER_Color_Shirt = 8, D3DPSREGISTER_DeferredColor_Ambient = 9, D3DPSREGISTER_DeferredColor_Diffuse = 10, D3DPSREGISTER_DeferredColor_Specular = 11, D3DPSREGISTER_DeferredMod_Diffuse = 12, D3DPSREGISTER_DeferredMod_Specular = 13, D3DPSREGISTER_DistortScaleRefractReflect = 14, D3DPSREGISTER_EyePosition = 15, // unused D3DPSREGISTER_FogColor = 16, D3DPSREGISTER_FogHeightFade = 17, D3DPSREGISTER_FogPlane = 18, D3DPSREGISTER_FogPlaneViewDist = 19, D3DPSREGISTER_FogRangeRecip = 20, D3DPSREGISTER_LightColor = 21, D3DPSREGISTER_LightDir = 22, // unused D3DPSREGISTER_LightPosition = 23, D3DPSREGISTER_OffsetMapping_Scale = 24, D3DPSREGISTER_PixelSize = 25, D3DPSREGISTER_ReflectColor = 26, D3DPSREGISTER_ReflectFactor = 27, D3DPSREGISTER_ReflectOffset = 28, D3DPSREGISTER_RefractColor = 29, D3DPSREGISTER_Saturation = 30, D3DPSREGISTER_ScreenCenterRefractReflect = 31, D3DPSREGISTER_ScreenScaleRefractReflect = 32, D3DPSREGISTER_ScreenToDepth = 33, D3DPSREGISTER_ShadowMap_Parameters = 34, D3DPSREGISTER_ShadowMap_TextureScale = 35, D3DPSREGISTER_SpecularPower = 36, D3DPSREGISTER_UserVec1 = 37, D3DPSREGISTER_UserVec2 = 38, D3DPSREGISTER_UserVec3 = 39, D3DPSREGISTER_UserVec4 = 40, D3DPSREGISTER_ViewTintColor = 41, D3DPSREGISTER_PixelToScreenTexCoord = 42, D3DPSREGISTER_BloomColorSubtract = 43, D3DPSREGISTER_ViewToLight = 44, // float4x4 D3DPSREGISTER_ModelToReflectCube = 48, // float4x4 D3DPSREGISTER_NormalmapScrollBlend = 52, // next at 53 } D3DPSREGISTER_t; /// information about each possible shader permutation r_hlsl_permutation_t *r_hlsl_permutationhash[SHADERMODE_COUNT][SHADERPERMUTATION_HASHSIZE]; /// currently selected permutation r_hlsl_permutation_t *r_hlsl_permutation; /// storage for permutations linked in the hash table memexpandablearray_t r_hlsl_permutationarray; static r_hlsl_permutation_t *R_HLSL_FindPermutation(unsigned int mode, unsigned int permutation) { //unsigned int hashdepth = 0; unsigned int hashindex = (permutation * 0x1021) & (SHADERPERMUTATION_HASHSIZE - 1); r_hlsl_permutation_t *p; for (p = r_hlsl_permutationhash[mode][hashindex];p;p = p->hashnext) { if (p->mode == mode && p->permutation == permutation) { //if (hashdepth > 10) // Con_Printf("R_HLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth); return p; } //hashdepth++; } p = (r_hlsl_permutation_t*)Mem_ExpandableArray_AllocRecord(&r_hlsl_permutationarray); p->mode = mode; p->permutation = permutation; p->hashnext = r_hlsl_permutationhash[mode][hashindex]; r_hlsl_permutationhash[mode][hashindex] = p; //if (hashdepth > 10) // Con_Printf("R_HLSL_FindPermutation: Warning: %i:%i has hashdepth %i\n", mode, permutation, hashdepth); return p; } static char *R_HLSL_GetText(const char *filename, qboolean printfromdisknotice) { char *shaderstring; if (!filename || !filename[0]) return NULL; if (!strcmp(filename, "hlsl/default.hlsl")) { if (!hlslshaderstring) { hlslshaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL); if (hlslshaderstring) Con_DPrintf("Loading shaders from file %s...\n", filename); else hlslshaderstring = (char *)builtincgshaderstring; } shaderstring = (char *) Mem_Alloc(r_main_mempool, strlen(hlslshaderstring) + 1); memcpy(shaderstring, hlslshaderstring, strlen(hlslshaderstring) + 1); return shaderstring; } shaderstring = (char *)FS_LoadFile(filename, r_main_mempool, false, NULL); if (shaderstring) { if (printfromdisknotice) Con_DPrintf("from disk %s... ", filename); return shaderstring; } return shaderstring; } #include //#include //#include static void R_HLSL_CacheShader(r_hlsl_permutation_t *p, const char *cachename, const char *vertstring, const char *fragstring) { DWORD *vsbin = NULL; DWORD *psbin = NULL; fs_offset_t vsbinsize; fs_offset_t psbinsize; // IDirect3DVertexShader9 *vs = NULL; // IDirect3DPixelShader9 *ps = NULL; ID3DXBuffer *vslog = NULL; ID3DXBuffer *vsbuffer = NULL; ID3DXConstantTable *vsconstanttable = NULL; ID3DXBuffer *pslog = NULL; ID3DXBuffer *psbuffer = NULL; ID3DXConstantTable *psconstanttable = NULL; int vsresult = 0; int psresult = 0; char temp[MAX_INPUTLINE]; const char *vsversion = "vs_3_0", *psversion = "ps_3_0"; qboolean debugshader = gl_paranoid.integer != 0; if (p->permutation & SHADERPERMUTATION_OFFSETMAPPING) {vsversion = "vs_3_0";psversion = "ps_3_0";} if (p->permutation & SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING) {vsversion = "vs_3_0";psversion = "ps_3_0";} if (!debugshader) { vsbin = (DWORD *)FS_LoadFile(va("%s.vsbin", cachename), r_main_mempool, true, &vsbinsize); psbin = (DWORD *)FS_LoadFile(va("%s.psbin", cachename), r_main_mempool, true, &psbinsize); } if ((!vsbin && vertstring) || (!psbin && fragstring)) { const char* dllnames_d3dx9 [] = { "d3dx9_43.dll", "d3dx9_42.dll", "d3dx9_41.dll", "d3dx9_40.dll", "d3dx9_39.dll", "d3dx9_38.dll", "d3dx9_37.dll", "d3dx9_36.dll", "d3dx9_35.dll", "d3dx9_34.dll", "d3dx9_33.dll", "d3dx9_32.dll", "d3dx9_31.dll", "d3dx9_30.dll", "d3dx9_29.dll", "d3dx9_28.dll", "d3dx9_27.dll", "d3dx9_26.dll", "d3dx9_25.dll", "d3dx9_24.dll", NULL }; dllhandle_t d3dx9_dll = NULL; HRESULT (WINAPI *qD3DXCompileShaderFromFileA)(LPCSTR pSrcFile, CONST D3DXMACRO* pDefines, LPD3DXINCLUDE pInclude, LPCSTR pFunctionName, LPCSTR pProfile, DWORD Flags, LPD3DXBUFFER* ppShader, LPD3DXBUFFER* ppErrorMsgs, LPD3DXCONSTANTTABLE* ppConstantTable); HRESULT (WINAPI *qD3DXPreprocessShader)(LPCSTR pSrcData, UINT SrcDataSize, CONST D3DXMACRO* pDefines, LPD3DXINCLUDE pInclude, LPD3DXBUFFER* ppShaderText, LPD3DXBUFFER* ppErrorMsgs); HRESULT (WINAPI *qD3DXCompileShader)(LPCSTR pSrcData, UINT SrcDataLen, CONST D3DXMACRO* pDefines, LPD3DXINCLUDE pInclude, LPCSTR pFunctionName, LPCSTR pProfile, DWORD Flags, LPD3DXBUFFER* ppShader, LPD3DXBUFFER* ppErrorMsgs, LPD3DXCONSTANTTABLE* ppConstantTable); dllfunction_t d3dx9_dllfuncs[] = { {"D3DXCompileShaderFromFileA", (void **) &qD3DXCompileShaderFromFileA}, {"D3DXPreprocessShader", (void **) &qD3DXPreprocessShader}, {"D3DXCompileShader", (void **) &qD3DXCompileShader}, {NULL, NULL} }; if (Sys_LoadLibrary(dllnames_d3dx9, &d3dx9_dll, d3dx9_dllfuncs)) { DWORD shaderflags = 0; if (debugshader) shaderflags = D3DXSHADER_DEBUG | D3DXSHADER_SKIPOPTIMIZATION; vsbin = (DWORD *)Mem_Realloc(tempmempool, vsbin, 0); psbin = (DWORD *)Mem_Realloc(tempmempool, psbin, 0); if (vertstring && vertstring[0]) { if (debugshader) { // vsresult = qD3DXPreprocessShader(vertstring, strlen(vertstring), NULL, NULL, &vsbuffer, &vslog); // FS_WriteFile(va("%s_vs.fx", cachename), vsbuffer->GetBufferPointer(), vsbuffer->GetBufferSize()); FS_WriteFile(va("%s_vs.fx", cachename), vertstring, strlen(vertstring)); vsresult = qD3DXCompileShaderFromFileA(va("%s/%s_vs.fx", fs_gamedir, cachename), NULL, NULL, "main", vsversion, shaderflags, &vsbuffer, &vslog, &vsconstanttable); } else vsresult = qD3DXCompileShader(vertstring, strlen(vertstring), NULL, NULL, "main", vsversion, shaderflags, &vsbuffer, &vslog, &vsconstanttable); if (vsbuffer) { vsbinsize = vsbuffer->GetBufferSize(); vsbin = (DWORD *)Mem_Alloc(tempmempool, vsbinsize); memcpy(vsbin, vsbuffer->GetBufferPointer(), vsbinsize); vsbuffer->Release(); } if (vslog) { strlcpy(temp, (const char *)vslog->GetBufferPointer(), min(sizeof(temp), vslog->GetBufferSize())); Con_Printf("HLSL vertex shader compile output for %s follows:\n%s\n", cachename, temp); vslog->Release(); } } if (fragstring && fragstring[0]) { if (debugshader) { // psresult = qD3DXPreprocessShader(fragstring, strlen(fragstring), NULL, NULL, &psbuffer, &pslog); // FS_WriteFile(va("%s_ps.fx", cachename), psbuffer->GetBufferPointer(), psbuffer->GetBufferSize()); FS_WriteFile(va("%s_ps.fx", cachename), fragstring, strlen(fragstring)); psresult = qD3DXCompileShaderFromFileA(va("%s/%s_ps.fx", fs_gamedir, cachename), NULL, NULL, "main", psversion, shaderflags, &psbuffer, &pslog, &psconstanttable); } else psresult = qD3DXCompileShader(fragstring, strlen(fragstring), NULL, NULL, "main", psversion, shaderflags, &psbuffer, &pslog, &psconstanttable); if (psbuffer) { psbinsize = psbuffer->GetBufferSize(); psbin = (DWORD *)Mem_Alloc(tempmempool, psbinsize); memcpy(psbin, psbuffer->GetBufferPointer(), psbinsize); psbuffer->Release(); } if (pslog) { strlcpy(temp, (const char *)pslog->GetBufferPointer(), min(sizeof(temp), pslog->GetBufferSize())); Con_Printf("HLSL pixel shader compile output for %s follows:\n%s\n", cachename, temp); pslog->Release(); } } Sys_UnloadLibrary(&d3dx9_dll); } else Con_Printf("Unable to compile shader - D3DXCompileShader function not found\n"); } if (vsbin && psbin) { vsresult = IDirect3DDevice9_CreateVertexShader(vid_d3d9dev, vsbin, &p->vertexshader); if (FAILED(vsresult)) Con_Printf("HLSL CreateVertexShader failed for %s (hresult = %8x)\n", cachename, vsresult); psresult = IDirect3DDevice9_CreatePixelShader(vid_d3d9dev, psbin, &p->pixelshader); if (FAILED(psresult)) Con_Printf("HLSL CreatePixelShader failed for %s (hresult = %8x)\n", cachename, psresult); } // free the shader data vsbin = (DWORD *)Mem_Realloc(tempmempool, vsbin, 0); psbin = (DWORD *)Mem_Realloc(tempmempool, psbin, 0); } static void R_HLSL_CompilePermutation(r_hlsl_permutation_t *p, unsigned int mode, unsigned int permutation) { int i; shadermodeinfo_t *modeinfo = hlslshadermodeinfo + mode; int vertstring_length = 0; int geomstring_length = 0; int fragstring_length = 0; char *t; char *vertexstring, *geometrystring, *fragmentstring; char *vertstring, *geomstring, *fragstring; char permutationname[256]; char cachename[256]; int vertstrings_count = 0; int geomstrings_count = 0; int fragstrings_count = 0; const char *vertstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; const char *geomstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; const char *fragstrings_list[32+3+SHADERSTATICPARMS_COUNT+1]; if (p->compiled) return; p->compiled = true; p->vertexshader = NULL; p->pixelshader = NULL; permutationname[0] = 0; cachename[0] = 0; vertexstring = R_HLSL_GetText(modeinfo->vertexfilename, true); geometrystring = R_HLSL_GetText(modeinfo->geometryfilename, false); fragmentstring = R_HLSL_GetText(modeinfo->fragmentfilename, false); strlcat(permutationname, modeinfo->vertexfilename, sizeof(permutationname)); strlcat(cachename, "hlsl/", sizeof(cachename)); // define HLSL so that the shader can tell apart the HLSL compiler and the Cg compiler vertstrings_count = 0; geomstrings_count = 0; fragstrings_count = 0; vertstrings_list[vertstrings_count++] = "#define HLSL\n"; geomstrings_list[geomstrings_count++] = "#define HLSL\n"; fragstrings_list[fragstrings_count++] = "#define HLSL\n"; // the first pretext is which type of shader to compile as // (later these will all be bound together as a program object) vertstrings_list[vertstrings_count++] = "#define VERTEX_SHADER\n"; geomstrings_list[geomstrings_count++] = "#define GEOMETRY_SHADER\n"; fragstrings_list[fragstrings_count++] = "#define FRAGMENT_SHADER\n"; // the second pretext is the mode (for example a light source) vertstrings_list[vertstrings_count++] = modeinfo->pretext; geomstrings_list[geomstrings_count++] = modeinfo->pretext; fragstrings_list[fragstrings_count++] = modeinfo->pretext; strlcat(permutationname, modeinfo->name, sizeof(permutationname)); strlcat(cachename, modeinfo->name, sizeof(cachename)); // now add all the permutation pretexts for (i = 0;i < SHADERPERMUTATION_COUNT;i++) { if (permutation & (1<vertexshader || !vertstring[0]) && (p->pixelshader || !fragstring[0])) Con_DPrintf("^5HLSL shader %s compiled.\n", permutationname); else Con_Printf("^1HLSL shader %s failed! some features may not work properly.\n", permutationname); // free the strings if (vertstring) Mem_Free(vertstring); if (geomstring) Mem_Free(geomstring); if (fragstring) Mem_Free(fragstring); if (vertexstring) Mem_Free(vertexstring); if (geometrystring) Mem_Free(geometrystring); if (fragmentstring) Mem_Free(fragmentstring); } static inline void hlslVSSetParameter16f(D3DVSREGISTER_t r, const float *a) {IDirect3DDevice9_SetVertexShaderConstantF(vid_d3d9dev, r, a, 4);} static inline void hlslVSSetParameter4fv(D3DVSREGISTER_t r, const float *a) {IDirect3DDevice9_SetVertexShaderConstantF(vid_d3d9dev, r, a, 1);} static inline void hlslVSSetParameter4f(D3DVSREGISTER_t r, float x, float y, float z, float w) {float temp[4];Vector4Set(temp, x, y, z, w);IDirect3DDevice9_SetVertexShaderConstantF(vid_d3d9dev, r, temp, 1);} static inline void hlslVSSetParameter3f(D3DVSREGISTER_t r, float x, float y, float z) {float temp[4];Vector4Set(temp, x, y, z, 0);IDirect3DDevice9_SetVertexShaderConstantF(vid_d3d9dev, r, temp, 1);} static inline void hlslVSSetParameter2f(D3DVSREGISTER_t r, float x, float y) {float temp[4];Vector4Set(temp, x, y, 0, 0);IDirect3DDevice9_SetVertexShaderConstantF(vid_d3d9dev, r, temp, 1);} static inline void hlslVSSetParameter1f(D3DVSREGISTER_t r, float x) {float temp[4];Vector4Set(temp, x, 0, 0, 0);IDirect3DDevice9_SetVertexShaderConstantF(vid_d3d9dev, r, temp, 1);} static inline void hlslPSSetParameter16f(D3DPSREGISTER_t r, const float *a) {IDirect3DDevice9_SetPixelShaderConstantF(vid_d3d9dev, r, a, 4);} static inline void hlslPSSetParameter4fv(D3DPSREGISTER_t r, const float *a) {IDirect3DDevice9_SetPixelShaderConstantF(vid_d3d9dev, r, a, 1);} static inline void hlslPSSetParameter4f(D3DPSREGISTER_t r, float x, float y, float z, float w) {float temp[4];Vector4Set(temp, x, y, z, w);IDirect3DDevice9_SetPixelShaderConstantF(vid_d3d9dev, r, temp, 1);} static inline void hlslPSSetParameter3f(D3DPSREGISTER_t r, float x, float y, float z) {float temp[4];Vector4Set(temp, x, y, z, 0);IDirect3DDevice9_SetPixelShaderConstantF(vid_d3d9dev, r, temp, 1);} static inline void hlslPSSetParameter2f(D3DPSREGISTER_t r, float x, float y) {float temp[4];Vector4Set(temp, x, y, 0, 0);IDirect3DDevice9_SetPixelShaderConstantF(vid_d3d9dev, r, temp, 1);} static inline void hlslPSSetParameter1f(D3DPSREGISTER_t r, float x) {float temp[4];Vector4Set(temp, x, 0, 0, 0);IDirect3DDevice9_SetPixelShaderConstantF(vid_d3d9dev, r, temp, 1);} void R_SetupShader_SetPermutationHLSL(unsigned int mode, unsigned int permutation) { r_hlsl_permutation_t *perm = R_HLSL_FindPermutation(mode, permutation); if (r_hlsl_permutation != perm) { r_hlsl_permutation = perm; if (!r_hlsl_permutation->vertexshader && !r_hlsl_permutation->pixelshader) { if (!r_hlsl_permutation->compiled) R_HLSL_CompilePermutation(perm, mode, permutation); if (!r_hlsl_permutation->vertexshader && !r_hlsl_permutation->pixelshader) { // remove features until we find a valid permutation int i; for (i = 0;i < SHADERPERMUTATION_COUNT;i++) { // reduce i more quickly whenever it would not remove any bits int j = 1<<(SHADERPERMUTATION_COUNT-1-i); if (!(permutation & j)) continue; permutation -= j; r_hlsl_permutation = R_HLSL_FindPermutation(mode, permutation); if (!r_hlsl_permutation->compiled) R_HLSL_CompilePermutation(perm, mode, permutation); if (r_hlsl_permutation->vertexshader || r_hlsl_permutation->pixelshader) break; } if (i >= SHADERPERMUTATION_COUNT) { //Con_Printf("Could not find a working Cg shader for permutation %s %s\n", shadermodeinfo[mode].vertexfilename, shadermodeinfo[mode].pretext); r_hlsl_permutation = R_HLSL_FindPermutation(mode, permutation); return; // no bit left to clear, entire mode is broken } } } IDirect3DDevice9_SetVertexShader(vid_d3d9dev, r_hlsl_permutation->vertexshader); IDirect3DDevice9_SetPixelShader(vid_d3d9dev, r_hlsl_permutation->pixelshader); } hlslVSSetParameter16f(D3DVSREGISTER_ModelViewProjectionMatrix, gl_modelviewprojection16f); hlslVSSetParameter16f(D3DVSREGISTER_ModelViewMatrix, gl_modelview16f); hlslPSSetParameter1f(D3DPSREGISTER_ClientTime, cl.time); } #endif void R_GLSL_Restart_f(void) { unsigned int i, limit; if (glslshaderstring && glslshaderstring != builtinshaderstring) Mem_Free(glslshaderstring); glslshaderstring = NULL; if (cgshaderstring && cgshaderstring != builtincgshaderstring) Mem_Free(cgshaderstring); cgshaderstring = NULL; if (hlslshaderstring && hlslshaderstring != builtincgshaderstring) Mem_Free(hlslshaderstring); hlslshaderstring = NULL; switch(vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTD3D { r_hlsl_permutation_t *p; r_hlsl_permutation = NULL; // cgGLDisableProfile(cgGLGetLatestProfile(CG_GL_VERTEX));CHECKCGERROR CHECKGLERROR // cgGLUnbindProgram(cgGLGetLatestProfile(CG_GL_VERTEX));CHECKCGERROR CHECKGLERROR // cgGLDisableProfile(cgGLGetLatestProfile(CG_GL_FRAGMENT));CHECKCGERROR CHECKGLERROR // cgGLUnbindProgram(cgGLGetLatestProfile(CG_GL_FRAGMENT));CHECKCGERROR CHECKGLERROR limit = Mem_ExpandableArray_IndexRange(&r_hlsl_permutationarray); for (i = 0;i < limit;i++) { if ((p = (r_hlsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_hlsl_permutationarray, i))) { if (p->vertexshader) IDirect3DVertexShader9_Release(p->vertexshader); if (p->pixelshader) IDirect3DPixelShader9_Release(p->pixelshader); Mem_ExpandableArray_FreeRecord(&r_hlsl_permutationarray, (void*)p); } } memset(r_hlsl_permutationhash, 0, sizeof(r_hlsl_permutationhash)); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_GL20: { r_glsl_permutation_t *p; r_glsl_permutation = NULL; limit = Mem_ExpandableArray_IndexRange(&r_glsl_permutationarray); for (i = 0;i < limit;i++) { if ((p = (r_glsl_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_glsl_permutationarray, i))) { GL_Backend_FreeProgram(p->program); Mem_ExpandableArray_FreeRecord(&r_glsl_permutationarray, (void*)p); } } memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash)); } break; case RENDERPATH_CGGL: #ifdef SUPPORTCG { r_cg_permutation_t *p; r_cg_permutation = NULL; cgGLDisableProfile(cgGLGetLatestProfile(CG_GL_VERTEX));CHECKCGERROR CHECKGLERROR cgGLUnbindProgram(cgGLGetLatestProfile(CG_GL_VERTEX));CHECKCGERROR CHECKGLERROR cgGLDisableProfile(cgGLGetLatestProfile(CG_GL_FRAGMENT));CHECKCGERROR CHECKGLERROR cgGLUnbindProgram(cgGLGetLatestProfile(CG_GL_FRAGMENT));CHECKCGERROR CHECKGLERROR limit = Mem_ExpandableArray_IndexRange(&r_cg_permutationarray); for (i = 0;i < limit;i++) { if ((p = (r_cg_permutation_t*)Mem_ExpandableArray_RecordAtIndex(&r_cg_permutationarray, i))) { if (p->vprogram) cgDestroyProgram(p->vprogram); if (p->fprogram) cgDestroyProgram(p->fprogram); Mem_ExpandableArray_FreeRecord(&r_cg_permutationarray, (void*)p); } } memset(r_cg_permutationhash, 0, sizeof(r_cg_permutationhash)); } #endif break; case RENDERPATH_GL13: case RENDERPATH_GL11: break; } } void R_GLSL_DumpShader_f(void) { int i; qfile_t *file; file = FS_OpenRealFile("glsl/default.glsl", "w", false); if (file) { FS_Print(file, "/* The engine may define the following macros:\n"); FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n"); for (i = 0;i < SHADERMODE_COUNT;i++) FS_Print(file, glslshadermodeinfo[i].pretext); for (i = 0;i < SHADERPERMUTATION_COUNT;i++) FS_Print(file, shaderpermutationinfo[i].pretext); FS_Print(file, "*/\n"); FS_Print(file, builtinshaderstring); FS_Close(file); Con_Printf("glsl/default.glsl written\n"); } else Con_Printf("failed to write to glsl/default.glsl\n"); #ifdef SUPPORTCG file = FS_OpenRealFile("cg/default.cg", "w", false); if (file) { FS_Print(file, "/* The engine may define the following macros:\n"); FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n"); for (i = 0;i < SHADERMODE_COUNT;i++) FS_Print(file, cgshadermodeinfo[i].pretext); for (i = 0;i < SHADERPERMUTATION_COUNT;i++) FS_Print(file, shaderpermutationinfo[i].pretext); FS_Print(file, "*/\n"); FS_Print(file, builtincgshaderstring); FS_Close(file); Con_Printf("cg/default.cg written\n"); } else Con_Printf("failed to write to cg/default.cg\n"); #endif #ifdef SUPPORTD3D file = FS_OpenRealFile("hlsl/default.hlsl", "w", false); if (file) { FS_Print(file, "/* The engine may define the following macros:\n"); FS_Print(file, "#define VERTEX_SHADER\n#define GEOMETRY_SHADER\n#define FRAGMENT_SHADER\n"); for (i = 0;i < SHADERMODE_COUNT;i++) FS_Print(file, hlslshadermodeinfo[i].pretext); for (i = 0;i < SHADERPERMUTATION_COUNT;i++) FS_Print(file, shaderpermutationinfo[i].pretext); FS_Print(file, "*/\n"); FS_Print(file, builtincgshaderstring); FS_Close(file); Con_Printf("hlsl/default.hlsl written\n"); } else Con_Printf("failed to write to hlsl/default.hlsl\n"); #endif } void R_SetupShader_Generic(rtexture_t *first, rtexture_t *second, int texturemode, int rgbscale) { if (!second) texturemode = GL_MODULATE; switch (vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTD3D R_SetupShader_SetPermutationHLSL(SHADERMODE_GENERIC, SHADERPERMUTATION_VIEWTINT | (first ? SHADERPERMUTATION_DIFFUSE : 0) | (second ? SHADERPERMUTATION_SPECULAR : 0) | (texturemode == GL_MODULATE ? SHADERPERMUTATION_COLORMAPPING : (texturemode == GL_ADD ? SHADERPERMUTATION_GLOW : (texturemode == GL_DECAL ? SHADERPERMUTATION_VERTEXTEXTUREBLEND : 0)))); R_Mesh_TexBind(GL20TU_FIRST , first ); R_Mesh_TexBind(GL20TU_SECOND, second); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_GL20: R_SetupShader_SetPermutationGLSL(SHADERMODE_GENERIC, SHADERPERMUTATION_VIEWTINT | (first ? SHADERPERMUTATION_DIFFUSE : 0) | (second ? SHADERPERMUTATION_SPECULAR : 0) | (texturemode == GL_MODULATE ? SHADERPERMUTATION_COLORMAPPING : (texturemode == GL_ADD ? SHADERPERMUTATION_GLOW : (texturemode == GL_DECAL ? SHADERPERMUTATION_VERTEXTEXTUREBLEND : 0)))); R_Mesh_TexBind(GL20TU_FIRST , first ); R_Mesh_TexBind(GL20TU_SECOND, second); break; case RENDERPATH_CGGL: #ifdef SUPPORTCG CHECKCGERROR R_SetupShader_SetPermutationCG(SHADERMODE_GENERIC, SHADERPERMUTATION_VIEWTINT | (first ? SHADERPERMUTATION_DIFFUSE : 0) | (second ? SHADERPERMUTATION_SPECULAR : 0) | (texturemode == GL_MODULATE ? SHADERPERMUTATION_COLORMAPPING : (texturemode == GL_ADD ? SHADERPERMUTATION_GLOW : (texturemode == GL_DECAL ? SHADERPERMUTATION_VERTEXTEXTUREBLEND : 0)))); if (r_cg_permutation->fp_Texture_First ) CG_BindTexture(r_cg_permutation->fp_Texture_First , first );CHECKCGERROR if (r_cg_permutation->fp_Texture_Second) CG_BindTexture(r_cg_permutation->fp_Texture_Second, second);CHECKCGERROR #endif break; case RENDERPATH_GL13: R_Mesh_TexBind(0, first ); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexBind(1, second); if (second) R_Mesh_TexCombine(1, texturemode, texturemode, rgbscale, 1); break; case RENDERPATH_GL11: R_Mesh_TexBind(0, first ); break; } } void R_SetupShader_DepthOrShadow(void) { switch (vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTD3D R_SetupShader_SetPermutationHLSL(SHADERMODE_DEPTH_OR_SHADOW, 0); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_GL20: R_SetupShader_SetPermutationGLSL(SHADERMODE_DEPTH_OR_SHADOW, 0); break; case RENDERPATH_CGGL: #ifdef SUPPORTCG R_SetupShader_SetPermutationCG(SHADERMODE_DEPTH_OR_SHADOW, 0); #endif break; case RENDERPATH_GL13: R_Mesh_TexBind(0, 0); R_Mesh_TexBind(1, 0); break; case RENDERPATH_GL11: R_Mesh_TexBind(0, 0); break; } } void R_SetupShader_ShowDepth(void) { switch (vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTHLSL R_SetupShader_SetPermutationHLSL(SHADERMODE_SHOWDEPTH, 0); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_GL20: R_SetupShader_SetPermutationGLSL(SHADERMODE_SHOWDEPTH, 0); break; case RENDERPATH_CGGL: #ifdef SUPPORTCG R_SetupShader_SetPermutationCG(SHADERMODE_SHOWDEPTH, 0); #endif break; case RENDERPATH_GL13: break; case RENDERPATH_GL11: break; } } extern qboolean r_shadow_usingdeferredprepass; extern cvar_t r_shadow_deferred_8bitrange; extern rtexture_t *r_shadow_attenuationgradienttexture; extern rtexture_t *r_shadow_attenuation2dtexture; extern rtexture_t *r_shadow_attenuation3dtexture; extern qboolean r_shadow_usingshadowmap2d; extern qboolean r_shadow_usingshadowmaportho; extern float r_shadow_shadowmap_texturescale[2]; extern float r_shadow_shadowmap_parameters[4]; extern qboolean r_shadow_shadowmapvsdct; extern qboolean r_shadow_shadowmapsampler; extern int r_shadow_shadowmappcf; extern rtexture_t *r_shadow_shadowmap2dtexture; extern rtexture_t *r_shadow_shadowmap2dcolortexture; extern rtexture_t *r_shadow_shadowmapvsdcttexture; extern matrix4x4_t r_shadow_shadowmapmatrix; extern int r_shadow_shadowmaplod; // changes for each light based on distance extern int r_shadow_prepass_width; extern int r_shadow_prepass_height; extern rtexture_t *r_shadow_prepassgeometrydepthtexture; extern rtexture_t *r_shadow_prepassgeometrynormalmaptexture; extern rtexture_t *r_shadow_prepassgeometrydepthcolortexture; extern rtexture_t *r_shadow_prepasslightingdiffusetexture; extern rtexture_t *r_shadow_prepasslightingspeculartexture; extern cvar_t gl_mesh_separatearrays; static qboolean R_BlendFuncAllowsColormod(int src, int dst) { // a blendfunc allows colormod if: // a) it can never keep the destination pixel invariant, or // b) it can keep the destination pixel invariant, and still can do so if colormodded // this is to prevent unintended side effects from colormod // in formulas: // IF there is a (s, sa) for which for all (d, da), // s * src(s, d, sa, da) + d * dst(s, d, sa, da) == d // THEN, for this (s, sa) and all (colormod, d, da): // s*colormod * src(s*colormod, d, sa, da) + d * dst(s*colormod, d, sa, da) == d // OBVIOUSLY, this means that // s*colormod * src(s*colormod, d, sa, da) = 0 // dst(s*colormod, d, sa, da) = 1 // note: not caring about GL_SRC_ALPHA_SATURATE and following here, these are unused in DP code // main condition to leave dst color invariant: // s * src(s, d, sa, da) + d * dst(s, d, sa, da) == d // src == GL_ZERO: // s * 0 + d * dst(s, d, sa, da) == d // => dst == GL_ONE/GL_SRC_COLOR/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is a problem for GL_SRC_COLOR only // src == GL_ONE: // s + d * dst(s, d, sa, da) == d // => s == 0 // => dst == GL_ONE/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is never problematic for these // src == GL_SRC_COLOR: // s*s + d * dst(s, d, sa, da) == d // => s == 0 // => dst == GL_ONE/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is never problematic for these // src == GL_ONE_MINUS_SRC_COLOR: // s*(1-s) + d * dst(s, d, sa, da) == d // => s == 0 or s == 1 // => dst == GL_ONE/GL_SRC_COLOR/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is a problem for GL_SRC_COLOR only // src == GL_DST_COLOR // s*d + d * dst(s, d, sa, da) == d // => s == 1 // => dst == GL_ZERO/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is always a problem // or // => s == 0 // => dst == GL_ONE/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is never problematic for these // => BUT, we do not know s! We must assume it is problematic // then... except in GL_ONE case, where we know all invariant // cases are fine // src == GL_ONE_MINUS_DST_COLOR // s*(1-d) + d * dst(s, d, sa, da) == d // => s == 0 (1-d is impossible to handle for our desired result) // => dst == GL_ONE/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is never problematic for these // src == GL_SRC_ALPHA // s*sa + d * dst(s, d, sa, da) == d // => s == 0, or sa == 0 // => dst == GL_ONE/GL_SRC_COLOR/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod breaks in the case GL_SRC_COLOR only // src == GL_ONE_MINUS_SRC_ALPHA // s*(1-sa) + d * dst(s, d, sa, da) == d // => s == 0, or sa == 1 // => dst == GL_ONE/GL_SRC_COLOR/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod breaks in the case GL_SRC_COLOR only // src == GL_DST_ALPHA // s*da + d * dst(s, d, sa, da) == d // => s == 0 // => dst == GL_ONE/GL_ONE_MINUS_SRC_COLOR/GL_SRC_ALPHA/GL_ONE_MINUS_SRC_ALPHA // => colormod is never problematic for these switch(src) { case GL_ZERO: case GL_ONE_MINUS_SRC_COLOR: case GL_SRC_ALPHA: case GL_ONE_MINUS_SRC_ALPHA: if(dst == GL_SRC_COLOR) return false; return true; case GL_ONE: case GL_SRC_COLOR: case GL_ONE_MINUS_DST_COLOR: case GL_DST_ALPHA: case GL_ONE_MINUS_DST_ALPHA: return true; case GL_DST_COLOR: if(dst == GL_ONE) return true; return false; default: return false; } } void R_SetupShader_Surface(const vec3_t lightcolorbase, qboolean modellighting, float ambientscale, float diffusescale, float specularscale, rsurfacepass_t rsurfacepass, int texturenumsurfaces, const msurface_t **texturesurfacelist, void *surfacewaterplane) { // select a permutation of the lighting shader appropriate to this // combination of texture, entity, light source, and fogging, only use the // minimum features necessary to avoid wasting rendering time in the // fragment shader on features that are not being used unsigned int permutation = 0; unsigned int mode = 0; qboolean allow_colormod; static float dummy_colormod[3] = {1, 1, 1}; float *colormod = rsurface.colormod; float m16f[16]; r_waterstate_waterplane_t *waterplane = (r_waterstate_waterplane_t *)surfacewaterplane; if (rsurfacepass == RSURFPASS_BACKGROUND) { // distorted background if (rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERSHADER) { mode = SHADERMODE_WATER; if (rsurface.texture->r_water_waterscroll[0] && rsurface.texture->r_water_waterscroll[1]) permutation |= SHADERPERMUTATION_NORMALMAPSCROLLBLEND; GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); allow_colormod = R_BlendFuncAllowsColormod(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFRACTION) { mode = SHADERMODE_REFRACTION; GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); allow_colormod = R_BlendFuncAllowsColormod(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else { mode = SHADERMODE_GENERIC; permutation |= SHADERPERMUTATION_DIFFUSE; GL_BlendFunc(GL_ONE, GL_ZERO); allow_colormod = R_BlendFuncAllowsColormod(GL_ONE, GL_ZERO); } GL_AlphaTest(false); } else if (rsurfacepass == RSURFPASS_DEFERREDGEOMETRY) { if (r_glsl_offsetmapping.integer) { if (rsurface.texture->offsetmapping == OFFSETMAPPING_LINEAR) permutation |= SHADERPERMUTATION_OFFSETMAPPING; else if (rsurface.texture->offsetmapping == OFFSETMAPPING_RELIEF) permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; else if (rsurface.texture->offsetmapping != OFFSETMAPPING_OFF) { permutation |= SHADERPERMUTATION_OFFSETMAPPING; if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) permutation |= SHADERPERMUTATION_ALPHAKILL; // normalmap (deferred prepass), may use alpha test on diffuse mode = SHADERMODE_DEFERREDGEOMETRY; if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; GL_AlphaTest(false); GL_BlendFunc(GL_ONE, GL_ZERO); allow_colormod = R_BlendFuncAllowsColormod(GL_ONE, GL_ZERO); } else if (rsurfacepass == RSURFPASS_RTLIGHT) { if (r_glsl_offsetmapping.integer) { if (rsurface.texture->offsetmapping == OFFSETMAPPING_LINEAR) permutation |= SHADERPERMUTATION_OFFSETMAPPING; else if (rsurface.texture->offsetmapping == OFFSETMAPPING_RELIEF) permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; else if (rsurface.texture->offsetmapping != OFFSETMAPPING_OFF) { permutation |= SHADERPERMUTATION_OFFSETMAPPING; if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; // light source mode = SHADERMODE_LIGHTSOURCE; if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; if (rsurface.rtlight->currentcubemap != r_texture_whitecube) permutation |= SHADERPERMUTATION_CUBEFILTER; if (diffusescale > 0) permutation |= SHADERPERMUTATION_DIFFUSE; if (specularscale > 0) permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE; if (r_refdef.fogenabled) permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE); if (rsurface.texture->colormapping) permutation |= SHADERPERMUTATION_COLORMAPPING; if (r_shadow_usingshadowmap2d) { permutation |= SHADERPERMUTATION_SHADOWMAP2D; if(r_shadow_shadowmapvsdct) permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT; if (r_shadow_shadowmapsampler) permutation |= SHADERPERMUTATION_SHADOWSAMPLER; if (r_shadow_shadowmappcf > 1) permutation |= SHADERPERMUTATION_SHADOWMAPPCF2; else if (r_shadow_shadowmappcf) permutation |= SHADERPERMUTATION_SHADOWMAPPCF; } if (rsurface.texture->reflectmasktexture) permutation |= SHADERPERMUTATION_REFLECTCUBE; GL_AlphaTest((rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0); GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); allow_colormod = R_BlendFuncAllowsColormod(GL_SRC_ALPHA, GL_ONE); } else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) { if (r_glsl_offsetmapping.integer) { if (rsurface.texture->offsetmapping == OFFSETMAPPING_LINEAR) permutation |= SHADERPERMUTATION_OFFSETMAPPING; else if (rsurface.texture->offsetmapping == OFFSETMAPPING_RELIEF) permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; else if (rsurface.texture->offsetmapping != OFFSETMAPPING_OFF) { permutation |= SHADERPERMUTATION_OFFSETMAPPING; if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; // unshaded geometry (fullbright or ambient model lighting) mode = SHADERMODE_FLATCOLOR; ambientscale = diffusescale = specularscale = 0; if (rsurface.texture->glowtexture && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer) permutation |= SHADERPERMUTATION_GLOW; if (r_refdef.fogenabled) permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE); if (rsurface.texture->colormapping) permutation |= SHADERPERMUTATION_COLORMAPPING; if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)) { permutation |= SHADERPERMUTATION_SHADOWMAPORTHO; permutation |= SHADERPERMUTATION_SHADOWMAP2D; if (r_shadow_shadowmapsampler) permutation |= SHADERPERMUTATION_SHADOWSAMPLER; if (r_shadow_shadowmappcf > 1) permutation |= SHADERPERMUTATION_SHADOWMAPPCF2; else if (r_shadow_shadowmappcf) permutation |= SHADERPERMUTATION_SHADOWMAPPCF; } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION) permutation |= SHADERPERMUTATION_REFLECTION; if (rsurface.texture->reflectmasktexture) permutation |= SHADERPERMUTATION_REFLECTCUBE; GL_AlphaTest((rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0); GL_BlendFunc(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); allow_colormod = R_BlendFuncAllowsColormod(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); } else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT_DIRECTIONAL) { if (r_glsl_offsetmapping.integer) { if (rsurface.texture->offsetmapping == OFFSETMAPPING_LINEAR) permutation |= SHADERPERMUTATION_OFFSETMAPPING; else if (rsurface.texture->offsetmapping == OFFSETMAPPING_RELIEF) permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; else if (rsurface.texture->offsetmapping != OFFSETMAPPING_OFF) { permutation |= SHADERPERMUTATION_OFFSETMAPPING; if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; // directional model lighting mode = SHADERMODE_LIGHTDIRECTION; if (rsurface.texture->glowtexture && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer) permutation |= SHADERPERMUTATION_GLOW; permutation |= SHADERPERMUTATION_DIFFUSE; if (specularscale > 0) permutation |= SHADERPERMUTATION_SPECULAR; if (r_refdef.fogenabled) permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE); if (rsurface.texture->colormapping) permutation |= SHADERPERMUTATION_COLORMAPPING; if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)) { permutation |= SHADERPERMUTATION_SHADOWMAPORTHO; permutation |= SHADERPERMUTATION_SHADOWMAP2D; if (r_shadow_shadowmapsampler) permutation |= SHADERPERMUTATION_SHADOWSAMPLER; if (r_shadow_shadowmappcf > 1) permutation |= SHADERPERMUTATION_SHADOWMAPPCF2; else if (r_shadow_shadowmappcf) permutation |= SHADERPERMUTATION_SHADOWMAPPCF; } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION) permutation |= SHADERPERMUTATION_REFLECTION; if (r_shadow_usingdeferredprepass && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED)) permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP; if (rsurface.texture->reflectmasktexture) permutation |= SHADERPERMUTATION_REFLECTCUBE; GL_AlphaTest((rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0); GL_BlendFunc(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); allow_colormod = R_BlendFuncAllowsColormod(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); } else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) { if (r_glsl_offsetmapping.integer) { if (rsurface.texture->offsetmapping == OFFSETMAPPING_LINEAR) permutation |= SHADERPERMUTATION_OFFSETMAPPING; else if (rsurface.texture->offsetmapping == OFFSETMAPPING_RELIEF) permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; else if (rsurface.texture->offsetmapping != OFFSETMAPPING_OFF) { permutation |= SHADERPERMUTATION_OFFSETMAPPING; if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; // ambient model lighting mode = SHADERMODE_LIGHTDIRECTION; if (rsurface.texture->glowtexture && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer) permutation |= SHADERPERMUTATION_GLOW; if (r_refdef.fogenabled) permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE); if (rsurface.texture->colormapping) permutation |= SHADERPERMUTATION_COLORMAPPING; if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)) { permutation |= SHADERPERMUTATION_SHADOWMAPORTHO; permutation |= SHADERPERMUTATION_SHADOWMAP2D; if (r_shadow_shadowmapsampler) permutation |= SHADERPERMUTATION_SHADOWSAMPLER; if (r_shadow_shadowmappcf > 1) permutation |= SHADERPERMUTATION_SHADOWMAPPCF2; else if (r_shadow_shadowmappcf) permutation |= SHADERPERMUTATION_SHADOWMAPPCF; } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION) permutation |= SHADERPERMUTATION_REFLECTION; if (r_shadow_usingdeferredprepass && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED)) permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP; if (rsurface.texture->reflectmasktexture) permutation |= SHADERPERMUTATION_REFLECTCUBE; GL_AlphaTest((rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0); GL_BlendFunc(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); allow_colormod = R_BlendFuncAllowsColormod(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); } else { if (r_glsl_offsetmapping.integer) { if (rsurface.texture->offsetmapping == OFFSETMAPPING_LINEAR) permutation |= SHADERPERMUTATION_OFFSETMAPPING; else if (rsurface.texture->offsetmapping == OFFSETMAPPING_RELIEF) permutation |= SHADERPERMUTATION_OFFSETMAPPING | SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; else if (rsurface.texture->offsetmapping != OFFSETMAPPING_OFF) { permutation |= SHADERPERMUTATION_OFFSETMAPPING; if (r_glsl_offsetmapping_reliefmapping.integer) permutation |= SHADERPERMUTATION_OFFSETMAPPING_RELIEFMAPPING; } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_VERTEXTEXTUREBLEND) permutation |= SHADERPERMUTATION_VERTEXTEXTUREBLEND; // lightmapped wall if (rsurface.texture->glowtexture && r_hdr_glowintensity.value > 0 && !gl_lightmaps.integer) permutation |= SHADERPERMUTATION_GLOW; if (r_refdef.fogenabled) permutation |= r_texture_fogheighttexture ? SHADERPERMUTATION_FOGHEIGHTTEXTURE : (r_refdef.fogplaneviewabove ? SHADERPERMUTATION_FOGOUTSIDE : SHADERPERMUTATION_FOGINSIDE); if (rsurface.texture->colormapping) permutation |= SHADERPERMUTATION_COLORMAPPING; if (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW)) { permutation |= SHADERPERMUTATION_SHADOWMAPORTHO; permutation |= SHADERPERMUTATION_SHADOWMAP2D; if (r_shadow_shadowmapsampler) permutation |= SHADERPERMUTATION_SHADOWSAMPLER; if (r_shadow_shadowmappcf > 1) permutation |= SHADERPERMUTATION_SHADOWMAPPCF2; else if (r_shadow_shadowmappcf) permutation |= SHADERPERMUTATION_SHADOWMAPPCF; } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION) permutation |= SHADERPERMUTATION_REFLECTION; if (r_shadow_usingdeferredprepass && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED)) permutation |= SHADERPERMUTATION_DEFERREDLIGHTMAP; if (rsurface.texture->reflectmasktexture) permutation |= SHADERPERMUTATION_REFLECTCUBE; if (FAKELIGHT_ENABLED) { // fake lightmapping (q1bsp, q3bsp, fullbright map) mode = SHADERMODE_FAKELIGHT; permutation |= SHADERPERMUTATION_DIFFUSE; if (specularscale > 0) permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE; } else if (r_glsl_deluxemapping.integer >= 1 && rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping) { // deluxemapping (light direction texture) if (rsurface.uselightmaptexture && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brushq3.deluxemapping && r_refdef.scene.worldmodel->brushq3.deluxemapping_modelspace) mode = SHADERMODE_LIGHTDIRECTIONMAP_MODELSPACE; else mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE; permutation |= SHADERPERMUTATION_DIFFUSE; if (specularscale > 0) permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE; } else if (r_glsl_deluxemapping.integer >= 2 && rsurface.uselightmaptexture) { // fake deluxemapping (uniform light direction in tangentspace) mode = SHADERMODE_LIGHTDIRECTIONMAP_TANGENTSPACE; permutation |= SHADERPERMUTATION_DIFFUSE; if (specularscale > 0) permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE; } else if (rsurface.uselightmaptexture) { // ordinary lightmapping (q1bsp, q3bsp) mode = SHADERMODE_LIGHTMAP; } else { // ordinary vertex coloring (q3bsp) mode = SHADERMODE_VERTEXCOLOR; } GL_AlphaTest((rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) != 0); GL_BlendFunc(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); allow_colormod = R_BlendFuncAllowsColormod(rsurface.texture->currentlayers[0].blendfunc1, rsurface.texture->currentlayers[0].blendfunc2); } if(!allow_colormod) colormod = dummy_colormod; switch(vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTD3D RSurf_PrepareVerticesForBatch(BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_VERTEXMESH_VERTEXCOLOR : 0) | BATCHNEED_VERTEXMESH_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_VERTEXMESH_LIGHTMAP : 0), texturenumsurfaces, texturesurfacelist); R_Mesh_PrepareVertices_Mesh(rsurface.batchnumvertices, rsurface.batchvertexmesh, rsurface.batchvertexmeshbuffer); R_SetupShader_SetPermutationHLSL(mode, permutation); Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);hlslPSSetParameter16f(D3DPSREGISTER_ModelToReflectCube, m16f); if (mode == SHADERMODE_LIGHTSOURCE) { Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);hlslVSSetParameter16f(D3DVSREGISTER_ModelToLight, m16f); hlslVSSetParameter3f(D3DVSREGISTER_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]); } else { if (mode == SHADERMODE_LIGHTDIRECTION) { hlslVSSetParameter3f(D3DVSREGISTER_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]); } } Matrix4x4_ToArrayFloatGL(&rsurface.texture->currenttexmatrix, m16f);hlslVSSetParameter16f(D3DVSREGISTER_TexMatrix, m16f); Matrix4x4_ToArrayFloatGL(&rsurface.texture->currentbackgroundtexmatrix, m16f);hlslVSSetParameter16f(D3DVSREGISTER_BackgroundTexMatrix, m16f); Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);hlslVSSetParameter16f(D3DVSREGISTER_ShadowMapMatrix, m16f); hlslVSSetParameter3f(D3DVSREGISTER_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]); hlslVSSetParameter4f(D3DVSREGISTER_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]); if (mode == SHADERMODE_LIGHTSOURCE) { hlslPSSetParameter3f(D3DPSREGISTER_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]); hlslPSSetParameter3f(D3DPSREGISTER_LightColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2]); hlslPSSetParameter3f(D3DPSREGISTER_Color_Ambient, colormod[0] * ambientscale, colormod[1] * ambientscale, colormod[2] * ambientscale); hlslPSSetParameter3f(D3DPSREGISTER_Color_Diffuse, colormod[0] * diffusescale, colormod[1] * diffusescale, colormod[2] * diffusescale); hlslPSSetParameter3f(D3DPSREGISTER_Color_Specular, r_refdef.view.colorscale * specularscale, r_refdef.view.colorscale * specularscale, r_refdef.view.colorscale * specularscale); // additive passes are only darkened by fog, not tinted hlslPSSetParameter3f(D3DPSREGISTER_FogColor, 0, 0, 0); hlslPSSetParameter1f(D3DPSREGISTER_SpecularPower, rsurface.texture->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f)); } else { if (mode == SHADERMODE_FLATCOLOR) { hlslPSSetParameter3f(D3DPSREGISTER_Color_Ambient, colormod[0], colormod[1], colormod[2]); } else if (mode == SHADERMODE_LIGHTDIRECTION) { hlslPSSetParameter3f(D3DPSREGISTER_Color_Ambient, (r_refdef.scene.ambient + rsurface.modellight_ambient[0] * r_refdef.lightmapintensity) * colormod[0], (r_refdef.scene.ambient + rsurface.modellight_ambient[1] * r_refdef.lightmapintensity) * colormod[1], (r_refdef.scene.ambient + rsurface.modellight_ambient[2] * r_refdef.lightmapintensity) * colormod[2]); hlslPSSetParameter3f(D3DPSREGISTER_Color_Diffuse, r_refdef.lightmapintensity * colormod[0], r_refdef.lightmapintensity * colormod[1], r_refdef.lightmapintensity * colormod[2]); hlslPSSetParameter3f(D3DPSREGISTER_Color_Specular, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale); hlslPSSetParameter3f(D3DPSREGISTER_DeferredMod_Diffuse, colormod[0] * r_shadow_deferred_8bitrange.value, colormod[1] * r_shadow_deferred_8bitrange.value, colormod[2] * r_shadow_deferred_8bitrange.value); hlslPSSetParameter3f(D3DPSREGISTER_DeferredMod_Specular, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value); hlslPSSetParameter3f(D3DPSREGISTER_LightColor, rsurface.modellight_diffuse[0], rsurface.modellight_diffuse[1], rsurface.modellight_diffuse[2]); hlslPSSetParameter3f(D3DPSREGISTER_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]); } else { hlslPSSetParameter3f(D3DPSREGISTER_Color_Ambient, r_refdef.scene.ambient * colormod[0], r_refdef.scene.ambient * colormod[1], r_refdef.scene.ambient * colormod[2]); hlslPSSetParameter3f(D3DPSREGISTER_Color_Diffuse, rsurface.texture->lightmapcolor[0], rsurface.texture->lightmapcolor[1], rsurface.texture->lightmapcolor[2]); hlslPSSetParameter3f(D3DPSREGISTER_Color_Specular, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale); hlslPSSetParameter3f(D3DPSREGISTER_DeferredMod_Diffuse, colormod[0] * diffusescale * r_shadow_deferred_8bitrange.value, colormod[1] * diffusescale * r_shadow_deferred_8bitrange.value, colormod[2] * diffusescale * r_shadow_deferred_8bitrange.value); hlslPSSetParameter3f(D3DPSREGISTER_DeferredMod_Specular, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value); } // additive passes are only darkened by fog, not tinted if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD) hlslPSSetParameter3f(D3DPSREGISTER_FogColor, 0, 0, 0); else hlslPSSetParameter3f(D3DPSREGISTER_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]); hlslPSSetParameter4f(D3DPSREGISTER_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor); hlslPSSetParameter4f(D3DPSREGISTER_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]); hlslPSSetParameter4f(D3DPSREGISTER_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]); hlslPSSetParameter4f(D3DPSREGISTER_RefractColor, rsurface.texture->refractcolor4f[0], rsurface.texture->refractcolor4f[1], rsurface.texture->refractcolor4f[2], rsurface.texture->refractcolor4f[3] * rsurface.texture->lightmapcolor[3]); hlslPSSetParameter4f(D3DPSREGISTER_ReflectColor, rsurface.texture->reflectcolor4f[0], rsurface.texture->reflectcolor4f[1], rsurface.texture->reflectcolor4f[2], rsurface.texture->reflectcolor4f[3] * rsurface.texture->lightmapcolor[3]); hlslPSSetParameter1f(D3DPSREGISTER_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin); hlslPSSetParameter1f(D3DPSREGISTER_ReflectOffset, rsurface.texture->reflectmin); hlslPSSetParameter1f(D3DPSREGISTER_SpecularPower, rsurface.texture->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f)); if (mode == SHADERMODE_WATER) hlslPSSetParameter2f(D3DPSREGISTER_NormalmapScrollBlend, rsurface.texture->r_water_waterscroll[0], rsurface.texture->r_water_waterscroll[1]); } hlslPSSetParameter2f(D3DPSREGISTER_ShadowMap_TextureScale, r_shadow_shadowmap_texturescale[0], r_shadow_shadowmap_texturescale[1]); hlslPSSetParameter4f(D3DPSREGISTER_ShadowMap_Parameters, r_shadow_shadowmap_parameters[0], r_shadow_shadowmap_parameters[1], r_shadow_shadowmap_parameters[2], r_shadow_shadowmap_parameters[3]); hlslPSSetParameter3f(D3DPSREGISTER_Color_Glow, rsurface.glowmod[0], rsurface.glowmod[1], rsurface.glowmod[2]); hlslPSSetParameter1f(D3DPSREGISTER_Alpha, rsurface.texture->lightmapcolor[3] * ((rsurface.texture->basematerialflags & MATERIALFLAG_WATERSHADER && r_waterstate.enabled && !r_refdef.view.isoverlay) ? rsurface.texture->r_water_wateralpha : 1)); hlslPSSetParameter3f(D3DPSREGISTER_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]); if (rsurface.texture->pantstexture) hlslPSSetParameter3f(D3DPSREGISTER_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]); else hlslPSSetParameter3f(D3DPSREGISTER_Color_Pants, 0, 0, 0); if (rsurface.texture->shirttexture) hlslPSSetParameter3f(D3DPSREGISTER_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]); else hlslPSSetParameter3f(D3DPSREGISTER_Color_Shirt, 0, 0, 0); hlslPSSetParameter4f(D3DPSREGISTER_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]); hlslPSSetParameter1f(D3DPSREGISTER_FogPlaneViewDist, rsurface.fogplaneviewdist); hlslPSSetParameter1f(D3DPSREGISTER_FogRangeRecip, rsurface.fograngerecip); hlslPSSetParameter1f(D3DPSREGISTER_FogHeightFade, rsurface.fogheightfade); hlslPSSetParameter1f(D3DPSREGISTER_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value); hlslPSSetParameter2f(D3DPSREGISTER_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]); hlslPSSetParameter2f(D3DPSREGISTER_PixelToScreenTexCoord, 1.0f/vid.width, 1.0/vid.height); R_Mesh_TexBind(GL20TU_NORMAL , rsurface.texture->nmaptexture ); R_Mesh_TexBind(GL20TU_COLOR , rsurface.texture->basetexture ); R_Mesh_TexBind(GL20TU_GLOSS , rsurface.texture->glosstexture ); R_Mesh_TexBind(GL20TU_GLOW , rsurface.texture->glowtexture ); if (permutation & SHADERPERMUTATION_VERTEXTEXTUREBLEND) R_Mesh_TexBind(GL20TU_SECONDARY_NORMAL , rsurface.texture->backgroundnmaptexture ); if (permutation & SHADERPERMUTATION_VERTEXTEXTUREBLEND) R_Mesh_TexBind(GL20TU_SECONDARY_COLOR , rsurface.texture->backgroundbasetexture ); if (permutation & SHADERPERMUTATION_VERTEXTEXTUREBLEND) R_Mesh_TexBind(GL20TU_SECONDARY_GLOSS , rsurface.texture->backgroundglosstexture ); if (permutation & SHADERPERMUTATION_VERTEXTEXTUREBLEND) R_Mesh_TexBind(GL20TU_SECONDARY_GLOW , rsurface.texture->backgroundglowtexture ); if (permutation & SHADERPERMUTATION_COLORMAPPING) R_Mesh_TexBind(GL20TU_PANTS , rsurface.texture->pantstexture ); if (permutation & SHADERPERMUTATION_COLORMAPPING) R_Mesh_TexBind(GL20TU_SHIRT , rsurface.texture->shirttexture ); if (permutation & SHADERPERMUTATION_REFLECTCUBE) R_Mesh_TexBind(GL20TU_REFLECTMASK , rsurface.texture->reflectmasktexture ); if (permutation & SHADERPERMUTATION_REFLECTCUBE) R_Mesh_TexBind(GL20TU_REFLECTCUBE , rsurface.texture->reflectcubetexture ? rsurface.texture->reflectcubetexture : r_texture_whitecube); if (permutation & SHADERPERMUTATION_FOGHEIGHTTEXTURE) R_Mesh_TexBind(GL20TU_FOGHEIGHTTEXTURE , r_texture_fogheighttexture ); if (permutation & (SHADERPERMUTATION_FOGINSIDE | SHADERPERMUTATION_FOGOUTSIDE)) R_Mesh_TexBind(GL20TU_FOGMASK , r_texture_fogattenuation ); R_Mesh_TexBind(GL20TU_LIGHTMAP , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white); R_Mesh_TexBind(GL20TU_DELUXEMAP , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap); if (rsurface.rtlight ) R_Mesh_TexBind(GL20TU_ATTENUATION , r_shadow_attenuationgradienttexture ); if (rsurfacepass == RSURFPASS_BACKGROUND) { R_Mesh_TexBind(GL20TU_REFRACTION , waterplane->texture_refraction ? waterplane->texture_refraction : r_texture_black); if(mode == SHADERMODE_GENERIC) R_Mesh_TexBind(GL20TU_FIRST , waterplane->texture_camera ? waterplane->texture_camera : r_texture_black); R_Mesh_TexBind(GL20TU_REFLECTION , waterplane->texture_reflection ? waterplane->texture_reflection : r_texture_black); } else { if (permutation & SHADERPERMUTATION_REFLECTION ) R_Mesh_TexBind(GL20TU_REFLECTION , waterplane->texture_reflection ? waterplane->texture_reflection : r_texture_black); } // if (rsurfacepass == RSURFPASS_DEFERREDLIGHT ) R_Mesh_TexBind(GL20TU_SCREENDEPTH , r_shadow_prepassgeometrydepthtexture ); // if (rsurfacepass == RSURFPASS_DEFERREDLIGHT ) R_Mesh_TexBind(GL20TU_SCREENNORMALMAP , r_shadow_prepassgeometrynormalmaptexture ); if (permutation & SHADERPERMUTATION_DEFERREDLIGHTMAP ) R_Mesh_TexBind(GL20TU_SCREENDIFFUSE , r_shadow_prepasslightingdiffusetexture ); if (permutation & SHADERPERMUTATION_DEFERREDLIGHTMAP ) R_Mesh_TexBind(GL20TU_SCREENSPECULAR , r_shadow_prepasslightingspeculartexture ); if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))) { R_Mesh_TexBind(GL20TU_SHADOWMAP2D, r_shadow_shadowmap2dcolortexture); if (rsurface.rtlight) { if (permutation & SHADERPERMUTATION_CUBEFILTER ) R_Mesh_TexBind(GL20TU_CUBE , rsurface.rtlight->currentcubemap ); if (permutation & SHADERPERMUTATION_SHADOWMAPVSDCT ) R_Mesh_TexBind(GL20TU_CUBEPROJECTION , r_shadow_shadowmapvsdcttexture ); } } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_GL20: if (gl_mesh_separatearrays.integer) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0), texturenumsurfaces, texturesurfacelist); R_Mesh_VertexPointer( 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset); R_Mesh_ColorPointer( 4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset); R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset); R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset); } else { RSurf_PrepareVerticesForBatch(BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_VERTEXMESH_VERTEXCOLOR : 0) | BATCHNEED_VERTEXMESH_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_VERTEXMESH_LIGHTMAP : 0), texturenumsurfaces, texturesurfacelist); R_Mesh_PrepareVertices_Mesh(rsurface.batchnumvertices, rsurface.batchvertexmesh, rsurface.batchvertexmeshbuffer); } R_SetupShader_SetPermutationGLSL(mode, permutation); if (r_glsl_permutation->loc_ModelToReflectCube >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);qglUniformMatrix4fvARB(r_glsl_permutation->loc_ModelToReflectCube, 1, false, m16f);} if (mode == SHADERMODE_LIGHTSOURCE) { if (r_glsl_permutation->loc_ModelToLight >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);qglUniformMatrix4fvARB(r_glsl_permutation->loc_ModelToLight, 1, false, m16f);} if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]); if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2]); if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Ambient, colormod[0] * ambientscale, colormod[1] * ambientscale, colormod[2] * ambientscale); if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Diffuse, colormod[0] * diffusescale, colormod[1] * diffusescale, colormod[2] * diffusescale); if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Specular, r_refdef.view.colorscale * specularscale, r_refdef.view.colorscale * specularscale, r_refdef.view.colorscale * specularscale); // additive passes are only darkened by fog, not tinted if (r_glsl_permutation->loc_FogColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0); if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f)); } else { if (mode == SHADERMODE_FLATCOLOR) { if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Ambient, colormod[0], colormod[1], colormod[2]); } else if (mode == SHADERMODE_LIGHTDIRECTION) { if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Ambient, (r_refdef.scene.ambient + rsurface.modellight_ambient[0] * r_refdef.lightmapintensity * r_refdef.scene.rtlightstylevalue[0]) * colormod[0], (r_refdef.scene.ambient + rsurface.modellight_ambient[1] * r_refdef.lightmapintensity * r_refdef.scene.rtlightstylevalue[0]) * colormod[1], (r_refdef.scene.ambient + rsurface.modellight_ambient[2] * r_refdef.lightmapintensity * r_refdef.scene.rtlightstylevalue[0]) * colormod[2]); if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Diffuse, r_refdef.lightmapintensity * colormod[0], r_refdef.lightmapintensity * colormod[1], r_refdef.lightmapintensity * colormod[2]); if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Specular, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale); if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3fARB(r_glsl_permutation->loc_DeferredMod_Diffuse, colormod[0] * r_shadow_deferred_8bitrange.value, colormod[1] * r_shadow_deferred_8bitrange.value, colormod[2] * r_shadow_deferred_8bitrange.value); if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3fARB(r_glsl_permutation->loc_DeferredMod_Specular, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value); if (r_glsl_permutation->loc_LightColor >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightColor, rsurface.modellight_diffuse[0] * r_refdef.scene.rtlightstylevalue[0], rsurface.modellight_diffuse[1] * r_refdef.scene.rtlightstylevalue[0], rsurface.modellight_diffuse[2] * r_refdef.scene.rtlightstylevalue[0]); if (r_glsl_permutation->loc_LightDir >= 0) qglUniform3fARB(r_glsl_permutation->loc_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]); } else { if (r_glsl_permutation->loc_Color_Ambient >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Ambient, r_refdef.scene.ambient * colormod[0], r_refdef.scene.ambient * colormod[1], r_refdef.scene.ambient * colormod[2]); if (r_glsl_permutation->loc_Color_Diffuse >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Diffuse, rsurface.texture->lightmapcolor[0], rsurface.texture->lightmapcolor[1], rsurface.texture->lightmapcolor[2]); if (r_glsl_permutation->loc_Color_Specular >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Specular, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale); if (r_glsl_permutation->loc_DeferredMod_Diffuse >= 0) qglUniform3fARB(r_glsl_permutation->loc_DeferredMod_Diffuse, colormod[0] * diffusescale * r_shadow_deferred_8bitrange.value, colormod[1] * diffusescale * r_shadow_deferred_8bitrange.value, colormod[2] * diffusescale * r_shadow_deferred_8bitrange.value); if (r_glsl_permutation->loc_DeferredMod_Specular >= 0) qglUniform3fARB(r_glsl_permutation->loc_DeferredMod_Specular, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value); } // additive passes are only darkened by fog, not tinted if (r_glsl_permutation->loc_FogColor >= 0) { if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD) qglUniform3fARB(r_glsl_permutation->loc_FogColor, 0, 0, 0); else qglUniform3fARB(r_glsl_permutation->loc_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]); } if (r_glsl_permutation->loc_DistortScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor); if (r_glsl_permutation->loc_ScreenScaleRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]); if (r_glsl_permutation->loc_ScreenCenterRefractReflect >= 0) qglUniform4fARB(r_glsl_permutation->loc_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]); if (r_glsl_permutation->loc_RefractColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_RefractColor, rsurface.texture->refractcolor4f[0], rsurface.texture->refractcolor4f[1], rsurface.texture->refractcolor4f[2], rsurface.texture->refractcolor4f[3] * rsurface.texture->lightmapcolor[3]); if (r_glsl_permutation->loc_ReflectColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_ReflectColor, rsurface.texture->reflectcolor4f[0], rsurface.texture->reflectcolor4f[1], rsurface.texture->reflectcolor4f[2], rsurface.texture->reflectcolor4f[3] * rsurface.texture->lightmapcolor[3]); if (r_glsl_permutation->loc_ReflectFactor >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin); if (r_glsl_permutation->loc_ReflectOffset >= 0) qglUniform1fARB(r_glsl_permutation->loc_ReflectOffset, rsurface.texture->reflectmin); if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB(r_glsl_permutation->loc_SpecularPower, rsurface.texture->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f)); if (r_glsl_permutation->loc_NormalmapScrollBlend >= 0) qglUniform2fARB(r_glsl_permutation->loc_NormalmapScrollBlend, rsurface.texture->r_water_waterscroll[0], rsurface.texture->r_water_waterscroll[1]); } if (r_glsl_permutation->loc_TexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.texture->currenttexmatrix, m16f);qglUniformMatrix4fvARB(r_glsl_permutation->loc_TexMatrix, 1, false, m16f);} if (r_glsl_permutation->loc_BackgroundTexMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&rsurface.texture->currentbackgroundtexmatrix, m16f);qglUniformMatrix4fvARB(r_glsl_permutation->loc_BackgroundTexMatrix, 1, false, m16f);} if (r_glsl_permutation->loc_ShadowMapMatrix >= 0) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);qglUniformMatrix4fvARB(r_glsl_permutation->loc_ShadowMapMatrix, 1, false, m16f);} if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform2fARB(r_glsl_permutation->loc_ShadowMap_TextureScale, r_shadow_shadowmap_texturescale[0], r_shadow_shadowmap_texturescale[1]); if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4fARB(r_glsl_permutation->loc_ShadowMap_Parameters, r_shadow_shadowmap_parameters[0], r_shadow_shadowmap_parameters[1], r_shadow_shadowmap_parameters[2], r_shadow_shadowmap_parameters[3]); if (r_glsl_permutation->loc_Color_Glow >= 0) qglUniform3fARB(r_glsl_permutation->loc_Color_Glow, rsurface.glowmod[0], rsurface.glowmod[1], rsurface.glowmod[2]); if (r_glsl_permutation->loc_Alpha >= 0) qglUniform1fARB(r_glsl_permutation->loc_Alpha, rsurface.texture->lightmapcolor[3] * ((rsurface.texture->basematerialflags & MATERIALFLAG_WATERSHADER && r_waterstate.enabled && !r_refdef.view.isoverlay) ? rsurface.texture->r_water_wateralpha : 1)); if (r_glsl_permutation->loc_EyePosition >= 0) qglUniform3fARB(r_glsl_permutation->loc_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]); if (r_glsl_permutation->loc_Color_Pants >= 0) { if (rsurface.texture->pantstexture) qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]); else qglUniform3fARB(r_glsl_permutation->loc_Color_Pants, 0, 0, 0); } if (r_glsl_permutation->loc_Color_Shirt >= 0) { if (rsurface.texture->shirttexture) qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]); else qglUniform3fARB(r_glsl_permutation->loc_Color_Shirt, 0, 0, 0); } if (r_glsl_permutation->loc_FogPlane >= 0) qglUniform4fARB(r_glsl_permutation->loc_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]); if (r_glsl_permutation->loc_FogPlaneViewDist >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogPlaneViewDist, rsurface.fogplaneviewdist); if (r_glsl_permutation->loc_FogRangeRecip >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogRangeRecip, rsurface.fograngerecip); if (r_glsl_permutation->loc_FogHeightFade >= 0) qglUniform1fARB(r_glsl_permutation->loc_FogHeightFade, rsurface.fogheightfade); if (r_glsl_permutation->loc_OffsetMapping_Scale >= 0) qglUniform1fARB(r_glsl_permutation->loc_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value*rsurface.texture->offsetscale); if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2fARB(r_glsl_permutation->loc_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]); if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2fARB(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/vid.width, 1.0f/vid.height); // if (r_glsl_permutation->loc_Texture_First >= 0) R_Mesh_TexBind(GL20TU_FIRST , r_texture_white ); // if (r_glsl_permutation->loc_Texture_Second >= 0) R_Mesh_TexBind(GL20TU_SECOND , r_texture_white ); // if (r_glsl_permutation->loc_Texture_GammaRamps >= 0) R_Mesh_TexBind(GL20TU_GAMMARAMPS , r_texture_gammaramps ); if (r_glsl_permutation->loc_Texture_Normal >= 0) R_Mesh_TexBind(GL20TU_NORMAL , rsurface.texture->nmaptexture ); if (r_glsl_permutation->loc_Texture_Color >= 0) R_Mesh_TexBind(GL20TU_COLOR , rsurface.texture->basetexture ); if (r_glsl_permutation->loc_Texture_Gloss >= 0) R_Mesh_TexBind(GL20TU_GLOSS , rsurface.texture->glosstexture ); if (r_glsl_permutation->loc_Texture_Glow >= 0) R_Mesh_TexBind(GL20TU_GLOW , rsurface.texture->glowtexture ); if (r_glsl_permutation->loc_Texture_SecondaryNormal >= 0) R_Mesh_TexBind(GL20TU_SECONDARY_NORMAL , rsurface.texture->backgroundnmaptexture ); if (r_glsl_permutation->loc_Texture_SecondaryColor >= 0) R_Mesh_TexBind(GL20TU_SECONDARY_COLOR , rsurface.texture->backgroundbasetexture ); if (r_glsl_permutation->loc_Texture_SecondaryGloss >= 0) R_Mesh_TexBind(GL20TU_SECONDARY_GLOSS , rsurface.texture->backgroundglosstexture ); if (r_glsl_permutation->loc_Texture_SecondaryGlow >= 0) R_Mesh_TexBind(GL20TU_SECONDARY_GLOW , rsurface.texture->backgroundglowtexture ); if (r_glsl_permutation->loc_Texture_Pants >= 0) R_Mesh_TexBind(GL20TU_PANTS , rsurface.texture->pantstexture ); if (r_glsl_permutation->loc_Texture_Shirt >= 0) R_Mesh_TexBind(GL20TU_SHIRT , rsurface.texture->shirttexture ); if (r_glsl_permutation->loc_Texture_ReflectMask >= 0) R_Mesh_TexBind(GL20TU_REFLECTMASK , rsurface.texture->reflectmasktexture ); if (r_glsl_permutation->loc_Texture_ReflectCube >= 0) R_Mesh_TexBind(GL20TU_REFLECTCUBE , rsurface.texture->reflectcubetexture ? rsurface.texture->reflectcubetexture : r_texture_whitecube); if (r_glsl_permutation->loc_Texture_FogHeightTexture>= 0) R_Mesh_TexBind(GL20TU_FOGHEIGHTTEXTURE , r_texture_fogheighttexture ); if (r_glsl_permutation->loc_Texture_FogMask >= 0) R_Mesh_TexBind(GL20TU_FOGMASK , r_texture_fogattenuation ); if (r_glsl_permutation->loc_Texture_Lightmap >= 0) R_Mesh_TexBind(GL20TU_LIGHTMAP , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white); if (r_glsl_permutation->loc_Texture_Deluxemap >= 0) R_Mesh_TexBind(GL20TU_DELUXEMAP , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap); if (r_glsl_permutation->loc_Texture_Attenuation >= 0) R_Mesh_TexBind(GL20TU_ATTENUATION , r_shadow_attenuationgradienttexture ); if (rsurfacepass == RSURFPASS_BACKGROUND) { if(r_glsl_permutation->loc_Texture_Refraction >= 0) R_Mesh_TexBind(GL20TU_REFRACTION , waterplane->texture_refraction ? waterplane->texture_refraction : r_texture_black); else if(r_glsl_permutation->loc_Texture_First >= 0) R_Mesh_TexBind(GL20TU_FIRST , waterplane->texture_camera ? waterplane->texture_camera : r_texture_black); if(r_glsl_permutation->loc_Texture_Reflection >= 0) R_Mesh_TexBind(GL20TU_REFLECTION , waterplane->texture_reflection ? waterplane->texture_reflection : r_texture_black); } else { if (permutation & SHADERPERMUTATION_REFLECTION ) R_Mesh_TexBind(GL20TU_REFLECTION , waterplane->texture_reflection ? waterplane->texture_reflection : r_texture_black); } // if (r_glsl_permutation->loc_Texture_ScreenDepth >= 0) R_Mesh_TexBind(GL20TU_SCREENDEPTH , r_shadow_prepassgeometrydepthtexture ); // if (r_glsl_permutation->loc_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(GL20TU_SCREENNORMALMAP , r_shadow_prepassgeometrynormalmaptexture ); if (r_glsl_permutation->loc_Texture_ScreenDiffuse >= 0) R_Mesh_TexBind(GL20TU_SCREENDIFFUSE , r_shadow_prepasslightingdiffusetexture ); if (r_glsl_permutation->loc_Texture_ScreenSpecular >= 0) R_Mesh_TexBind(GL20TU_SCREENSPECULAR , r_shadow_prepasslightingspeculartexture ); if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))) { if (r_glsl_permutation->loc_Texture_ShadowMap2D >= 0) R_Mesh_TexBind(GL20TU_SHADOWMAP2D, r_shadow_shadowmap2dtexture ); if (rsurface.rtlight) { if (r_glsl_permutation->loc_Texture_Cube >= 0) R_Mesh_TexBind(GL20TU_CUBE , rsurface.rtlight->currentcubemap ); if (r_glsl_permutation->loc_Texture_CubeProjection >= 0) R_Mesh_TexBind(GL20TU_CUBEPROJECTION , r_shadow_shadowmapvsdcttexture ); } } CHECKGLERROR break; case RENDERPATH_CGGL: #ifdef SUPPORTCG if (gl_mesh_separatearrays.integer) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_ARRAY_LIGHTMAP : 0), texturenumsurfaces, texturesurfacelist); R_Mesh_VertexPointer( 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset); R_Mesh_ColorPointer( 4, GL_FLOAT, sizeof(float[4]), rsurface.batchlightmapcolor4f, rsurface.batchlightmapcolor4f_vertexbuffer, rsurface.batchlightmapcolor4f_bufferoffset); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchsvector3f, rsurface.batchsvector3f_vertexbuffer, rsurface.batchsvector3f_bufferoffset); R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchtvector3f, rsurface.batchtvector3f_vertexbuffer, rsurface.batchtvector3f_bufferoffset); R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchnormal3f, rsurface.batchnormal3f_vertexbuffer, rsurface.batchnormal3f_bufferoffset); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset); } else { RSurf_PrepareVerticesForBatch(BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | (rsurface.modellightmapcolor4f ? BATCHNEED_VERTEXMESH_VERTEXCOLOR : 0) | BATCHNEED_VERTEXMESH_TEXCOORD | (rsurface.uselightmaptexture ? BATCHNEED_VERTEXMESH_LIGHTMAP : 0), texturenumsurfaces, texturesurfacelist); R_Mesh_PrepareVertices_Mesh(rsurface.batchnumvertices, rsurface.batchvertexmesh, rsurface.batchvertexmeshbuffer); } R_SetupShader_SetPermutationCG(mode, permutation); if (r_cg_permutation->fp_ModelToReflectCube) {Matrix4x4_ToArrayFloatGL(&rsurface.matrix, m16f);cgGLSetMatrixParameterfc(r_cg_permutation->fp_ModelToReflectCube, m16f);}CHECKCGERROR if (mode == SHADERMODE_LIGHTSOURCE) { if (r_cg_permutation->vp_ModelToLight) {Matrix4x4_ToArrayFloatGL(&rsurface.entitytolight, m16f);cgGLSetMatrixParameterfc(r_cg_permutation->vp_ModelToLight, m16f);}CHECKCGERROR if (r_cg_permutation->vp_LightPosition) cgGLSetParameter3f(r_cg_permutation->vp_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);CHECKCGERROR } else { if (mode == SHADERMODE_LIGHTDIRECTION) { if (r_cg_permutation->vp_LightDir) cgGLSetParameter3f(r_cg_permutation->vp_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);CHECKCGERROR } } if (r_cg_permutation->vp_TexMatrix) {Matrix4x4_ToArrayFloatGL(&rsurface.texture->currenttexmatrix, m16f);cgGLSetMatrixParameterfc(r_cg_permutation->vp_TexMatrix, m16f);}CHECKCGERROR if (r_cg_permutation->vp_BackgroundTexMatrix) {Matrix4x4_ToArrayFloatGL(&rsurface.texture->currentbackgroundtexmatrix, m16f);cgGLSetMatrixParameterfc(r_cg_permutation->vp_BackgroundTexMatrix, m16f);}CHECKCGERROR if (r_cg_permutation->vp_ShadowMapMatrix) {Matrix4x4_ToArrayFloatGL(&r_shadow_shadowmapmatrix, m16f);cgGLSetMatrixParameterfc(r_cg_permutation->vp_ShadowMapMatrix, m16f);}CHECKGLERROR if (r_cg_permutation->vp_EyePosition) cgGLSetParameter3f(r_cg_permutation->vp_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);CHECKCGERROR if (r_cg_permutation->vp_FogPlane) cgGLSetParameter4f(r_cg_permutation->vp_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);CHECKCGERROR CHECKGLERROR if (mode == SHADERMODE_LIGHTSOURCE) { if (r_cg_permutation->fp_LightPosition) cgGLSetParameter3f(r_cg_permutation->fp_LightPosition, rsurface.entitylightorigin[0], rsurface.entitylightorigin[1], rsurface.entitylightorigin[2]);CHECKCGERROR if (r_cg_permutation->fp_LightColor) cgGLSetParameter3f(r_cg_permutation->fp_LightColor, lightcolorbase[0], lightcolorbase[1], lightcolorbase[2]);CHECKCGERROR if (r_cg_permutation->fp_Color_Ambient) cgGLSetParameter3f(r_cg_permutation->fp_Color_Ambient, colormod[0] * ambientscale, colormod[1] * ambientscale, colormod[2] * ambientscale);CHECKCGERROR if (r_cg_permutation->fp_Color_Diffuse) cgGLSetParameter3f(r_cg_permutation->fp_Color_Diffuse, colormod[0] * diffusescale, colormod[1] * diffusescale, colormod[2] * diffusescale);CHECKCGERROR if (r_cg_permutation->fp_Color_Specular) cgGLSetParameter3f(r_cg_permutation->fp_Color_Specular, r_refdef.view.colorscale * specularscale, r_refdef.view.colorscale * specularscale, r_refdef.view.colorscale * specularscale);CHECKCGERROR // additive passes are only darkened by fog, not tinted if (r_cg_permutation->fp_FogColor) cgGLSetParameter3f(r_cg_permutation->fp_FogColor, 0, 0, 0);CHECKCGERROR if (r_cg_permutation->fp_SpecularPower) cgGLSetParameter1f(r_cg_permutation->fp_SpecularPower, rsurface.texture->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f));CHECKCGERROR } else { if (mode == SHADERMODE_FLATCOLOR) { if (r_cg_permutation->fp_Color_Ambient) cgGLSetParameter3f(r_cg_permutation->fp_Color_Ambient, colormod[0], colormod[1], colormod[2]);CHECKCGERROR } else if (mode == SHADERMODE_LIGHTDIRECTION) { if (r_cg_permutation->fp_Color_Ambient) cgGLSetParameter3f(r_cg_permutation->fp_Color_Ambient, (r_refdef.scene.ambient + rsurface.modellight_ambient[0] * r_refdef.lightmapintensity) * colormod[0], (r_refdef.scene.ambient + rsurface.modellight_ambient[1] * r_refdef.lightmapintensity) * colormod[1], (r_refdef.scene.ambient + rsurface.modellight_ambient[2] * r_refdef.lightmapintensity) * colormod[2]);CHECKCGERROR if (r_cg_permutation->fp_Color_Diffuse) cgGLSetParameter3f(r_cg_permutation->fp_Color_Diffuse, r_refdef.lightmapintensity * colormod[0], r_refdef.lightmapintensity * colormod[1], r_refdef.lightmapintensity * colormod[2]);CHECKCGERROR if (r_cg_permutation->fp_Color_Specular) cgGLSetParameter3f(r_cg_permutation->fp_Color_Specular, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale);CHECKCGERROR if (r_cg_permutation->fp_DeferredMod_Diffuse) cgGLSetParameter3f(r_cg_permutation->fp_DeferredMod_Diffuse, colormod[0] * r_shadow_deferred_8bitrange.value, colormod[1] * r_shadow_deferred_8bitrange.value, colormod[2] * r_shadow_deferred_8bitrange.value);CHECKCGERROR if (r_cg_permutation->fp_DeferredMod_Specular) cgGLSetParameter3f(r_cg_permutation->fp_DeferredMod_Specular, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value);CHECKCGERROR if (r_cg_permutation->fp_LightColor) cgGLSetParameter3f(r_cg_permutation->fp_LightColor, rsurface.modellight_diffuse[0], rsurface.modellight_diffuse[1], rsurface.modellight_diffuse[2]);CHECKCGERROR if (r_cg_permutation->fp_LightDir) cgGLSetParameter3f(r_cg_permutation->fp_LightDir, rsurface.modellight_lightdir[0], rsurface.modellight_lightdir[1], rsurface.modellight_lightdir[2]);CHECKCGERROR } else { if (r_cg_permutation->fp_Color_Ambient) cgGLSetParameter3f(r_cg_permutation->fp_Color_Ambient, r_refdef.scene.ambient * colormod[0], r_refdef.scene.ambient * colormod[1], r_refdef.scene.ambient * colormod[2]);CHECKCGERROR if (r_cg_permutation->fp_Color_Diffuse) cgGLSetParameter3f(r_cg_permutation->fp_Color_Diffuse, rsurface.texture->lightmapcolor[0], rsurface.texture->lightmapcolor[1], rsurface.texture->lightmapcolor[2]);CHECKCGERROR if (r_cg_permutation->fp_Color_Specular) cgGLSetParameter3f(r_cg_permutation->fp_Color_Specular, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale, r_refdef.lightmapintensity * r_refdef.view.colorscale * specularscale);CHECKCGERROR if (r_cg_permutation->fp_DeferredMod_Diffuse) cgGLSetParameter3f(r_cg_permutation->fp_DeferredMod_Diffuse, colormod[0] * diffusescale * r_shadow_deferred_8bitrange.value, colormod[1] * diffusescale * r_shadow_deferred_8bitrange.value, colormod[2] * diffusescale * r_shadow_deferred_8bitrange.value);CHECKCGERROR if (r_cg_permutation->fp_DeferredMod_Specular) cgGLSetParameter3f(r_cg_permutation->fp_DeferredMod_Specular, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value, specularscale * r_shadow_deferred_8bitrange.value);CHECKCGERROR } // additive passes are only darkened by fog, not tinted if (r_cg_permutation->fp_FogColor) { if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD) cgGLSetParameter3f(r_cg_permutation->fp_FogColor, 0, 0, 0); else cgGLSetParameter3f(r_cg_permutation->fp_FogColor, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2]); CHECKCGERROR } if (r_cg_permutation->fp_DistortScaleRefractReflect) cgGLSetParameter4f(r_cg_permutation->fp_DistortScaleRefractReflect, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_refractdistort.value * rsurface.texture->refractfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor, r_water_reflectdistort.value * rsurface.texture->reflectfactor);CHECKCGERROR if (r_cg_permutation->fp_ScreenScaleRefractReflect) cgGLSetParameter4f(r_cg_permutation->fp_ScreenScaleRefractReflect, r_waterstate.screenscale[0], r_waterstate.screenscale[1], r_waterstate.screenscale[0], r_waterstate.screenscale[1]);CHECKCGERROR if (r_cg_permutation->fp_ScreenCenterRefractReflect) cgGLSetParameter4f(r_cg_permutation->fp_ScreenCenterRefractReflect, r_waterstate.screencenter[0], r_waterstate.screencenter[1], r_waterstate.screencenter[0], r_waterstate.screencenter[1]);CHECKCGERROR if (r_cg_permutation->fp_RefractColor) cgGLSetParameter4fv(r_cg_permutation->fp_RefractColor, rsurface.texture->refractcolor4f[0], rsurface.texture->refractcolor4f[1], rsurface.texture->refractcolor4f[2], rsurface.texture->refractcolor4f[3] * rsurface.texture->lightmapcolor[3]);CHECKCGERROR if (r_cg_permutation->fp_ReflectColor) cgGLSetParameter4fv(r_cg_permutation->fp_ReflectColor, rsurface.texture->reflectcolor4f[0], rsurface.texture->reflectcolor4f[1], rsurface.texture->reflectcolor4f[2], rsurface.texture->reflectcolor4f[3] * rsurface.texture->lightmapcolor[3]);CHECKCGERROR if (r_cg_permutation->fp_ReflectFactor) cgGLSetParameter1f(r_cg_permutation->fp_ReflectFactor, rsurface.texture->reflectmax - rsurface.texture->reflectmin);CHECKCGERROR if (r_cg_permutation->fp_ReflectOffset) cgGLSetParameter1f(r_cg_permutation->fp_ReflectOffset, rsurface.texture->reflectmin);CHECKCGERROR if (r_cg_permutation->fp_SpecularPower) cgGLSetParameter1f(r_cg_permutation->fp_SpecularPower, rsurface.texture->specularpower * (r_shadow_glossexact.integer ? 0.25f : 1.0f));CHECKCGERROR if (r_cg_permutation->fp_NormalmapScrollBlend) cgGLSetParameter2f(r_cg_permutation->fp_NormalmapScrollBlend, rsurface.texture->r_water_waterscroll[0], rsurface.texture->r_water_waterscroll[1]); } if (r_cg_permutation->fp_ShadowMap_TextureScale) cgGLSetParameter2f(r_cg_permutation->fp_ShadowMap_TextureScale, r_shadow_shadowmap_texturescale[0], r_shadow_shadowmap_texturescale[1]);CHECKCGERROR if (r_cg_permutation->fp_ShadowMap_Parameters) cgGLSetParameter4f(r_cg_permutation->fp_ShadowMap_Parameters, r_shadow_shadowmap_parameters[0], r_shadow_shadowmap_parameters[1], r_shadow_shadowmap_parameters[2], r_shadow_shadowmap_parameters[3]);CHECKCGERROR if (r_cg_permutation->fp_Color_Glow) cgGLSetParameter3f(r_cg_permutation->fp_Color_Glow, rsurface.glowmod[0], rsurface.glowmod[1], rsurface.glowmod[2]);CHECKCGERROR if (r_cg_permutation->fp_Alpha) cgGLSetParameter1f(r_cg_permutation->fp_Alpha, rsurface.texture->lightmapcolor[3] * ((rsurface.texture->basematerialflags & MATERIALFLAG_WATERSHADER && r_waterstate.enabled && !r_refdef.view.isoverlay) ? rsurface.texture->r_water_wateralpha : 1));CHECKCGERROR if (r_cg_permutation->fp_EyePosition) cgGLSetParameter3f(r_cg_permutation->fp_EyePosition, rsurface.localvieworigin[0], rsurface.localvieworigin[1], rsurface.localvieworigin[2]);CHECKCGERROR if (r_cg_permutation->fp_Color_Pants) { if (rsurface.texture->pantstexture) cgGLSetParameter3f(r_cg_permutation->fp_Color_Pants, rsurface.colormap_pantscolor[0], rsurface.colormap_pantscolor[1], rsurface.colormap_pantscolor[2]); else cgGLSetParameter3f(r_cg_permutation->fp_Color_Pants, 0, 0, 0); CHECKCGERROR } if (r_cg_permutation->fp_Color_Shirt) { if (rsurface.texture->shirttexture) cgGLSetParameter3f(r_cg_permutation->fp_Color_Shirt, rsurface.colormap_shirtcolor[0], rsurface.colormap_shirtcolor[1], rsurface.colormap_shirtcolor[2]); else cgGLSetParameter3f(r_cg_permutation->fp_Color_Shirt, 0, 0, 0); CHECKCGERROR } if (r_cg_permutation->fp_FogPlane) cgGLSetParameter4f(r_cg_permutation->fp_FogPlane, rsurface.fogplane[0], rsurface.fogplane[1], rsurface.fogplane[2], rsurface.fogplane[3]);CHECKCGERROR if (r_cg_permutation->fp_FogPlaneViewDist) cgGLSetParameter1f(r_cg_permutation->fp_FogPlaneViewDist, rsurface.fogplaneviewdist);CHECKCGERROR if (r_cg_permutation->fp_FogRangeRecip) cgGLSetParameter1f(r_cg_permutation->fp_FogRangeRecip, rsurface.fograngerecip);CHECKCGERROR if (r_cg_permutation->fp_FogHeightFade) cgGLSetParameter1f(r_cg_permutation->fp_FogHeightFade, rsurface.fogheightfade);CHECKCGERROR if (r_cg_permutation->fp_OffsetMapping_Scale) cgGLSetParameter1f(r_cg_permutation->fp_OffsetMapping_Scale, r_glsl_offsetmapping_scale.value);CHECKCGERROR if (r_cg_permutation->fp_ScreenToDepth) cgGLSetParameter2f(r_cg_permutation->fp_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);CHECKCGERROR if (r_cg_permutation->fp_PixelToScreenTexCoord) cgGLSetParameter2f(r_cg_permutation->fp_PixelToScreenTexCoord, 1.0f/vid.width, 1.0/vid.height);CHECKCGERROR // if (r_cg_permutation->fp_Texture_First ) CG_BindTexture(r_cg_permutation->fp_Texture_First , r_texture_white );CHECKCGERROR // if (r_cg_permutation->fp_Texture_Second ) CG_BindTexture(r_cg_permutation->fp_Texture_Second , r_texture_white );CHECKCGERROR // if (r_cg_permutation->fp_Texture_GammaRamps ) CG_BindTexture(r_cg_permutation->fp_Texture_GammaRamps , r_texture_gammaramps );CHECKCGERROR if (r_cg_permutation->fp_Texture_Normal ) CG_BindTexture(r_cg_permutation->fp_Texture_Normal , rsurface.texture->nmaptexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_Color ) CG_BindTexture(r_cg_permutation->fp_Texture_Color , rsurface.texture->basetexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_Gloss ) CG_BindTexture(r_cg_permutation->fp_Texture_Gloss , rsurface.texture->glosstexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_Glow ) CG_BindTexture(r_cg_permutation->fp_Texture_Glow , rsurface.texture->glowtexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_SecondaryNormal) CG_BindTexture(r_cg_permutation->fp_Texture_SecondaryNormal, rsurface.texture->backgroundnmaptexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_SecondaryColor ) CG_BindTexture(r_cg_permutation->fp_Texture_SecondaryColor , rsurface.texture->backgroundbasetexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_SecondaryGloss ) CG_BindTexture(r_cg_permutation->fp_Texture_SecondaryGloss , rsurface.texture->backgroundglosstexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_SecondaryGlow ) CG_BindTexture(r_cg_permutation->fp_Texture_SecondaryGlow , rsurface.texture->backgroundglowtexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_Pants ) CG_BindTexture(r_cg_permutation->fp_Texture_Pants , rsurface.texture->pantstexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_Shirt ) CG_BindTexture(r_cg_permutation->fp_Texture_Shirt , rsurface.texture->shirttexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_ReflectMask ) CG_BindTexture(r_cg_permutation->fp_Texture_ReflectMask , rsurface.texture->reflectmasktexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_ReflectCube ) CG_BindTexture(r_cg_permutation->fp_Texture_ReflectCube , rsurface.texture->reflectcubetexture ? rsurface.texture->reflectcubetexture : r_texture_whitecube);CHECKCGERROR if (r_cg_permutation->fp_Texture_FogHeightTexture) CG_BindTexture(r_cg_permutation->fp_Texture_FogHeightTexture, r_texture_fogheighttexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_FogMask ) CG_BindTexture(r_cg_permutation->fp_Texture_FogMask , r_texture_fogattenuation );CHECKCGERROR if (r_cg_permutation->fp_Texture_Lightmap ) CG_BindTexture(r_cg_permutation->fp_Texture_Lightmap , rsurface.lightmaptexture ? rsurface.lightmaptexture : r_texture_white);CHECKCGERROR if (r_cg_permutation->fp_Texture_Deluxemap ) CG_BindTexture(r_cg_permutation->fp_Texture_Deluxemap , rsurface.deluxemaptexture ? rsurface.deluxemaptexture : r_texture_blanknormalmap);CHECKCGERROR if (r_cg_permutation->fp_Texture_Attenuation ) CG_BindTexture(r_cg_permutation->fp_Texture_Attenuation , r_shadow_attenuationgradienttexture );CHECKCGERROR if (rsurfacepass == RSURFPASS_BACKGROUND) { if (r_cg_permutation->fp_Texture_Refraction ) CG_BindTexture(r_cg_permutation->fp_Texture_Refraction , waterplane->texture_refraction ? waterplane->texture_refraction : r_texture_black);CHECKCGERROR else if (r_cg_permutation->fp_Texture_First ) CG_BindTexture(r_cg_permutation->fp_Texture_First , waterplane->texture_camera ? waterplane->texture_camera : r_texture_black);CHECKCGERROR if (r_cg_permutation->fp_Texture_Reflection ) CG_BindTexture(r_cg_permutation->fp_Texture_Reflection , waterplane->texture_reflection ? waterplane->texture_reflection : r_texture_black);CHECKCGERROR } else { if (r_cg_permutation->fp_Texture_Reflection ) CG_BindTexture(r_cg_permutation->fp_Texture_Reflection , waterplane->texture_reflection ? waterplane->texture_reflection : r_texture_black);CHECKCGERROR } if (r_cg_permutation->fp_Texture_ScreenDepth ) CG_BindTexture(r_cg_permutation->fp_Texture_ScreenDepth , r_shadow_prepassgeometrydepthtexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_ScreenNormalMap) CG_BindTexture(r_cg_permutation->fp_Texture_ScreenNormalMap, r_shadow_prepassgeometrynormalmaptexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_ScreenDiffuse ) CG_BindTexture(r_cg_permutation->fp_Texture_ScreenDiffuse , r_shadow_prepasslightingdiffusetexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_ScreenSpecular ) CG_BindTexture(r_cg_permutation->fp_Texture_ScreenSpecular , r_shadow_prepasslightingspeculartexture );CHECKCGERROR if (rsurface.rtlight || (r_shadow_usingshadowmaportho && !(rsurface.ent_flags & RENDER_NOSELFSHADOW))) { if (r_cg_permutation->fp_Texture_ShadowMap2D ) CG_BindTexture(r_cg_permutation->fp_Texture_ShadowMap2D , r_shadow_shadowmap2dtexture );CHECKCGERROR if (rsurface.rtlight) { if (r_cg_permutation->fp_Texture_Cube ) CG_BindTexture(r_cg_permutation->fp_Texture_Cube , rsurface.rtlight->currentcubemap );CHECKCGERROR if (r_cg_permutation->fp_Texture_CubeProjection ) CG_BindTexture(r_cg_permutation->fp_Texture_CubeProjection , r_shadow_shadowmapvsdcttexture );CHECKCGERROR } } CHECKGLERROR #endif break; case RENDERPATH_GL13: case RENDERPATH_GL11: break; } } void R_SetupShader_DeferredLight(const rtlight_t *rtlight) { // select a permutation of the lighting shader appropriate to this // combination of texture, entity, light source, and fogging, only use the // minimum features necessary to avoid wasting rendering time in the // fragment shader on features that are not being used unsigned int permutation = 0; unsigned int mode = 0; const float *lightcolorbase = rtlight->currentcolor; float ambientscale = rtlight->ambientscale; float diffusescale = rtlight->diffusescale; float specularscale = rtlight->specularscale; // this is the location of the light in view space vec3_t viewlightorigin; // this transforms from view space (camera) to light space (cubemap) matrix4x4_t viewtolight; matrix4x4_t lighttoview; float viewtolight16f[16]; float range = 1.0f / r_shadow_deferred_8bitrange.value; // light source mode = SHADERMODE_DEFERREDLIGHTSOURCE; if (rtlight->currentcubemap != r_texture_whitecube) permutation |= SHADERPERMUTATION_CUBEFILTER; if (diffusescale > 0) permutation |= SHADERPERMUTATION_DIFFUSE; if (specularscale > 0) permutation |= SHADERPERMUTATION_SPECULAR | SHADERPERMUTATION_DIFFUSE; if (r_shadow_usingshadowmap2d) { permutation |= SHADERPERMUTATION_SHADOWMAP2D; if (r_shadow_shadowmapvsdct) permutation |= SHADERPERMUTATION_SHADOWMAPVSDCT; if (r_shadow_shadowmapsampler) permutation |= SHADERPERMUTATION_SHADOWSAMPLER; if (r_shadow_shadowmappcf > 1) permutation |= SHADERPERMUTATION_SHADOWMAPPCF2; else if (r_shadow_shadowmappcf) permutation |= SHADERPERMUTATION_SHADOWMAPPCF; } Matrix4x4_Transform(&r_refdef.view.viewport.viewmatrix, rtlight->shadoworigin, viewlightorigin); Matrix4x4_Concat(&lighttoview, &r_refdef.view.viewport.viewmatrix, &rtlight->matrix_lighttoworld); Matrix4x4_Invert_Simple(&viewtolight, &lighttoview); Matrix4x4_ToArrayFloatGL(&viewtolight, viewtolight16f); switch(vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTD3D R_SetupShader_SetPermutationHLSL(mode, permutation); hlslPSSetParameter3f(D3DPSREGISTER_LightPosition, viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]); hlslPSSetParameter16f(D3DPSREGISTER_ViewToLight, viewtolight16f); hlslPSSetParameter3f(D3DPSREGISTER_DeferredColor_Ambient , lightcolorbase[0] * ambientscale * range, lightcolorbase[1] * ambientscale * range, lightcolorbase[2] * ambientscale * range); hlslPSSetParameter3f(D3DPSREGISTER_DeferredColor_Diffuse , lightcolorbase[0] * diffusescale * range, lightcolorbase[1] * diffusescale * range, lightcolorbase[2] * diffusescale * range); hlslPSSetParameter3f(D3DPSREGISTER_DeferredColor_Specular, lightcolorbase[0] * specularscale * range, lightcolorbase[1] * specularscale * range, lightcolorbase[2] * specularscale * range); hlslPSSetParameter2f(D3DPSREGISTER_ShadowMap_TextureScale, r_shadow_shadowmap_texturescale[0], r_shadow_shadowmap_texturescale[1]); hlslPSSetParameter4f(D3DPSREGISTER_ShadowMap_Parameters, r_shadow_shadowmap_parameters[0], r_shadow_shadowmap_parameters[1], r_shadow_shadowmap_parameters[2], r_shadow_shadowmap_parameters[3]); hlslPSSetParameter1f(D3DPSREGISTER_SpecularPower, (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f)); hlslPSSetParameter2f(D3DPSREGISTER_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]); hlslPSSetParameter2f(D3DPSREGISTER_PixelToScreenTexCoord, 1.0f/vid.width, 1.0/vid.height); R_Mesh_TexBind(GL20TU_ATTENUATION , r_shadow_attenuationgradienttexture ); R_Mesh_TexBind(GL20TU_SCREENDEPTH , r_shadow_prepassgeometrydepthcolortexture ); R_Mesh_TexBind(GL20TU_SCREENNORMALMAP , r_shadow_prepassgeometrynormalmaptexture ); R_Mesh_TexBind(GL20TU_CUBE , rsurface.rtlight->currentcubemap ); R_Mesh_TexBind(GL20TU_SHADOWMAP2D , r_shadow_shadowmap2dcolortexture ); R_Mesh_TexBind(GL20TU_CUBEPROJECTION , r_shadow_shadowmapvsdcttexture ); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_GL20: R_SetupShader_SetPermutationGLSL(mode, permutation); if (r_glsl_permutation->loc_LightPosition >= 0) qglUniform3fARB( r_glsl_permutation->loc_LightPosition , viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]); if (r_glsl_permutation->loc_ViewToLight >= 0) qglUniformMatrix4fvARB(r_glsl_permutation->loc_ViewToLight , 1, false, viewtolight16f); if (r_glsl_permutation->loc_DeferredColor_Ambient >= 0) qglUniform3fARB( r_glsl_permutation->loc_DeferredColor_Ambient , lightcolorbase[0] * ambientscale * range, lightcolorbase[1] * ambientscale * range, lightcolorbase[2] * ambientscale * range); if (r_glsl_permutation->loc_DeferredColor_Diffuse >= 0) qglUniform3fARB( r_glsl_permutation->loc_DeferredColor_Diffuse , lightcolorbase[0] * diffusescale * range, lightcolorbase[1] * diffusescale * range, lightcolorbase[2] * diffusescale * range); if (r_glsl_permutation->loc_DeferredColor_Specular >= 0) qglUniform3fARB( r_glsl_permutation->loc_DeferredColor_Specular , lightcolorbase[0] * specularscale * range, lightcolorbase[1] * specularscale * range, lightcolorbase[2] * specularscale * range); if (r_glsl_permutation->loc_ShadowMap_TextureScale >= 0) qglUniform2fARB( r_glsl_permutation->loc_ShadowMap_TextureScale , r_shadow_shadowmap_texturescale[0], r_shadow_shadowmap_texturescale[1]); if (r_glsl_permutation->loc_ShadowMap_Parameters >= 0) qglUniform4fARB( r_glsl_permutation->loc_ShadowMap_Parameters , r_shadow_shadowmap_parameters[0], r_shadow_shadowmap_parameters[1], r_shadow_shadowmap_parameters[2], r_shadow_shadowmap_parameters[3]); if (r_glsl_permutation->loc_SpecularPower >= 0) qglUniform1fARB( r_glsl_permutation->loc_SpecularPower , (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f)); if (r_glsl_permutation->loc_ScreenToDepth >= 0) qglUniform2fARB( r_glsl_permutation->loc_ScreenToDepth , r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]); if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2fARB(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/vid.width, 1.0f/vid.height); if (r_glsl_permutation->loc_Texture_Attenuation >= 0) R_Mesh_TexBind(GL20TU_ATTENUATION , r_shadow_attenuationgradienttexture ); if (r_glsl_permutation->loc_Texture_ScreenDepth >= 0) R_Mesh_TexBind(GL20TU_SCREENDEPTH , r_shadow_prepassgeometrydepthtexture ); if (r_glsl_permutation->loc_Texture_ScreenNormalMap >= 0) R_Mesh_TexBind(GL20TU_SCREENNORMALMAP , r_shadow_prepassgeometrynormalmaptexture ); if (r_glsl_permutation->loc_Texture_Cube >= 0) R_Mesh_TexBind(GL20TU_CUBE , rsurface.rtlight->currentcubemap ); if (r_glsl_permutation->loc_Texture_ShadowMap2D >= 0) R_Mesh_TexBind(GL20TU_SHADOWMAP2D , r_shadow_shadowmap2dtexture ); if (r_glsl_permutation->loc_Texture_CubeProjection >= 0) R_Mesh_TexBind(GL20TU_CUBEPROJECTION , r_shadow_shadowmapvsdcttexture ); break; case RENDERPATH_CGGL: #ifdef SUPPORTCG R_SetupShader_SetPermutationCG(mode, permutation); if (r_cg_permutation->fp_LightPosition ) cgGLSetParameter3f(r_cg_permutation->fp_LightPosition, viewlightorigin[0], viewlightorigin[1], viewlightorigin[2]);CHECKCGERROR if (r_cg_permutation->fp_ViewToLight ) cgGLSetMatrixParameterfc(r_cg_permutation->fp_ViewToLight, viewtolight16f);CHECKCGERROR if (r_cg_permutation->fp_DeferredColor_Ambient ) cgGLSetParameter3f(r_cg_permutation->fp_DeferredColor_Ambient , lightcolorbase[0] * ambientscale * range, lightcolorbase[1] * ambientscale * range, lightcolorbase[2] * ambientscale * range);CHECKCGERROR if (r_cg_permutation->fp_DeferredColor_Diffuse ) cgGLSetParameter3f(r_cg_permutation->fp_DeferredColor_Diffuse , lightcolorbase[0] * diffusescale * range, lightcolorbase[1] * diffusescale * range, lightcolorbase[2] * diffusescale * range);CHECKCGERROR if (r_cg_permutation->fp_DeferredColor_Specular ) cgGLSetParameter3f(r_cg_permutation->fp_DeferredColor_Specular, lightcolorbase[0] * specularscale * range, lightcolorbase[1] * specularscale * range, lightcolorbase[2] * specularscale * range);CHECKCGERROR if (r_cg_permutation->fp_ShadowMap_TextureScale ) cgGLSetParameter2f(r_cg_permutation->fp_ShadowMap_TextureScale, r_shadow_shadowmap_texturescale[0], r_shadow_shadowmap_texturescale[1]);CHECKCGERROR if (r_cg_permutation->fp_ShadowMap_Parameters ) cgGLSetParameter4f(r_cg_permutation->fp_ShadowMap_Parameters, r_shadow_shadowmap_parameters[0], r_shadow_shadowmap_parameters[1], r_shadow_shadowmap_parameters[2], r_shadow_shadowmap_parameters[3]);CHECKCGERROR if (r_cg_permutation->fp_SpecularPower ) cgGLSetParameter1f(r_cg_permutation->fp_SpecularPower, (r_shadow_gloss.integer == 2 ? r_shadow_gloss2exponent.value : r_shadow_glossexponent.value) * (r_shadow_glossexact.integer ? 0.25f : 1.0f));CHECKCGERROR if (r_cg_permutation->fp_ScreenToDepth ) cgGLSetParameter2f(r_cg_permutation->fp_ScreenToDepth, r_refdef.view.viewport.screentodepth[0], r_refdef.view.viewport.screentodepth[1]);CHECKCGERROR if (r_cg_permutation->fp_PixelToScreenTexCoord ) cgGLSetParameter2f(r_cg_permutation->fp_PixelToScreenTexCoord, 1.0f/vid.width, 1.0/vid.height);CHECKCGERROR if (r_cg_permutation->fp_Texture_Attenuation ) CG_BindTexture(r_cg_permutation->fp_Texture_Attenuation , r_shadow_attenuationgradienttexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_ScreenDepth ) CG_BindTexture(r_cg_permutation->fp_Texture_ScreenDepth , r_shadow_prepassgeometrydepthtexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_ScreenNormalMap ) CG_BindTexture(r_cg_permutation->fp_Texture_ScreenNormalMap, r_shadow_prepassgeometrynormalmaptexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_Cube ) CG_BindTexture(r_cg_permutation->fp_Texture_Cube , rsurface.rtlight->currentcubemap );CHECKCGERROR if (r_cg_permutation->fp_Texture_ShadowMap2D ) CG_BindTexture(r_cg_permutation->fp_Texture_ShadowMap2D , r_shadow_shadowmap2dtexture );CHECKCGERROR if (r_cg_permutation->fp_Texture_CubeProjection ) CG_BindTexture(r_cg_permutation->fp_Texture_CubeProjection , r_shadow_shadowmapvsdcttexture );CHECKCGERROR #endif break; case RENDERPATH_GL13: case RENDERPATH_GL11: break; } } #define SKINFRAME_HASH 1024 typedef struct { int loadsequence; // incremented each level change memexpandablearray_t array; skinframe_t *hash[SKINFRAME_HASH]; } r_skinframe_t; r_skinframe_t r_skinframe; void R_SkinFrame_PrepareForPurge(void) { r_skinframe.loadsequence++; // wrap it without hitting zero if (r_skinframe.loadsequence >= 200) r_skinframe.loadsequence = 1; } void R_SkinFrame_MarkUsed(skinframe_t *skinframe) { if (!skinframe) return; // mark the skinframe as used for the purging code skinframe->loadsequence = r_skinframe.loadsequence; } void R_SkinFrame_Purge(void) { int i; skinframe_t *s; for (i = 0;i < SKINFRAME_HASH;i++) { for (s = r_skinframe.hash[i];s;s = s->next) { if (s->loadsequence && s->loadsequence != r_skinframe.loadsequence) { if (s->merged == s->base) s->merged = NULL; // FIXME: maybe pass a pointer to the pointer to R_PurgeTexture and reset it to NULL inside? [11/29/2007 Black] R_PurgeTexture(s->stain );s->stain = NULL; R_PurgeTexture(s->merged);s->merged = NULL; R_PurgeTexture(s->base );s->base = NULL; R_PurgeTexture(s->pants );s->pants = NULL; R_PurgeTexture(s->shirt );s->shirt = NULL; R_PurgeTexture(s->nmap );s->nmap = NULL; R_PurgeTexture(s->gloss );s->gloss = NULL; R_PurgeTexture(s->glow );s->glow = NULL; R_PurgeTexture(s->fog );s->fog = NULL; R_PurgeTexture(s->reflect);s->reflect = NULL; s->loadsequence = 0; } } } } skinframe_t *R_SkinFrame_FindNextByName( skinframe_t *last, const char *name ) { skinframe_t *item; char basename[MAX_QPATH]; Image_StripImageExtension(name, basename, sizeof(basename)); if( last == NULL ) { int hashindex; hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1); item = r_skinframe.hash[hashindex]; } else { item = last->next; } // linearly search through the hash bucket for( ; item ; item = item->next ) { if( !strcmp( item->basename, basename ) ) { return item; } } return NULL; } skinframe_t *R_SkinFrame_Find(const char *name, int textureflags, int comparewidth, int compareheight, int comparecrc, qboolean add) { skinframe_t *item; int hashindex; char basename[MAX_QPATH]; Image_StripImageExtension(name, basename, sizeof(basename)); hashindex = CRC_Block((unsigned char *)basename, strlen(basename)) & (SKINFRAME_HASH - 1); for (item = r_skinframe.hash[hashindex];item;item = item->next) if (!strcmp(item->basename, basename) && item->textureflags == textureflags && item->comparewidth == comparewidth && item->compareheight == compareheight && item->comparecrc == comparecrc) break; if (!item) { rtexture_t *dyntexture; // check whether its a dynamic texture dyntexture = CL_GetDynTexture( basename ); if (!add && !dyntexture) return NULL; item = (skinframe_t *)Mem_ExpandableArray_AllocRecord(&r_skinframe.array); memset(item, 0, sizeof(*item)); strlcpy(item->basename, basename, sizeof(item->basename)); item->base = dyntexture; // either NULL or dyntexture handle item->textureflags = textureflags; item->comparewidth = comparewidth; item->compareheight = compareheight; item->comparecrc = comparecrc; item->next = r_skinframe.hash[hashindex]; r_skinframe.hash[hashindex] = item; } else if( item->base == NULL ) { rtexture_t *dyntexture; // check whether its a dynamic texture // this only needs to be done because Purge doesnt delete skinframes - only sets the texture pointers to NULL and we need to restore it before returing.. [11/29/2007 Black] dyntexture = CL_GetDynTexture( basename ); item->base = dyntexture; // either NULL or dyntexture handle } R_SkinFrame_MarkUsed(item); return item; } #define R_SKINFRAME_LOAD_AVERAGE_COLORS(cnt, getpixel) \ { \ unsigned long long avgcolor[5], wsum; \ int pix, comp, w; \ avgcolor[0] = 0; \ avgcolor[1] = 0; \ avgcolor[2] = 0; \ avgcolor[3] = 0; \ avgcolor[4] = 0; \ wsum = 0; \ for(pix = 0; pix < cnt; ++pix) \ { \ w = 0; \ for(comp = 0; comp < 3; ++comp) \ w += getpixel; \ if(w) /* ignore perfectly black pixels because that is better for model skins */ \ { \ ++wsum; \ /* comp = 3; -- not needed, comp is always 3 when we get here */ \ w = getpixel; \ for(comp = 0; comp < 3; ++comp) \ avgcolor[comp] += getpixel * w; \ avgcolor[3] += w; \ } \ /* comp = 3; -- not needed, comp is always 3 when we get here */ \ avgcolor[4] += getpixel; \ } \ if(avgcolor[3] == 0) /* no pixels seen? even worse */ \ avgcolor[3] = 1; \ skinframe->avgcolor[0] = avgcolor[2] / (255.0 * avgcolor[3]); \ skinframe->avgcolor[1] = avgcolor[1] / (255.0 * avgcolor[3]); \ skinframe->avgcolor[2] = avgcolor[0] / (255.0 * avgcolor[3]); \ skinframe->avgcolor[3] = avgcolor[4] / (255.0 * cnt); \ } extern cvar_t gl_picmip; skinframe_t *R_SkinFrame_LoadExternal(const char *name, int textureflags, qboolean complain) { int j; unsigned char *pixels; unsigned char *bumppixels; unsigned char *basepixels = NULL; int basepixels_width = 0; int basepixels_height = 0; skinframe_t *skinframe; rtexture_t *ddsbase = NULL; qboolean ddshasalpha = false; float ddsavgcolor[4]; char basename[MAX_QPATH]; int miplevel = R_PicmipForFlags(textureflags); int savemiplevel = miplevel; int mymiplevel; if (cls.state == ca_dedicated) return NULL; // return an existing skinframe if already loaded // if loading of the first image fails, don't make a new skinframe as it // would cause all future lookups of this to be missing skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false); if (skinframe && skinframe->base) return skinframe; Image_StripImageExtension(name, basename, sizeof(basename)); // check for DDS texture file first if (!r_loaddds || !(ddsbase = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s.dds", basename), textureflags, &ddshasalpha, ddsavgcolor, miplevel))) { basepixels = loadimagepixelsbgra(name, complain, true, r_texture_convertsRGB_skin.integer != 0, &miplevel); if (basepixels == NULL) return NULL; } // FIXME handle miplevel if (developer_loading.integer) Con_Printf("loading skin \"%s\"\n", name); // we've got some pixels to store, so really allocate this new texture now if (!skinframe) skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, true); skinframe->stain = NULL; skinframe->merged = NULL; skinframe->base = NULL; skinframe->pants = NULL; skinframe->shirt = NULL; skinframe->nmap = NULL; skinframe->gloss = NULL; skinframe->glow = NULL; skinframe->fog = NULL; skinframe->reflect = NULL; skinframe->hasalpha = false; if (ddsbase) { skinframe->base = ddsbase; skinframe->hasalpha = ddshasalpha; VectorCopy(ddsavgcolor, skinframe->avgcolor); if (r_loadfog && skinframe->hasalpha) skinframe->fog = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s_mask.dds", skinframe->basename), textureflags | TEXF_ALPHA, NULL, NULL, miplevel); //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]); } else { basepixels_width = image_width; basepixels_height = image_height; skinframe->base = R_LoadTexture2D (r_main_texturepool, skinframe->basename, basepixels_width, basepixels_height, basepixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL); if (textureflags & TEXF_ALPHA) { for (j = 3;j < basepixels_width * basepixels_height * 4;j += 4) { if (basepixels[j] < 255) { skinframe->hasalpha = true; break; } } if (r_loadfog && skinframe->hasalpha) { // has transparent pixels pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4); for (j = 0;j < image_width * image_height * 4;j += 4) { pixels[j+0] = 255; pixels[j+1] = 255; pixels[j+2] = 255; pixels[j+3] = basepixels[j+3]; } skinframe->fog = R_LoadTexture2D (r_main_texturepool, va("%s_mask", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), miplevel, NULL); Mem_Free(pixels); } } R_SKINFRAME_LOAD_AVERAGE_COLORS(basepixels_width * basepixels_height, basepixels[4 * pix + comp]); //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]); if (r_savedds && qglGetCompressedTexImageARB && skinframe->base) R_SaveTextureDDSFile(skinframe->base, va("dds/%s.dds", skinframe->basename), true, skinframe->hasalpha); if (r_savedds && qglGetCompressedTexImageARB && skinframe->fog) R_SaveTextureDDSFile(skinframe->fog, va("dds/%s_mask.dds", skinframe->basename), true, true); } if (r_loaddds) { mymiplevel = savemiplevel; if (r_loadnormalmap) skinframe->nmap = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s_norm.dds", skinframe->basename), (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), NULL, NULL, mymiplevel); skinframe->glow = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s_glow.dds", skinframe->basename), textureflags, NULL, NULL, mymiplevel); if (r_loadgloss) skinframe->gloss = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s_gloss.dds", skinframe->basename), textureflags, NULL, NULL, mymiplevel); skinframe->pants = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s_pants.dds", skinframe->basename), textureflags, NULL, NULL, mymiplevel); skinframe->shirt = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s_shirt.dds", skinframe->basename), textureflags, NULL, NULL, mymiplevel); skinframe->reflect = R_LoadTextureDDSFile(r_main_texturepool, va("dds/%s_reflect.dds", skinframe->basename), textureflags, NULL, NULL, mymiplevel); } // _norm is the name used by tenebrae and has been adopted as standard if (r_loadnormalmap && skinframe->nmap == NULL) { mymiplevel = savemiplevel; if ((pixels = loadimagepixelsbgra(va("%s_norm", skinframe->basename), false, false, false, &mymiplevel)) != NULL) { skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); Mem_Free(pixels); pixels = NULL; } else if (r_shadow_bumpscale_bumpmap.value > 0 && (bumppixels = loadimagepixelsbgra(va("%s_bump", skinframe->basename), false, false, false, &mymiplevel)) != NULL) { pixels = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4); Image_HeightmapToNormalmap_BGRA(bumppixels, pixels, image_width, image_height, false, r_shadow_bumpscale_bumpmap.value); skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); Mem_Free(pixels); Mem_Free(bumppixels); } else if (r_shadow_bumpscale_basetexture.value > 0) { pixels = (unsigned char *)Mem_Alloc(tempmempool, basepixels_width * basepixels_height * 4); Image_HeightmapToNormalmap_BGRA(basepixels, pixels, basepixels_width, basepixels_height, false, r_shadow_bumpscale_basetexture.value); skinframe->nmap = R_LoadTexture2D (r_main_texturepool, va("%s_nmap", skinframe->basename), basepixels_width, basepixels_height, pixels, TEXTYPE_BGRA, (TEXF_ALPHA | textureflags) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP) & (gl_texturecompression_normal.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); Mem_Free(pixels); } if (r_savedds && qglGetCompressedTexImageARB && skinframe->nmap) R_SaveTextureDDSFile(skinframe->nmap, va("dds/%s_norm.dds", skinframe->basename), true, true); } // _luma is supported only for tenebrae compatibility // _glow is the preferred name mymiplevel = savemiplevel; if (skinframe->glow == NULL && ((pixels = loadimagepixelsbgra(va("%s_glow", skinframe->basename), false, false, r_texture_convertsRGB_skin.integer != 0, &mymiplevel)) || (pixels = loadimagepixelsbgra(va("%s_luma", skinframe->basename), false, false, r_texture_convertsRGB_skin.integer != 0, &mymiplevel)))) { skinframe->glow = R_LoadTexture2D (r_main_texturepool, va("%s_glow", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_glow.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); if (r_savedds && qglGetCompressedTexImageARB && skinframe->glow) R_SaveTextureDDSFile(skinframe->glow, va("dds/%s_glow.dds", skinframe->basename), true, true); Mem_Free(pixels);pixels = NULL; } mymiplevel = savemiplevel; if (skinframe->gloss == NULL && r_loadgloss && (pixels = loadimagepixelsbgra(va("%s_gloss", skinframe->basename), false, false, r_texture_convertsRGB_skin.integer != 0, &mymiplevel))) { skinframe->gloss = R_LoadTexture2D (r_main_texturepool, va("%s_gloss", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_gloss.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); if (r_savedds && qglGetCompressedTexImageARB && skinframe->gloss) R_SaveTextureDDSFile(skinframe->gloss, va("dds/%s_gloss.dds", skinframe->basename), true, true); Mem_Free(pixels); pixels = NULL; } mymiplevel = savemiplevel; if (skinframe->pants == NULL && (pixels = loadimagepixelsbgra(va("%s_pants", skinframe->basename), false, false, r_texture_convertsRGB_skin.integer != 0, &mymiplevel))) { skinframe->pants = R_LoadTexture2D (r_main_texturepool, va("%s_pants", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); if (r_savedds && qglGetCompressedTexImageARB && skinframe->pants) R_SaveTextureDDSFile(skinframe->pants, va("dds/%s_pants.dds", skinframe->basename), true, false); Mem_Free(pixels); pixels = NULL; } mymiplevel = savemiplevel; if (skinframe->shirt == NULL && (pixels = loadimagepixelsbgra(va("%s_shirt", skinframe->basename), false, false, r_texture_convertsRGB_skin.integer != 0, &mymiplevel))) { skinframe->shirt = R_LoadTexture2D (r_main_texturepool, va("%s_shirt", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_color.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); if (r_savedds && qglGetCompressedTexImageARB && skinframe->shirt) R_SaveTextureDDSFile(skinframe->shirt, va("dds/%s_shirt.dds", skinframe->basename), true, false); Mem_Free(pixels); pixels = NULL; } mymiplevel = savemiplevel; if (skinframe->reflect == NULL && (pixels = loadimagepixelsbgra(va("%s_reflect", skinframe->basename), false, false, r_texture_convertsRGB_skin.integer != 0, &mymiplevel))) { skinframe->reflect = R_LoadTexture2D (r_main_texturepool, va("%s_reflect", skinframe->basename), image_width, image_height, pixels, TEXTYPE_BGRA, textureflags & (gl_texturecompression_reflectmask.integer ? ~0 : ~TEXF_COMPRESS), mymiplevel, NULL); if (r_savedds && qglGetCompressedTexImageARB && skinframe->reflect) R_SaveTextureDDSFile(skinframe->reflect, va("dds/%s_reflect.dds", skinframe->basename), true, true); Mem_Free(pixels); pixels = NULL; } if (basepixels) Mem_Free(basepixels); return skinframe; } // this is only used by .spr32 sprites, HL .spr files, HL .bsp files skinframe_t *R_SkinFrame_LoadInternalBGRA(const char *name, int textureflags, const unsigned char *skindata, int width, int height) { int i; unsigned char *temp1, *temp2; skinframe_t *skinframe; if (cls.state == ca_dedicated) return NULL; // if already loaded just return it, otherwise make a new skinframe skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height*4) : 0, true); if (skinframe && skinframe->base) return skinframe; skinframe->stain = NULL; skinframe->merged = NULL; skinframe->base = NULL; skinframe->pants = NULL; skinframe->shirt = NULL; skinframe->nmap = NULL; skinframe->gloss = NULL; skinframe->glow = NULL; skinframe->fog = NULL; skinframe->reflect = NULL; skinframe->hasalpha = false; // if no data was provided, then clearly the caller wanted to get a blank skinframe if (!skindata) return NULL; if (developer_loading.integer) Con_Printf("loading 32bit skin \"%s\"\n", name); if (r_loadnormalmap && r_shadow_bumpscale_basetexture.value > 0) { temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8); temp2 = temp1 + width * height * 4; Image_HeightmapToNormalmap_BGRA(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value); skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, (textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL); Mem_Free(temp1); } skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_BGRA, textureflags, -1, NULL); if (textureflags & TEXF_ALPHA) { for (i = 3;i < width * height * 4;i += 4) { if (skindata[i] < 255) { skinframe->hasalpha = true; break; } } if (r_loadfog && skinframe->hasalpha) { unsigned char *fogpixels = (unsigned char *)Mem_Alloc(tempmempool, width * height * 4); memcpy(fogpixels, skindata, width * height * 4); for (i = 0;i < width * height * 4;i += 4) fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255; skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, fogpixels, TEXTYPE_BGRA, textureflags, -1, NULL); Mem_Free(fogpixels); } } R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, skindata[4 * pix + comp]); //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]); return skinframe; } skinframe_t *R_SkinFrame_LoadInternalQuake(const char *name, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height) { int i; int featuresmask; skinframe_t *skinframe; if (cls.state == ca_dedicated) return NULL; // if already loaded just return it, otherwise make a new skinframe skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true); if (skinframe && skinframe->base) return skinframe; skinframe->stain = NULL; skinframe->merged = NULL; skinframe->base = NULL; skinframe->pants = NULL; skinframe->shirt = NULL; skinframe->nmap = NULL; skinframe->gloss = NULL; skinframe->glow = NULL; skinframe->fog = NULL; skinframe->reflect = NULL; skinframe->hasalpha = false; // if no data was provided, then clearly the caller wanted to get a blank skinframe if (!skindata) return NULL; if (developer_loading.integer) Con_Printf("loading quake skin \"%s\"\n", name); // we actually don't upload anything until the first use, because mdl skins frequently go unused, and are almost never used in both modes (colormapped and non-colormapped) skinframe->qpixels = (unsigned char *)Mem_Alloc(r_main_mempool, width*height); memcpy(skinframe->qpixels, skindata, width*height); skinframe->qwidth = width; skinframe->qheight = height; featuresmask = 0; for (i = 0;i < width * height;i++) featuresmask |= palette_featureflags[skindata[i]]; skinframe->hasalpha = false; skinframe->qhascolormapping = loadpantsandshirt && (featuresmask & (PALETTEFEATURE_PANTS | PALETTEFEATURE_SHIRT)); skinframe->qgeneratenmap = r_shadow_bumpscale_basetexture.value > 0; skinframe->qgeneratemerged = true; skinframe->qgeneratebase = skinframe->qhascolormapping; skinframe->qgenerateglow = loadglowtexture && (featuresmask & PALETTEFEATURE_GLOW); R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette_bgra_complete)[skindata[pix]*4 + comp]); //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]); return skinframe; } static void R_SkinFrame_GenerateTexturesFromQPixels(skinframe_t *skinframe, qboolean colormapped) { int width; int height; unsigned char *skindata; if (!skinframe->qpixels) return; if (!skinframe->qhascolormapping) colormapped = false; if (colormapped) { if (!skinframe->qgeneratebase) return; } else { if (!skinframe->qgeneratemerged) return; } width = skinframe->qwidth; height = skinframe->qheight; skindata = skinframe->qpixels; if (skinframe->qgeneratenmap) { unsigned char *temp1, *temp2; skinframe->qgeneratenmap = false; temp1 = (unsigned char *)Mem_Alloc(tempmempool, width * height * 8); temp2 = temp1 + width * height * 4; // use either a custom palette or the quake palette Image_Copy8bitBGRA(skindata, temp1, width * height, palette_bgra_complete); Image_HeightmapToNormalmap_BGRA(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value); skinframe->nmap = R_LoadTexture2D(r_main_texturepool, va("%s_nmap", skinframe->basename), width, height, temp2, TEXTYPE_BGRA, (skinframe->textureflags | TEXF_ALPHA) & (r_mipnormalmaps.integer ? ~0 : ~TEXF_MIPMAP), -1, NULL); Mem_Free(temp1); } if (skinframe->qgenerateglow) { skinframe->qgenerateglow = false; skinframe->glow = R_LoadTexture2D(r_main_texturepool, va("%s_glow", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_onlyfullbrights); // glow } if (colormapped) { skinframe->qgeneratebase = false; skinframe->base = R_LoadTexture2D(r_main_texturepool, va("%s_nospecial", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nocolormapnofullbrights : palette_bgra_nocolormap); skinframe->pants = R_LoadTexture2D(r_main_texturepool, va("%s_pants", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_pantsaswhite); skinframe->shirt = R_LoadTexture2D(r_main_texturepool, va("%s_shirt", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, skinframe->textureflags, -1, palette_bgra_shirtaswhite); } else { skinframe->qgeneratemerged = false; skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, skinframe->textureflags, -1, skinframe->glow ? palette_bgra_nofullbrights : palette_bgra_complete); } if (!skinframe->qgeneratemerged && !skinframe->qgeneratebase) { Mem_Free(skinframe->qpixels); skinframe->qpixels = NULL; } } skinframe_t *R_SkinFrame_LoadInternal8bit(const char *name, int textureflags, const unsigned char *skindata, int width, int height, const unsigned int *palette, const unsigned int *alphapalette) { int i; skinframe_t *skinframe; if (cls.state == ca_dedicated) return NULL; // if already loaded just return it, otherwise make a new skinframe skinframe = R_SkinFrame_Find(name, textureflags, width, height, skindata ? CRC_Block(skindata, width*height) : 0, true); if (skinframe && skinframe->base) return skinframe; skinframe->stain = NULL; skinframe->merged = NULL; skinframe->base = NULL; skinframe->pants = NULL; skinframe->shirt = NULL; skinframe->nmap = NULL; skinframe->gloss = NULL; skinframe->glow = NULL; skinframe->fog = NULL; skinframe->reflect = NULL; skinframe->hasalpha = false; // if no data was provided, then clearly the caller wanted to get a blank skinframe if (!skindata) return NULL; if (developer_loading.integer) Con_Printf("loading embedded 8bit image \"%s\"\n", name); skinframe->base = skinframe->merged = R_LoadTexture2D(r_main_texturepool, skinframe->basename, width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, palette); if (textureflags & TEXF_ALPHA) { for (i = 0;i < width * height;i++) { if (((unsigned char *)palette)[skindata[i]*4+3] < 255) { skinframe->hasalpha = true; break; } } if (r_loadfog && skinframe->hasalpha) skinframe->fog = R_LoadTexture2D(r_main_texturepool, va("%s_fog", skinframe->basename), width, height, skindata, TEXTYPE_PALETTE, textureflags, -1, alphapalette); } R_SKINFRAME_LOAD_AVERAGE_COLORS(width * height, ((unsigned char *)palette)[skindata[pix]*4 + comp]); //Con_Printf("Texture %s has average colors %f %f %f alpha %f\n", name, skinframe->avgcolor[0], skinframe->avgcolor[1], skinframe->avgcolor[2], skinframe->avgcolor[3]); return skinframe; } skinframe_t *R_SkinFrame_LoadMissing(void) { skinframe_t *skinframe; if (cls.state == ca_dedicated) return NULL; skinframe = R_SkinFrame_Find("missing", TEXF_FORCENEAREST, 0, 0, 0, true); skinframe->stain = NULL; skinframe->merged = NULL; skinframe->base = NULL; skinframe->pants = NULL; skinframe->shirt = NULL; skinframe->nmap = NULL; skinframe->gloss = NULL; skinframe->glow = NULL; skinframe->fog = NULL; skinframe->reflect = NULL; skinframe->hasalpha = false; skinframe->avgcolor[0] = rand() / RAND_MAX; skinframe->avgcolor[1] = rand() / RAND_MAX; skinframe->avgcolor[2] = rand() / RAND_MAX; skinframe->avgcolor[3] = 1; return skinframe; } //static char *suffix[6] = {"ft", "bk", "rt", "lf", "up", "dn"}; typedef struct suffixinfo_s { const char *suffix; qboolean flipx, flipy, flipdiagonal; } suffixinfo_t; static suffixinfo_t suffix[3][6] = { { {"px", false, false, false}, {"nx", false, false, false}, {"py", false, false, false}, {"ny", false, false, false}, {"pz", false, false, false}, {"nz", false, false, false} }, { {"posx", false, false, false}, {"negx", false, false, false}, {"posy", false, false, false}, {"negy", false, false, false}, {"posz", false, false, false}, {"negz", false, false, false} }, { {"rt", true, false, true}, {"lf", false, true, true}, {"ft", true, true, false}, {"bk", false, false, false}, {"up", true, false, true}, {"dn", true, false, true} } }; static int componentorder[4] = {0, 1, 2, 3}; rtexture_t *R_LoadCubemap(const char *basename) { int i, j, cubemapsize; unsigned char *cubemappixels, *image_buffer; rtexture_t *cubemaptexture; char name[256]; // must start 0 so the first loadimagepixels has no requested width/height cubemapsize = 0; cubemappixels = NULL; cubemaptexture = NULL; // keep trying different suffix groups (posx, px, rt) until one loads for (j = 0;j < 3 && !cubemappixels;j++) { // load the 6 images in the suffix group for (i = 0;i < 6;i++) { // generate an image name based on the base and and suffix dpsnprintf(name, sizeof(name), "%s%s", basename, suffix[j][i].suffix); // load it if ((image_buffer = loadimagepixelsbgra(name, false, false, r_texture_convertsRGB_cubemap.integer != 0, NULL))) { // an image loaded, make sure width and height are equal if (image_width == image_height && (!cubemappixels || image_width == cubemapsize)) { // if this is the first image to load successfully, allocate the cubemap memory if (!cubemappixels && image_width >= 1) { cubemapsize = image_width; // note this clears to black, so unavailable sides are black cubemappixels = (unsigned char *)Mem_Alloc(tempmempool, 6*cubemapsize*cubemapsize*4); } // copy the image with any flipping needed by the suffix (px and posx types don't need flipping) if (cubemappixels) Image_CopyMux(cubemappixels+i*cubemapsize*cubemapsize*4, image_buffer, cubemapsize, cubemapsize, suffix[j][i].flipx, suffix[j][i].flipy, suffix[j][i].flipdiagonal, 4, 4, componentorder); } else Con_Printf("Cubemap image \"%s\" (%ix%i) is not square, OpenGL requires square cubemaps.\n", name, image_width, image_height); // free the image Mem_Free(image_buffer); } } } // if a cubemap loaded, upload it if (cubemappixels) { if (developer_loading.integer) Con_Printf("loading cubemap \"%s\"\n", basename); cubemaptexture = R_LoadTextureCubeMap(r_main_texturepool, basename, cubemapsize, cubemappixels, TEXTYPE_BGRA, (gl_texturecompression_lightcubemaps.integer ? TEXF_COMPRESS : 0) | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL); Mem_Free(cubemappixels); } else { Con_DPrintf("failed to load cubemap \"%s\"\n", basename); if (developer_loading.integer) { Con_Printf("(tried tried images "); for (j = 0;j < 3;j++) for (i = 0;i < 6;i++) Con_Printf("%s\"%s%s.tga\"", j + i > 0 ? ", " : "", basename, suffix[j][i].suffix); Con_Print(" and was unable to find any of them).\n"); } } return cubemaptexture; } rtexture_t *R_GetCubemap(const char *basename) { int i; for (i = 0;i < r_texture_numcubemaps;i++) if (!strcasecmp(r_texture_cubemaps[i].basename, basename)) return r_texture_cubemaps[i].texture ? r_texture_cubemaps[i].texture : r_texture_whitecube; if (i >= MAX_CUBEMAPS) return r_texture_whitecube; r_texture_numcubemaps++; strlcpy(r_texture_cubemaps[i].basename, basename, sizeof(r_texture_cubemaps[i].basename)); r_texture_cubemaps[i].texture = R_LoadCubemap(r_texture_cubemaps[i].basename); return r_texture_cubemaps[i].texture; } void R_FreeCubemaps(void) { int i; for (i = 0;i < r_texture_numcubemaps;i++) { if (developer_loading.integer) Con_DPrintf("unloading cubemap \"%s\"\n", r_texture_cubemaps[i].basename); if (r_texture_cubemaps[i].texture) R_FreeTexture(r_texture_cubemaps[i].texture); } r_texture_numcubemaps = 0; } void R_Main_FreeViewCache(void) { if (r_refdef.viewcache.entityvisible) Mem_Free(r_refdef.viewcache.entityvisible); if (r_refdef.viewcache.world_pvsbits) Mem_Free(r_refdef.viewcache.world_pvsbits); if (r_refdef.viewcache.world_leafvisible) Mem_Free(r_refdef.viewcache.world_leafvisible); if (r_refdef.viewcache.world_surfacevisible) Mem_Free(r_refdef.viewcache.world_surfacevisible); memset(&r_refdef.viewcache, 0, sizeof(r_refdef.viewcache)); } void R_Main_ResizeViewCache(void) { int numentities = r_refdef.scene.numentities; int numclusters = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusters : 1; int numclusterbytes = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_pvsclusterbytes : 1; int numleafs = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->brush.num_leafs : 1; int numsurfaces = r_refdef.scene.worldmodel ? r_refdef.scene.worldmodel->num_surfaces : 1; if (r_refdef.viewcache.maxentities < numentities) { r_refdef.viewcache.maxentities = numentities; if (r_refdef.viewcache.entityvisible) Mem_Free(r_refdef.viewcache.entityvisible); r_refdef.viewcache.entityvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.maxentities); } if (r_refdef.viewcache.world_numclusters != numclusters) { r_refdef.viewcache.world_numclusters = numclusters; r_refdef.viewcache.world_numclusterbytes = numclusterbytes; if (r_refdef.viewcache.world_pvsbits) Mem_Free(r_refdef.viewcache.world_pvsbits); r_refdef.viewcache.world_pvsbits = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numclusterbytes); } if (r_refdef.viewcache.world_numleafs != numleafs) { r_refdef.viewcache.world_numleafs = numleafs; if (r_refdef.viewcache.world_leafvisible) Mem_Free(r_refdef.viewcache.world_leafvisible); r_refdef.viewcache.world_leafvisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numleafs); } if (r_refdef.viewcache.world_numsurfaces != numsurfaces) { r_refdef.viewcache.world_numsurfaces = numsurfaces; if (r_refdef.viewcache.world_surfacevisible) Mem_Free(r_refdef.viewcache.world_surfacevisible); r_refdef.viewcache.world_surfacevisible = (unsigned char *)Mem_Alloc(r_main_mempool, r_refdef.viewcache.world_numsurfaces); } } extern rtexture_t *loadingscreentexture; void gl_main_start(void) { loadingscreentexture = NULL; r_texture_blanknormalmap = NULL; r_texture_white = NULL; r_texture_grey128 = NULL; r_texture_black = NULL; r_texture_whitecube = NULL; r_texture_normalizationcube = NULL; r_texture_fogattenuation = NULL; r_texture_fogheighttexture = NULL; r_texture_gammaramps = NULL; r_texture_numcubemaps = 0; r_loaddds = vid.support.arb_texture_compression && vid.support.ext_texture_compression_s3tc && r_texture_dds_load.integer; r_savedds = vid.support.arb_texture_compression && vid.support.ext_texture_compression_s3tc && r_texture_dds_save.integer; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: Cvar_SetValueQuick(&r_textureunits, vid.texunits); Cvar_SetValueQuick(&gl_combine, 1); Cvar_SetValueQuick(&r_glsl, 1); r_loadnormalmap = true; r_loadgloss = true; r_loadfog = false; break; case RENDERPATH_GL13: Cvar_SetValueQuick(&r_textureunits, vid.texunits); Cvar_SetValueQuick(&gl_combine, 1); Cvar_SetValueQuick(&r_glsl, 0); r_loadnormalmap = false; r_loadgloss = false; r_loadfog = true; break; case RENDERPATH_GL11: Cvar_SetValueQuick(&r_textureunits, vid.texunits); Cvar_SetValueQuick(&gl_combine, 0); Cvar_SetValueQuick(&r_glsl, 0); r_loadnormalmap = false; r_loadgloss = false; r_loadfog = true; break; } R_AnimCache_Free(); R_FrameData_Reset(); r_numqueries = 0; r_maxqueries = 0; memset(r_queries, 0, sizeof(r_queries)); r_qwskincache = NULL; r_qwskincache_size = 0; // set up r_skinframe loading system for textures memset(&r_skinframe, 0, sizeof(r_skinframe)); r_skinframe.loadsequence = 1; Mem_ExpandableArray_NewArray(&r_skinframe.array, r_main_mempool, sizeof(skinframe_t), 256); r_main_texturepool = R_AllocTexturePool(); R_BuildBlankTextures(); R_BuildNoTexture(); if (vid.support.arb_texture_cube_map) { R_BuildWhiteCube(); R_BuildNormalizationCube(); } r_texture_fogattenuation = NULL; r_texture_fogheighttexture = NULL; r_texture_gammaramps = NULL; //r_texture_fogintensity = NULL; memset(&r_bloomstate, 0, sizeof(r_bloomstate)); memset(&r_waterstate, 0, sizeof(r_waterstate)); r_glsl_permutation = NULL; memset(r_glsl_permutationhash, 0, sizeof(r_glsl_permutationhash)); Mem_ExpandableArray_NewArray(&r_glsl_permutationarray, r_main_mempool, sizeof(r_glsl_permutation_t), 256); glslshaderstring = NULL; #ifdef SUPPORTCG r_cg_permutation = NULL; memset(r_cg_permutationhash, 0, sizeof(r_cg_permutationhash)); Mem_ExpandableArray_NewArray(&r_cg_permutationarray, r_main_mempool, sizeof(r_cg_permutation_t), 256); cgshaderstring = NULL; #endif #ifdef SUPPORTD3D r_hlsl_permutation = NULL; memset(r_hlsl_permutationhash, 0, sizeof(r_hlsl_permutationhash)); Mem_ExpandableArray_NewArray(&r_hlsl_permutationarray, r_main_mempool, sizeof(r_hlsl_permutation_t), 256); hlslshaderstring = NULL; #endif memset(&r_svbsp, 0, sizeof (r_svbsp)); r_refdef.fogmasktable_density = 0; } void gl_main_shutdown(void) { R_AnimCache_Free(); R_FrameData_Reset(); R_Main_FreeViewCache(); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: if (r_maxqueries) qglDeleteQueriesARB(r_maxqueries, r_queries); break; case RENDERPATH_D3D9: //Con_DPrintf("FIXME D3D9 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } r_numqueries = 0; r_maxqueries = 0; memset(r_queries, 0, sizeof(r_queries)); r_qwskincache = NULL; r_qwskincache_size = 0; // clear out the r_skinframe state Mem_ExpandableArray_FreeArray(&r_skinframe.array); memset(&r_skinframe, 0, sizeof(r_skinframe)); if (r_svbsp.nodes) Mem_Free(r_svbsp.nodes); memset(&r_svbsp, 0, sizeof (r_svbsp)); R_FreeTexturePool(&r_main_texturepool); loadingscreentexture = NULL; r_texture_blanknormalmap = NULL; r_texture_white = NULL; r_texture_grey128 = NULL; r_texture_black = NULL; r_texture_whitecube = NULL; r_texture_normalizationcube = NULL; r_texture_fogattenuation = NULL; r_texture_fogheighttexture = NULL; r_texture_gammaramps = NULL; r_texture_numcubemaps = 0; //r_texture_fogintensity = NULL; memset(&r_bloomstate, 0, sizeof(r_bloomstate)); memset(&r_waterstate, 0, sizeof(r_waterstate)); R_GLSL_Restart_f(); } extern void CL_ParseEntityLump(char *entitystring); void gl_main_newmap(void) { // FIXME: move this code to client char *entities, entname[MAX_QPATH]; if (r_qwskincache) Mem_Free(r_qwskincache); r_qwskincache = NULL; r_qwskincache_size = 0; if (cl.worldmodel) { dpsnprintf(entname, sizeof(entname), "%s.ent", cl.worldnamenoextension); if ((entities = (char *)FS_LoadFile(entname, tempmempool, true, NULL))) { CL_ParseEntityLump(entities); Mem_Free(entities); return; } if (cl.worldmodel->brush.entities) CL_ParseEntityLump(cl.worldmodel->brush.entities); } R_Main_FreeViewCache(); R_FrameData_Reset(); } void GL_Main_Init(void) { r_main_mempool = Mem_AllocPool("Renderer", 0, NULL); Cmd_AddCommand("r_glsl_restart", R_GLSL_Restart_f, "unloads GLSL shaders, they will then be reloaded as needed"); Cmd_AddCommand("r_glsl_dumpshader", R_GLSL_DumpShader_f, "dumps the engine internal default.glsl shader into glsl/default.glsl"); // FIXME: the client should set up r_refdef.fog stuff including the fogmasktable if (gamemode == GAME_NEHAHRA) { Cvar_RegisterVariable (&gl_fogenable); Cvar_RegisterVariable (&gl_fogdensity); Cvar_RegisterVariable (&gl_fogred); Cvar_RegisterVariable (&gl_foggreen); Cvar_RegisterVariable (&gl_fogblue); Cvar_RegisterVariable (&gl_fogstart); Cvar_RegisterVariable (&gl_fogend); Cvar_RegisterVariable (&gl_skyclip); } Cvar_RegisterVariable(&r_motionblur); Cvar_RegisterVariable(&r_motionblur_maxblur); Cvar_RegisterVariable(&r_motionblur_bmin); Cvar_RegisterVariable(&r_motionblur_vmin); Cvar_RegisterVariable(&r_motionblur_vmax); Cvar_RegisterVariable(&r_motionblur_vcoeff); Cvar_RegisterVariable(&r_motionblur_randomize); Cvar_RegisterVariable(&r_damageblur); Cvar_RegisterVariable(&r_equalize_entities_fullbright); Cvar_RegisterVariable(&r_equalize_entities_minambient); Cvar_RegisterVariable(&r_equalize_entities_by); Cvar_RegisterVariable(&r_equalize_entities_to); Cvar_RegisterVariable(&r_depthfirst); Cvar_RegisterVariable(&r_useinfinitefarclip); Cvar_RegisterVariable(&r_farclip_base); Cvar_RegisterVariable(&r_farclip_world); Cvar_RegisterVariable(&r_nearclip); Cvar_RegisterVariable(&r_showbboxes); Cvar_RegisterVariable(&r_showsurfaces); Cvar_RegisterVariable(&r_showtris); Cvar_RegisterVariable(&r_shownormals); Cvar_RegisterVariable(&r_showlighting); Cvar_RegisterVariable(&r_showshadowvolumes); Cvar_RegisterVariable(&r_showcollisionbrushes); Cvar_RegisterVariable(&r_showcollisionbrushes_polygonfactor); Cvar_RegisterVariable(&r_showcollisionbrushes_polygonoffset); Cvar_RegisterVariable(&r_showdisabledepthtest); Cvar_RegisterVariable(&r_drawportals); Cvar_RegisterVariable(&r_drawentities); Cvar_RegisterVariable(&r_draw2d); Cvar_RegisterVariable(&r_drawworld); Cvar_RegisterVariable(&r_cullentities_trace); Cvar_RegisterVariable(&r_cullentities_trace_samples); Cvar_RegisterVariable(&r_cullentities_trace_tempentitysamples); Cvar_RegisterVariable(&r_cullentities_trace_enlarge); Cvar_RegisterVariable(&r_cullentities_trace_delay); Cvar_RegisterVariable(&r_drawviewmodel); Cvar_RegisterVariable(&r_drawexteriormodel); Cvar_RegisterVariable(&r_speeds); Cvar_RegisterVariable(&r_fullbrights); Cvar_RegisterVariable(&r_wateralpha); Cvar_RegisterVariable(&r_dynamic); Cvar_RegisterVariable(&r_fakelight); Cvar_RegisterVariable(&r_fakelight_intensity); Cvar_RegisterVariable(&r_fullbright); Cvar_RegisterVariable(&r_shadows); Cvar_RegisterVariable(&r_shadows_darken); Cvar_RegisterVariable(&r_shadows_drawafterrtlighting); Cvar_RegisterVariable(&r_shadows_castfrombmodels); Cvar_RegisterVariable(&r_shadows_throwdistance); Cvar_RegisterVariable(&r_shadows_throwdirection); Cvar_RegisterVariable(&r_shadows_focus); Cvar_RegisterVariable(&r_shadows_shadowmapscale); Cvar_RegisterVariable(&r_q1bsp_skymasking); Cvar_RegisterVariable(&r_polygonoffset_submodel_factor); Cvar_RegisterVariable(&r_polygonoffset_submodel_offset); Cvar_RegisterVariable(&r_polygonoffset_decals_factor); Cvar_RegisterVariable(&r_polygonoffset_decals_offset); Cvar_RegisterVariable(&r_fog_exp2); Cvar_RegisterVariable(&r_drawfog); Cvar_RegisterVariable(&r_transparentdepthmasking); Cvar_RegisterVariable(&r_texture_dds_load); Cvar_RegisterVariable(&r_texture_dds_save); Cvar_RegisterVariable(&r_texture_convertsRGB_2d); Cvar_RegisterVariable(&r_texture_convertsRGB_skin); Cvar_RegisterVariable(&r_texture_convertsRGB_cubemap); Cvar_RegisterVariable(&r_texture_convertsRGB_skybox); Cvar_RegisterVariable(&r_texture_convertsRGB_particles); Cvar_RegisterVariable(&r_textureunits); Cvar_RegisterVariable(&gl_combine); Cvar_RegisterVariable(&r_glsl); Cvar_RegisterVariable(&r_glsl_deluxemapping); Cvar_RegisterVariable(&r_glsl_offsetmapping); Cvar_RegisterVariable(&r_glsl_offsetmapping_reliefmapping); Cvar_RegisterVariable(&r_glsl_offsetmapping_scale); Cvar_RegisterVariable(&r_glsl_postprocess); Cvar_RegisterVariable(&r_glsl_postprocess_uservec1); Cvar_RegisterVariable(&r_glsl_postprocess_uservec2); Cvar_RegisterVariable(&r_glsl_postprocess_uservec3); Cvar_RegisterVariable(&r_glsl_postprocess_uservec4); Cvar_RegisterVariable(&r_glsl_postprocess_uservec1_enable); Cvar_RegisterVariable(&r_glsl_postprocess_uservec2_enable); Cvar_RegisterVariable(&r_glsl_postprocess_uservec3_enable); Cvar_RegisterVariable(&r_glsl_postprocess_uservec4_enable); Cvar_RegisterVariable(&r_water); Cvar_RegisterVariable(&r_water_resolutionmultiplier); Cvar_RegisterVariable(&r_water_clippingplanebias); Cvar_RegisterVariable(&r_water_refractdistort); Cvar_RegisterVariable(&r_water_reflectdistort); Cvar_RegisterVariable(&r_water_scissormode); Cvar_RegisterVariable(&r_lerpsprites); Cvar_RegisterVariable(&r_lerpmodels); Cvar_RegisterVariable(&r_lerplightstyles); Cvar_RegisterVariable(&r_waterscroll); Cvar_RegisterVariable(&r_bloom); Cvar_RegisterVariable(&r_bloom_colorscale); Cvar_RegisterVariable(&r_bloom_brighten); Cvar_RegisterVariable(&r_bloom_blur); Cvar_RegisterVariable(&r_bloom_resolution); Cvar_RegisterVariable(&r_bloom_colorexponent); Cvar_RegisterVariable(&r_bloom_colorsubtract); Cvar_RegisterVariable(&r_hdr); Cvar_RegisterVariable(&r_hdr_scenebrightness); Cvar_RegisterVariable(&r_hdr_glowintensity); Cvar_RegisterVariable(&r_hdr_range); Cvar_RegisterVariable(&r_smoothnormals_areaweighting); Cvar_RegisterVariable(&developer_texturelogging); Cvar_RegisterVariable(&gl_lightmaps); Cvar_RegisterVariable(&r_test); Cvar_RegisterVariable(&r_glsl_saturation); Cvar_RegisterVariable(&r_glsl_saturation_redcompensate); Cvar_RegisterVariable(&r_framedatasize); if (gamemode == GAME_NEHAHRA || gamemode == GAME_TENEBRAE) Cvar_SetValue("r_fullbrights", 0); R_RegisterModule("GL_Main", gl_main_start, gl_main_shutdown, gl_main_newmap, NULL, NULL); Cvar_RegisterVariable(&r_track_sprites); Cvar_RegisterVariable(&r_track_sprites_flags); Cvar_RegisterVariable(&r_track_sprites_scalew); Cvar_RegisterVariable(&r_track_sprites_scaleh); Cvar_RegisterVariable(&r_overheadsprites_perspective); Cvar_RegisterVariable(&r_overheadsprites_pushback); } extern void R_Textures_Init(void); extern void GL_Draw_Init(void); extern void GL_Main_Init(void); extern void R_Shadow_Init(void); extern void R_Sky_Init(void); extern void GL_Surf_Init(void); extern void R_Particles_Init(void); extern void R_Explosion_Init(void); extern void gl_backend_init(void); extern void Sbar_Init(void); extern void R_LightningBeams_Init(void); extern void Mod_RenderInit(void); extern void Font_Init(void); void Render_Init(void) { gl_backend_init(); R_Textures_Init(); GL_Main_Init(); Font_Init(); GL_Draw_Init(); R_Shadow_Init(); R_Sky_Init(); GL_Surf_Init(); Sbar_Init(); R_Particles_Init(); R_Explosion_Init(); R_LightningBeams_Init(); Mod_RenderInit(); } /* =============== GL_Init =============== */ extern char *ENGINE_EXTENSIONS; void GL_Init (void) { gl_renderer = (const char *)qglGetString(GL_RENDERER); gl_vendor = (const char *)qglGetString(GL_VENDOR); gl_version = (const char *)qglGetString(GL_VERSION); gl_extensions = (const char *)qglGetString(GL_EXTENSIONS); if (!gl_extensions) gl_extensions = ""; if (!gl_platformextensions) gl_platformextensions = ""; Con_Printf("GL_VENDOR: %s\n", gl_vendor); Con_Printf("GL_RENDERER: %s\n", gl_renderer); Con_Printf("GL_VERSION: %s\n", gl_version); Con_DPrintf("GL_EXTENSIONS: %s\n", gl_extensions); Con_DPrintf("%s_EXTENSIONS: %s\n", gl_platform, gl_platformextensions); VID_CheckExtensions(); // LordHavoc: report supported extensions Con_DPrintf("\nQuakeC extensions for server and client: %s\nQuakeC extensions for menu: %s\n", vm_sv_extensions, vm_m_extensions ); // clear to black (loading plaque will be seen over this) GL_Clear(GL_COLOR_BUFFER_BIT, NULL, 1.0f, 128); } int R_CullBox(const vec3_t mins, const vec3_t maxs) { int i; mplane_t *p; for (i = 0;i < r_refdef.view.numfrustumplanes;i++) { // skip nearclip plane, it often culls portals when you are very close, and is almost never useful if (i == 4) continue; p = r_refdef.view.frustum + i; switch(p->signbits) { default: case 0: if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 1: if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 2: if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 3: if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 4: if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist) return true; break; case 5: if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist) return true; break; case 6: if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist) return true; break; case 7: if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist) return true; break; } } return false; } int R_CullBoxCustomPlanes(const vec3_t mins, const vec3_t maxs, int numplanes, const mplane_t *planes) { int i; const mplane_t *p; for (i = 0;i < numplanes;i++) { p = planes + i; switch(p->signbits) { default: case 0: if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 1: if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 2: if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 3: if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*maxs[2] < p->dist) return true; break; case 4: if (p->normal[0]*maxs[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist) return true; break; case 5: if (p->normal[0]*mins[0] + p->normal[1]*maxs[1] + p->normal[2]*mins[2] < p->dist) return true; break; case 6: if (p->normal[0]*maxs[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist) return true; break; case 7: if (p->normal[0]*mins[0] + p->normal[1]*mins[1] + p->normal[2]*mins[2] < p->dist) return true; break; } } return false; } //================================================================================== // LordHavoc: this stores temporary data used within the same frame qboolean r_framedata_failed; static size_t r_framedata_size; static size_t r_framedata_current; static void *r_framedata_base; void R_FrameData_Reset(void) { if (r_framedata_base) Mem_Free(r_framedata_base); r_framedata_base = NULL; r_framedata_size = 0; r_framedata_current = 0; r_framedata_failed = false; } void R_FrameData_NewFrame(void) { size_t wantedsize; if (r_framedata_failed) Cvar_SetValueQuick(&r_framedatasize, r_framedatasize.value + 1.0f); wantedsize = (size_t)(r_framedatasize.value * 1024*1024); wantedsize = bound(65536, wantedsize, 128*1024*1024); if (r_framedata_size != wantedsize) { r_framedata_size = wantedsize; if (r_framedata_base) Mem_Free(r_framedata_base); r_framedata_base = Mem_Alloc(r_main_mempool, r_framedata_size); } r_framedata_current = 0; r_framedata_failed = false; } void *R_FrameData_Alloc(size_t size) { void *data; // align to 16 byte boundary size = (size + 15) & ~15; data = (void *)((unsigned char*)r_framedata_base + r_framedata_current); r_framedata_current += size; // check overflow if (r_framedata_current > r_framedata_size) r_framedata_failed = true; // return NULL on everything after a failure if (r_framedata_failed) return NULL; return data; } void *R_FrameData_Store(size_t size, void *data) { void *d = R_FrameData_Alloc(size); if (d) memcpy(d, data, size); return d; } //================================================================================== // LordHavoc: animcache originally written by Echon, rewritten since then /** * Animation cache prevents re-generating mesh data for an animated model * multiple times in one frame for lighting, shadowing, reflections, etc. */ void R_AnimCache_Free(void) { } void R_AnimCache_ClearCache(void) { int i; entity_render_t *ent; for (i = 0;i < r_refdef.scene.numentities;i++) { ent = r_refdef.scene.entities[i]; ent->animcache_vertex3f = NULL; ent->animcache_normal3f = NULL; ent->animcache_svector3f = NULL; ent->animcache_tvector3f = NULL; ent->animcache_vertexposition = NULL; ent->animcache_vertexmesh = NULL; ent->animcache_vertexpositionbuffer = NULL; ent->animcache_vertexmeshbuffer = NULL; } } void R_AnimCache_UpdateEntityMeshBuffers(entity_render_t *ent, int numvertices) { int i; // identical memory layout, so no need to allocate... // this also provides the vertexposition structure to everything, e.g. // depth masked rendering currently uses it even if having separate // arrays // NOTE: get rid of this optimization if changing it to e.g. 4f ent->animcache_vertexposition = (r_vertexposition_t *)ent->animcache_vertex3f; // TODO: // get rid of following uses of VERTEXPOSITION, change to the array: // R_DrawTextureSurfaceList_Sky if skyrendermasked // R_DrawSurface_TransparentCallback if r_transparentdepthmasking.integer // R_DrawTextureSurfaceList_DepthOnly // R_Q1BSP_DrawShadowMap switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: // need the meshbuffers if !gl_mesh_separatearrays.integer if (gl_mesh_separatearrays.integer) return; break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: // always need the meshbuffers break; case RENDERPATH_GL13: case RENDERPATH_GL11: // never need the meshbuffers return; } if (!ent->animcache_vertexmesh && ent->animcache_normal3f) ent->animcache_vertexmesh = (r_vertexmesh_t *)R_FrameData_Alloc(sizeof(r_vertexmesh_t)*numvertices); /* if (!ent->animcache_vertexposition) ent->animcache_vertexposition = (r_vertexposition_t *)R_FrameData_Alloc(sizeof(r_vertexposition_t)*numvertices); */ if (ent->animcache_vertexposition) { /* for (i = 0;i < numvertices;i++) memcpy(ent->animcache_vertexposition[i].vertex3f, ent->animcache_vertex3f + 3*i, sizeof(float[3])); */ // TODO: upload vertex buffer? } if (ent->animcache_vertexmesh) { memcpy(ent->animcache_vertexmesh, ent->model->surfmesh.vertexmesh, sizeof(r_vertexmesh_t)*numvertices); for (i = 0;i < numvertices;i++) memcpy(ent->animcache_vertexmesh[i].vertex3f, ent->animcache_vertex3f + 3*i, sizeof(float[3])); if (ent->animcache_svector3f) for (i = 0;i < numvertices;i++) memcpy(ent->animcache_vertexmesh[i].svector3f, ent->animcache_svector3f + 3*i, sizeof(float[3])); if (ent->animcache_tvector3f) for (i = 0;i < numvertices;i++) memcpy(ent->animcache_vertexmesh[i].tvector3f, ent->animcache_tvector3f + 3*i, sizeof(float[3])); if (ent->animcache_normal3f) for (i = 0;i < numvertices;i++) memcpy(ent->animcache_vertexmesh[i].normal3f, ent->animcache_normal3f + 3*i, sizeof(float[3])); // TODO: upload vertex buffer? } } qboolean R_AnimCache_GetEntity(entity_render_t *ent, qboolean wantnormals, qboolean wanttangents) { dp_model_t *model = ent->model; int numvertices; // see if it's already cached this frame if (ent->animcache_vertex3f) { // add normals/tangents if needed (this only happens with multiple views, reflections, cameras, etc) if (wantnormals || wanttangents) { if (ent->animcache_normal3f) wantnormals = false; if (ent->animcache_svector3f) wanttangents = false; if (wantnormals || wanttangents) { numvertices = model->surfmesh.num_vertices; if (wantnormals) ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices); if (wanttangents) { ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices); ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices); } if (!r_framedata_failed) { model->AnimateVertices(model, ent->frameblend, ent->skeleton, NULL, wantnormals ? ent->animcache_normal3f : NULL, wanttangents ? ent->animcache_svector3f : NULL, wanttangents ? ent->animcache_tvector3f : NULL); R_AnimCache_UpdateEntityMeshBuffers(ent, model->surfmesh.num_vertices); } } } } else { // see if this ent is worth caching if (!model || !model->Draw || !model->surfmesh.isanimated || !model->AnimateVertices || (ent->frameblend[0].lerp == 1 && ent->frameblend[0].subframe == 0 && !ent->skeleton)) return false; // get some memory for this entity and generate mesh data numvertices = model->surfmesh.num_vertices; ent->animcache_vertex3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices); if (wantnormals) ent->animcache_normal3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices); if (wanttangents) { ent->animcache_svector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices); ent->animcache_tvector3f = (float *)R_FrameData_Alloc(sizeof(float[3])*numvertices); } if (!r_framedata_failed) { model->AnimateVertices(model, ent->frameblend, ent->skeleton, ent->animcache_vertex3f, ent->animcache_normal3f, ent->animcache_svector3f, ent->animcache_tvector3f); R_AnimCache_UpdateEntityMeshBuffers(ent, model->surfmesh.num_vertices); } } return !r_framedata_failed; } void R_AnimCache_CacheVisibleEntities(void) { int i; qboolean wantnormals = true; qboolean wanttangents = !r_showsurfaces.integer; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_GL13: case RENDERPATH_GL11: wanttangents = false; break; } if (r_shownormals.integer) wanttangents = wantnormals = true; // TODO: thread this // NOTE: R_PrepareRTLights() also caches entities for (i = 0;i < r_refdef.scene.numentities;i++) if (r_refdef.viewcache.entityvisible[i]) R_AnimCache_GetEntity(r_refdef.scene.entities[i], wantnormals, wanttangents); } //================================================================================== static void R_View_UpdateEntityLighting (void) { int i; entity_render_t *ent; vec3_t tempdiffusenormal, avg; vec_t f, fa, fd, fdd; qboolean skipunseen = r_shadows.integer != 1; //|| R_Shadow_ShadowMappingEnabled(); for (i = 0;i < r_refdef.scene.numentities;i++) { ent = r_refdef.scene.entities[i]; // skip unseen models if (!r_refdef.viewcache.entityvisible[i] && skipunseen) continue; // skip bsp models if (ent->model && ent->model->brush.num_leafs) { // TODO: use modellight for r_ambient settings on world? VectorSet(ent->modellight_ambient, 0, 0, 0); VectorSet(ent->modellight_diffuse, 0, 0, 0); VectorSet(ent->modellight_lightdir, 0, 0, 1); continue; } // fetch the lighting from the worldmodel data VectorClear(ent->modellight_ambient); VectorClear(ent->modellight_diffuse); VectorClear(tempdiffusenormal); if ((ent->flags & RENDER_LIGHT) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.LightPoint) { vec3_t org; Matrix4x4_OriginFromMatrix(&ent->matrix, org); // complete lightning for lit sprites // todo: make a EF_ field so small ents could be lit purely by modellight and skipping real rtlight pass (like EF_NORTLIGHT)? if (ent->model->type == mod_sprite && !(ent->model->data_textures[0].basematerialflags & MATERIALFLAG_FULLBRIGHT)) { if (ent->model->sprite.sprnum_type == SPR_OVERHEAD) // apply offset for overhead sprites org[2] = org[2] + r_overheadsprites_pushback.value; R_CompleteLightPoint(ent->modellight_ambient, ent->modellight_diffuse, ent->modellight_lightdir, org, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT); } else r_refdef.scene.worldmodel->brush.LightPoint(r_refdef.scene.worldmodel, org, ent->modellight_ambient, ent->modellight_diffuse, tempdiffusenormal); if(ent->flags & RENDER_EQUALIZE) { // first fix up ambient lighting... if(r_equalize_entities_minambient.value > 0) { fd = 0.299f * ent->modellight_diffuse[0] + 0.587f * ent->modellight_diffuse[1] + 0.114f * ent->modellight_diffuse[2]; if(fd > 0) { fa = (0.299f * ent->modellight_ambient[0] + 0.587f * ent->modellight_ambient[1] + 0.114f * ent->modellight_ambient[2]); if(fa < r_equalize_entities_minambient.value * fd) { // solve: // fa'/fd' = minambient // fa'+0.25*fd' = fa+0.25*fd // ... // fa' = fd' * minambient // fd'*(0.25+minambient) = fa+0.25*fd // ... // fd' = (fa+0.25*fd) * 1 / (0.25+minambient) // fa' = (fa+0.25*fd) * minambient / (0.25+minambient) // ... fdd = (fa + 0.25f * fd) / (0.25f + r_equalize_entities_minambient.value); f = fdd / fd; // f>0 because all this is additive; f<1 because fddmodellight_ambient, (1-f)*0.25f, ent->modellight_diffuse, ent->modellight_ambient); VectorScale(ent->modellight_diffuse, f, ent->modellight_diffuse); } } } if(r_equalize_entities_to.value > 0 && r_equalize_entities_by.value != 0) { VectorMA(ent->modellight_ambient, 0.25f, ent->modellight_diffuse, avg); f = 0.299f * avg[0] + 0.587f * avg[1] + 0.114f * avg[2]; if(f > 0) { f = pow(f / r_equalize_entities_to.value, -r_equalize_entities_by.value); VectorScale(ent->modellight_ambient, f, ent->modellight_ambient); VectorScale(ent->modellight_diffuse, f, ent->modellight_diffuse); } } } } else // highly rare VectorSet(ent->modellight_ambient, 1, 1, 1); // move the light direction into modelspace coordinates for lighting code Matrix4x4_Transform3x3(&ent->inversematrix, tempdiffusenormal, ent->modellight_lightdir); if(VectorLength2(ent->modellight_lightdir) == 0) VectorSet(ent->modellight_lightdir, 0, 0, 1); // have to set SOME valid vector here VectorNormalize(ent->modellight_lightdir); } } #define MAX_LINEOFSIGHTTRACES 64 static qboolean R_CanSeeBox(int numsamples, vec_t enlarge, vec3_t eye, vec3_t entboxmins, vec3_t entboxmaxs) { int i; vec3_t boxmins, boxmaxs; vec3_t start; vec3_t end; dp_model_t *model = r_refdef.scene.worldmodel; if (!model || !model->brush.TraceLineOfSight) return true; // expand the box a little boxmins[0] = (enlarge+1) * entboxmins[0] - enlarge * entboxmaxs[0]; boxmaxs[0] = (enlarge+1) * entboxmaxs[0] - enlarge * entboxmins[0]; boxmins[1] = (enlarge+1) * entboxmins[1] - enlarge * entboxmaxs[1]; boxmaxs[1] = (enlarge+1) * entboxmaxs[1] - enlarge * entboxmins[1]; boxmins[2] = (enlarge+1) * entboxmins[2] - enlarge * entboxmaxs[2]; boxmaxs[2] = (enlarge+1) * entboxmaxs[2] - enlarge * entboxmins[2]; // return true if eye is inside enlarged box if (BoxesOverlap(boxmins, boxmaxs, eye, eye)) return true; // try center VectorCopy(eye, start); VectorMAM(0.5f, boxmins, 0.5f, boxmaxs, end); if (model->brush.TraceLineOfSight(model, start, end)) return true; // try various random positions for (i = 0;i < numsamples;i++) { VectorSet(end, lhrandom(boxmins[0], boxmaxs[0]), lhrandom(boxmins[1], boxmaxs[1]), lhrandom(boxmins[2], boxmaxs[2])); if (model->brush.TraceLineOfSight(model, start, end)) return true; } return false; } static void R_View_UpdateEntityVisible (void) { int i; int renderimask; int samples; entity_render_t *ent; renderimask = r_refdef.envmap ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : r_waterstate.renderingrefraction ? (RENDER_EXTERIORMODEL | RENDER_VIEWMODEL) : (chase_active.integer || r_waterstate.renderingscene) ? RENDER_VIEWMODEL : RENDER_EXTERIORMODEL; if (!r_drawviewmodel.integer) renderimask |= RENDER_VIEWMODEL; if (!r_drawexteriormodel.integer) renderimask |= RENDER_EXTERIORMODEL; if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs) { // worldmodel can check visibility memset(r_refdef.viewcache.entityvisible, 0, r_refdef.scene.numentities); for (i = 0;i < r_refdef.scene.numentities;i++) { ent = r_refdef.scene.entities[i]; if (!(ent->flags & renderimask)) if (!R_CullBox(ent->mins, ent->maxs) || (ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE))) if ((ent->flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL)) || r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, ent->mins, ent->maxs)) r_refdef.viewcache.entityvisible[i] = true; } if(r_cullentities_trace.integer && r_refdef.scene.worldmodel->brush.TraceLineOfSight && !r_refdef.view.useclipplane) // sorry, this check doesn't work for portal/reflection/refraction renders as the view origin is not useful for culling { for (i = 0;i < r_refdef.scene.numentities;i++) { ent = r_refdef.scene.entities[i]; if(r_refdef.viewcache.entityvisible[i] && !(ent->flags & (RENDER_VIEWMODEL | RENDER_NOCULL | RENDER_NODEPTHTEST)) && !(ent->model && (ent->model->name[0] == '*'))) { samples = ent->entitynumber ? r_cullentities_trace_samples.integer : r_cullentities_trace_tempentitysamples.integer; if (samples < 0) continue; // temp entities do pvs only if(R_CanSeeBox(samples, r_cullentities_trace_enlarge.value, r_refdef.view.origin, ent->mins, ent->maxs)) ent->last_trace_visibility = realtime; if(ent->last_trace_visibility < realtime - r_cullentities_trace_delay.value) r_refdef.viewcache.entityvisible[i] = 0; } } } } else { // no worldmodel or it can't check visibility for (i = 0;i < r_refdef.scene.numentities;i++) { ent = r_refdef.scene.entities[i]; r_refdef.viewcache.entityvisible[i] = !(ent->flags & renderimask) && ((ent->model && ent->model->type == mod_sprite && (ent->model->sprite.sprnum_type == SPR_LABEL || ent->model->sprite.sprnum_type == SPR_LABEL_SCALE)) || !R_CullBox(ent->mins, ent->maxs)); } } } /// only used if skyrendermasked, and normally returns false int R_DrawBrushModelsSky (void) { int i, sky; entity_render_t *ent; sky = false; for (i = 0;i < r_refdef.scene.numentities;i++) { if (!r_refdef.viewcache.entityvisible[i]) continue; ent = r_refdef.scene.entities[i]; if (!ent->model || !ent->model->DrawSky) continue; ent->model->DrawSky(ent); sky = true; } return sky; } static void R_DrawNoModel(entity_render_t *ent); static void R_DrawModels(void) { int i; entity_render_t *ent; for (i = 0;i < r_refdef.scene.numentities;i++) { if (!r_refdef.viewcache.entityvisible[i]) continue; ent = r_refdef.scene.entities[i]; r_refdef.stats.entities++; if (ent->model && ent->model->Draw != NULL) ent->model->Draw(ent); else R_DrawNoModel(ent); } } static void R_DrawModelsDepth(void) { int i; entity_render_t *ent; for (i = 0;i < r_refdef.scene.numentities;i++) { if (!r_refdef.viewcache.entityvisible[i]) continue; ent = r_refdef.scene.entities[i]; if (ent->model && ent->model->DrawDepth != NULL) ent->model->DrawDepth(ent); } } static void R_DrawModelsDebug(void) { int i; entity_render_t *ent; for (i = 0;i < r_refdef.scene.numentities;i++) { if (!r_refdef.viewcache.entityvisible[i]) continue; ent = r_refdef.scene.entities[i]; if (ent->model && ent->model->DrawDebug != NULL) ent->model->DrawDebug(ent); } } static void R_DrawModelsAddWaterPlanes(void) { int i; entity_render_t *ent; for (i = 0;i < r_refdef.scene.numentities;i++) { if (!r_refdef.viewcache.entityvisible[i]) continue; ent = r_refdef.scene.entities[i]; if (ent->model && ent->model->DrawAddWaterPlanes != NULL) ent->model->DrawAddWaterPlanes(ent); } } static void R_View_SetFrustum(const int *scissor) { int i; double fpx = +1, fnx = -1, fpy = +1, fny = -1; vec3_t forward, left, up, origin, v; if(scissor) { // flipped x coordinates (because x points left here) fpx = 1.0 - 2.0 * (scissor[0] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width); fnx = 1.0 - 2.0 * (scissor[0] + scissor[2] - r_refdef.view.viewport.x) / (double) (r_refdef.view.viewport.width); // D3D Y coordinate is top to bottom, OpenGL is bottom to top, fix the D3D one switch(vid.renderpath) { case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: // non-flipped y coordinates fny = -1.0 + 2.0 * (vid.height - scissor[1] - scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height); fpy = -1.0 + 2.0 * (vid.height - scissor[1] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height); break; case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: // non-flipped y coordinates fny = -1.0 + 2.0 * (scissor[1] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height); fpy = -1.0 + 2.0 * (scissor[1] + scissor[3] - r_refdef.view.viewport.y) / (double) (r_refdef.view.viewport.height); break; } } // we can't trust r_refdef.view.forward and friends in reflected scenes Matrix4x4_ToVectors(&r_refdef.view.matrix, forward, left, up, origin); #if 0 r_refdef.view.frustum[0].normal[0] = 0 - 1.0 / r_refdef.view.frustum_x; r_refdef.view.frustum[0].normal[1] = 0 - 0; r_refdef.view.frustum[0].normal[2] = -1 - 0; r_refdef.view.frustum[1].normal[0] = 0 + 1.0 / r_refdef.view.frustum_x; r_refdef.view.frustum[1].normal[1] = 0 + 0; r_refdef.view.frustum[1].normal[2] = -1 + 0; r_refdef.view.frustum[2].normal[0] = 0 - 0; r_refdef.view.frustum[2].normal[1] = 0 - 1.0 / r_refdef.view.frustum_y; r_refdef.view.frustum[2].normal[2] = -1 - 0; r_refdef.view.frustum[3].normal[0] = 0 + 0; r_refdef.view.frustum[3].normal[1] = 0 + 1.0 / r_refdef.view.frustum_y; r_refdef.view.frustum[3].normal[2] = -1 + 0; #endif #if 0 zNear = r_refdef.nearclip; nudge = 1.0 - 1.0 / (1<<23); r_refdef.view.frustum[4].normal[0] = 0 - 0; r_refdef.view.frustum[4].normal[1] = 0 - 0; r_refdef.view.frustum[4].normal[2] = -1 - -nudge; r_refdef.view.frustum[4].dist = 0 - -2 * zNear * nudge; r_refdef.view.frustum[5].normal[0] = 0 + 0; r_refdef.view.frustum[5].normal[1] = 0 + 0; r_refdef.view.frustum[5].normal[2] = -1 + -nudge; r_refdef.view.frustum[5].dist = 0 + -2 * zNear * nudge; #endif #if 0 r_refdef.view.frustum[0].normal[0] = m[3] - m[0]; r_refdef.view.frustum[0].normal[1] = m[7] - m[4]; r_refdef.view.frustum[0].normal[2] = m[11] - m[8]; r_refdef.view.frustum[0].dist = m[15] - m[12]; r_refdef.view.frustum[1].normal[0] = m[3] + m[0]; r_refdef.view.frustum[1].normal[1] = m[7] + m[4]; r_refdef.view.frustum[1].normal[2] = m[11] + m[8]; r_refdef.view.frustum[1].dist = m[15] + m[12]; r_refdef.view.frustum[2].normal[0] = m[3] - m[1]; r_refdef.view.frustum[2].normal[1] = m[7] - m[5]; r_refdef.view.frustum[2].normal[2] = m[11] - m[9]; r_refdef.view.frustum[2].dist = m[15] - m[13]; r_refdef.view.frustum[3].normal[0] = m[3] + m[1]; r_refdef.view.frustum[3].normal[1] = m[7] + m[5]; r_refdef.view.frustum[3].normal[2] = m[11] + m[9]; r_refdef.view.frustum[3].dist = m[15] + m[13]; r_refdef.view.frustum[4].normal[0] = m[3] - m[2]; r_refdef.view.frustum[4].normal[1] = m[7] - m[6]; r_refdef.view.frustum[4].normal[2] = m[11] - m[10]; r_refdef.view.frustum[4].dist = m[15] - m[14]; r_refdef.view.frustum[5].normal[0] = m[3] + m[2]; r_refdef.view.frustum[5].normal[1] = m[7] + m[6]; r_refdef.view.frustum[5].normal[2] = m[11] + m[10]; r_refdef.view.frustum[5].dist = m[15] + m[14]; #endif if (r_refdef.view.useperspective) { // calculate frustum corners, which are used to calculate deformed frustum planes for shadow caster culling VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[0]); VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fny * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[1]); VectorMAMAM(1024, forward, fnx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[2]); VectorMAMAM(1024, forward, fpx * 1024.0 * r_refdef.view.frustum_x, left, fpy * 1024.0 * r_refdef.view.frustum_y, up, r_refdef.view.frustumcorner[3]); // then the normals from the corners relative to origin CrossProduct(r_refdef.view.frustumcorner[2], r_refdef.view.frustumcorner[0], r_refdef.view.frustum[0].normal); CrossProduct(r_refdef.view.frustumcorner[1], r_refdef.view.frustumcorner[3], r_refdef.view.frustum[1].normal); CrossProduct(r_refdef.view.frustumcorner[0], r_refdef.view.frustumcorner[1], r_refdef.view.frustum[2].normal); CrossProduct(r_refdef.view.frustumcorner[3], r_refdef.view.frustumcorner[2], r_refdef.view.frustum[3].normal); // in a NORMAL view, forward cross left == up // in a REFLECTED view, forward cross left == down // so our cross products above need to be adjusted for a left handed coordinate system CrossProduct(forward, left, v); if(DotProduct(v, up) < 0) { VectorNegate(r_refdef.view.frustum[0].normal, r_refdef.view.frustum[0].normal); VectorNegate(r_refdef.view.frustum[1].normal, r_refdef.view.frustum[1].normal); VectorNegate(r_refdef.view.frustum[2].normal, r_refdef.view.frustum[2].normal); VectorNegate(r_refdef.view.frustum[3].normal, r_refdef.view.frustum[3].normal); } // Leaving those out was a mistake, those were in the old code, and they // fix a reproducable bug in this one: frustum culling got fucked up when viewmatrix was an identity matrix // I couldn't reproduce it after adding those normalizations. --blub VectorNormalize(r_refdef.view.frustum[0].normal); VectorNormalize(r_refdef.view.frustum[1].normal); VectorNormalize(r_refdef.view.frustum[2].normal); VectorNormalize(r_refdef.view.frustum[3].normal); // make the corners absolute VectorAdd(r_refdef.view.frustumcorner[0], r_refdef.view.origin, r_refdef.view.frustumcorner[0]); VectorAdd(r_refdef.view.frustumcorner[1], r_refdef.view.origin, r_refdef.view.frustumcorner[1]); VectorAdd(r_refdef.view.frustumcorner[2], r_refdef.view.origin, r_refdef.view.frustumcorner[2]); VectorAdd(r_refdef.view.frustumcorner[3], r_refdef.view.origin, r_refdef.view.frustumcorner[3]); // one more normal VectorCopy(forward, r_refdef.view.frustum[4].normal); r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal); r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal); r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal); r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal); r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip; } else { VectorScale(left, -r_refdef.view.ortho_x, r_refdef.view.frustum[0].normal); VectorScale(left, r_refdef.view.ortho_x, r_refdef.view.frustum[1].normal); VectorScale(up, -r_refdef.view.ortho_y, r_refdef.view.frustum[2].normal); VectorScale(up, r_refdef.view.ortho_y, r_refdef.view.frustum[3].normal); VectorCopy(forward, r_refdef.view.frustum[4].normal); r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[0].normal) + r_refdef.view.ortho_x; r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[1].normal) + r_refdef.view.ortho_x; r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[2].normal) + r_refdef.view.ortho_y; r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[3].normal) + r_refdef.view.ortho_y; r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, r_refdef.view.frustum[4].normal) + r_refdef.nearclip; } r_refdef.view.numfrustumplanes = 5; if (r_refdef.view.useclipplane) { r_refdef.view.numfrustumplanes = 6; r_refdef.view.frustum[5] = r_refdef.view.clipplane; } for (i = 0;i < r_refdef.view.numfrustumplanes;i++) PlaneClassify(r_refdef.view.frustum + i); // LordHavoc: note to all quake engine coders, Quake had a special case // for 90 degrees which assumed a square view (wrong), so I removed it, // Quake2 has it disabled as well. // rotate R_VIEWFORWARD right by FOV_X/2 degrees //RotatePointAroundVector( r_refdef.view.frustum[0].normal, up, forward, -(90 - r_refdef.fov_x / 2)); //r_refdef.view.frustum[0].dist = DotProduct (r_refdef.view.origin, frustum[0].normal); //PlaneClassify(&frustum[0]); // rotate R_VIEWFORWARD left by FOV_X/2 degrees //RotatePointAroundVector( r_refdef.view.frustum[1].normal, up, forward, (90 - r_refdef.fov_x / 2)); //r_refdef.view.frustum[1].dist = DotProduct (r_refdef.view.origin, frustum[1].normal); //PlaneClassify(&frustum[1]); // rotate R_VIEWFORWARD up by FOV_X/2 degrees //RotatePointAroundVector( r_refdef.view.frustum[2].normal, left, forward, -(90 - r_refdef.fov_y / 2)); //r_refdef.view.frustum[2].dist = DotProduct (r_refdef.view.origin, frustum[2].normal); //PlaneClassify(&frustum[2]); // rotate R_VIEWFORWARD down by FOV_X/2 degrees //RotatePointAroundVector( r_refdef.view.frustum[3].normal, left, forward, (90 - r_refdef.fov_y / 2)); //r_refdef.view.frustum[3].dist = DotProduct (r_refdef.view.origin, frustum[3].normal); //PlaneClassify(&frustum[3]); // nearclip plane //VectorCopy(forward, r_refdef.view.frustum[4].normal); //r_refdef.view.frustum[4].dist = DotProduct (r_refdef.view.origin, frustum[4].normal) + r_nearclip.value; //PlaneClassify(&frustum[4]); } void R_View_UpdateWithScissor(const int *myscissor) { R_Main_ResizeViewCache(); R_View_SetFrustum(myscissor); R_View_WorldVisibility(r_refdef.view.useclipplane); R_View_UpdateEntityVisible(); R_View_UpdateEntityLighting(); } void R_View_Update(void) { R_Main_ResizeViewCache(); R_View_SetFrustum(NULL); R_View_WorldVisibility(r_refdef.view.useclipplane); R_View_UpdateEntityVisible(); R_View_UpdateEntityLighting(); } void R_SetupView(qboolean allowwaterclippingplane) { const float *customclipplane = NULL; float plane[4]; if (r_refdef.view.useclipplane && allowwaterclippingplane) { // LordHavoc: couldn't figure out how to make this approach the vec_t dist = r_refdef.view.clipplane.dist - r_water_clippingplanebias.value; vec_t viewdist = DotProduct(r_refdef.view.origin, r_refdef.view.clipplane.normal); if (viewdist < r_refdef.view.clipplane.dist + r_water_clippingplanebias.value) dist = r_refdef.view.clipplane.dist; plane[0] = r_refdef.view.clipplane.normal[0]; plane[1] = r_refdef.view.clipplane.normal[1]; plane[2] = r_refdef.view.clipplane.normal[2]; plane[3] = dist; customclipplane = plane; } if (!r_refdef.view.useperspective) R_Viewport_InitOrtho(&r_refdef.view.viewport, &r_refdef.view.matrix, r_refdef.view.x, vid.height - r_refdef.view.height - r_refdef.view.y, r_refdef.view.width, r_refdef.view.height, -r_refdef.view.ortho_x, -r_refdef.view.ortho_y, r_refdef.view.ortho_x, r_refdef.view.ortho_y, -r_refdef.farclip, r_refdef.farclip, customclipplane); else if (vid.stencil && r_useinfinitefarclip.integer) R_Viewport_InitPerspectiveInfinite(&r_refdef.view.viewport, &r_refdef.view.matrix, r_refdef.view.x, vid.height - r_refdef.view.height - r_refdef.view.y, r_refdef.view.width, r_refdef.view.height, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, customclipplane); else R_Viewport_InitPerspective(&r_refdef.view.viewport, &r_refdef.view.matrix, r_refdef.view.x, vid.height - r_refdef.view.height - r_refdef.view.y, r_refdef.view.width, r_refdef.view.height, r_refdef.view.frustum_x, r_refdef.view.frustum_y, r_refdef.nearclip, r_refdef.farclip, customclipplane); R_SetViewport(&r_refdef.view.viewport); } void R_EntityMatrix(const matrix4x4_t *matrix) { if (gl_modelmatrixchanged || memcmp(matrix, &gl_modelmatrix, sizeof(matrix4x4_t))) { gl_modelmatrixchanged = false; gl_modelmatrix = *matrix; Matrix4x4_Concat(&gl_modelviewmatrix, &gl_viewmatrix, &gl_modelmatrix); Matrix4x4_Concat(&gl_modelviewprojectionmatrix, &gl_projectionmatrix, &gl_modelviewmatrix); Matrix4x4_ToArrayFloatGL(&gl_modelviewmatrix, gl_modelview16f); Matrix4x4_ToArrayFloatGL(&gl_modelviewprojectionmatrix, gl_modelviewprojection16f); CHECKGLERROR switch(vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTD3D hlslVSSetParameter16f(D3DVSREGISTER_ModelViewProjectionMatrix, gl_modelviewprojection16f); hlslVSSetParameter16f(D3DVSREGISTER_ModelViewMatrix, gl_modelview16f); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 shader %s:%i\n", __FILE__, __LINE__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 shader %s:%i\n", __FILE__, __LINE__); break; case RENDERPATH_GL20: if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewProjectionMatrix >= 0) qglUniformMatrix4fvARB(r_glsl_permutation->loc_ModelViewProjectionMatrix, 1, false, gl_modelviewprojection16f); if (r_glsl_permutation && r_glsl_permutation->loc_ModelViewMatrix >= 0) qglUniformMatrix4fvARB(r_glsl_permutation->loc_ModelViewMatrix, 1, false, gl_modelview16f); qglLoadMatrixf(gl_modelview16f);CHECKGLERROR break; case RENDERPATH_CGGL: #ifdef SUPPORTCG CHECKCGERROR if (r_cg_permutation && r_cg_permutation->vp_ModelViewProjectionMatrix) cgGLSetMatrixParameterfc(r_cg_permutation->vp_ModelViewProjectionMatrix, gl_modelviewprojection16f);CHECKCGERROR if (r_cg_permutation && r_cg_permutation->vp_ModelViewMatrix) cgGLSetMatrixParameterfc(r_cg_permutation->vp_ModelViewMatrix, gl_modelview16f);CHECKCGERROR qglLoadMatrixf(gl_modelview16f);CHECKGLERROR #endif break; case RENDERPATH_GL13: case RENDERPATH_GL11: qglLoadMatrixf(gl_modelview16f);CHECKGLERROR break; } } } void R_ResetViewRendering2D(void) { r_viewport_t viewport; DrawQ_Finish(); // GL is weird because it's bottom to top, r_refdef.view.y is top to bottom R_Viewport_InitOrtho(&viewport, &identitymatrix, r_refdef.view.x, vid.height - r_refdef.view.height - r_refdef.view.y, r_refdef.view.width, r_refdef.view.height, 0, 0, 1, 1, -10, 100, NULL); R_SetViewport(&viewport); GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height); GL_Color(1, 1, 1, 1); GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1); GL_BlendFunc(GL_ONE, GL_ZERO); GL_AlphaTest(false); GL_ScissorTest(false); GL_DepthMask(false); GL_DepthRange(0, 1); GL_DepthTest(false); GL_DepthFunc(GL_LEQUAL); R_EntityMatrix(&identitymatrix); R_Mesh_ResetTextureState(); GL_PolygonOffset(0, 0); R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; } GL_CullFace(GL_NONE); } void R_ResetViewRendering3D(void) { DrawQ_Finish(); R_SetupView(true); GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height); GL_Color(1, 1, 1, 1); GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1); GL_BlendFunc(GL_ONE, GL_ZERO); GL_AlphaTest(false); GL_ScissorTest(true); GL_DepthMask(true); GL_DepthRange(0, 1); GL_DepthTest(true); GL_DepthFunc(GL_LEQUAL); R_EntityMatrix(&identitymatrix); R_Mesh_ResetTextureState(); GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset); R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: qglEnable(GL_POLYGON_OFFSET_FILL);CHECKGLERROR break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; } GL_CullFace(r_refdef.view.cullface_back); } /* ================ R_RenderView_UpdateViewVectors ================ */ static void R_RenderView_UpdateViewVectors(void) { // break apart the view matrix into vectors for various purposes // it is important that this occurs outside the RenderScene function because that can be called from reflection renders, where the vectors come out wrong // however the r_refdef.view.origin IS updated in RenderScene intentionally - otherwise the sky renders at the wrong origin, etc Matrix4x4_ToVectors(&r_refdef.view.matrix, r_refdef.view.forward, r_refdef.view.left, r_refdef.view.up, r_refdef.view.origin); VectorNegate(r_refdef.view.left, r_refdef.view.right); // make an inverted copy of the view matrix for tracking sprites Matrix4x4_Invert_Simple(&r_refdef.view.inverse_matrix, &r_refdef.view.matrix); } void R_RenderScene(void); void R_RenderWaterPlanes(void); static void R_Water_StartFrame(void) { int i; int waterwidth, waterheight, texturewidth, textureheight, camerawidth, cameraheight; r_waterstate_waterplane_t *p; if (vid.width > (int)vid.maxtexturesize_2d || vid.height > (int)vid.maxtexturesize_2d) return; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_GL13: case RENDERPATH_GL11: return; } // set waterwidth and waterheight to the water resolution that will be // used (often less than the screen resolution for faster rendering) waterwidth = (int)bound(1, vid.width * r_water_resolutionmultiplier.value, vid.width); waterheight = (int)bound(1, vid.height * r_water_resolutionmultiplier.value, vid.height); // calculate desired texture sizes // can't use water if the card does not support the texture size if (!r_water.integer || r_showsurfaces.integer) texturewidth = textureheight = waterwidth = waterheight = camerawidth = cameraheight = 0; else if (vid.support.arb_texture_non_power_of_two) { texturewidth = waterwidth; textureheight = waterheight; camerawidth = waterwidth; cameraheight = waterheight; } else { for (texturewidth = 1;texturewidth < waterwidth ;texturewidth *= 2); for (textureheight = 1;textureheight < waterheight;textureheight *= 2); for (camerawidth = 1;camerawidth <= waterwidth; camerawidth *= 2); camerawidth /= 2; for (cameraheight = 1;cameraheight <= waterheight;cameraheight *= 2); cameraheight /= 2; } // allocate textures as needed if (r_waterstate.texturewidth != texturewidth || r_waterstate.textureheight != textureheight || r_waterstate.camerawidth != camerawidth || r_waterstate.cameraheight != cameraheight) { r_waterstate.maxwaterplanes = MAX_WATERPLANES; for (i = 0, p = r_waterstate.waterplanes;i < r_waterstate.maxwaterplanes;i++, p++) { if (p->texture_refraction) R_FreeTexture(p->texture_refraction); p->texture_refraction = NULL; if (p->texture_reflection) R_FreeTexture(p->texture_reflection); p->texture_reflection = NULL; if (p->texture_camera) R_FreeTexture(p->texture_camera); p->texture_camera = NULL; } memset(&r_waterstate, 0, sizeof(r_waterstate)); r_waterstate.texturewidth = texturewidth; r_waterstate.textureheight = textureheight; r_waterstate.camerawidth = camerawidth; r_waterstate.cameraheight = cameraheight; } if (r_waterstate.texturewidth) { r_waterstate.enabled = true; // when doing a reduced render (HDR) we want to use a smaller area r_waterstate.waterwidth = (int)bound(1, r_refdef.view.width * r_water_resolutionmultiplier.value, r_refdef.view.width); r_waterstate.waterheight = (int)bound(1, r_refdef.view.height * r_water_resolutionmultiplier.value, r_refdef.view.height); // set up variables that will be used in shader setup r_waterstate.screenscale[0] = 0.5f * (float)r_waterstate.waterwidth / (float)r_waterstate.texturewidth; r_waterstate.screenscale[1] = 0.5f * (float)r_waterstate.waterheight / (float)r_waterstate.textureheight; r_waterstate.screencenter[0] = 0.5f * (float)r_waterstate.waterwidth / (float)r_waterstate.texturewidth; r_waterstate.screencenter[1] = 0.5f * (float)r_waterstate.waterheight / (float)r_waterstate.textureheight; } r_waterstate.maxwaterplanes = MAX_WATERPLANES; r_waterstate.numwaterplanes = 0; } void R_Water_AddWaterPlane(msurface_t *surface, int entno) { int triangleindex, planeindex; const int *e; vec3_t vert[3]; vec3_t normal; vec3_t center; mplane_t plane; r_waterstate_waterplane_t *p; texture_t *t = R_GetCurrentTexture(surface->texture); // just use the first triangle with a valid normal for any decisions VectorClear(normal); for (triangleindex = 0, e = rsurface.modelelement3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3) { Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[0]*3, vert[0]); Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[1]*3, vert[1]); Matrix4x4_Transform(&rsurface.matrix, rsurface.modelvertex3f + e[2]*3, vert[2]); TriangleNormal(vert[0], vert[1], vert[2], normal); if (VectorLength2(normal) >= 0.001) break; } VectorCopy(normal, plane.normal); VectorNormalize(plane.normal); plane.dist = DotProduct(vert[0], plane.normal); PlaneClassify(&plane); if (PlaneDiff(r_refdef.view.origin, &plane) < 0) { // skip backfaces (except if nocullface is set) if (!(t->currentmaterialflags & MATERIALFLAG_NOCULLFACE)) return; VectorNegate(plane.normal, plane.normal); plane.dist *= -1; PlaneClassify(&plane); } // find a matching plane if there is one for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++) if(p->camera_entity == t->camera_entity) if (fabs(PlaneDiff(vert[0], &p->plane)) < 1 && fabs(PlaneDiff(vert[1], &p->plane)) < 1 && fabs(PlaneDiff(vert[2], &p->plane)) < 1) break; if (planeindex >= r_waterstate.maxwaterplanes) return; // nothing we can do, out of planes // if this triangle does not fit any known plane rendered this frame, add one if (planeindex >= r_waterstate.numwaterplanes) { // store the new plane r_waterstate.numwaterplanes++; p->plane = plane; // clear materialflags and pvs p->materialflags = 0; p->pvsvalid = false; p->camera_entity = t->camera_entity; VectorCopy(surface->mins, p->mins); VectorCopy(surface->maxs, p->maxs); } else { // merge mins/maxs p->mins[0] = min(p->mins[0], surface->mins[0]); p->mins[1] = min(p->mins[1], surface->mins[1]); p->mins[2] = min(p->mins[2], surface->mins[2]); p->maxs[0] = max(p->maxs[0], surface->maxs[0]); p->maxs[1] = max(p->maxs[1], surface->maxs[1]); p->maxs[2] = max(p->maxs[2], surface->maxs[2]); } // merge this surface's materialflags into the waterplane p->materialflags |= t->currentmaterialflags; if(!(p->materialflags & MATERIALFLAG_CAMERA)) { // merge this surface's PVS into the waterplane VectorMAM(0.5f, surface->mins, 0.5f, surface->maxs, center); if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA) && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS && r_refdef.scene.worldmodel->brush.PointInLeaf && r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, center)->clusterindex >= 0) { r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, center, 2, p->pvsbits, sizeof(p->pvsbits), p->pvsvalid); p->pvsvalid = true; } } } static void R_Water_ProcessPlanes(void) { int myscissor[4]; r_refdef_view_t originalview; r_refdef_view_t myview; int planeindex; r_waterstate_waterplane_t *p; vec3_t visorigin; originalview = r_refdef.view; // make sure enough textures are allocated for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++) { if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION)) { if (!p->texture_refraction) p->texture_refraction = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_refraction", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_COLORBUFFER, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL); if (!p->texture_refraction) goto error; } else if (p->materialflags & MATERIALFLAG_CAMERA) { if (!p->texture_camera) p->texture_camera = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_camera", planeindex), r_waterstate.camerawidth, r_waterstate.cameraheight, NULL, TEXTYPE_COLORBUFFER, TEXF_RENDERTARGET | TEXF_FORCELINEAR, -1, NULL); if (!p->texture_camera) goto error; } if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)) { if (!p->texture_reflection) p->texture_reflection = R_LoadTexture2D(r_main_texturepool, va("waterplane%i_reflection", planeindex), r_waterstate.texturewidth, r_waterstate.textureheight, NULL, TEXTYPE_COLORBUFFER, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL); if (!p->texture_reflection) goto error; } } // render views r_refdef.view = originalview; r_refdef.view.showdebug = false; r_refdef.view.width = r_waterstate.waterwidth; r_refdef.view.height = r_waterstate.waterheight; r_refdef.view.useclipplane = true; myview = r_refdef.view; r_waterstate.renderingscene = true; for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++) { if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION)) { r_refdef.view = myview; if(r_water_scissormode.integer) { R_SetupView(true); if(R_ScissorForBBox(p->mins, p->maxs, myscissor)) continue; // FIXME the plane then still may get rendered but with broken texture, but it sure won't be visible } // render reflected scene and copy into texture Matrix4x4_Reflect(&r_refdef.view.matrix, p->plane.normal[0], p->plane.normal[1], p->plane.normal[2], p->plane.dist, -2); // update the r_refdef.view.origin because otherwise the sky renders at the wrong location (amongst other problems) Matrix4x4_OriginFromMatrix(&r_refdef.view.matrix, r_refdef.view.origin); r_refdef.view.clipplane = p->plane; // reverse the cullface settings for this render r_refdef.view.cullface_front = GL_FRONT; r_refdef.view.cullface_back = GL_BACK; if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.num_pvsclusterbytes) { r_refdef.view.usecustompvs = true; if (p->pvsvalid) memcpy(r_refdef.viewcache.world_pvsbits, p->pvsbits, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes); else memset(r_refdef.viewcache.world_pvsbits, 0xFF, r_refdef.scene.worldmodel->brush.num_pvsclusterbytes); } R_ResetViewRendering3D(); R_ClearScreen(r_refdef.fogenabled); if(r_water_scissormode.integer & 2) R_View_UpdateWithScissor(myscissor); else R_View_Update(); if(r_water_scissormode.integer & 1) GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]); R_RenderScene(); R_Mesh_CopyToTexture(p->texture_reflection, 0, 0, r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height); } // render the normal view scene and copy into texture // (except that a clipping plane should be used to hide everything on one side of the water, and the viewer's weapon model should be omitted) if (p->materialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION)) { r_refdef.view = myview; if(r_water_scissormode.integer) { R_SetupView(true); if(R_ScissorForBBox(p->mins, p->maxs, myscissor)) continue; // FIXME the plane then still may get rendered but with broken texture, but it sure won't be visible } r_waterstate.renderingrefraction = true; r_refdef.view.clipplane = p->plane; VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal); r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist; if((p->materialflags & MATERIALFLAG_CAMERA) && p->camera_entity) { // we need to perform a matrix transform to render the view... so let's get the transformation matrix r_waterstate.renderingrefraction = false; // we don't want to hide the player model from these ones CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin); R_RenderView_UpdateViewVectors(); if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS) { r_refdef.view.usecustompvs = true; r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false); } } PlaneClassify(&r_refdef.view.clipplane); R_ResetViewRendering3D(); R_ClearScreen(r_refdef.fogenabled); if(r_water_scissormode.integer & 2) R_View_UpdateWithScissor(myscissor); else R_View_Update(); if(r_water_scissormode.integer & 1) GL_Scissor(myscissor[0], myscissor[1], myscissor[2], myscissor[3]); R_RenderScene(); R_Mesh_CopyToTexture(p->texture_refraction, 0, 0, r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height); r_waterstate.renderingrefraction = false; } else if (p->materialflags & MATERIALFLAG_CAMERA) { r_refdef.view = myview; r_refdef.view.clipplane = p->plane; VectorNegate(r_refdef.view.clipplane.normal, r_refdef.view.clipplane.normal); r_refdef.view.clipplane.dist = -r_refdef.view.clipplane.dist; r_refdef.view.width = r_waterstate.camerawidth; r_refdef.view.height = r_waterstate.cameraheight; r_refdef.view.frustum_x = 1; // tan(45 * M_PI / 180.0); r_refdef.view.frustum_y = 1; // tan(45 * M_PI / 180.0); if(p->camera_entity) { // we need to perform a matrix transform to render the view... so let's get the transformation matrix CL_VM_TransformView(p->camera_entity - MAX_EDICTS, &r_refdef.view.matrix, &r_refdef.view.clipplane, visorigin); } // note: all of the view is used for displaying... so // there is no use in scissoring // reverse the cullface settings for this render r_refdef.view.cullface_front = GL_FRONT; r_refdef.view.cullface_back = GL_BACK; // also reverse the view matrix Matrix4x4_ConcatScale3(&r_refdef.view.matrix, 1, 1, -1); // this serves to invert texcoords in the result, as the copied texture is mapped the wrong way round R_RenderView_UpdateViewVectors(); if(p->camera_entity && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.FatPVS) { r_refdef.view.usecustompvs = true; r_refdef.scene.worldmodel->brush.FatPVS(r_refdef.scene.worldmodel, visorigin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false); } // camera needs no clipplane r_refdef.view.useclipplane = false; PlaneClassify(&r_refdef.view.clipplane); R_ResetViewRendering3D(); R_ClearScreen(r_refdef.fogenabled); R_View_Update(); R_RenderScene(); R_Mesh_CopyToTexture(p->texture_camera, 0, 0, r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height); r_waterstate.renderingrefraction = false; } } r_waterstate.renderingscene = false; r_refdef.view = originalview; R_ResetViewRendering3D(); R_ClearScreen(r_refdef.fogenabled); R_View_Update(); return; error: r_refdef.view = originalview; r_waterstate.renderingscene = false; Cvar_SetValueQuick(&r_water, 0); Con_Printf("R_Water_ProcessPlanes: Error: texture creation failed! Turned off r_water.\n"); return; } void R_Bloom_StartFrame(void) { int bloomtexturewidth, bloomtextureheight, screentexturewidth, screentextureheight; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_GL13: case RENDERPATH_GL11: return; } // set bloomwidth and bloomheight to the bloom resolution that will be // used (often less than the screen resolution for faster rendering) r_bloomstate.bloomwidth = bound(1, r_bloom_resolution.integer, vid.height); r_bloomstate.bloomheight = r_bloomstate.bloomwidth * vid.height / vid.width; r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, vid.height); r_bloomstate.bloomwidth = bound(1, r_bloomstate.bloomwidth, (int)vid.maxtexturesize_2d); r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, (int)vid.maxtexturesize_2d); // calculate desired texture sizes if (vid.support.arb_texture_non_power_of_two) { screentexturewidth = r_refdef.view.width; screentextureheight = r_refdef.view.height; bloomtexturewidth = r_bloomstate.bloomwidth; bloomtextureheight = r_bloomstate.bloomheight; } else { for (screentexturewidth = 1;screentexturewidth < vid.width ;screentexturewidth *= 2); for (screentextureheight = 1;screentextureheight < vid.height ;screentextureheight *= 2); for (bloomtexturewidth = 1;bloomtexturewidth < r_bloomstate.bloomwidth ;bloomtexturewidth *= 2); for (bloomtextureheight = 1;bloomtextureheight < r_bloomstate.bloomheight;bloomtextureheight *= 2); } if ((r_hdr.integer || r_bloom.integer || (!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0))) && ((r_bloom_resolution.integer < 4 || r_bloom_blur.value < 1 || r_bloom_blur.value >= 512) || r_refdef.view.width > (int)vid.maxtexturesize_2d || r_refdef.view.height > (int)vid.maxtexturesize_2d)) { Cvar_SetValueQuick(&r_hdr, 0); Cvar_SetValueQuick(&r_bloom, 0); Cvar_SetValueQuick(&r_motionblur, 0); Cvar_SetValueQuick(&r_damageblur, 0); } if (!(r_glsl_postprocess.integer || (!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) || (v_glslgamma.integer && !vid_gammatables_trivial)) && !r_bloom.integer && !r_hdr.integer && (R_Stereo_Active() || (r_motionblur.value <= 0 && r_damageblur.value <= 0))) screentexturewidth = screentextureheight = 0; if (!r_hdr.integer && !r_bloom.integer) bloomtexturewidth = bloomtextureheight = 0; // allocate textures as needed if (r_bloomstate.screentexturewidth != screentexturewidth || r_bloomstate.screentextureheight != screentextureheight) { if (r_bloomstate.texture_screen) R_FreeTexture(r_bloomstate.texture_screen); r_bloomstate.texture_screen = NULL; r_bloomstate.screentexturewidth = screentexturewidth; r_bloomstate.screentextureheight = screentextureheight; if (r_bloomstate.screentexturewidth && r_bloomstate.screentextureheight) r_bloomstate.texture_screen = R_LoadTexture2D(r_main_texturepool, "screen", r_bloomstate.screentexturewidth, r_bloomstate.screentextureheight, NULL, TEXTYPE_COLORBUFFER, TEXF_RENDERTARGET | TEXF_FORCENEAREST | TEXF_CLAMP, -1, NULL); } if (r_bloomstate.bloomtexturewidth != bloomtexturewidth || r_bloomstate.bloomtextureheight != bloomtextureheight) { if (r_bloomstate.texture_bloom) R_FreeTexture(r_bloomstate.texture_bloom); r_bloomstate.texture_bloom = NULL; r_bloomstate.bloomtexturewidth = bloomtexturewidth; r_bloomstate.bloomtextureheight = bloomtextureheight; if (r_bloomstate.bloomtexturewidth && r_bloomstate.bloomtextureheight) r_bloomstate.texture_bloom = R_LoadTexture2D(r_main_texturepool, "bloom", r_bloomstate.bloomtexturewidth, r_bloomstate.bloomtextureheight, NULL, TEXTYPE_COLORBUFFER, TEXF_RENDERTARGET | TEXF_FORCELINEAR | TEXF_CLAMP, -1, NULL); } // when doing a reduced render (HDR) we want to use a smaller area r_bloomstate.bloomwidth = bound(1, r_bloom_resolution.integer, r_refdef.view.height); r_bloomstate.bloomheight = r_bloomstate.bloomwidth * r_refdef.view.height / r_refdef.view.width; r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, r_refdef.view.height); r_bloomstate.bloomwidth = bound(1, r_bloomstate.bloomwidth, r_bloomstate.bloomtexturewidth); r_bloomstate.bloomheight = bound(1, r_bloomstate.bloomheight, r_bloomstate.bloomtextureheight); // set up a texcoord array for the full resolution screen image // (we have to keep this around to copy back during final render) r_bloomstate.screentexcoord2f[0] = 0; r_bloomstate.screentexcoord2f[1] = (float)r_refdef.view.height / (float)r_bloomstate.screentextureheight; r_bloomstate.screentexcoord2f[2] = (float)r_refdef.view.width / (float)r_bloomstate.screentexturewidth; r_bloomstate.screentexcoord2f[3] = (float)r_refdef.view.height / (float)r_bloomstate.screentextureheight; r_bloomstate.screentexcoord2f[4] = (float)r_refdef.view.width / (float)r_bloomstate.screentexturewidth; r_bloomstate.screentexcoord2f[5] = 0; r_bloomstate.screentexcoord2f[6] = 0; r_bloomstate.screentexcoord2f[7] = 0; // set up a texcoord array for the reduced resolution bloom image // (which will be additive blended over the screen image) r_bloomstate.bloomtexcoord2f[0] = 0; r_bloomstate.bloomtexcoord2f[1] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight; r_bloomstate.bloomtexcoord2f[2] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth; r_bloomstate.bloomtexcoord2f[3] = (float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight; r_bloomstate.bloomtexcoord2f[4] = (float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth; r_bloomstate.bloomtexcoord2f[5] = 0; r_bloomstate.bloomtexcoord2f[6] = 0; r_bloomstate.bloomtexcoord2f[7] = 0; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: { int i; for (i = 0;i < 4;i++) { r_bloomstate.screentexcoord2f[i*2+0] += 0.5f / (float)r_bloomstate.screentexturewidth; r_bloomstate.screentexcoord2f[i*2+1] += 0.5f / (float)r_bloomstate.screentextureheight; r_bloomstate.bloomtexcoord2f[i*2+0] += 0.5f / (float)r_bloomstate.bloomtexturewidth; r_bloomstate.bloomtexcoord2f[i*2+1] += 0.5f / (float)r_bloomstate.bloomtextureheight; } } break; } if (r_hdr.integer || r_bloom.integer) { r_bloomstate.enabled = true; r_bloomstate.hdr = r_hdr.integer != 0; } R_Viewport_InitOrtho(&r_bloomstate.viewport, &identitymatrix, r_refdef.view.x, vid.height - r_bloomstate.bloomheight - r_refdef.view.y, r_bloomstate.bloomwidth, r_bloomstate.bloomheight, 0, 0, 1, 1, -10, 100, NULL); } void R_Bloom_CopyBloomTexture(float colorscale) { r_refdef.stats.bloom++; // scale down screen texture to the bloom texture size CHECKGLERROR R_SetViewport(&r_bloomstate.viewport); GL_BlendFunc(GL_ONE, GL_ZERO); GL_Color(colorscale, colorscale, colorscale, 1); // D3D has upside down Y coords, the easiest way to flip this is to flip the screen vertices rather than the texcoords, so we just use a different array for that... switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_bloomstate.screentexcoord2f); break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: R_Mesh_PrepareVertices_Generic_Arrays(4, r_d3dscreenvertex3f, NULL, r_bloomstate.screentexcoord2f); break; } // TODO: do boxfilter scale-down in shader? R_SetupShader_Generic(r_bloomstate.texture_screen, NULL, GL_MODULATE, 1); R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight; // we now have a bloom image in the framebuffer // copy it into the bloom image texture for later processing R_Mesh_CopyToTexture(r_bloomstate.texture_bloom, 0, 0, r_bloomstate.viewport.x, r_bloomstate.viewport.y, r_bloomstate.viewport.width, r_bloomstate.viewport.height); r_refdef.stats.bloom_copypixels += r_bloomstate.viewport.width * r_bloomstate.viewport.height; } void R_Bloom_CopyHDRTexture(void) { R_Mesh_CopyToTexture(r_bloomstate.texture_bloom, 0, 0, r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height); r_refdef.stats.bloom_copypixels += r_refdef.view.viewport.width * r_refdef.view.viewport.height; } void R_Bloom_MakeTexture(void) { int x, range, dir; float xoffset, yoffset, r, brighten; r_refdef.stats.bloom++; R_ResetViewRendering2D(); // we have a bloom image in the framebuffer CHECKGLERROR R_SetViewport(&r_bloomstate.viewport); for (x = 1;x < min(r_bloom_colorexponent.value, 32);) { x *= 2; r = bound(0, r_bloom_colorexponent.value / x, 1); GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR); GL_Color(r,r,r,1); R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_bloomstate.bloomtexcoord2f); R_SetupShader_Generic(r_bloomstate.texture_bloom, NULL, GL_MODULATE, 1); R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight; // copy the vertically blurred bloom view to a texture R_Mesh_CopyToTexture(r_bloomstate.texture_bloom, 0, 0, r_bloomstate.viewport.x, r_bloomstate.viewport.y, r_bloomstate.viewport.width, r_bloomstate.viewport.height); r_refdef.stats.bloom_copypixels += r_bloomstate.viewport.width * r_bloomstate.viewport.height; } range = r_bloom_blur.integer * r_bloomstate.bloomwidth / 320; brighten = r_bloom_brighten.value; if (r_hdr.integer) brighten *= r_hdr_range.value; brighten = sqrt(brighten); if(range >= 1) brighten *= (3 * range) / (2 * range - 1); // compensate for the "dot particle" R_SetupShader_Generic(r_bloomstate.texture_bloom, NULL, GL_MODULATE, 1); for (dir = 0;dir < 2;dir++) { // blend on at multiple vertical offsets to achieve a vertical blur // TODO: do offset blends using GLSL // TODO instead of changing the texcoords, change the target positions to prevent artifacts at edges GL_BlendFunc(GL_ONE, GL_ZERO); for (x = -range;x <= range;x++) { if (!dir){xoffset = 0;yoffset = x;} else {xoffset = x;yoffset = 0;} xoffset /= (float)r_bloomstate.bloomtexturewidth; yoffset /= (float)r_bloomstate.bloomtextureheight; // compute a texcoord array with the specified x and y offset r_bloomstate.offsettexcoord2f[0] = xoffset+0; r_bloomstate.offsettexcoord2f[1] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight; r_bloomstate.offsettexcoord2f[2] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth; r_bloomstate.offsettexcoord2f[3] = yoffset+(float)r_bloomstate.bloomheight / (float)r_bloomstate.bloomtextureheight; r_bloomstate.offsettexcoord2f[4] = xoffset+(float)r_bloomstate.bloomwidth / (float)r_bloomstate.bloomtexturewidth; r_bloomstate.offsettexcoord2f[5] = yoffset+0; r_bloomstate.offsettexcoord2f[6] = xoffset+0; r_bloomstate.offsettexcoord2f[7] = yoffset+0; // this r value looks like a 'dot' particle, fading sharply to // black at the edges // (probably not realistic but looks good enough) //r = ((range*range+1)/((float)(x*x+1)))/(range*2+1); //r = brighten/(range*2+1); r = brighten / (range * 2 + 1); if(range >= 1) r *= (1 - x*x/(float)(range*range)); GL_Color(r, r, r, 1); R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_bloomstate.offsettexcoord2f); R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); r_refdef.stats.bloom_drawpixels += r_bloomstate.bloomwidth * r_bloomstate.bloomheight; GL_BlendFunc(GL_ONE, GL_ONE); } // copy the vertically blurred bloom view to a texture R_Mesh_CopyToTexture(r_bloomstate.texture_bloom, 0, 0, r_bloomstate.viewport.x, r_bloomstate.viewport.y, r_bloomstate.viewport.width, r_bloomstate.viewport.height); r_refdef.stats.bloom_copypixels += r_bloomstate.viewport.width * r_bloomstate.viewport.height; } } void R_HDR_RenderBloomTexture(void) { int oldwidth, oldheight; float oldcolorscale; int oldwaterstate; oldwaterstate = r_waterstate.enabled; oldcolorscale = r_refdef.view.colorscale; oldwidth = r_refdef.view.width; oldheight = r_refdef.view.height; r_refdef.view.width = r_bloomstate.bloomwidth; r_refdef.view.height = r_bloomstate.bloomheight; if(r_hdr.integer < 2) r_waterstate.enabled = false; // TODO: support GL_EXT_framebuffer_object rather than reusing the framebuffer? it might improve SLI performance. // TODO: add exposure compensation features // TODO: add fp16 framebuffer support (using GL_EXT_framebuffer_object) r_refdef.view.showdebug = false; r_refdef.view.colorscale *= r_bloom_colorscale.value / bound(1, r_hdr_range.value, 16); R_ResetViewRendering3D(); R_ClearScreen(r_refdef.fogenabled); if (r_timereport_active) R_TimeReport("HDRclear"); R_View_Update(); if (r_timereport_active) R_TimeReport("visibility"); // only do secondary renders with HDR if r_hdr is 2 or higher r_waterstate.numwaterplanes = 0; if (r_waterstate.enabled) R_RenderWaterPlanes(); r_refdef.view.showdebug = true; R_RenderScene(); r_waterstate.numwaterplanes = 0; R_ResetViewRendering2D(); R_Bloom_CopyHDRTexture(); R_Bloom_MakeTexture(); // restore the view settings r_waterstate.enabled = oldwaterstate; r_refdef.view.width = oldwidth; r_refdef.view.height = oldheight; r_refdef.view.colorscale = oldcolorscale; R_ResetViewRendering3D(); R_ClearScreen(r_refdef.fogenabled); if (r_timereport_active) R_TimeReport("viewclear"); } static void R_BlendView(void) { unsigned int permutation; float uservecs[4][4]; switch (vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: permutation = (r_bloomstate.texture_bloom ? SHADERPERMUTATION_BLOOM : 0) | (r_refdef.viewblend[3] > 0 ? SHADERPERMUTATION_VIEWTINT : 0) | ((v_glslgamma.value && !vid_gammatables_trivial) ? SHADERPERMUTATION_GAMMARAMPS : 0) | (r_glsl_postprocess.integer ? SHADERPERMUTATION_POSTPROCESSING : 0) | ((!R_Stereo_ColorMasking() && r_glsl_saturation.value != 1) ? SHADERPERMUTATION_SATURATION : 0); if (r_bloomstate.texture_screen) { // make sure the buffer is available if (r_bloom_blur.value < 1) { Cvar_SetValueQuick(&r_bloom_blur, 1); } R_ResetViewRendering2D(); if(!R_Stereo_Active() && (r_motionblur.value > 0 || r_damageblur.value > 0)) { // declare variables float speed; static float avgspeed; speed = VectorLength(cl.movement_velocity); cl.motionbluralpha = bound(0, (cl.time - cl.oldtime) / max(0.001, r_motionblur_vcoeff.value), 1); avgspeed = avgspeed * (1 - cl.motionbluralpha) + speed * cl.motionbluralpha; speed = (avgspeed - r_motionblur_vmin.value) / max(1, r_motionblur_vmax.value - r_motionblur_vmin.value); speed = bound(0, speed, 1); speed = speed * (1 - r_motionblur_bmin.value) + r_motionblur_bmin.value; // calculate values into a standard alpha cl.motionbluralpha = 1 - exp(- ( (r_motionblur.value * speed / 80) + (r_damageblur.value * (cl.cshifts[CSHIFT_DAMAGE].percent / 1600)) ) / max(0.0001, cl.time - cl.oldtime) // fps independent ); cl.motionbluralpha *= lhrandom(1 - r_motionblur_randomize.value, 1 + r_motionblur_randomize.value); cl.motionbluralpha = bound(0, cl.motionbluralpha, r_motionblur_maxblur.value); // apply the blur if (cl.motionbluralpha > 0 && !r_refdef.envmap) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_Color(1, 1, 1, cl.motionbluralpha); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, r_bloomstate.screentexcoord2f); break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: R_Mesh_PrepareVertices_Generic_Arrays(4, r_d3dscreenvertex3f, NULL, r_bloomstate.screentexcoord2f); break; } R_SetupShader_Generic(r_bloomstate.texture_screen, NULL, GL_MODULATE, 1); R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); r_refdef.stats.bloom_drawpixels += r_refdef.view.viewport.width * r_refdef.view.viewport.height; } } // copy view into the screen texture R_Mesh_CopyToTexture(r_bloomstate.texture_screen, 0, 0, r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height); r_refdef.stats.bloom_copypixels += r_refdef.view.viewport.width * r_refdef.view.viewport.height; } else if (!r_bloomstate.texture_bloom) { // we may still have to do view tint... if (r_refdef.viewblend[3] >= (1.0f / 256.0f)) { // apply a color tint to the whole view R_ResetViewRendering2D(); GL_Color(r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]); R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, NULL); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); } break; // no screen processing, no bloom, skip it } if (r_bloomstate.texture_bloom && !r_bloomstate.hdr) { // render simple bloom effect // copy the screen and shrink it and darken it for the bloom process R_Bloom_CopyBloomTexture(r_bloom_colorscale.value); // make the bloom texture R_Bloom_MakeTexture(); } #if _MSC_VER >= 1400 #define sscanf sscanf_s #endif memset(uservecs, 0, sizeof(uservecs)); if (r_glsl_postprocess_uservec1_enable.integer) sscanf(r_glsl_postprocess_uservec1.string, "%f %f %f %f", &uservecs[0][0], &uservecs[0][1], &uservecs[0][2], &uservecs[0][3]); if (r_glsl_postprocess_uservec2_enable.integer) sscanf(r_glsl_postprocess_uservec2.string, "%f %f %f %f", &uservecs[1][0], &uservecs[1][1], &uservecs[1][2], &uservecs[1][3]); if (r_glsl_postprocess_uservec3_enable.integer) sscanf(r_glsl_postprocess_uservec3.string, "%f %f %f %f", &uservecs[2][0], &uservecs[2][1], &uservecs[2][2], &uservecs[2][3]); if (r_glsl_postprocess_uservec4_enable.integer) sscanf(r_glsl_postprocess_uservec4.string, "%f %f %f %f", &uservecs[3][0], &uservecs[3][1], &uservecs[3][2], &uservecs[3][3]); R_ResetViewRendering2D(); GL_Color(1, 1, 1, 1); GL_BlendFunc(GL_ONE, GL_ZERO); switch(vid.renderpath) { case RENDERPATH_GL20: R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_bloomstate.screentexcoord2f, r_bloomstate.bloomtexcoord2f); R_SetupShader_SetPermutationGLSL(SHADERMODE_POSTPROCESS, permutation); if (r_glsl_permutation->loc_Texture_First >= 0) R_Mesh_TexBind(GL20TU_FIRST , r_bloomstate.texture_screen); if (r_glsl_permutation->loc_Texture_Second >= 0) R_Mesh_TexBind(GL20TU_SECOND , r_bloomstate.texture_bloom ); if (r_glsl_permutation->loc_Texture_GammaRamps >= 0) R_Mesh_TexBind(GL20TU_GAMMARAMPS, r_texture_gammaramps ); if (r_glsl_permutation->loc_ViewTintColor >= 0) qglUniform4fARB(r_glsl_permutation->loc_ViewTintColor , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]); if (r_glsl_permutation->loc_PixelSize >= 0) qglUniform2fARB(r_glsl_permutation->loc_PixelSize , 1.0/r_bloomstate.screentexturewidth, 1.0/r_bloomstate.screentextureheight); if (r_glsl_permutation->loc_UserVec1 >= 0) qglUniform4fARB(r_glsl_permutation->loc_UserVec1 , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]); if (r_glsl_permutation->loc_UserVec2 >= 0) qglUniform4fARB(r_glsl_permutation->loc_UserVec2 , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]); if (r_glsl_permutation->loc_UserVec3 >= 0) qglUniform4fARB(r_glsl_permutation->loc_UserVec3 , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]); if (r_glsl_permutation->loc_UserVec4 >= 0) qglUniform4fARB(r_glsl_permutation->loc_UserVec4 , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]); if (r_glsl_permutation->loc_Saturation >= 0) qglUniform1fARB(r_glsl_permutation->loc_Saturation , r_glsl_saturation.value); if (r_glsl_permutation->loc_PixelToScreenTexCoord >= 0) qglUniform2fARB(r_glsl_permutation->loc_PixelToScreenTexCoord, 1.0f/vid.width, 1.0f/vid.height); if (r_glsl_permutation->loc_BloomColorSubtract >= 0) qglUniform4fARB(r_glsl_permutation->loc_BloomColorSubtract , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f); break; case RENDERPATH_CGGL: #ifdef SUPPORTCG R_Mesh_PrepareVertices_Mesh_Arrays(4, r_screenvertex3f, NULL, NULL, NULL, NULL, r_bloomstate.screentexcoord2f, r_bloomstate.bloomtexcoord2f); R_SetupShader_SetPermutationCG(SHADERMODE_POSTPROCESS, permutation); if (r_cg_permutation->fp_Texture_First ) CG_BindTexture(r_cg_permutation->fp_Texture_First , r_bloomstate.texture_screen);CHECKCGERROR if (r_cg_permutation->fp_Texture_Second ) CG_BindTexture(r_cg_permutation->fp_Texture_Second , r_bloomstate.texture_bloom );CHECKCGERROR if (r_cg_permutation->fp_Texture_GammaRamps) CG_BindTexture(r_cg_permutation->fp_Texture_GammaRamps, r_texture_gammaramps );CHECKCGERROR if (r_cg_permutation->fp_ViewTintColor ) cgGLSetParameter4f( r_cg_permutation->fp_ViewTintColor , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]);CHECKCGERROR if (r_cg_permutation->fp_PixelSize ) cgGLSetParameter2f( r_cg_permutation->fp_PixelSize , 1.0/r_bloomstate.screentexturewidth, 1.0/r_bloomstate.screentextureheight);CHECKCGERROR if (r_cg_permutation->fp_UserVec1 ) cgGLSetParameter4f( r_cg_permutation->fp_UserVec1 , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]);CHECKCGERROR if (r_cg_permutation->fp_UserVec2 ) cgGLSetParameter4f( r_cg_permutation->fp_UserVec2 , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]);CHECKCGERROR if (r_cg_permutation->fp_UserVec3 ) cgGLSetParameter4f( r_cg_permutation->fp_UserVec3 , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]);CHECKCGERROR if (r_cg_permutation->fp_UserVec4 ) cgGLSetParameter4f( r_cg_permutation->fp_UserVec4 , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]);CHECKCGERROR if (r_cg_permutation->fp_Saturation ) cgGLSetParameter1f( r_cg_permutation->fp_Saturation , r_glsl_saturation.value);CHECKCGERROR if (r_cg_permutation->fp_PixelToScreenTexCoord) cgGLSetParameter2f(r_cg_permutation->fp_PixelToScreenTexCoord, 1.0f/vid.width, 1.0/vid.height);CHECKCGERROR if (r_cg_permutation->fp_BloomColorSubtract ) cgGLSetParameter4f(r_cg_permutation->fp_BloomColorSubtract , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f); #endif break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D // D3D has upside down Y coords, the easiest way to flip this is to flip the screen vertices rather than the texcoords, so we just use a different array for that... R_Mesh_PrepareVertices_Mesh_Arrays(4, r_d3dscreenvertex3f, NULL, NULL, NULL, NULL, r_bloomstate.screentexcoord2f, r_bloomstate.bloomtexcoord2f); R_SetupShader_SetPermutationHLSL(SHADERMODE_POSTPROCESS, permutation); R_Mesh_TexBind(GL20TU_FIRST , r_bloomstate.texture_screen); R_Mesh_TexBind(GL20TU_SECOND , r_bloomstate.texture_bloom ); R_Mesh_TexBind(GL20TU_GAMMARAMPS, r_texture_gammaramps ); hlslPSSetParameter4f(D3DPSREGISTER_ViewTintColor , r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]); hlslPSSetParameter2f(D3DPSREGISTER_PixelSize , 1.0/r_bloomstate.screentexturewidth, 1.0/r_bloomstate.screentextureheight); hlslPSSetParameter4f(D3DPSREGISTER_UserVec1 , uservecs[0][0], uservecs[0][1], uservecs[0][2], uservecs[0][3]); hlslPSSetParameter4f(D3DPSREGISTER_UserVec2 , uservecs[1][0], uservecs[1][1], uservecs[1][2], uservecs[1][3]); hlslPSSetParameter4f(D3DPSREGISTER_UserVec3 , uservecs[2][0], uservecs[2][1], uservecs[2][2], uservecs[2][3]); hlslPSSetParameter4f(D3DPSREGISTER_UserVec4 , uservecs[3][0], uservecs[3][1], uservecs[3][2], uservecs[3][3]); hlslPSSetParameter1f(D3DPSREGISTER_Saturation , r_glsl_saturation.value); hlslPSSetParameter2f(D3DPSREGISTER_PixelToScreenTexCoord, 1.0f/vid.width, 1.0/vid.height); hlslPSSetParameter4f(D3DPSREGISTER_BloomColorSubtract , r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, r_bloom_colorsubtract.value, 0.0f); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; default: break; } R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); r_refdef.stats.bloom_drawpixels += r_refdef.view.viewport.width * r_refdef.view.viewport.height; break; case RENDERPATH_GL13: case RENDERPATH_GL11: if (r_refdef.viewblend[3] >= (1.0f / 256.0f)) { // apply a color tint to the whole view R_ResetViewRendering2D(); GL_Color(r_refdef.viewblend[0], r_refdef.viewblend[1], r_refdef.viewblend[2], r_refdef.viewblend[3]); R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, NULL); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); } break; } } matrix4x4_t r_waterscrollmatrix; void R_UpdateFogColor(void) // needs to be called before HDR subrender too, as that changes colorscale! { if (r_refdef.fog_density) { r_refdef.fogcolor[0] = r_refdef.fog_red; r_refdef.fogcolor[1] = r_refdef.fog_green; r_refdef.fogcolor[2] = r_refdef.fog_blue; Vector4Set(r_refdef.fogplane, 0, 0, 1, -r_refdef.fog_height); r_refdef.fogplaneviewdist = DotProduct(r_refdef.fogplane, r_refdef.view.origin) + r_refdef.fogplane[3]; r_refdef.fogplaneviewabove = r_refdef.fogplaneviewdist >= 0; r_refdef.fogheightfade = -0.5f/max(0.125f, r_refdef.fog_fadedepth); { vec3_t fogvec; VectorCopy(r_refdef.fogcolor, fogvec); // color.rgb *= ContrastBoost * SceneBrightness; VectorScale(fogvec, r_refdef.view.colorscale, fogvec); r_refdef.fogcolor[0] = bound(0.0f, fogvec[0], 1.0f); r_refdef.fogcolor[1] = bound(0.0f, fogvec[1], 1.0f); r_refdef.fogcolor[2] = bound(0.0f, fogvec[2], 1.0f); } } } void R_UpdateVariables(void) { R_Textures_Frame(); r_refdef.scene.ambient = r_ambient.value * (1.0f / 64.0f); r_refdef.farclip = r_farclip_base.value; if (r_refdef.scene.worldmodel) r_refdef.farclip += r_refdef.scene.worldmodel->radius * r_farclip_world.value * 2; r_refdef.nearclip = bound (0.001f, r_nearclip.value, r_refdef.farclip - 1.0f); if (r_shadow_frontsidecasting.integer < 0 || r_shadow_frontsidecasting.integer > 1) Cvar_SetValueQuick(&r_shadow_frontsidecasting, 1); r_refdef.polygonfactor = 0; r_refdef.polygonoffset = 0; r_refdef.shadowpolygonfactor = r_refdef.polygonfactor + r_shadow_polygonfactor.value * (r_shadow_frontsidecasting.integer ? 1 : -1); r_refdef.shadowpolygonoffset = r_refdef.polygonoffset + r_shadow_polygonoffset.value * (r_shadow_frontsidecasting.integer ? 1 : -1); r_refdef.scene.rtworld = r_shadow_realtime_world.integer != 0; r_refdef.scene.rtworldshadows = r_shadow_realtime_world_shadows.integer && vid.stencil; r_refdef.scene.rtdlight = r_shadow_realtime_dlight.integer != 0 && !gl_flashblend.integer && r_dynamic.integer; r_refdef.scene.rtdlightshadows = r_refdef.scene.rtdlight && r_shadow_realtime_dlight_shadows.integer && vid.stencil; r_refdef.lightmapintensity = r_refdef.scene.rtworld ? r_shadow_realtime_world_lightmaps.value : 1; if (FAKELIGHT_ENABLED) { r_refdef.lightmapintensity *= r_fakelight_intensity.value; } if (r_showsurfaces.integer) { r_refdef.scene.rtworld = false; r_refdef.scene.rtworldshadows = false; r_refdef.scene.rtdlight = false; r_refdef.scene.rtdlightshadows = false; r_refdef.lightmapintensity = 0; } if (gamemode == GAME_NEHAHRA) { if (gl_fogenable.integer) { r_refdef.oldgl_fogenable = true; r_refdef.fog_density = gl_fogdensity.value; r_refdef.fog_red = gl_fogred.value; r_refdef.fog_green = gl_foggreen.value; r_refdef.fog_blue = gl_fogblue.value; r_refdef.fog_alpha = 1; r_refdef.fog_start = 0; r_refdef.fog_end = gl_skyclip.value; r_refdef.fog_height = 1<<30; r_refdef.fog_fadedepth = 128; } else if (r_refdef.oldgl_fogenable) { r_refdef.oldgl_fogenable = false; r_refdef.fog_density = 0; r_refdef.fog_red = 0; r_refdef.fog_green = 0; r_refdef.fog_blue = 0; r_refdef.fog_alpha = 0; r_refdef.fog_start = 0; r_refdef.fog_end = 0; r_refdef.fog_height = 1<<30; r_refdef.fog_fadedepth = 128; } } r_refdef.fog_alpha = bound(0, r_refdef.fog_alpha, 1); r_refdef.fog_start = max(0, r_refdef.fog_start); r_refdef.fog_end = max(r_refdef.fog_start + 0.01, r_refdef.fog_end); // R_UpdateFogColor(); // why? R_RenderScene does it anyway if (r_refdef.fog_density && r_drawfog.integer) { r_refdef.fogenabled = true; // this is the point where the fog reaches 0.9986 alpha, which we // consider a good enough cutoff point for the texture // (0.9986 * 256 == 255.6) if (r_fog_exp2.integer) r_refdef.fogrange = 32 / (r_refdef.fog_density * r_refdef.fog_density) + r_refdef.fog_start; else r_refdef.fogrange = 2048 / r_refdef.fog_density + r_refdef.fog_start; r_refdef.fogrange = bound(r_refdef.fog_start, r_refdef.fogrange, r_refdef.fog_end); r_refdef.fograngerecip = 1.0f / r_refdef.fogrange; r_refdef.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * r_refdef.fograngerecip; if (strcmp(r_refdef.fogheighttexturename, r_refdef.fog_height_texturename)) R_BuildFogHeightTexture(); // fog color was already set // update the fog texture if (r_refdef.fogmasktable_start != r_refdef.fog_start || r_refdef.fogmasktable_alpha != r_refdef.fog_alpha || r_refdef.fogmasktable_density != r_refdef.fog_density || r_refdef.fogmasktable_range != r_refdef.fogrange) R_BuildFogTexture(); r_refdef.fog_height_texcoordscale = 1.0f / max(0.125f, r_refdef.fog_fadedepth); r_refdef.fog_height_tablescale = r_refdef.fog_height_tablesize * r_refdef.fog_height_texcoordscale; } else r_refdef.fogenabled = false; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: if(v_glslgamma.integer && !vid_gammatables_trivial) { if(!r_texture_gammaramps || vid_gammatables_serial != r_texture_gammaramps_serial) { // build GLSL gamma texture #define RAMPWIDTH 256 unsigned short ramp[RAMPWIDTH * 3]; unsigned char rampbgr[RAMPWIDTH][4]; int i; r_texture_gammaramps_serial = vid_gammatables_serial; VID_BuildGammaTables(&ramp[0], RAMPWIDTH); for(i = 0; i < RAMPWIDTH; ++i) { rampbgr[i][0] = (unsigned char) (ramp[i + 2 * RAMPWIDTH] * 255.0 / 65535.0 + 0.5); rampbgr[i][1] = (unsigned char) (ramp[i + RAMPWIDTH] * 255.0 / 65535.0 + 0.5); rampbgr[i][2] = (unsigned char) (ramp[i] * 255.0 / 65535.0 + 0.5); rampbgr[i][3] = 0; } if (r_texture_gammaramps) { R_UpdateTexture(r_texture_gammaramps, &rampbgr[0][0], 0, 0, RAMPWIDTH, 1); } else { r_texture_gammaramps = R_LoadTexture2D(r_main_texturepool, "gammaramps", RAMPWIDTH, 1, &rampbgr[0][0], TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_CLAMP | TEXF_PERSISTENT, -1, NULL); } } } else { // remove GLSL gamma texture } break; case RENDERPATH_GL13: case RENDERPATH_GL11: break; } } static r_refdef_scene_type_t r_currentscenetype = RST_CLIENT; static r_refdef_scene_t r_scenes_store[ RST_COUNT ]; /* ================ R_SelectScene ================ */ void R_SelectScene( r_refdef_scene_type_t scenetype ) { if( scenetype != r_currentscenetype ) { // store the old scenetype r_scenes_store[ r_currentscenetype ] = r_refdef.scene; r_currentscenetype = scenetype; // move in the new scene r_refdef.scene = r_scenes_store[ r_currentscenetype ]; } } /* ================ R_GetScenePointer ================ */ r_refdef_scene_t * R_GetScenePointer( r_refdef_scene_type_t scenetype ) { // of course, we could also add a qboolean that provides a lock state and a ReleaseScenePointer function.. if( scenetype == r_currentscenetype ) { return &r_refdef.scene; } else { return &r_scenes_store[ scenetype ]; } } /* ================ R_RenderView ================ */ void R_RenderView(void) { matrix4x4_t originalmatrix = r_refdef.view.matrix, offsetmatrix; if (r_timereport_active) R_TimeReport("start"); r_textureframe++; // used only by R_GetCurrentTexture rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity if(R_CompileShader_CheckStaticParms()) R_GLSL_Restart_f(); if (!r_drawentities.integer) r_refdef.scene.numentities = 0; R_AnimCache_ClearCache(); R_FrameData_NewFrame(); /* adjust for stereo display */ if(R_Stereo_Active()) { Matrix4x4_CreateFromQuakeEntity(&offsetmatrix, 0, r_stereo_separation.value * (0.5f - r_stereo_side), 0, 0, r_stereo_angle.value * (0.5f - r_stereo_side), 0, 1); Matrix4x4_Concat(&r_refdef.view.matrix, &originalmatrix, &offsetmatrix); } if (r_refdef.view.isoverlay) { // TODO: FIXME: move this into its own backend function maybe? [2/5/2008 Andreas] GL_Clear(GL_DEPTH_BUFFER_BIT, NULL, 1.0f, 0); R_TimeReport("depthclear"); r_refdef.view.showdebug = false; r_waterstate.enabled = false; r_waterstate.numwaterplanes = 0; R_RenderScene(); r_refdef.view.matrix = originalmatrix; CHECKGLERROR return; } if (!r_refdef.scene.entities || r_refdef.view.width * r_refdef.view.height == 0 || !r_renderview.integer || cl_videoplaying/* || !r_refdef.scene.worldmodel*/) { r_refdef.view.matrix = originalmatrix; return; //Host_Error ("R_RenderView: NULL worldmodel"); } r_refdef.view.colorscale = r_hdr_scenebrightness.value; R_RenderView_UpdateViewVectors(); R_Shadow_UpdateWorldLightSelection(); R_Bloom_StartFrame(); R_Water_StartFrame(); CHECKGLERROR if (r_timereport_active) R_TimeReport("viewsetup"); R_ResetViewRendering3D(); if (r_refdef.view.clear || r_refdef.fogenabled) { R_ClearScreen(r_refdef.fogenabled); if (r_timereport_active) R_TimeReport("viewclear"); } r_refdef.view.clear = true; // this produces a bloom texture to be used in R_BlendView() later if (r_hdr.integer && r_bloomstate.bloomwidth) { R_HDR_RenderBloomTexture(); // we have to bump the texture frame again because r_refdef.view.colorscale is cached in the textures r_textureframe++; // used only by R_GetCurrentTexture } r_refdef.view.showdebug = true; R_View_Update(); if (r_timereport_active) R_TimeReport("visibility"); r_waterstate.numwaterplanes = 0; if (r_waterstate.enabled) R_RenderWaterPlanes(); R_RenderScene(); r_waterstate.numwaterplanes = 0; R_BlendView(); if (r_timereport_active) R_TimeReport("blendview"); GL_Scissor(0, 0, vid.width, vid.height); GL_ScissorTest(false); r_refdef.view.matrix = originalmatrix; CHECKGLERROR } void R_RenderWaterPlanes(void) { if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawAddWaterPlanes) { r_refdef.scene.worldmodel->DrawAddWaterPlanes(r_refdef.scene.worldentity); if (r_timereport_active) R_TimeReport("waterworld"); } // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); R_DrawModelsAddWaterPlanes(); if (r_timereport_active) R_TimeReport("watermodels"); if (r_waterstate.numwaterplanes) { R_Water_ProcessPlanes(); if (r_timereport_active) R_TimeReport("waterscenes"); } } extern void R_DrawLightningBeams (void); extern void VM_CL_AddPolygonsToMeshQueue (void); extern void R_DrawPortals (void); extern cvar_t cl_locs_show; static void R_DrawLocs(void); static void R_DrawEntityBBoxes(void); static void R_DrawModelDecals(void); extern void R_DrawModelShadows(void); extern void R_DrawModelShadowMaps(void); extern cvar_t cl_decals_newsystem; extern qboolean r_shadow_usingdeferredprepass; void R_RenderScene(void) { qboolean shadowmapping = false; if (r_timereport_active) R_TimeReport("beginscene"); r_refdef.stats.renders++; R_UpdateFogColor(); // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); R_MeshQueue_BeginScene(); R_SkyStartFrame(); Matrix4x4_CreateTranslate(&r_waterscrollmatrix, sin(r_refdef.scene.time) * 0.025 * r_waterscroll.value, sin(r_refdef.scene.time * 0.8f) * 0.025 * r_waterscroll.value, 0); if (r_timereport_active) R_TimeReport("skystartframe"); if (cl.csqc_vidvars.drawworld) { // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawSky) { r_refdef.scene.worldmodel->DrawSky(r_refdef.scene.worldentity); if (r_timereport_active) R_TimeReport("worldsky"); } if (R_DrawBrushModelsSky() && r_timereport_active) R_TimeReport("bmodelsky"); if (skyrendermasked && skyrenderlater) { // we have to force off the water clipping plane while rendering sky R_SetupView(false); R_Sky(); R_SetupView(true); if (r_timereport_active) R_TimeReport("sky"); } } R_AnimCache_CacheVisibleEntities(); if (r_timereport_active) R_TimeReport("animation"); R_Shadow_PrepareLights(); if (r_shadows.integer > 0 && r_refdef.lightmapintensity > 0) R_Shadow_PrepareModelShadows(); if (r_timereport_active) R_TimeReport("preparelights"); if (R_Shadow_ShadowMappingEnabled()) shadowmapping = true; if (r_shadow_usingdeferredprepass) R_Shadow_DrawPrepass(); if (r_depthfirst.integer >= 1 && cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDepth) { r_refdef.scene.worldmodel->DrawDepth(r_refdef.scene.worldentity); if (r_timereport_active) R_TimeReport("worlddepth"); } if (r_depthfirst.integer >= 2) { R_DrawModelsDepth(); if (r_timereport_active) R_TimeReport("modeldepth"); } if (r_shadows.integer >= 2 && shadowmapping && r_refdef.lightmapintensity > 0) { R_DrawModelShadowMaps(); R_ResetViewRendering3D(); // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); } if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->Draw) { r_refdef.scene.worldmodel->Draw(r_refdef.scene.worldentity); if (r_timereport_active) R_TimeReport("world"); } // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); R_DrawModels(); if (r_timereport_active) R_TimeReport("models"); // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); if ((r_shadows.integer == 1 || (r_shadows.integer > 0 && !shadowmapping)) && !r_shadows_drawafterrtlighting.integer && r_refdef.lightmapintensity > 0) { R_DrawModelShadows(); R_ResetViewRendering3D(); // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); } if (!r_shadow_usingdeferredprepass) { R_Shadow_DrawLights(); if (r_timereport_active) R_TimeReport("rtlights"); } // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); if ((r_shadows.integer == 1 || (r_shadows.integer > 0 && !shadowmapping)) && r_shadows_drawafterrtlighting.integer && r_refdef.lightmapintensity > 0) { R_DrawModelShadows(); R_ResetViewRendering3D(); // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); } if (cl.csqc_vidvars.drawworld) { if (cl_decals_newsystem.integer) { R_DrawModelDecals(); if (r_timereport_active) R_TimeReport("modeldecals"); } else { R_DrawDecals(); if (r_timereport_active) R_TimeReport("decals"); } R_DrawParticles(); if (r_timereport_active) R_TimeReport("particles"); R_DrawExplosions(); if (r_timereport_active) R_TimeReport("explosions"); R_DrawLightningBeams(); if (r_timereport_active) R_TimeReport("lightning"); } VM_CL_AddPolygonsToMeshQueue(); if (r_refdef.view.showdebug) { if (cl_locs_show.integer) { R_DrawLocs(); if (r_timereport_active) R_TimeReport("showlocs"); } if (r_drawportals.integer) { R_DrawPortals(); if (r_timereport_active) R_TimeReport("portals"); } if (r_showbboxes.value > 0) { R_DrawEntityBBoxes(); if (r_timereport_active) R_TimeReport("bboxes"); } } R_MeshQueue_RenderTransparent(); if (r_timereport_active) R_TimeReport("drawtrans"); if (r_refdef.view.showdebug && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawDebug && (r_showtris.value > 0 || r_shownormals.value != 0 || r_showcollisionbrushes.value > 0)) { r_refdef.scene.worldmodel->DrawDebug(r_refdef.scene.worldentity); if (r_timereport_active) R_TimeReport("worlddebug"); R_DrawModelsDebug(); if (r_timereport_active) R_TimeReport("modeldebug"); } if (cl.csqc_vidvars.drawworld) { R_Shadow_DrawCoronas(); if (r_timereport_active) R_TimeReport("coronas"); } #if 0 { GL_DepthTest(false); qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE); GL_Color(1, 1, 1, 1); qglBegin(GL_POLYGON); qglVertex3f(r_refdef.view.frustumcorner[0][0], r_refdef.view.frustumcorner[0][1], r_refdef.view.frustumcorner[0][2]); qglVertex3f(r_refdef.view.frustumcorner[1][0], r_refdef.view.frustumcorner[1][1], r_refdef.view.frustumcorner[1][2]); qglVertex3f(r_refdef.view.frustumcorner[3][0], r_refdef.view.frustumcorner[3][1], r_refdef.view.frustumcorner[3][2]); qglVertex3f(r_refdef.view.frustumcorner[2][0], r_refdef.view.frustumcorner[2][1], r_refdef.view.frustumcorner[2][2]); qglEnd(); qglBegin(GL_POLYGON); qglVertex3f(r_refdef.view.frustumcorner[0][0] + 1000 * r_refdef.view.forward[0], r_refdef.view.frustumcorner[0][1] + 1000 * r_refdef.view.forward[1], r_refdef.view.frustumcorner[0][2] + 1000 * r_refdef.view.forward[2]); qglVertex3f(r_refdef.view.frustumcorner[1][0] + 1000 * r_refdef.view.forward[0], r_refdef.view.frustumcorner[1][1] + 1000 * r_refdef.view.forward[1], r_refdef.view.frustumcorner[1][2] + 1000 * r_refdef.view.forward[2]); qglVertex3f(r_refdef.view.frustumcorner[3][0] + 1000 * r_refdef.view.forward[0], r_refdef.view.frustumcorner[3][1] + 1000 * r_refdef.view.forward[1], r_refdef.view.frustumcorner[3][2] + 1000 * r_refdef.view.forward[2]); qglVertex3f(r_refdef.view.frustumcorner[2][0] + 1000 * r_refdef.view.forward[0], r_refdef.view.frustumcorner[2][1] + 1000 * r_refdef.view.forward[1], r_refdef.view.frustumcorner[2][2] + 1000 * r_refdef.view.forward[2]); qglEnd(); qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL); } #endif // don't let sound skip if going slow if (r_refdef.scene.extraupdate) S_ExtraUpdate (); R_ResetViewRendering2D(); } static const unsigned short bboxelements[36] = { 5, 1, 3, 5, 3, 7, 6, 2, 0, 6, 0, 4, 7, 3, 2, 7, 2, 6, 4, 0, 1, 4, 1, 5, 4, 5, 7, 4, 7, 6, 1, 0, 2, 1, 2, 3, }; void R_DrawBBoxMesh(vec3_t mins, vec3_t maxs, float cr, float cg, float cb, float ca) { int i; float *v, *c, f1, f2, vertex3f[8*3], color4f[8*4]; RSurf_ActiveWorldEntity(); GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthRange(0, 1); GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset); // R_Mesh_ResetTextureState(); vertex3f[ 0] = mins[0];vertex3f[ 1] = mins[1];vertex3f[ 2] = mins[2]; // vertex3f[ 3] = maxs[0];vertex3f[ 4] = mins[1];vertex3f[ 5] = mins[2]; vertex3f[ 6] = mins[0];vertex3f[ 7] = maxs[1];vertex3f[ 8] = mins[2]; vertex3f[ 9] = maxs[0];vertex3f[10] = maxs[1];vertex3f[11] = mins[2]; vertex3f[12] = mins[0];vertex3f[13] = mins[1];vertex3f[14] = maxs[2]; vertex3f[15] = maxs[0];vertex3f[16] = mins[1];vertex3f[17] = maxs[2]; vertex3f[18] = mins[0];vertex3f[19] = maxs[1];vertex3f[20] = maxs[2]; vertex3f[21] = maxs[0];vertex3f[22] = maxs[1];vertex3f[23] = maxs[2]; R_FillColors(color4f, 8, cr, cg, cb, ca); if (r_refdef.fogenabled) { for (i = 0, v = vertex3f, c = color4f;i < 8;i++, v += 3, c += 4) { f1 = RSurf_FogVertex(v); f2 = 1 - f1; c[0] = c[0] * f1 + r_refdef.fogcolor[0] * f2; c[1] = c[1] * f1 + r_refdef.fogcolor[1] * f2; c[2] = c[2] * f1 + r_refdef.fogcolor[2] * f2; } } R_Mesh_PrepareVertices_Generic_Arrays(8, vertex3f, color4f, NULL); R_Mesh_ResetTextureState(); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); R_Mesh_Draw(0, 8, 0, 12, NULL, NULL, 0, bboxelements, NULL, 0); } static void R_DrawEntityBBoxes_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { int i; float color[4]; prvm_edict_t *edict; prvm_prog_t *prog_save = prog; // this function draws bounding boxes of server entities if (!sv.active) return; GL_CullFace(GL_NONE); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); prog = 0; SV_VM_Begin(); for (i = 0;i < numsurfaces;i++) { edict = PRVM_EDICT_NUM(surfacelist[i]); switch ((int)edict->fields.server->solid) { case SOLID_NOT: Vector4Set(color, 1, 1, 1, 0.05);break; case SOLID_TRIGGER: Vector4Set(color, 1, 0, 1, 0.10);break; case SOLID_BBOX: Vector4Set(color, 0, 1, 0, 0.10);break; case SOLID_SLIDEBOX: Vector4Set(color, 1, 0, 0, 0.10);break; case SOLID_BSP: Vector4Set(color, 0, 0, 1, 0.05);break; default: Vector4Set(color, 0, 0, 0, 0.50);break; } color[3] *= r_showbboxes.value; color[3] = bound(0, color[3], 1); GL_DepthTest(!r_showdisabledepthtest.integer); GL_CullFace(r_refdef.view.cullface_front); R_DrawBBoxMesh(edict->priv.server->areamins, edict->priv.server->areamaxs, color[0], color[1], color[2], color[3]); } SV_VM_End(); prog = prog_save; } static void R_DrawEntityBBoxes(void) { int i; prvm_edict_t *edict; vec3_t center; prvm_prog_t *prog_save = prog; // this function draws bounding boxes of server entities if (!sv.active) return; prog = 0; SV_VM_Begin(); for (i = 0;i < prog->num_edicts;i++) { edict = PRVM_EDICT_NUM(i); if (edict->priv.server->free) continue; // exclude the following for now, as they don't live in world coordinate space and can't be solid: if(PRVM_EDICTFIELDVALUE(edict, prog->fieldoffsets.tag_entity)->edict != 0) continue; if(PRVM_EDICTFIELDVALUE(edict, prog->fieldoffsets.viewmodelforclient)->edict != 0) continue; VectorLerp(edict->priv.server->areamins, 0.5f, edict->priv.server->areamaxs, center); R_MeshQueue_AddTransparent(center, R_DrawEntityBBoxes_Callback, (entity_render_t *)NULL, i, (rtlight_t *)NULL); } SV_VM_End(); prog = prog_save; } static const int nomodelelement3i[24] = { 5, 2, 0, 5, 1, 2, 5, 0, 3, 5, 3, 1, 0, 2, 4, 2, 1, 4, 3, 0, 4, 1, 3, 4 }; static const unsigned short nomodelelement3s[24] = { 5, 2, 0, 5, 1, 2, 5, 0, 3, 5, 3, 1, 0, 2, 4, 2, 1, 4, 3, 0, 4, 1, 3, 4 }; static const float nomodelvertex3f[6*3] = { -16, 0, 0, 16, 0, 0, 0, -16, 0, 0, 16, 0, 0, 0, -16, 0, 0, 16 }; static const float nomodelcolor4f[6*4] = { 0.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.0f, 0.5f, 1.0f, 0.0f, 0.5f, 0.0f, 1.0f, 0.0f, 0.5f, 0.0f, 1.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.5f, 0.0f, 0.0f, 1.0f }; void R_DrawNoModel_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { int i; float f1, f2, *c; float color4f[6*4]; RSurf_ActiveCustomEntity(&ent->matrix, &ent->inversematrix, ent->flags, ent->shadertime, ent->colormod[0], ent->colormod[1], ent->colormod[2], ent->alpha, 6, nomodelvertex3f, NULL, NULL, NULL, NULL, nomodelcolor4f, 8, nomodelelement3i, nomodelelement3s, false, false); // this is only called once per entity so numsurfaces is always 1, and // surfacelist is always {0}, so this code does not handle batches if (rsurface.ent_flags & RENDER_ADDITIVE) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); GL_DepthMask(false); } else if (rsurface.colormod[3] < 1) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); } else { GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); } GL_DepthRange(0, (rsurface.ent_flags & RENDER_VIEWMODEL) ? 0.0625 : 1); GL_PolygonOffset(rsurface.basepolygonfactor, rsurface.basepolygonoffset); GL_DepthTest(!(rsurface.ent_flags & RENDER_NODEPTHTEST)); GL_CullFace((rsurface.ent_flags & RENDER_DOUBLESIDED) ? GL_NONE : r_refdef.view.cullface_back); memcpy(color4f, nomodelcolor4f, sizeof(float[6*4])); for (i = 0, c = color4f;i < 6;i++, c += 4) { c[0] *= rsurface.colormod[0]; c[1] *= rsurface.colormod[1]; c[2] *= rsurface.colormod[2]; c[3] *= rsurface.colormod[3]; } if (r_refdef.fogenabled) { for (i = 0, c = color4f;i < 6;i++, c += 4) { f1 = RSurf_FogVertex(nomodelvertex3f + 3*i); f2 = 1 - f1; c[0] = (c[0] * f1 + r_refdef.fogcolor[0] * f2); c[1] = (c[1] * f1 + r_refdef.fogcolor[1] * f2); c[2] = (c[2] * f1 + r_refdef.fogcolor[2] * f2); } } // R_Mesh_ResetTextureState(); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); R_Mesh_PrepareVertices_Generic_Arrays(6, nomodelvertex3f, color4f, NULL); R_Mesh_Draw(0, 6, 0, 8, nomodelelement3i, NULL, 0, nomodelelement3s, NULL, 0); } void R_DrawNoModel(entity_render_t *ent) { vec3_t org; Matrix4x4_OriginFromMatrix(&ent->matrix, org); if ((ent->flags & RENDER_ADDITIVE) || (ent->alpha < 1)) R_MeshQueue_AddTransparent(ent->flags & RENDER_NODEPTHTEST ? r_refdef.view.origin : org, R_DrawNoModel_TransparentCallback, ent, 0, rsurface.rtlight); else R_DrawNoModel_TransparentCallback(ent, rsurface.rtlight, 0, NULL); } void R_CalcBeam_Vertex3f (float *vert, const vec3_t org1, const vec3_t org2, float width) { vec3_t right1, right2, diff, normal; VectorSubtract (org2, org1, normal); // calculate 'right' vector for start VectorSubtract (r_refdef.view.origin, org1, diff); CrossProduct (normal, diff, right1); VectorNormalize (right1); // calculate 'right' vector for end VectorSubtract (r_refdef.view.origin, org2, diff); CrossProduct (normal, diff, right2); VectorNormalize (right2); vert[ 0] = org1[0] + width * right1[0]; vert[ 1] = org1[1] + width * right1[1]; vert[ 2] = org1[2] + width * right1[2]; vert[ 3] = org1[0] - width * right1[0]; vert[ 4] = org1[1] - width * right1[1]; vert[ 5] = org1[2] - width * right1[2]; vert[ 6] = org2[0] - width * right2[0]; vert[ 7] = org2[1] - width * right2[1]; vert[ 8] = org2[2] - width * right2[2]; vert[ 9] = org2[0] + width * right2[0]; vert[10] = org2[1] + width * right2[1]; vert[11] = org2[2] + width * right2[2]; } void R_CalcSprite_Vertex3f(float *vertex3f, const vec3_t origin, const vec3_t left, const vec3_t up, float scalex1, float scalex2, float scaley1, float scaley2) { vertex3f[ 0] = origin[0] + left[0] * scalex2 + up[0] * scaley1; vertex3f[ 1] = origin[1] + left[1] * scalex2 + up[1] * scaley1; vertex3f[ 2] = origin[2] + left[2] * scalex2 + up[2] * scaley1; vertex3f[ 3] = origin[0] + left[0] * scalex2 + up[0] * scaley2; vertex3f[ 4] = origin[1] + left[1] * scalex2 + up[1] * scaley2; vertex3f[ 5] = origin[2] + left[2] * scalex2 + up[2] * scaley2; vertex3f[ 6] = origin[0] + left[0] * scalex1 + up[0] * scaley2; vertex3f[ 7] = origin[1] + left[1] * scalex1 + up[1] * scaley2; vertex3f[ 8] = origin[2] + left[2] * scalex1 + up[2] * scaley2; vertex3f[ 9] = origin[0] + left[0] * scalex1 + up[0] * scaley1; vertex3f[10] = origin[1] + left[1] * scalex1 + up[1] * scaley1; vertex3f[11] = origin[2] + left[2] * scalex1 + up[2] * scaley1; } int R_Mesh_AddVertex(rmesh_t *mesh, float x, float y, float z) { int i; float *vertex3f; float v[3]; VectorSet(v, x, y, z); for (i = 0, vertex3f = mesh->vertex3f;i < mesh->numvertices;i++, vertex3f += 3) if (VectorDistance2(v, vertex3f) < mesh->epsilon2) break; if (i == mesh->numvertices) { if (mesh->numvertices < mesh->maxvertices) { VectorCopy(v, vertex3f); mesh->numvertices++; } return mesh->numvertices; } else return i; } void R_Mesh_AddPolygon3f(rmesh_t *mesh, int numvertices, float *vertex3f) { int i; int *e, element[3]; element[0] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3; element[1] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]);vertex3f += 3; e = mesh->element3i + mesh->numtriangles * 3; for (i = 0;i < numvertices - 2;i++, vertex3f += 3) { element[2] = R_Mesh_AddVertex(mesh, vertex3f[0], vertex3f[1], vertex3f[2]); if (mesh->numtriangles < mesh->maxtriangles) { *e++ = element[0]; *e++ = element[1]; *e++ = element[2]; mesh->numtriangles++; } element[1] = element[2]; } } void R_Mesh_AddPolygon3d(rmesh_t *mesh, int numvertices, double *vertex3d) { int i; int *e, element[3]; element[0] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3; element[1] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]);vertex3d += 3; e = mesh->element3i + mesh->numtriangles * 3; for (i = 0;i < numvertices - 2;i++, vertex3d += 3) { element[2] = R_Mesh_AddVertex(mesh, vertex3d[0], vertex3d[1], vertex3d[2]); if (mesh->numtriangles < mesh->maxtriangles) { *e++ = element[0]; *e++ = element[1]; *e++ = element[2]; mesh->numtriangles++; } element[1] = element[2]; } } #define R_MESH_PLANE_DIST_EPSILON (1.0 / 32.0) void R_Mesh_AddBrushMeshFromPlanes(rmesh_t *mesh, int numplanes, mplane_t *planes) { int planenum, planenum2; int w; int tempnumpoints; mplane_t *plane, *plane2; double maxdist; double temppoints[2][256*3]; // figure out how large a bounding box we need to properly compute this brush maxdist = 0; for (w = 0;w < numplanes;w++) maxdist = max(maxdist, fabs(planes[w].dist)); // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024 maxdist = floor(maxdist * (4.0 / 1024.0) + 1) * 1024.0; for (planenum = 0, plane = planes;planenum < numplanes;planenum++, plane++) { w = 0; tempnumpoints = 4; PolygonD_QuadForPlane(temppoints[w], plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, maxdist); for (planenum2 = 0, plane2 = planes;planenum2 < numplanes && tempnumpoints >= 3;planenum2++, plane2++) { if (planenum2 == planenum) continue; PolygonD_Divide(tempnumpoints, temppoints[w], plane2->normal[0], plane2->normal[1], plane2->normal[2], plane2->dist, R_MESH_PLANE_DIST_EPSILON, 0, NULL, NULL, 256, temppoints[!w], &tempnumpoints, NULL); w = !w; } if (tempnumpoints < 3) continue; // generate elements forming a triangle fan for this polygon R_Mesh_AddPolygon3d(mesh, tempnumpoints, temppoints[w]); } } static void R_Texture_AddLayer(texture_t *t, qboolean depthmask, int blendfunc1, int blendfunc2, texturelayertype_t type, rtexture_t *texture, const matrix4x4_t *matrix, float r, float g, float b, float a) { texturelayer_t *layer; layer = t->currentlayers + t->currentnumlayers++; layer->type = type; layer->depthmask = depthmask; layer->blendfunc1 = blendfunc1; layer->blendfunc2 = blendfunc2; layer->texture = texture; layer->texmatrix = *matrix; layer->color[0] = r; layer->color[1] = g; layer->color[2] = b; layer->color[3] = a; } static qboolean R_TestQ3WaveFunc(q3wavefunc_t func, const float *parms) { if(parms[0] == 0 && parms[1] == 0) return false; if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set! if(rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT)] == 0) return false; return true; } static float R_EvaluateQ3WaveFunc(q3wavefunc_t func, const float *parms) { double index, f; index = parms[2] + r_refdef.scene.time * parms[3]; index -= floor(index); switch (func & ((1 << Q3WAVEFUNC_USER_SHIFT) - 1)) { default: case Q3WAVEFUNC_NONE: case Q3WAVEFUNC_NOISE: case Q3WAVEFUNC_COUNT: f = 0; break; case Q3WAVEFUNC_SIN: f = sin(index * M_PI * 2);break; case Q3WAVEFUNC_SQUARE: f = index < 0.5 ? 1 : -1;break; case Q3WAVEFUNC_SAWTOOTH: f = index;break; case Q3WAVEFUNC_INVERSESAWTOOTH: f = 1 - index;break; case Q3WAVEFUNC_TRIANGLE: index *= 4; f = index - floor(index); if (index < 1) f = f; else if (index < 2) f = 1 - f; else if (index < 3) f = -f; else f = -(1 - f); break; } f = parms[0] + parms[1] * f; if(func >> Q3WAVEFUNC_USER_SHIFT) // assumes rsurface to be set! f *= rsurface.userwavefunc_param[bound(0, (func >> Q3WAVEFUNC_USER_SHIFT) - 1, Q3WAVEFUNC_USER_COUNT)]; return (float) f; } void R_tcMod_ApplyToMatrix(matrix4x4_t *texmatrix, q3shaderinfo_layer_tcmod_t *tcmod, int currentmaterialflags) { int w, h, idx; float f; float tcmat[12]; matrix4x4_t matrix, temp; switch(tcmod->tcmod) { case Q3TCMOD_COUNT: case Q3TCMOD_NONE: if (currentmaterialflags & MATERIALFLAG_WATERSCROLL) matrix = r_waterscrollmatrix; else matrix = identitymatrix; break; case Q3TCMOD_ENTITYTRANSLATE: // this is used in Q3 to allow the gamecode to control texcoord // scrolling on the entity, which is not supported in darkplaces yet. Matrix4x4_CreateTranslate(&matrix, 0, 0, 0); break; case Q3TCMOD_ROTATE: Matrix4x4_CreateTranslate(&matrix, 0.5, 0.5, 0); Matrix4x4_ConcatRotate(&matrix, tcmod->parms[0] * r_refdef.scene.time, 0, 0, 1); Matrix4x4_ConcatTranslate(&matrix, -0.5, -0.5, 0); break; case Q3TCMOD_SCALE: Matrix4x4_CreateScale3(&matrix, tcmod->parms[0], tcmod->parms[1], 1); break; case Q3TCMOD_SCROLL: Matrix4x4_CreateTranslate(&matrix, tcmod->parms[0] * r_refdef.scene.time, tcmod->parms[1] * r_refdef.scene.time, 0); break; case Q3TCMOD_PAGE: // poor man's animmap (to store animations into a single file, useful for HTTP downloaded textures) w = (int) tcmod->parms[0]; h = (int) tcmod->parms[1]; f = r_refdef.scene.time / (tcmod->parms[2] * w * h); f = f - floor(f); idx = (int) floor(f * w * h); Matrix4x4_CreateTranslate(&matrix, (idx % w) / tcmod->parms[0], (idx / w) / tcmod->parms[1], 0); break; case Q3TCMOD_STRETCH: f = 1.0f / R_EvaluateQ3WaveFunc(tcmod->wavefunc, tcmod->waveparms); Matrix4x4_CreateFromQuakeEntity(&matrix, 0.5f * (1 - f), 0.5 * (1 - f), 0, 0, 0, 0, f); break; case Q3TCMOD_TRANSFORM: VectorSet(tcmat + 0, tcmod->parms[0], tcmod->parms[1], 0); VectorSet(tcmat + 3, tcmod->parms[2], tcmod->parms[3], 0); VectorSet(tcmat + 6, 0 , 0 , 1); VectorSet(tcmat + 9, tcmod->parms[4], tcmod->parms[5], 0); Matrix4x4_FromArray12FloatGL(&matrix, tcmat); break; case Q3TCMOD_TURBULENT: // this is handled in the RSurf_PrepareVertices function matrix = identitymatrix; break; } temp = *texmatrix; Matrix4x4_Concat(texmatrix, &matrix, &temp); } void R_LoadQWSkin(r_qwskincache_t *cache, const char *skinname) { int textureflags = (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_PICMIP | TEXF_COMPRESS; char name[MAX_QPATH]; skinframe_t *skinframe; unsigned char pixels[296*194]; strlcpy(cache->name, skinname, sizeof(cache->name)); dpsnprintf(name, sizeof(name), "skins/%s.pcx", cache->name); if (developer_loading.integer) Con_Printf("loading %s\n", name); skinframe = R_SkinFrame_Find(name, textureflags, 0, 0, 0, false); if (!skinframe || !skinframe->base) { unsigned char *f; fs_offset_t filesize; skinframe = NULL; f = FS_LoadFile(name, tempmempool, true, &filesize); if (f) { if (LoadPCX_QWSkin(f, (int)filesize, pixels, 296, 194)) skinframe = R_SkinFrame_LoadInternalQuake(name, textureflags, true, r_fullbrights.integer, pixels, image_width, image_height); Mem_Free(f); } } cache->skinframe = skinframe; } texture_t *R_GetCurrentTexture(texture_t *t) { int i; const entity_render_t *ent = rsurface.entity; dp_model_t *model = ent->model; q3shaderinfo_layer_tcmod_t *tcmod; if (t->update_lastrenderframe == r_textureframe && t->update_lastrenderentity == (void *)ent) return t->currentframe; t->update_lastrenderframe = r_textureframe; t->update_lastrenderentity = (void *)ent; if(ent && ent->entitynumber >= MAX_EDICTS && ent->entitynumber < 2 * MAX_EDICTS) t->camera_entity = ent->entitynumber; else t->camera_entity = 0; // switch to an alternate material if this is a q1bsp animated material { texture_t *texture = t; int s = rsurface.ent_skinnum; if ((unsigned int)s >= (unsigned int)model->numskins) s = 0; if (model->skinscenes) { if (model->skinscenes[s].framecount > 1) s = model->skinscenes[s].firstframe + (unsigned int) (r_refdef.scene.time * model->skinscenes[s].framerate) % model->skinscenes[s].framecount; else s = model->skinscenes[s].firstframe; } if (s > 0) t = t + s * model->num_surfaces; if (t->animated) { // use an alternate animation if the entity's frame is not 0, // and only if the texture has an alternate animation if (rsurface.ent_alttextures && t->anim_total[1]) t = t->anim_frames[1][(t->anim_total[1] >= 2) ? ((int)(r_refdef.scene.time * 5.0f) % t->anim_total[1]) : 0]; else t = t->anim_frames[0][(t->anim_total[0] >= 2) ? ((int)(r_refdef.scene.time * 5.0f) % t->anim_total[0]) : 0]; } texture->currentframe = t; } // update currentskinframe to be a qw skin or animation frame if (rsurface.ent_qwskin >= 0) { i = rsurface.ent_qwskin; if (!r_qwskincache || r_qwskincache_size != cl.maxclients) { r_qwskincache_size = cl.maxclients; if (r_qwskincache) Mem_Free(r_qwskincache); r_qwskincache = (r_qwskincache_t *)Mem_Alloc(r_main_mempool, sizeof(*r_qwskincache) * r_qwskincache_size); } if (strcmp(r_qwskincache[i].name, cl.scores[i].qw_skin)) R_LoadQWSkin(&r_qwskincache[i], cl.scores[i].qw_skin); t->currentskinframe = r_qwskincache[i].skinframe; if (t->currentskinframe == NULL) t->currentskinframe = t->skinframes[(unsigned int)(t->skinframerate * (cl.time - rsurface.ent_shadertime)) % t->numskinframes]; } else if (t->numskinframes >= 2) t->currentskinframe = t->skinframes[(unsigned int)(t->skinframerate * (cl.time - rsurface.ent_shadertime)) % t->numskinframes]; if (t->backgroundnumskinframes >= 2) t->backgroundcurrentskinframe = t->backgroundskinframes[(unsigned int)(t->backgroundskinframerate * (cl.time - rsurface.ent_shadertime)) % t->backgroundnumskinframes]; t->currentmaterialflags = t->basematerialflags; t->currentalpha = rsurface.colormod[3]; if (t->basematerialflags & MATERIALFLAG_WATERALPHA && (model->brush.supportwateralpha || r_novis.integer)) t->currentalpha *= r_wateralpha.value; if(t->basematerialflags & MATERIALFLAG_WATERSHADER && r_waterstate.enabled && !r_refdef.view.isoverlay) t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // we apply wateralpha later if(!r_waterstate.enabled || r_refdef.view.isoverlay) t->currentmaterialflags &= ~(MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA); if (!(rsurface.ent_flags & RENDER_LIGHT)) t->currentmaterialflags |= MATERIALFLAG_FULLBRIGHT; else if (FAKELIGHT_ENABLED) { // no modellight if using fakelight for the map } else if (rsurface.modeltexcoordlightmap2f == NULL && !(t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)) { // pick a model lighting mode if (VectorLength2(rsurface.modellight_diffuse) >= (1.0f / 256.0f)) t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT | MATERIALFLAG_MODELLIGHT_DIRECTIONAL; else t->currentmaterialflags |= MATERIALFLAG_MODELLIGHT; } if (rsurface.ent_flags & RENDER_ADDITIVE) t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; else if (t->currentalpha < 1) t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; if (rsurface.ent_flags & RENDER_DOUBLESIDED) t->currentmaterialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE; if (rsurface.ent_flags & (RENDER_NODEPTHTEST | RENDER_VIEWMODEL)) t->currentmaterialflags |= MATERIALFLAG_SHORTDEPTHRANGE; if (t->backgroundnumskinframes) t->currentmaterialflags |= MATERIALFLAG_VERTEXTEXTUREBLEND; if (t->currentmaterialflags & MATERIALFLAG_BLENDED) { if (t->currentmaterialflags & (MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA)) t->currentmaterialflags &= ~MATERIALFLAG_BLENDED; } else t->currentmaterialflags &= ~(MATERIALFLAG_REFRACTION | MATERIALFLAG_WATERSHADER | MATERIALFLAG_CAMERA); if ((t->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST)) == MATERIALFLAG_BLENDED && r_transparentdepthmasking.integer && !(t->basematerialflags & MATERIALFLAG_BLENDED)) t->currentmaterialflags |= MATERIALFLAG_TRANSDEPTH; // there is no tcmod if (t->currentmaterialflags & MATERIALFLAG_WATERSCROLL) { t->currenttexmatrix = r_waterscrollmatrix; t->currentbackgroundtexmatrix = r_waterscrollmatrix; } else if (!(t->currentmaterialflags & MATERIALFLAG_CUSTOMSURFACE)) { Matrix4x4_CreateIdentity(&t->currenttexmatrix); Matrix4x4_CreateIdentity(&t->currentbackgroundtexmatrix); } for (i = 0, tcmod = t->tcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++) R_tcMod_ApplyToMatrix(&t->currenttexmatrix, tcmod, t->currentmaterialflags); for (i = 0, tcmod = t->backgroundtcmods;i < Q3MAXTCMODS && tcmod->tcmod;i++, tcmod++) R_tcMod_ApplyToMatrix(&t->currentbackgroundtexmatrix, tcmod, t->currentmaterialflags); t->colormapping = VectorLength2(rsurface.colormap_pantscolor) + VectorLength2(rsurface.colormap_shirtcolor) >= (1.0f / 1048576.0f); if (t->currentskinframe->qpixels) R_SkinFrame_GenerateTexturesFromQPixels(t->currentskinframe, t->colormapping); t->basetexture = (!t->colormapping && t->currentskinframe->merged) ? t->currentskinframe->merged : t->currentskinframe->base; if (!t->basetexture) t->basetexture = r_texture_notexture; t->pantstexture = t->colormapping ? t->currentskinframe->pants : NULL; t->shirttexture = t->colormapping ? t->currentskinframe->shirt : NULL; t->nmaptexture = t->currentskinframe->nmap; if (!t->nmaptexture) t->nmaptexture = r_texture_blanknormalmap; t->glosstexture = r_texture_black; t->glowtexture = t->currentskinframe->glow; t->fogtexture = t->currentskinframe->fog; t->reflectmasktexture = t->currentskinframe->reflect; if (t->backgroundnumskinframes) { t->backgroundbasetexture = (!t->colormapping && t->backgroundcurrentskinframe->merged) ? t->backgroundcurrentskinframe->merged : t->backgroundcurrentskinframe->base; t->backgroundnmaptexture = t->backgroundcurrentskinframe->nmap; t->backgroundglosstexture = r_texture_black; t->backgroundglowtexture = t->backgroundcurrentskinframe->glow; if (!t->backgroundnmaptexture) t->backgroundnmaptexture = r_texture_blanknormalmap; } else { t->backgroundbasetexture = r_texture_white; t->backgroundnmaptexture = r_texture_blanknormalmap; t->backgroundglosstexture = r_texture_black; t->backgroundglowtexture = NULL; } t->specularpower = r_shadow_glossexponent.value; // TODO: store reference values for these in the texture? t->specularscale = 0; if (r_shadow_gloss.integer > 0) { if (t->currentskinframe->gloss || (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss)) { if (r_shadow_glossintensity.value > 0) { t->glosstexture = t->currentskinframe->gloss ? t->currentskinframe->gloss : r_texture_white; t->backgroundglosstexture = (t->backgroundcurrentskinframe && t->backgroundcurrentskinframe->gloss) ? t->backgroundcurrentskinframe->gloss : r_texture_white; t->specularscale = r_shadow_glossintensity.value; } } else if (r_shadow_gloss.integer >= 2 && r_shadow_gloss2intensity.value > 0) { t->glosstexture = r_texture_white; t->backgroundglosstexture = r_texture_white; t->specularscale = r_shadow_gloss2intensity.value; t->specularpower = r_shadow_gloss2exponent.value; } } t->specularscale *= t->specularscalemod; t->specularpower *= t->specularpowermod; // lightmaps mode looks bad with dlights using actual texturing, so turn // off the colormap and glossmap, but leave the normalmap on as it still // accurately represents the shading involved if (gl_lightmaps.integer) { t->basetexture = r_texture_grey128; t->pantstexture = r_texture_black; t->shirttexture = r_texture_black; t->nmaptexture = r_texture_blanknormalmap; t->glosstexture = r_texture_black; t->glowtexture = NULL; t->fogtexture = NULL; t->reflectmasktexture = NULL; t->backgroundbasetexture = NULL; t->backgroundnmaptexture = r_texture_blanknormalmap; t->backgroundglosstexture = r_texture_black; t->backgroundglowtexture = NULL; t->specularscale = 0; t->currentmaterialflags = MATERIALFLAG_WALL | (t->currentmaterialflags & (MATERIALFLAG_NOCULLFACE | MATERIALFLAG_MODELLIGHT | MATERIALFLAG_MODELLIGHT_DIRECTIONAL | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SHORTDEPTHRANGE)); } Vector4Set(t->lightmapcolor, rsurface.colormod[0], rsurface.colormod[1], rsurface.colormod[2], t->currentalpha); VectorClear(t->dlightcolor); t->currentnumlayers = 0; if (t->currentmaterialflags & MATERIALFLAG_WALL) { int blendfunc1, blendfunc2; qboolean depthmask; if (t->currentmaterialflags & MATERIALFLAG_ADD) { blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE; } else if (t->currentmaterialflags & MATERIALFLAG_ALPHA) { blendfunc1 = GL_SRC_ALPHA; blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; } else if (t->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND) { blendfunc1 = t->customblendfunc[0]; blendfunc2 = t->customblendfunc[1]; } else { blendfunc1 = GL_ONE; blendfunc2 = GL_ZERO; } // don't colormod evilblend textures if(!R_BlendFuncAllowsColormod(blendfunc1, blendfunc2)) VectorSet(t->lightmapcolor, 1, 1, 1); depthmask = !(t->currentmaterialflags & MATERIALFLAG_BLENDED); if (t->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) { // fullbright is not affected by r_refdef.lightmapintensity R_Texture_AddLayer(t, depthmask, blendfunc1, blendfunc2, TEXTURELAYERTYPE_TEXTURE, t->basetexture, &t->currenttexmatrix, t->lightmapcolor[0], t->lightmapcolor[1], t->lightmapcolor[2], t->lightmapcolor[3]); if (VectorLength2(rsurface.colormap_pantscolor) >= (1.0f / 1048576.0f) && t->pantstexture) R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->pantstexture, &t->currenttexmatrix, rsurface.colormap_pantscolor[0] * t->lightmapcolor[0], rsurface.colormap_pantscolor[1] * t->lightmapcolor[1], rsurface.colormap_pantscolor[2] * t->lightmapcolor[2], t->lightmapcolor[3]); if (VectorLength2(rsurface.colormap_shirtcolor) >= (1.0f / 1048576.0f) && t->shirttexture) R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->shirttexture, &t->currenttexmatrix, rsurface.colormap_shirtcolor[0] * t->lightmapcolor[0], rsurface.colormap_shirtcolor[1] * t->lightmapcolor[1], rsurface.colormap_shirtcolor[2] * t->lightmapcolor[2], t->lightmapcolor[3]); } else { vec3_t ambientcolor; float colorscale; // set the color tint used for lights affecting this surface VectorSet(t->dlightcolor, t->lightmapcolor[0] * t->lightmapcolor[3], t->lightmapcolor[1] * t->lightmapcolor[3], t->lightmapcolor[2] * t->lightmapcolor[3]); colorscale = 2; // q3bsp has no lightmap updates, so the lightstylevalue that // would normally be baked into the lightmap must be // applied to the color // FIXME: r_glsl 1 rendering doesn't support overbright lightstyles with this (the default light style is not overbright) if (model->type == mod_brushq3) colorscale *= r_refdef.scene.rtlightstylevalue[0]; colorscale *= r_refdef.lightmapintensity; VectorScale(t->lightmapcolor, r_refdef.scene.ambient, ambientcolor); VectorScale(t->lightmapcolor, colorscale, t->lightmapcolor); // basic lit geometry R_Texture_AddLayer(t, depthmask, blendfunc1, blendfunc2, TEXTURELAYERTYPE_LITTEXTURE, t->basetexture, &t->currenttexmatrix, t->lightmapcolor[0], t->lightmapcolor[1], t->lightmapcolor[2], t->lightmapcolor[3]); // add pants/shirt if needed if (VectorLength2(rsurface.colormap_pantscolor) >= (1.0f / 1048576.0f) && t->pantstexture) R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_LITTEXTURE, t->pantstexture, &t->currenttexmatrix, rsurface.colormap_pantscolor[0] * t->lightmapcolor[0], rsurface.colormap_pantscolor[1] * t->lightmapcolor[1], rsurface.colormap_pantscolor[2] * t->lightmapcolor[2], t->lightmapcolor[3]); if (VectorLength2(rsurface.colormap_shirtcolor) >= (1.0f / 1048576.0f) && t->shirttexture) R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_LITTEXTURE, t->shirttexture, &t->currenttexmatrix, rsurface.colormap_shirtcolor[0] * t->lightmapcolor[0], rsurface.colormap_shirtcolor[1] * t->lightmapcolor[1], rsurface.colormap_shirtcolor[2] * t->lightmapcolor[2], t->lightmapcolor[3]); // now add ambient passes if needed if (VectorLength2(ambientcolor) >= (1.0f/1048576.0f)) { R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->basetexture, &t->currenttexmatrix, ambientcolor[0], ambientcolor[1], ambientcolor[2], t->lightmapcolor[3]); if (VectorLength2(rsurface.colormap_pantscolor) >= (1.0f / 1048576.0f) && t->pantstexture) R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->pantstexture, &t->currenttexmatrix, rsurface.colormap_pantscolor[0] * ambientcolor[0], rsurface.colormap_pantscolor[1] * ambientcolor[1], rsurface.colormap_pantscolor[2] * ambientcolor[2], t->lightmapcolor[3]); if (VectorLength2(rsurface.colormap_shirtcolor) >= (1.0f / 1048576.0f) && t->shirttexture) R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->shirttexture, &t->currenttexmatrix, rsurface.colormap_shirtcolor[0] * ambientcolor[0], rsurface.colormap_shirtcolor[1] * ambientcolor[1], rsurface.colormap_shirtcolor[2] * ambientcolor[2], t->lightmapcolor[3]); } } if (t->glowtexture != NULL && !gl_lightmaps.integer) R_Texture_AddLayer(t, false, GL_SRC_ALPHA, GL_ONE, TEXTURELAYERTYPE_TEXTURE, t->glowtexture, &t->currenttexmatrix, rsurface.glowmod[0], rsurface.glowmod[1], rsurface.glowmod[2], t->lightmapcolor[3]); if (r_refdef.fogenabled && !(t->currentmaterialflags & MATERIALFLAG_ADD)) { // if this is opaque use alpha blend which will darken the earlier // passes cheaply. // // if this is an alpha blended material, all the earlier passes // were darkened by fog already, so we only need to add the fog // color ontop through the fog mask texture // // if this is an additive blended material, all the earlier passes // were darkened by fog already, and we should not add fog color // (because the background was not darkened, there is no fog color // that was lost behind it). R_Texture_AddLayer(t, false, GL_SRC_ALPHA, (t->currentmaterialflags & MATERIALFLAG_BLENDED) ? GL_ONE : GL_ONE_MINUS_SRC_ALPHA, TEXTURELAYERTYPE_FOG, t->fogtexture, &t->currenttexmatrix, r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], t->lightmapcolor[3]); } } return t->currentframe; } rsurfacestate_t rsurface; void R_Mesh_ResizeArrays(int newvertices) { unsigned char *base; size_t size; if (rsurface.array_size >= newvertices) return; if (rsurface.array_base) Mem_Free(rsurface.array_base); rsurface.array_size = (newvertices + 1023) & ~1023; size = 0; size += rsurface.array_size * sizeof(*rsurface.array_modelvertexmesh); size += rsurface.array_size * sizeof(*rsurface.array_batchvertexmesh); size += rsurface.array_size * sizeof(*rsurface.array_modelvertexposition); size += rsurface.array_size * sizeof(*rsurface.array_batchvertexposition); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[3]); size += rsurface.array_size * sizeof(float[4]); size += rsurface.array_size * sizeof(float[2]); size += rsurface.array_size * sizeof(float[2]); size += rsurface.array_size * sizeof(float[4]); size += rsurface.array_size * sizeof(int[3]); size += rsurface.array_size * sizeof(unsigned short[3]); rsurface.array_base = base = (unsigned char *)Mem_Alloc(r_main_mempool, size); rsurface.array_modelvertexmesh = (r_vertexmesh_t *)base;base += rsurface.array_size * sizeof(*rsurface.array_modelvertexmesh); rsurface.array_batchvertexmesh = (r_vertexmesh_t *)base;base += rsurface.array_size * sizeof(*rsurface.array_batchvertexmesh); rsurface.array_modelvertexposition = (r_vertexposition_t *)base;base += rsurface.array_size * sizeof(*rsurface.array_modelvertexposition); rsurface.array_batchvertexposition = (r_vertexposition_t *)base;base += rsurface.array_size * sizeof(*rsurface.array_batchvertexposition); rsurface.array_modelvertex3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_modelsvector3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_modeltvector3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_modelnormal3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_batchvertex3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_batchsvector3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_batchtvector3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_batchnormal3f = (float *)base;base += rsurface.array_size * sizeof(float[3]); rsurface.array_batchlightmapcolor4f = (float *)base;base += rsurface.array_size * sizeof(float[4]); rsurface.array_batchtexcoordtexture2f = (float *)base;base += rsurface.array_size * sizeof(float[2]); rsurface.array_batchtexcoordlightmap2f = (float *)base;base += rsurface.array_size * sizeof(float[2]); rsurface.array_passcolor4f = (float *)base;base += rsurface.array_size * sizeof(float[4]); rsurface.array_batchelement3i = (int *)base;base += rsurface.array_size * sizeof(int[3]); rsurface.array_batchelement3s = (unsigned short *)base;base += rsurface.array_size * sizeof(unsigned short[3]); } void RSurf_ActiveWorldEntity(void) { int newvertices; dp_model_t *model = r_refdef.scene.worldmodel; //if (rsurface.entity == r_refdef.scene.worldentity) // return; rsurface.entity = r_refdef.scene.worldentity; rsurface.skeleton = NULL; memset(rsurface.userwavefunc_param, 0, sizeof(rsurface.userwavefunc_param)); rsurface.ent_skinnum = 0; rsurface.ent_qwskin = -1; rsurface.ent_shadertime = 0; rsurface.ent_flags = r_refdef.scene.worldentity->flags; newvertices = max(model->surfmesh.num_vertices, model->surfmesh.num_triangles); if (rsurface.array_size < newvertices) R_Mesh_ResizeArrays(newvertices); rsurface.matrix = identitymatrix; rsurface.inversematrix = identitymatrix; rsurface.matrixscale = 1; rsurface.inversematrixscale = 1; R_EntityMatrix(&identitymatrix); VectorCopy(r_refdef.view.origin, rsurface.localvieworigin); Vector4Copy(r_refdef.fogplane, rsurface.fogplane); rsurface.fograngerecip = r_refdef.fograngerecip; rsurface.fogheightfade = r_refdef.fogheightfade; rsurface.fogplaneviewdist = r_refdef.fogplaneviewdist; rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip; VectorSet(rsurface.modellight_ambient, 0, 0, 0); VectorSet(rsurface.modellight_diffuse, 0, 0, 0); VectorSet(rsurface.modellight_lightdir, 0, 0, 1); VectorSet(rsurface.colormap_pantscolor, 0, 0, 0); VectorSet(rsurface.colormap_shirtcolor, 0, 0, 0); VectorSet(rsurface.colormod, r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale); rsurface.colormod[3] = 1; VectorSet(rsurface.glowmod, r_refdef.view.colorscale * r_hdr_glowintensity.value, r_refdef.view.colorscale * r_hdr_glowintensity.value, r_refdef.view.colorscale * r_hdr_glowintensity.value); memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend)); rsurface.frameblend[0].lerp = 1; rsurface.ent_alttextures = false; rsurface.basepolygonfactor = r_refdef.polygonfactor; rsurface.basepolygonoffset = r_refdef.polygonoffset; rsurface.modelvertex3f = model->surfmesh.data_vertex3f; rsurface.modelvertex3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modelvertex3f_bufferoffset = model->surfmesh.vbooffset_vertex3f; rsurface.modelsvector3f = model->surfmesh.data_svector3f; rsurface.modelsvector3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modelsvector3f_bufferoffset = model->surfmesh.vbooffset_svector3f; rsurface.modeltvector3f = model->surfmesh.data_tvector3f; rsurface.modeltvector3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modeltvector3f_bufferoffset = model->surfmesh.vbooffset_tvector3f; rsurface.modelnormal3f = model->surfmesh.data_normal3f; rsurface.modelnormal3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modelnormal3f_bufferoffset = model->surfmesh.vbooffset_normal3f; rsurface.modellightmapcolor4f = model->surfmesh.data_lightmapcolor4f; rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.vbooffset_lightmapcolor4f; rsurface.modeltexcoordtexture2f = model->surfmesh.data_texcoordtexture2f; rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.vbooffset_texcoordtexture2f; rsurface.modeltexcoordlightmap2f = model->surfmesh.data_texcoordlightmap2f; rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.vbooffset_texcoordlightmap2f; rsurface.modelelement3i = model->surfmesh.data_element3i; rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer; rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset; rsurface.modelelement3s = model->surfmesh.data_element3s; rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer; rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset; rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets; rsurface.modelnumvertices = model->surfmesh.num_vertices; rsurface.modelnumtriangles = model->surfmesh.num_triangles; rsurface.modelsurfaces = model->data_surfaces; rsurface.modelvertexmesh = model->surfmesh.vertexmesh; rsurface.modelvertexmeshbuffer = model->surfmesh.vertexmeshbuffer; rsurface.modelvertexposition = model->surfmesh.vertexposition; rsurface.modelvertexpositionbuffer = model->surfmesh.vertexpositionbuffer; rsurface.modelgeneratedvertex = false; rsurface.batchgeneratedvertex = false; rsurface.batchfirstvertex = 0; rsurface.batchnumvertices = 0; rsurface.batchfirsttriangle = 0; rsurface.batchnumtriangles = 0; rsurface.batchvertex3f = NULL; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; rsurface.batchsvector3f = NULL; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = NULL; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; rsurface.batchnormal3f = NULL; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; rsurface.batchlightmapcolor4f = NULL; rsurface.batchlightmapcolor4f_vertexbuffer = NULL; rsurface.batchlightmapcolor4f_bufferoffset = 0; rsurface.batchtexcoordtexture2f = NULL; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; rsurface.batchtexcoordlightmap2f = NULL; rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL; rsurface.batchtexcoordlightmap2f_bufferoffset = 0; rsurface.batchvertexmesh = NULL; rsurface.batchvertexmeshbuffer = NULL; rsurface.batchvertexposition = NULL; rsurface.batchvertexpositionbuffer = NULL; rsurface.batchelement3i = NULL; rsurface.batchelement3i_indexbuffer = NULL; rsurface.batchelement3i_bufferoffset = 0; rsurface.batchelement3s = NULL; rsurface.batchelement3s_indexbuffer = NULL; rsurface.batchelement3s_bufferoffset = 0; rsurface.passcolor4f = NULL; rsurface.passcolor4f_vertexbuffer = NULL; rsurface.passcolor4f_bufferoffset = 0; } void RSurf_ActiveModelEntity(const entity_render_t *ent, qboolean wantnormals, qboolean wanttangents, qboolean prepass) { int newvertices; dp_model_t *model = ent->model; //if (rsurface.entity == ent && (!model->surfmesh.isanimated || (!wantnormals && !wanttangents))) // return; rsurface.entity = (entity_render_t *)ent; rsurface.skeleton = ent->skeleton; memcpy(rsurface.userwavefunc_param, ent->userwavefunc_param, sizeof(rsurface.userwavefunc_param)); rsurface.ent_skinnum = ent->skinnum; rsurface.ent_qwskin = (ent->entitynumber <= cl.maxclients && ent->entitynumber >= 1 && cls.protocol == PROTOCOL_QUAKEWORLD && cl.scores[ent->entitynumber - 1].qw_skin[0] && !strcmp(ent->model->name, "progs/player.mdl")) ? (ent->entitynumber - 1) : -1; rsurface.ent_shadertime = ent->shadertime; rsurface.ent_flags = ent->flags; newvertices = max(model->surfmesh.num_vertices, model->surfmesh.num_triangles); if (rsurface.array_size < newvertices) R_Mesh_ResizeArrays(newvertices); rsurface.matrix = ent->matrix; rsurface.inversematrix = ent->inversematrix; rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix); rsurface.inversematrixscale = 1.0f / rsurface.matrixscale; R_EntityMatrix(&rsurface.matrix); Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin); Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane); rsurface.fogplaneviewdist *= rsurface.inversematrixscale; rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale; rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale; rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip; VectorCopy(ent->modellight_ambient, rsurface.modellight_ambient); VectorCopy(ent->modellight_diffuse, rsurface.modellight_diffuse); VectorCopy(ent->modellight_lightdir, rsurface.modellight_lightdir); VectorCopy(ent->colormap_pantscolor, rsurface.colormap_pantscolor); VectorCopy(ent->colormap_shirtcolor, rsurface.colormap_shirtcolor); VectorScale(ent->colormod, r_refdef.view.colorscale, rsurface.colormod); rsurface.colormod[3] = ent->alpha; VectorScale(ent->glowmod, r_refdef.view.colorscale * r_hdr_glowintensity.value, rsurface.glowmod); memcpy(rsurface.frameblend, ent->frameblend, sizeof(ent->frameblend)); rsurface.ent_alttextures = ent->framegroupblend[0].frame != 0; rsurface.basepolygonfactor = r_refdef.polygonfactor; rsurface.basepolygonoffset = r_refdef.polygonoffset; if (ent->model->brush.submodel && !prepass) { rsurface.basepolygonfactor += r_polygonoffset_submodel_factor.value; rsurface.basepolygonoffset += r_polygonoffset_submodel_offset.value; } if (model->surfmesh.isanimated && model->AnimateVertices && (rsurface.frameblend[0].lerp != 1 || rsurface.frameblend[0].subframe != 0)) { if (ent->animcache_vertex3f && !r_framedata_failed) { rsurface.modelvertex3f = ent->animcache_vertex3f; rsurface.modelsvector3f = wanttangents ? ent->animcache_svector3f : NULL; rsurface.modeltvector3f = wanttangents ? ent->animcache_tvector3f : NULL; rsurface.modelnormal3f = wantnormals ? ent->animcache_normal3f : NULL; rsurface.modelvertexmesh = ent->animcache_vertexmesh; rsurface.modelvertexmeshbuffer = ent->animcache_vertexmeshbuffer; rsurface.modelvertexposition = ent->animcache_vertexposition; rsurface.modelvertexpositionbuffer = ent->animcache_vertexpositionbuffer; } else if (wanttangents) { rsurface.modelvertex3f = rsurface.array_modelvertex3f; rsurface.modelsvector3f = rsurface.array_modelsvector3f; rsurface.modeltvector3f = rsurface.array_modeltvector3f; rsurface.modelnormal3f = rsurface.array_modelnormal3f; model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.array_modelvertex3f, rsurface.array_modelnormal3f, rsurface.array_modelsvector3f, rsurface.array_modeltvector3f); rsurface.modelvertexmesh = NULL; rsurface.modelvertexmeshbuffer = NULL; rsurface.modelvertexposition = NULL; rsurface.modelvertexpositionbuffer = NULL; } else if (wantnormals) { rsurface.modelvertex3f = rsurface.array_modelvertex3f; rsurface.modelsvector3f = NULL; rsurface.modeltvector3f = NULL; rsurface.modelnormal3f = rsurface.array_modelnormal3f; model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.array_modelvertex3f, rsurface.array_modelnormal3f, NULL, NULL); rsurface.modelvertexmesh = NULL; rsurface.modelvertexmeshbuffer = NULL; rsurface.modelvertexposition = NULL; rsurface.modelvertexpositionbuffer = NULL; } else { rsurface.modelvertex3f = rsurface.array_modelvertex3f; rsurface.modelsvector3f = NULL; rsurface.modeltvector3f = NULL; rsurface.modelnormal3f = NULL; model->AnimateVertices(model, rsurface.frameblend, rsurface.skeleton, rsurface.array_modelvertex3f, NULL, NULL, NULL); rsurface.modelvertexmesh = NULL; rsurface.modelvertexmeshbuffer = NULL; rsurface.modelvertexposition = NULL; rsurface.modelvertexpositionbuffer = NULL; } rsurface.modelvertex3f_vertexbuffer = 0; rsurface.modelvertex3f_bufferoffset = 0; rsurface.modelsvector3f_vertexbuffer = 0; rsurface.modelsvector3f_bufferoffset = 0; rsurface.modeltvector3f_vertexbuffer = 0; rsurface.modeltvector3f_bufferoffset = 0; rsurface.modelnormal3f_vertexbuffer = 0; rsurface.modelnormal3f_bufferoffset = 0; rsurface.modelgeneratedvertex = true; } else { rsurface.modelvertex3f = model->surfmesh.data_vertex3f; rsurface.modelvertex3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modelvertex3f_bufferoffset = model->surfmesh.vbooffset_vertex3f; rsurface.modelsvector3f = model->surfmesh.data_svector3f; rsurface.modelsvector3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modelsvector3f_bufferoffset = model->surfmesh.vbooffset_svector3f; rsurface.modeltvector3f = model->surfmesh.data_tvector3f; rsurface.modeltvector3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modeltvector3f_bufferoffset = model->surfmesh.vbooffset_tvector3f; rsurface.modelnormal3f = model->surfmesh.data_normal3f; rsurface.modelnormal3f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modelnormal3f_bufferoffset = model->surfmesh.vbooffset_normal3f; rsurface.modelvertexmesh = model->surfmesh.vertexmesh; rsurface.modelvertexmeshbuffer = model->surfmesh.vertexmeshbuffer; rsurface.modelvertexposition = model->surfmesh.vertexposition; rsurface.modelvertexpositionbuffer = model->surfmesh.vertexpositionbuffer; rsurface.modelgeneratedvertex = false; } rsurface.modellightmapcolor4f = model->surfmesh.data_lightmapcolor4f; rsurface.modellightmapcolor4f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modellightmapcolor4f_bufferoffset = model->surfmesh.vbooffset_lightmapcolor4f; rsurface.modeltexcoordtexture2f = model->surfmesh.data_texcoordtexture2f; rsurface.modeltexcoordtexture2f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modeltexcoordtexture2f_bufferoffset = model->surfmesh.vbooffset_texcoordtexture2f; rsurface.modeltexcoordlightmap2f = model->surfmesh.data_texcoordlightmap2f; rsurface.modeltexcoordlightmap2f_vertexbuffer = model->surfmesh.vbo_vertexbuffer; rsurface.modeltexcoordlightmap2f_bufferoffset = model->surfmesh.vbooffset_texcoordlightmap2f; rsurface.modelelement3i = model->surfmesh.data_element3i; rsurface.modelelement3i_indexbuffer = model->surfmesh.data_element3i_indexbuffer; rsurface.modelelement3i_bufferoffset = model->surfmesh.data_element3i_bufferoffset; rsurface.modelelement3s = model->surfmesh.data_element3s; rsurface.modelelement3s_indexbuffer = model->surfmesh.data_element3s_indexbuffer; rsurface.modelelement3s_bufferoffset = model->surfmesh.data_element3s_bufferoffset; rsurface.modellightmapoffsets = model->surfmesh.data_lightmapoffsets; rsurface.modelnumvertices = model->surfmesh.num_vertices; rsurface.modelnumtriangles = model->surfmesh.num_triangles; rsurface.modelsurfaces = model->data_surfaces; rsurface.batchgeneratedvertex = false; rsurface.batchfirstvertex = 0; rsurface.batchnumvertices = 0; rsurface.batchfirsttriangle = 0; rsurface.batchnumtriangles = 0; rsurface.batchvertex3f = NULL; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; rsurface.batchsvector3f = NULL; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = NULL; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; rsurface.batchnormal3f = NULL; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; rsurface.batchlightmapcolor4f = NULL; rsurface.batchlightmapcolor4f_vertexbuffer = NULL; rsurface.batchlightmapcolor4f_bufferoffset = 0; rsurface.batchtexcoordtexture2f = NULL; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; rsurface.batchtexcoordlightmap2f = NULL; rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL; rsurface.batchtexcoordlightmap2f_bufferoffset = 0; rsurface.batchvertexmesh = NULL; rsurface.batchvertexmeshbuffer = NULL; rsurface.batchvertexposition = NULL; rsurface.batchvertexpositionbuffer = NULL; rsurface.batchelement3i = NULL; rsurface.batchelement3i_indexbuffer = NULL; rsurface.batchelement3i_bufferoffset = 0; rsurface.batchelement3s = NULL; rsurface.batchelement3s_indexbuffer = NULL; rsurface.batchelement3s_bufferoffset = 0; rsurface.passcolor4f = NULL; rsurface.passcolor4f_vertexbuffer = NULL; rsurface.passcolor4f_bufferoffset = 0; } void RSurf_ActiveCustomEntity(const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, int entflags, double shadertime, float r, float g, float b, float a, int numvertices, const float *vertex3f, const float *texcoord2f, const float *normal3f, const float *svector3f, const float *tvector3f, const float *color4f, int numtriangles, const int *element3i, const unsigned short *element3s, qboolean wantnormals, qboolean wanttangents) { int newvertices; rsurface.entity = r_refdef.scene.worldentity; rsurface.skeleton = NULL; rsurface.ent_skinnum = 0; rsurface.ent_qwskin = -1; rsurface.ent_shadertime = shadertime; rsurface.ent_flags = entflags; rsurface.modelnumvertices = numvertices; rsurface.modelnumtriangles = numtriangles; newvertices = max(rsurface.modelnumvertices, rsurface.modelnumtriangles); if (rsurface.array_size < newvertices) R_Mesh_ResizeArrays(newvertices); rsurface.matrix = *matrix; rsurface.inversematrix = *inversematrix; rsurface.matrixscale = Matrix4x4_ScaleFromMatrix(&rsurface.matrix); rsurface.inversematrixscale = 1.0f / rsurface.matrixscale; R_EntityMatrix(&rsurface.matrix); Matrix4x4_Transform(&rsurface.inversematrix, r_refdef.view.origin, rsurface.localvieworigin); Matrix4x4_TransformStandardPlane(&rsurface.inversematrix, r_refdef.fogplane[0], r_refdef.fogplane[1], r_refdef.fogplane[2], r_refdef.fogplane[3], rsurface.fogplane); rsurface.fogplaneviewdist *= rsurface.inversematrixscale; rsurface.fograngerecip = r_refdef.fograngerecip * rsurface.matrixscale; rsurface.fogheightfade = r_refdef.fogheightfade * rsurface.matrixscale; rsurface.fogmasktabledistmultiplier = FOGMASKTABLEWIDTH * rsurface.fograngerecip; VectorSet(rsurface.modellight_ambient, 0, 0, 0); VectorSet(rsurface.modellight_diffuse, 0, 0, 0); VectorSet(rsurface.modellight_lightdir, 0, 0, 1); VectorSet(rsurface.colormap_pantscolor, 0, 0, 0); VectorSet(rsurface.colormap_shirtcolor, 0, 0, 0); Vector4Set(rsurface.colormod, r * r_refdef.view.colorscale, g * r_refdef.view.colorscale, b * r_refdef.view.colorscale, a); VectorSet(rsurface.glowmod, r_refdef.view.colorscale * r_hdr_glowintensity.value, r_refdef.view.colorscale * r_hdr_glowintensity.value, r_refdef.view.colorscale * r_hdr_glowintensity.value); memset(rsurface.frameblend, 0, sizeof(rsurface.frameblend)); rsurface.frameblend[0].lerp = 1; rsurface.ent_alttextures = false; rsurface.basepolygonfactor = r_refdef.polygonfactor; rsurface.basepolygonoffset = r_refdef.polygonoffset; if (wanttangents) { rsurface.modelvertex3f = vertex3f; rsurface.modelsvector3f = svector3f ? svector3f : rsurface.array_modelsvector3f; rsurface.modeltvector3f = tvector3f ? tvector3f : rsurface.array_modeltvector3f; rsurface.modelnormal3f = normal3f ? normal3f : rsurface.array_modelnormal3f; } else if (wantnormals) { rsurface.modelvertex3f = vertex3f; rsurface.modelsvector3f = NULL; rsurface.modeltvector3f = NULL; rsurface.modelnormal3f = normal3f ? normal3f : rsurface.array_modelnormal3f; } else { rsurface.modelvertex3f = vertex3f; rsurface.modelsvector3f = NULL; rsurface.modeltvector3f = NULL; rsurface.modelnormal3f = NULL; } rsurface.modelvertexmesh = NULL; rsurface.modelvertexmeshbuffer = NULL; rsurface.modelvertexposition = NULL; rsurface.modelvertexpositionbuffer = NULL; rsurface.modelvertex3f_vertexbuffer = 0; rsurface.modelvertex3f_bufferoffset = 0; rsurface.modelsvector3f_vertexbuffer = 0; rsurface.modelsvector3f_bufferoffset = 0; rsurface.modeltvector3f_vertexbuffer = 0; rsurface.modeltvector3f_bufferoffset = 0; rsurface.modelnormal3f_vertexbuffer = 0; rsurface.modelnormal3f_bufferoffset = 0; rsurface.modelgeneratedvertex = true; rsurface.modellightmapcolor4f = color4f; rsurface.modellightmapcolor4f_vertexbuffer = 0; rsurface.modellightmapcolor4f_bufferoffset = 0; rsurface.modeltexcoordtexture2f = texcoord2f; rsurface.modeltexcoordtexture2f_vertexbuffer = 0; rsurface.modeltexcoordtexture2f_bufferoffset = 0; rsurface.modeltexcoordlightmap2f = NULL; rsurface.modeltexcoordlightmap2f_vertexbuffer = 0; rsurface.modeltexcoordlightmap2f_bufferoffset = 0; rsurface.modelelement3i = element3i; rsurface.modelelement3i_indexbuffer = NULL; rsurface.modelelement3i_bufferoffset = 0; rsurface.modelelement3s = element3s; rsurface.modelelement3s_indexbuffer = NULL; rsurface.modelelement3s_bufferoffset = 0; rsurface.modellightmapoffsets = NULL; rsurface.modelsurfaces = NULL; rsurface.batchgeneratedvertex = false; rsurface.batchfirstvertex = 0; rsurface.batchnumvertices = 0; rsurface.batchfirsttriangle = 0; rsurface.batchnumtriangles = 0; rsurface.batchvertex3f = NULL; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; rsurface.batchsvector3f = NULL; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = NULL; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; rsurface.batchnormal3f = NULL; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; rsurface.batchlightmapcolor4f = NULL; rsurface.batchlightmapcolor4f_vertexbuffer = NULL; rsurface.batchlightmapcolor4f_bufferoffset = 0; rsurface.batchtexcoordtexture2f = NULL; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; rsurface.batchtexcoordlightmap2f = NULL; rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL; rsurface.batchtexcoordlightmap2f_bufferoffset = 0; rsurface.batchvertexmesh = NULL; rsurface.batchvertexmeshbuffer = NULL; rsurface.batchvertexposition = NULL; rsurface.batchvertexpositionbuffer = NULL; rsurface.batchelement3i = NULL; rsurface.batchelement3i_indexbuffer = NULL; rsurface.batchelement3i_bufferoffset = 0; rsurface.batchelement3s = NULL; rsurface.batchelement3s_indexbuffer = NULL; rsurface.batchelement3s_bufferoffset = 0; rsurface.passcolor4f = NULL; rsurface.passcolor4f_vertexbuffer = NULL; rsurface.passcolor4f_bufferoffset = 0; if (rsurface.modelnumvertices && rsurface.modelelement3i) { if ((wantnormals || wanttangents) && !normal3f) { Mod_BuildNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modelelement3i, rsurface.array_modelnormal3f, r_smoothnormals_areaweighting.integer != 0); rsurface.modelnormal3f = rsurface.array_modelnormal3f; } if (wanttangents && !svector3f) { Mod_BuildTextureVectorsFromNormals(0, rsurface.modelnumvertices, rsurface.modelnumtriangles, rsurface.modelvertex3f, rsurface.modeltexcoordtexture2f, rsurface.modelnormal3f, rsurface.modelelement3i, rsurface.array_modelsvector3f, rsurface.array_modeltvector3f, r_smoothnormals_areaweighting.integer != 0); rsurface.modelsvector3f = rsurface.array_modelsvector3f; rsurface.modeltvector3f = rsurface.array_modeltvector3f; } } } float RSurf_FogPoint(const float *v) { // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader float FogPlaneViewDist = r_refdef.fogplaneviewdist; float FogPlaneVertexDist = DotProduct(r_refdef.fogplane, v) + r_refdef.fogplane[3]; float FogHeightFade = r_refdef.fogheightfade; float fogfrac; unsigned int fogmasktableindex; if (r_refdef.fogplaneviewabove) fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade); else fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade); fogmasktableindex = (unsigned int)(VectorDistance(r_refdef.view.origin, v) * fogfrac * r_refdef.fogmasktabledistmultiplier); return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)]; } float RSurf_FogVertex(const float *v) { // this code is identical to the USEFOGINSIDE/USEFOGOUTSIDE code in the shader float FogPlaneViewDist = rsurface.fogplaneviewdist; float FogPlaneVertexDist = DotProduct(rsurface.fogplane, v) + rsurface.fogplane[3]; float FogHeightFade = rsurface.fogheightfade; float fogfrac; unsigned int fogmasktableindex; if (r_refdef.fogplaneviewabove) fogfrac = min(0.0f, FogPlaneVertexDist) / (FogPlaneVertexDist - FogPlaneViewDist) * min(1.0f, min(0.0f, FogPlaneVertexDist) * FogHeightFade); else fogfrac = FogPlaneViewDist / (FogPlaneViewDist - max(0.0f, FogPlaneVertexDist)) * min(1.0f, (min(0.0f, FogPlaneVertexDist) + FogPlaneViewDist) * FogHeightFade); fogmasktableindex = (unsigned int)(VectorDistance(rsurface.localvieworigin, v) * fogfrac * rsurface.fogmasktabledistmultiplier); return r_refdef.fogmasktable[min(fogmasktableindex, FOGMASKTABLEWIDTH - 1)]; } void RSurf_RenumberElements(const int *inelement3i, int *outelement3i, int numelements, int adjust) { int i; for (i = 0;i < numelements;i++) outelement3i[i] = inelement3i[i] + adjust; } static const int quadedges[6][2] = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}; extern cvar_t gl_vbo; void RSurf_PrepareVerticesForBatch(int batchneed, int texturenumsurfaces, const msurface_t **texturesurfacelist) { int deformindex; int firsttriangle; int numtriangles; int firstvertex; int endvertex; int numvertices; int surfacefirsttriangle; int surfacenumtriangles; int surfacefirstvertex; int surfaceendvertex; int surfacenumvertices; int needsupdate; int i, j; qboolean gaps; qboolean dynamicvertex; float amplitude; float animpos; float scale; float center[3], forward[3], right[3], up[3], v[3], newforward[3], newright[3], newup[3]; float waveparms[4]; q3shaderinfo_deform_t *deform; const msurface_t *surface, *firstsurface; r_vertexposition_t *vertexposition; r_vertexmesh_t *vertexmesh; if (!texturenumsurfaces) return; // find vertex range of this surface batch gaps = false; firstsurface = texturesurfacelist[0]; firsttriangle = firstsurface->num_firsttriangle; numtriangles = 0; firstvertex = endvertex = firstsurface->num_firstvertex; for (i = 0;i < texturenumsurfaces;i++) { surface = texturesurfacelist[i]; if (surface != firstsurface + i) gaps = true; surfacefirstvertex = surface->num_firstvertex; surfaceendvertex = surfacefirstvertex + surface->num_vertices; surfacenumtriangles = surface->num_triangles; if (firstvertex > surfacefirstvertex) firstvertex = surfacefirstvertex; if (endvertex < surfaceendvertex) endvertex = surfaceendvertex; numtriangles += surfacenumtriangles; } // we now know the vertex range used, and if there are any gaps in it rsurface.batchfirstvertex = firstvertex; rsurface.batchnumvertices = endvertex - firstvertex; rsurface.batchfirsttriangle = firsttriangle; rsurface.batchnumtriangles = numtriangles; // this variable holds flags for which properties have been updated that // may require regenerating vertexmesh or vertexposition arrays... needsupdate = 0; // check if any dynamic vertex processing must occur dynamicvertex = false; if ((batchneed & (BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_ARRAY_VERTEXCOLOR)) && texturesurfacelist[0]->lightmapinfo) needsupdate |= BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_NOGAPS; for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform;deformindex++, deform++) { switch (deform->deform) { default: case Q3DEFORM_PROJECTIONSHADOW: case Q3DEFORM_TEXT0: case Q3DEFORM_TEXT1: case Q3DEFORM_TEXT2: case Q3DEFORM_TEXT3: case Q3DEFORM_TEXT4: case Q3DEFORM_TEXT5: case Q3DEFORM_TEXT6: case Q3DEFORM_TEXT7: case Q3DEFORM_NONE: break; case Q3DEFORM_AUTOSPRITE: dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXPOSITION | BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR; break; case Q3DEFORM_AUTOSPRITE2: dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXPOSITION | BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR; break; case Q3DEFORM_NORMAL: dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR; break; case Q3DEFORM_WAVE: if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms)) break; // if wavefunc is a nop, ignore this transform dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXPOSITION | BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR; break; case Q3DEFORM_BULGE: dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXPOSITION | BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR; break; case Q3DEFORM_MOVE: if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms)) break; // if wavefunc is a nop, ignore this transform dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXPOSITION | BATCHNEED_VERTEXMESH_VERTEX; break; } } switch(rsurface.texture->tcgen.tcgen) { default: case Q3TCGEN_TEXTURE: break; case Q3TCGEN_LIGHTMAP: dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_LIGHTMAP | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXMESH_LIGHTMAP; break; case Q3TCGEN_VECTOR: dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXMESH_TEXCOORD; break; case Q3TCGEN_ENVIRONMENT: dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXMESH_TEXCOORD; break; } if (rsurface.texture->tcmods[0].tcmod == Q3TCMOD_TURBULENT) { dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS; needsupdate |= BATCHNEED_VERTEXMESH_TEXCOORD; } if (!rsurface.modelvertexmesh && (batchneed & (BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_VERTEXMESH_TEXCOORD | BATCHNEED_VERTEXMESH_LIGHTMAP))) { dynamicvertex = true; batchneed |= BATCHNEED_NOGAPS; needsupdate |= (batchneed & (BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_VERTEXMESH_TEXCOORD | BATCHNEED_VERTEXMESH_LIGHTMAP)); } if (needsupdate & batchneed & BATCHNEED_VERTEXPOSITION) { dynamicvertex = true; batchneed |= BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS; needsupdate |= (batchneed & BATCHNEED_VERTEXPOSITION); } if (dynamicvertex || gaps || rsurface.batchfirstvertex) { // when copying, we need to consider the regeneration of vertexmesh, any dependencies it may have must be set... if (batchneed & BATCHNEED_VERTEXMESH_VERTEX) batchneed |= BATCHNEED_ARRAY_VERTEX; if (batchneed & BATCHNEED_VERTEXMESH_NORMAL) batchneed |= BATCHNEED_ARRAY_NORMAL; if (batchneed & BATCHNEED_VERTEXMESH_VECTOR) batchneed |= BATCHNEED_ARRAY_VECTOR; if (batchneed & BATCHNEED_VERTEXMESH_VERTEXCOLOR) batchneed |= BATCHNEED_ARRAY_VERTEXCOLOR; if (batchneed & BATCHNEED_VERTEXMESH_TEXCOORD) batchneed |= BATCHNEED_ARRAY_TEXCOORD; if (batchneed & BATCHNEED_VERTEXMESH_LIGHTMAP) batchneed |= BATCHNEED_ARRAY_LIGHTMAP; } // when the model data has no vertex buffer (dynamic mesh), we need to // eliminate gaps if (!rsurface.modelvertexmeshbuffer) batchneed |= BATCHNEED_NOGAPS; // if needsupdate, we have to do a dynamic vertex batch for sure if (needsupdate & batchneed) dynamicvertex = true; // see if we need to build vertexmesh from arrays if (!rsurface.modelvertexmesh && (batchneed & (BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_VERTEXMESH_TEXCOORD | BATCHNEED_VERTEXMESH_LIGHTMAP))) dynamicvertex = true; // see if we need to build vertexposition from arrays if (!rsurface.modelvertexposition && (batchneed & BATCHNEED_VERTEXPOSITION)) dynamicvertex = true; // if gaps are unacceptable, and there are gaps, it's a dynamic batch... if ((batchneed & BATCHNEED_NOGAPS) && (gaps || firstvertex)) dynamicvertex = true; // if there is a chance of animated vertex colors, it's a dynamic batch if ((batchneed & (BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_ARRAY_VERTEXCOLOR)) && texturesurfacelist[0]->lightmapinfo) dynamicvertex = true; rsurface.batchvertex3f = rsurface.modelvertex3f; rsurface.batchvertex3f_vertexbuffer = rsurface.modelvertex3f_vertexbuffer; rsurface.batchvertex3f_bufferoffset = rsurface.modelvertex3f_bufferoffset; rsurface.batchsvector3f = rsurface.modelsvector3f; rsurface.batchsvector3f_vertexbuffer = rsurface.modelsvector3f_vertexbuffer; rsurface.batchsvector3f_bufferoffset = rsurface.modelsvector3f_bufferoffset; rsurface.batchtvector3f = rsurface.modeltvector3f; rsurface.batchtvector3f_vertexbuffer = rsurface.modeltvector3f_vertexbuffer; rsurface.batchtvector3f_bufferoffset = rsurface.modeltvector3f_bufferoffset; rsurface.batchnormal3f = rsurface.modelnormal3f; rsurface.batchnormal3f_vertexbuffer = rsurface.modelnormal3f_vertexbuffer; rsurface.batchnormal3f_bufferoffset = rsurface.modelnormal3f_bufferoffset; rsurface.batchlightmapcolor4f = rsurface.modellightmapcolor4f; rsurface.batchlightmapcolor4f_vertexbuffer = rsurface.modellightmapcolor4f_vertexbuffer; rsurface.batchlightmapcolor4f_bufferoffset = rsurface.modellightmapcolor4f_bufferoffset; rsurface.batchtexcoordtexture2f = rsurface.modeltexcoordtexture2f; rsurface.batchtexcoordtexture2f_vertexbuffer = rsurface.modeltexcoordtexture2f_vertexbuffer; rsurface.batchtexcoordtexture2f_bufferoffset = rsurface.modeltexcoordtexture2f_bufferoffset; rsurface.batchtexcoordlightmap2f = rsurface.modeltexcoordlightmap2f; rsurface.batchtexcoordlightmap2f_vertexbuffer = rsurface.modeltexcoordlightmap2f_vertexbuffer; rsurface.batchtexcoordlightmap2f_bufferoffset = rsurface.modeltexcoordlightmap2f_bufferoffset; rsurface.batchvertexposition = rsurface.modelvertexposition; rsurface.batchvertexpositionbuffer = rsurface.modelvertexpositionbuffer; rsurface.batchvertexmesh = rsurface.modelvertexmesh; rsurface.batchvertexmeshbuffer = rsurface.modelvertexmeshbuffer; rsurface.batchelement3i = rsurface.modelelement3i; rsurface.batchelement3i_indexbuffer = rsurface.modelelement3i_indexbuffer; rsurface.batchelement3i_bufferoffset = rsurface.modelelement3i_bufferoffset; rsurface.batchelement3s = rsurface.modelelement3s; rsurface.batchelement3s_indexbuffer = rsurface.modelelement3s_indexbuffer; rsurface.batchelement3s_bufferoffset = rsurface.modelelement3s_bufferoffset; // if any dynamic vertex processing has to occur in software, we copy the // entire surface list together before processing to rebase the vertices // to start at 0 (otherwise we waste a lot of room in a vertex buffer). // // if any gaps exist and we do not have a static vertex buffer, we have to // copy the surface list together to avoid wasting upload bandwidth on the // vertices in the gaps. // // if gaps exist and we have a static vertex buffer, we still have to // combine the index buffer ranges into one dynamic index buffer. // // in all cases we end up with data that can be drawn in one call. if (!dynamicvertex) { // static vertex data, just set pointers... rsurface.batchgeneratedvertex = false; // if there are gaps, we want to build a combined index buffer, // otherwise use the original static buffer with an appropriate offset if (gaps) { firsttriangle = 0; numtriangles = 0; for (i = 0;i < texturenumsurfaces;i++) { surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle; surfacenumtriangles = texturesurfacelist[i]->num_triangles; memcpy(rsurface.array_batchelement3i + 3*numtriangles, rsurface.modelelement3i + 3*surfacefirsttriangle, surfacenumtriangles*sizeof(int[3])); numtriangles += surfacenumtriangles; } rsurface.batchelement3i = rsurface.array_batchelement3i; rsurface.batchelement3i_indexbuffer = NULL; rsurface.batchelement3i_bufferoffset = 0; rsurface.batchelement3s = NULL; rsurface.batchelement3s_indexbuffer = NULL; rsurface.batchelement3s_bufferoffset = 0; if (endvertex <= 65536) { rsurface.batchelement3s = rsurface.array_batchelement3s; for (i = 0;i < numtriangles*3;i++) rsurface.array_batchelement3s[i] = rsurface.array_batchelement3i[i]; } rsurface.batchfirsttriangle = firsttriangle; rsurface.batchnumtriangles = numtriangles; } return; } // something needs software processing, do it for real... // we only directly handle interleaved array data in this case... rsurface.batchgeneratedvertex = true; // now copy the vertex data into a combined array and make an index array // (this is what Quake3 does all the time) //if (gaps || rsurface.batchfirstvertex) { rsurface.batchvertexposition = NULL; rsurface.batchvertexpositionbuffer = NULL; rsurface.batchvertexmesh = NULL; rsurface.batchvertexmeshbuffer = NULL; rsurface.batchvertex3f = NULL; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; rsurface.batchsvector3f = NULL; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = NULL; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; rsurface.batchnormal3f = NULL; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; rsurface.batchlightmapcolor4f = NULL; rsurface.batchlightmapcolor4f_vertexbuffer = NULL; rsurface.batchlightmapcolor4f_bufferoffset = 0; rsurface.batchtexcoordtexture2f = NULL; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; rsurface.batchtexcoordlightmap2f = NULL; rsurface.batchtexcoordlightmap2f_vertexbuffer = NULL; rsurface.batchtexcoordlightmap2f_bufferoffset = 0; rsurface.batchelement3i = rsurface.array_batchelement3i; rsurface.batchelement3i_indexbuffer = NULL; rsurface.batchelement3i_bufferoffset = 0; rsurface.batchelement3s = NULL; rsurface.batchelement3s_indexbuffer = NULL; rsurface.batchelement3s_bufferoffset = 0; // we'll only be setting up certain arrays as needed if (batchneed & BATCHNEED_VERTEXPOSITION) rsurface.batchvertexposition = rsurface.array_batchvertexposition; if (batchneed & (BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_VERTEXMESH_TEXCOORD | BATCHNEED_VERTEXMESH_LIGHTMAP)) rsurface.batchvertexmesh = rsurface.array_batchvertexmesh; if (batchneed & BATCHNEED_ARRAY_VERTEX) rsurface.batchvertex3f = rsurface.array_batchvertex3f; if (batchneed & BATCHNEED_ARRAY_NORMAL) rsurface.batchnormal3f = rsurface.array_batchnormal3f; if (batchneed & BATCHNEED_ARRAY_VECTOR) { rsurface.batchsvector3f = rsurface.array_batchsvector3f; rsurface.batchtvector3f = rsurface.array_batchtvector3f; } if (batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) rsurface.batchlightmapcolor4f = rsurface.array_batchlightmapcolor4f; if (batchneed & BATCHNEED_ARRAY_TEXCOORD) rsurface.batchtexcoordtexture2f = rsurface.array_batchtexcoordtexture2f; if (batchneed & BATCHNEED_ARRAY_LIGHTMAP) rsurface.batchtexcoordlightmap2f = rsurface.array_batchtexcoordlightmap2f; numvertices = 0; numtriangles = 0; for (i = 0;i < texturenumsurfaces;i++) { surfacefirstvertex = texturesurfacelist[i]->num_firstvertex; surfacenumvertices = texturesurfacelist[i]->num_vertices; surfacefirsttriangle = texturesurfacelist[i]->num_firsttriangle; surfacenumtriangles = texturesurfacelist[i]->num_triangles; // copy only the data requested if ((batchneed & BATCHNEED_VERTEXPOSITION) && rsurface.modelvertexposition) memcpy(rsurface.array_batchvertexposition + numvertices, rsurface.modelvertexposition + surfacefirstvertex, surfacenumvertices * sizeof(rsurface.batchvertexposition[0])); if ((batchneed & (BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_VERTEXMESH_TEXCOORD | BATCHNEED_VERTEXMESH_LIGHTMAP)) && rsurface.modelvertexmesh) memcpy(rsurface.array_batchvertexmesh + numvertices, rsurface.modelvertexmesh + surfacefirstvertex, surfacenumvertices * sizeof(rsurface.batchvertexmesh[0])); if (batchneed & (BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_ARRAY_LIGHTMAP)) { if (batchneed & BATCHNEED_ARRAY_VERTEX) memcpy(rsurface.array_batchvertex3f + 3*numvertices, rsurface.modelvertex3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3])); if ((batchneed & BATCHNEED_ARRAY_NORMAL) && rsurface.modelnormal3f) memcpy(rsurface.array_batchnormal3f + 3*numvertices, rsurface.modelnormal3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3])); if ((batchneed & BATCHNEED_ARRAY_VECTOR) && rsurface.modelsvector3f) { memcpy(rsurface.array_batchsvector3f + 3*numvertices, rsurface.modelsvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3])); memcpy(rsurface.array_batchtvector3f + 3*numvertices, rsurface.modeltvector3f + 3*surfacefirstvertex, surfacenumvertices * sizeof(float[3])); } if ((batchneed & BATCHNEED_ARRAY_VERTEXCOLOR) && rsurface.modellightmapcolor4f) memcpy(rsurface.array_batchlightmapcolor4f + 4*numvertices, rsurface.modellightmapcolor4f + 4*surfacefirstvertex, surfacenumvertices * sizeof(float[4])); if ((batchneed & BATCHNEED_ARRAY_TEXCOORD) && rsurface.modeltexcoordtexture2f) memcpy(rsurface.array_batchtexcoordtexture2f + 2*numvertices, rsurface.modeltexcoordtexture2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2])); if ((batchneed & BATCHNEED_ARRAY_LIGHTMAP) && rsurface.modeltexcoordlightmap2f) memcpy(rsurface.array_batchtexcoordlightmap2f + 2*numvertices, rsurface.modeltexcoordlightmap2f + 2*surfacefirstvertex, surfacenumvertices * sizeof(float[2])); } RSurf_RenumberElements(rsurface.modelelement3i + 3*surfacefirsttriangle, rsurface.array_batchelement3i + 3*numtriangles, 3*surfacenumtriangles, numvertices - surfacefirstvertex); numvertices += surfacenumvertices; numtriangles += surfacenumtriangles; } // generate a 16bit index array as well if possible // (in general, dynamic batches fit) if (numvertices <= 65536) { rsurface.batchelement3s = rsurface.array_batchelement3s; for (i = 0;i < numtriangles*3;i++) rsurface.array_batchelement3s[i] = rsurface.array_batchelement3i[i]; } // since we've copied everything, the batch now starts at 0 rsurface.batchfirstvertex = 0; rsurface.batchnumvertices = numvertices; rsurface.batchfirsttriangle = 0; rsurface.batchnumtriangles = numtriangles; } // q1bsp surfaces rendered in vertex color mode have to have colors // calculated based on lightstyles if ((batchneed & (BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_ARRAY_VERTEXCOLOR)) && texturesurfacelist[0]->lightmapinfo) { // generate color arrays for the surfaces in this list int c[4]; int scale; int size3; const int *offsets; const unsigned char *lm; numvertices = 0; rsurface.batchlightmapcolor4f = rsurface.array_batchlightmapcolor4f; rsurface.batchlightmapcolor4f_vertexbuffer = NULL; rsurface.batchlightmapcolor4f_bufferoffset = 0; for (i = 0;i < texturenumsurfaces;i++) { surface = texturesurfacelist[i]; offsets = rsurface.modellightmapoffsets + surface->num_firstvertex; surfacenumvertices = surface->num_vertices; if (surface->lightmapinfo->samples) { for (j = 0;j < surfacenumvertices;j++) { lm = surface->lightmapinfo->samples + offsets[j]; scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[0]]; VectorScale(lm, scale, c); if (surface->lightmapinfo->styles[1] != 255) { size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3; lm += size3; scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[1]]; VectorMA(c, scale, lm, c); if (surface->lightmapinfo->styles[2] != 255) { lm += size3; scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[2]]; VectorMA(c, scale, lm, c); if (surface->lightmapinfo->styles[3] != 255) { lm += size3; scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[3]]; VectorMA(c, scale, lm, c); } } } c[0] >>= 15; c[1] >>= 15; c[2] >>= 15; Vector4Set(rsurface.array_batchlightmapcolor4f + 4*numvertices, min(c[0], 255) * (1.0f / 255.0f), min(c[1], 255) * (1.0f / 255.0f), min(c[2], 255) * (1.0f / 255.0f), 1); numvertices++; } } else { for (j = 0;j < surfacenumvertices;j++) { Vector4Set(rsurface.array_batchlightmapcolor4f + 4*numvertices, 0, 0, 0, 1); numvertices++; } } } } // if vertices are deformed (sprite flares and things in maps, possibly // water waves, bulges and other deformations), modify the copied vertices // in place for (deformindex = 0, deform = rsurface.texture->deforms;deformindex < Q3MAXDEFORMS && deform->deform;deformindex++, deform++) { switch (deform->deform) { default: case Q3DEFORM_PROJECTIONSHADOW: case Q3DEFORM_TEXT0: case Q3DEFORM_TEXT1: case Q3DEFORM_TEXT2: case Q3DEFORM_TEXT3: case Q3DEFORM_TEXT4: case Q3DEFORM_TEXT5: case Q3DEFORM_TEXT6: case Q3DEFORM_TEXT7: case Q3DEFORM_NONE: break; case Q3DEFORM_AUTOSPRITE: Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward); Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright); Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup); VectorNormalize(newforward); VectorNormalize(newright); VectorNormalize(newup); // a single autosprite surface can contain multiple sprites... for (j = 0;j < rsurface.batchnumvertices - 3;j += 4) { VectorClear(center); for (i = 0;i < 4;i++) VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center); VectorScale(center, 0.25f, center); VectorCopy(rsurface.batchnormal3f + 3*j, forward); VectorCopy(rsurface.batchsvector3f + 3*j, right); VectorCopy(rsurface.batchtvector3f + 3*j, up); for (i = 0;i < 4;i++) { VectorSubtract(rsurface.batchvertex3f + 3*(j+i), center, v); VectorMAMAMAM(1, center, DotProduct(forward, v), newforward, DotProduct(right, v), newright, DotProduct(up, v), newup, rsurface.array_batchvertex3f + 3*(j+i)); } } // if we get here, BATCHNEED_ARRAY_NORMAL and BATCHNEED_ARRAY_VECTOR are in batchneed, so no need to check Mod_BuildNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchnormal3f, r_smoothnormals_areaweighting.integer != 0); Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.array_batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchsvector3f, rsurface.array_batchtvector3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchvertex3f = rsurface.array_batchvertex3f; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; rsurface.batchsvector3f = rsurface.array_batchsvector3f; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = rsurface.array_batchtvector3f; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; rsurface.batchnormal3f = rsurface.array_batchnormal3f; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; break; case Q3DEFORM_AUTOSPRITE2: Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, newforward); Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.right, newright); Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.up, newup); VectorNormalize(newforward); VectorNormalize(newright); VectorNormalize(newup); { const float *v1, *v2; vec3_t start, end; float f, l; struct { float length2; const float *v1; const float *v2; } shortest[2]; memset(shortest, 0, sizeof(shortest)); // a single autosprite surface can contain multiple sprites... for (j = 0;j < rsurface.batchnumvertices - 3;j += 4) { VectorClear(center); for (i = 0;i < 4;i++) VectorAdd(center, rsurface.batchvertex3f + 3*(j+i), center); VectorScale(center, 0.25f, center); // find the two shortest edges, then use them to define the // axis vectors for rotating around the central axis for (i = 0;i < 6;i++) { v1 = rsurface.batchvertex3f + 3*(j+quadedges[i][0]); v2 = rsurface.batchvertex3f + 3*(j+quadedges[i][1]); l = VectorDistance2(v1, v2); // this length bias tries to make sense of square polygons, assuming they are meant to be upright if (v1[2] != v2[2]) l += (1.0f / 1024.0f); if (shortest[0].length2 > l || i == 0) { shortest[1] = shortest[0]; shortest[0].length2 = l; shortest[0].v1 = v1; shortest[0].v2 = v2; } else if (shortest[1].length2 > l || i == 1) { shortest[1].length2 = l; shortest[1].v1 = v1; shortest[1].v2 = v2; } } VectorLerp(shortest[0].v1, 0.5f, shortest[0].v2, start); VectorLerp(shortest[1].v1, 0.5f, shortest[1].v2, end); // this calculates the right vector from the shortest edge // and the up vector from the edge midpoints VectorSubtract(shortest[0].v1, shortest[0].v2, right); VectorNormalize(right); VectorSubtract(end, start, up); VectorNormalize(up); // calculate a forward vector to use instead of the original plane normal (this is how we get a new right vector) VectorSubtract(rsurface.localvieworigin, center, forward); //Matrix4x4_Transform3x3(&rsurface.inversematrix, r_refdef.view.forward, forward); VectorNegate(forward, forward); VectorReflect(forward, 0, up, forward); VectorNormalize(forward); CrossProduct(up, forward, newright); VectorNormalize(newright); // rotate the quad around the up axis vector, this is made // especially easy by the fact we know the quad is flat, // so we only have to subtract the center position and // measure distance along the right vector, and then // multiply that by the newright vector and add back the // center position // we also need to subtract the old position to undo the // displacement from the center, which we do with a // DotProduct, the subtraction/addition of center is also // optimized into DotProducts here l = DotProduct(right, center); for (i = 0;i < 4;i++) { v1 = rsurface.batchvertex3f + 3*(j+i); f = DotProduct(right, v1) - l; VectorMAMAM(1, v1, -f, right, f, newright, rsurface.array_batchvertex3f + 3*(j+i)); } } } rsurface.batchvertex3f = rsurface.array_batchvertex3f; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; if(batchneed & (BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR)) // otherwise these can stay NULL { Mod_BuildNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchnormal3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchnormal3f = rsurface.array_batchnormal3f; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; } if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL { Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.array_batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchsvector3f, rsurface.array_batchtvector3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchsvector3f = rsurface.array_batchsvector3f; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = rsurface.array_batchtvector3f; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; } break; case Q3DEFORM_NORMAL: // deform the normals to make reflections wavey for (j = 0;j < rsurface.batchnumvertices;j++) { float vertex[3]; float *normal = rsurface.array_batchnormal3f + 3*j; VectorScale(rsurface.batchvertex3f + 3*j, 0.98f, vertex); normal[0] = rsurface.batchnormal3f[j*3+0] + deform->parms[0] * noise4f( vertex[0], vertex[1], vertex[2], r_refdef.scene.time * deform->parms[1]); normal[1] = rsurface.batchnormal3f[j*3+1] + deform->parms[0] * noise4f( 98 + vertex[0], vertex[1], vertex[2], r_refdef.scene.time * deform->parms[1]); normal[2] = rsurface.batchnormal3f[j*3+2] + deform->parms[0] * noise4f(196 + vertex[0], vertex[1], vertex[2], r_refdef.scene.time * deform->parms[1]); VectorNormalize(normal); } rsurface.batchnormal3f = rsurface.array_batchnormal3f; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL { Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.array_batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchsvector3f, rsurface.array_batchtvector3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchsvector3f = rsurface.array_batchsvector3f; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = rsurface.array_batchtvector3f; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; } break; case Q3DEFORM_WAVE: // deform vertex array to make wavey water and flags and such waveparms[0] = deform->waveparms[0]; waveparms[1] = deform->waveparms[1]; waveparms[2] = deform->waveparms[2]; waveparms[3] = deform->waveparms[3]; if(!R_TestQ3WaveFunc(deform->wavefunc, waveparms)) break; // if wavefunc is a nop, don't make a dynamic vertex array // this is how a divisor of vertex influence on deformation animpos = deform->parms[0] ? 1.0f / deform->parms[0] : 100.0f; scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms); for (j = 0;j < rsurface.batchnumvertices;j++) { // if the wavefunc depends on time, evaluate it per-vertex if (waveparms[3]) { waveparms[2] = deform->waveparms[2] + (rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+1] + rsurface.batchvertex3f[j*3+2]) * animpos; scale = R_EvaluateQ3WaveFunc(deform->wavefunc, waveparms); } VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.array_batchvertex3f + 3*j); } // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check Mod_BuildNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchnormal3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchvertex3f = rsurface.array_batchvertex3f; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; rsurface.batchnormal3f = rsurface.array_batchnormal3f; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL { Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.array_batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchsvector3f, rsurface.array_batchtvector3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchsvector3f = rsurface.array_batchsvector3f; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = rsurface.array_batchtvector3f; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; } break; case Q3DEFORM_BULGE: // deform vertex array to make the surface have moving bulges for (j = 0;j < rsurface.batchnumvertices;j++) { scale = sin(rsurface.batchtexcoordtexture2f[j*2+0] * deform->parms[0] + r_refdef.scene.time * deform->parms[2]) * deform->parms[1]; VectorMA(rsurface.batchvertex3f + 3*j, scale, rsurface.batchnormal3f + 3*j, rsurface.array_batchvertex3f + 3*j); } // if we get here, BATCHNEED_ARRAY_NORMAL is in batchneed, so no need to check Mod_BuildNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchnormal3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchvertex3f = rsurface.array_batchvertex3f; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; rsurface.batchnormal3f = rsurface.array_batchnormal3f; rsurface.batchnormal3f_vertexbuffer = NULL; rsurface.batchnormal3f_bufferoffset = 0; if(batchneed & BATCHNEED_ARRAY_VECTOR) // otherwise these can stay NULL { Mod_BuildTextureVectorsFromNormals(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.array_batchvertex3f, rsurface.batchtexcoordtexture2f, rsurface.array_batchnormal3f, rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle, rsurface.array_batchsvector3f, rsurface.array_batchtvector3f, r_smoothnormals_areaweighting.integer != 0); rsurface.batchsvector3f = rsurface.array_batchsvector3f; rsurface.batchsvector3f_vertexbuffer = NULL; rsurface.batchsvector3f_bufferoffset = 0; rsurface.batchtvector3f = rsurface.array_batchtvector3f; rsurface.batchtvector3f_vertexbuffer = NULL; rsurface.batchtvector3f_bufferoffset = 0; } break; case Q3DEFORM_MOVE: // deform vertex array if(!R_TestQ3WaveFunc(deform->wavefunc, deform->waveparms)) break; // if wavefunc is a nop, don't make a dynamic vertex array scale = R_EvaluateQ3WaveFunc(deform->wavefunc, deform->waveparms); VectorScale(deform->parms, scale, waveparms); for (j = 0;j < rsurface.batchnumvertices;j++) VectorAdd(rsurface.batchvertex3f + 3*j, waveparms, rsurface.array_batchvertex3f + 3*j); rsurface.batchvertex3f = rsurface.array_batchvertex3f; rsurface.batchvertex3f_vertexbuffer = NULL; rsurface.batchvertex3f_bufferoffset = 0; break; } } // generate texcoords based on the chosen texcoord source switch(rsurface.texture->tcgen.tcgen) { default: case Q3TCGEN_TEXTURE: break; case Q3TCGEN_LIGHTMAP: if (rsurface.batchtexcoordlightmap2f) memcpy(rsurface.array_batchtexcoordlightmap2f, rsurface.batchtexcoordtexture2f, rsurface.batchnumvertices * sizeof(float[2])); rsurface.batchtexcoordtexture2f = rsurface.array_batchtexcoordtexture2f; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; break; case Q3TCGEN_VECTOR: for (j = 0;j < rsurface.batchnumvertices;j++) { rsurface.array_batchtexcoordtexture2f[j*2+0] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->tcgen.parms); rsurface.array_batchtexcoordtexture2f[j*2+1] = DotProduct(rsurface.batchvertex3f + 3*j, rsurface.texture->tcgen.parms + 3); } rsurface.batchtexcoordtexture2f = rsurface.array_batchtexcoordtexture2f; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; break; case Q3TCGEN_ENVIRONMENT: // make environment reflections using a spheremap for (j = 0;j < rsurface.batchnumvertices;j++) { // identical to Q3A's method, but executed in worldspace so // carried models can be shiny too float viewer[3], d, reflected[3], worldreflected[3]; VectorSubtract(rsurface.localvieworigin, rsurface.batchvertex3f + 3*j, viewer); // VectorNormalize(viewer); d = DotProduct(rsurface.batchnormal3f + 3*j, viewer); reflected[0] = rsurface.batchnormal3f[j*3+0]*2*d - viewer[0]; reflected[1] = rsurface.batchnormal3f[j*3+1]*2*d - viewer[1]; reflected[2] = rsurface.batchnormal3f[j*3+2]*2*d - viewer[2]; // note: this is proportinal to viewer, so we can normalize later Matrix4x4_Transform3x3(&rsurface.matrix, reflected, worldreflected); VectorNormalize(worldreflected); // note: this sphere map only uses world x and z! // so positive and negative y will LOOK THE SAME. rsurface.array_batchtexcoordtexture2f[j*2+0] = 0.5 + 0.5 * worldreflected[1]; rsurface.array_batchtexcoordtexture2f[j*2+1] = 0.5 - 0.5 * worldreflected[2]; } rsurface.batchtexcoordtexture2f = rsurface.array_batchtexcoordtexture2f; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; break; } // the only tcmod that needs software vertex processing is turbulent, so // check for it here and apply the changes if needed // and we only support that as the first one // (handling a mixture of turbulent and other tcmods would be problematic // without punting it entirely to a software path) if (rsurface.texture->tcmods[0].tcmod == Q3TCMOD_TURBULENT) { amplitude = rsurface.texture->tcmods[0].parms[1]; animpos = rsurface.texture->tcmods[0].parms[2] + r_refdef.scene.time * rsurface.texture->tcmods[0].parms[3]; for (j = 0;j < rsurface.batchnumvertices;j++) { rsurface.array_batchtexcoordtexture2f[j*2+0] += amplitude * sin(((rsurface.batchvertex3f[j*3+0] + rsurface.batchvertex3f[j*3+2]) * 1.0 / 1024.0f + animpos) * M_PI * 2); rsurface.array_batchtexcoordtexture2f[j*2+1] += amplitude * sin(((rsurface.batchvertex3f[j*3+1] ) * 1.0 / 1024.0f + animpos) * M_PI * 2); } rsurface.batchtexcoordtexture2f = rsurface.array_batchtexcoordtexture2f; rsurface.batchtexcoordtexture2f_vertexbuffer = NULL; rsurface.batchtexcoordtexture2f_bufferoffset = 0; } if (needsupdate & batchneed & (BATCHNEED_VERTEXMESH_VERTEX | BATCHNEED_VERTEXMESH_NORMAL | BATCHNEED_VERTEXMESH_VECTOR | BATCHNEED_VERTEXMESH_VERTEXCOLOR | BATCHNEED_VERTEXMESH_TEXCOORD | BATCHNEED_VERTEXMESH_LIGHTMAP)) { // convert the modified arrays to vertex structs rsurface.batchvertexmesh = rsurface.array_batchvertexmesh; rsurface.batchvertexmeshbuffer = NULL; if (batchneed & BATCHNEED_VERTEXMESH_VERTEX) for (j = 0, vertexmesh = rsurface.array_batchvertexmesh;j < rsurface.batchnumvertices;j++, vertexmesh++) VectorCopy(rsurface.batchvertex3f + 3*j, vertexmesh->vertex3f); if (batchneed & BATCHNEED_VERTEXMESH_NORMAL) for (j = 0, vertexmesh = rsurface.array_batchvertexmesh;j < rsurface.batchnumvertices;j++, vertexmesh++) VectorCopy(rsurface.batchnormal3f + 3*j, vertexmesh->normal3f); if (batchneed & BATCHNEED_VERTEXMESH_VECTOR) { for (j = 0, vertexmesh = rsurface.array_batchvertexmesh;j < rsurface.batchnumvertices;j++, vertexmesh++) { VectorCopy(rsurface.batchsvector3f + 3*j, vertexmesh->svector3f); VectorCopy(rsurface.batchtvector3f + 3*j, vertexmesh->tvector3f); } } if ((batchneed & BATCHNEED_VERTEXMESH_VERTEXCOLOR) && rsurface.batchlightmapcolor4f) for (j = 0, vertexmesh = rsurface.array_batchvertexmesh;j < rsurface.batchnumvertices;j++, vertexmesh++) Vector4Scale(rsurface.batchlightmapcolor4f + 4*j, 255.0f, vertexmesh->color4ub); if (batchneed & BATCHNEED_VERTEXMESH_TEXCOORD) for (j = 0, vertexmesh = rsurface.array_batchvertexmesh;j < rsurface.batchnumvertices;j++, vertexmesh++) Vector2Copy(rsurface.batchtexcoordtexture2f + 2*j, vertexmesh->texcoordtexture2f); if ((batchneed & BATCHNEED_VERTEXMESH_LIGHTMAP) && rsurface.batchtexcoordlightmap2f) for (j = 0, vertexmesh = rsurface.array_batchvertexmesh;j < rsurface.batchnumvertices;j++, vertexmesh++) Vector2Copy(rsurface.batchtexcoordlightmap2f + 2*j, vertexmesh->texcoordlightmap2f); } if (needsupdate & batchneed & BATCHNEED_VERTEXPOSITION) { // convert the modified arrays to vertex structs rsurface.batchvertexposition = rsurface.array_batchvertexposition; rsurface.batchvertexpositionbuffer = NULL; if (sizeof(r_vertexposition_t) == sizeof(float[3])) memcpy(rsurface.array_batchvertexposition, rsurface.batchvertex3f, rsurface.batchnumvertices * sizeof(r_vertexposition_t)); else for (j = 0, vertexposition = rsurface.array_batchvertexposition;j < rsurface.batchnumvertices;j++, vertexposition++) VectorCopy(rsurface.batchvertex3f + 3*j, vertexposition->vertex3f); } } void RSurf_DrawBatch(void) { // sometimes a zero triangle surface (usually a degenerate patch) makes it // through the pipeline, killing it earlier in the pipeline would have // per-surface overhead rather than per-batch overhead, so it's best to // reject it here, before it hits glDraw. if (rsurface.batchnumtriangles == 0) return; #if 0 // batch debugging code if (r_test.integer && rsurface.entity == r_refdef.scene.worldentity && rsurface.batchvertex3f == r_refdef.scene.worldentity->model->surfmesh.data_vertex3f) { int i; int j; int c; const int *e; e = rsurface.batchelement3i + rsurface.batchfirsttriangle*3; for (i = 0;i < rsurface.batchnumtriangles*3;i++) { c = e[i]; for (j = 0;j < rsurface.entity->model->num_surfaces;j++) { if (c >= rsurface.modelsurfaces[j].num_firstvertex && c < (rsurface.modelsurfaces[j].num_firstvertex + rsurface.modelsurfaces[j].num_vertices)) { if (rsurface.modelsurfaces[j].texture != rsurface.texture) Sys_Error("RSurf_DrawBatch: index %i uses different texture (%s) than surface %i which it belongs to (which uses %s)\n", c, rsurface.texture->name, j, rsurface.modelsurfaces[j].texture->name); break; } } } } #endif R_Mesh_Draw(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchfirsttriangle, rsurface.batchnumtriangles, rsurface.batchelement3i, rsurface.batchelement3i_indexbuffer, rsurface.batchelement3i_bufferoffset, rsurface.batchelement3s, rsurface.batchelement3s_indexbuffer, rsurface.batchelement3s_bufferoffset); } static int RSurf_FindWaterPlaneForSurface(const msurface_t *surface) { // pick the closest matching water plane int planeindex, vertexindex, bestplaneindex = -1; float d, bestd; vec3_t vert; const float *v; r_waterstate_waterplane_t *p; qboolean prepared = false; bestd = 0; for (planeindex = 0, p = r_waterstate.waterplanes;planeindex < r_waterstate.numwaterplanes;planeindex++, p++) { if(p->camera_entity != rsurface.texture->camera_entity) continue; d = 0; if(!prepared) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, 1, &surface); prepared = true; if(rsurface.batchnumvertices == 0) break; } for (vertexindex = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3;vertexindex < rsurface.batchnumvertices;vertexindex++, v += 3) { Matrix4x4_Transform(&rsurface.matrix, v, vert); d += fabs(PlaneDiff(vert, &p->plane)); } if (bestd > d || bestplaneindex < 0) { bestd = d; bestplaneindex = planeindex; } } return bestplaneindex; // NOTE: this MAY return a totally unrelated water plane; we can ignore // this situation though, as it might be better to render single larger // batches with useless stuff (backface culled for example) than to // render multiple smaller batches } static void RSurf_DrawBatch_GL11_MakeFullbrightLightmapColorArray(void) { int i; for (i = 0;i < rsurface.batchnumvertices;i++) Vector4Set(rsurface.array_passcolor4f + 4*i, 0.5f, 0.5f, 0.5f, 1.0f); rsurface.passcolor4f = rsurface.array_passcolor4f; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } static void RSurf_DrawBatch_GL11_ApplyFog(void) { int i; float f; const float *v; const float *c; float *c2; if (rsurface.passcolor4f) { // generate color arrays for (i = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3, c = rsurface.passcolor4f + rsurface.batchfirstvertex * 4, c2 = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, v += 3, c += 4, c2 += 4) { f = RSurf_FogVertex(v); c2[0] = c[0] * f; c2[1] = c[1] * f; c2[2] = c[2] * f; c2[3] = c[3]; } } else { for (i = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3, c2 = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, v += 3, c2 += 4) { f = RSurf_FogVertex(v); c2[0] = f; c2[1] = f; c2[2] = f; c2[3] = 1; } } rsurface.passcolor4f = rsurface.array_passcolor4f; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } static void RSurf_DrawBatch_GL11_ApplyFogToFinishedVertexColors(void) { int i; float f; const float *v; const float *c; float *c2; if (!rsurface.passcolor4f) return; for (i = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3, c = rsurface.passcolor4f + rsurface.batchfirstvertex * 4, c2 = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, v += 3, c += 4, c2 += 4) { f = RSurf_FogVertex(v); c2[0] = c[0] * f + r_refdef.fogcolor[0] * (1 - f); c2[1] = c[1] * f + r_refdef.fogcolor[1] * (1 - f); c2[2] = c[2] * f + r_refdef.fogcolor[2] * (1 - f); c2[3] = c[3]; } rsurface.passcolor4f = rsurface.array_passcolor4f; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } static void RSurf_DrawBatch_GL11_ApplyColor(float r, float g, float b, float a) { int i; const float *c; float *c2; if (!rsurface.passcolor4f) return; for (i = 0, c = rsurface.passcolor4f + rsurface.batchfirstvertex * 4, c2 = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, c += 4, c2 += 4) { c2[0] = c[0] * r; c2[1] = c[1] * g; c2[2] = c[2] * b; c2[3] = c[3] * a; } rsurface.passcolor4f = rsurface.array_passcolor4f; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } static void RSurf_DrawBatch_GL11_ApplyAmbient(void) { int i; const float *c; float *c2; if (!rsurface.passcolor4f) return; for (i = 0, c = rsurface.passcolor4f + rsurface.batchfirstvertex * 4, c2 = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, c += 4, c2 += 4) { c2[0] = c[0] + r_refdef.scene.ambient; c2[1] = c[1] + r_refdef.scene.ambient; c2[2] = c[2] + r_refdef.scene.ambient; c2[3] = c[3]; } rsurface.passcolor4f = rsurface.array_passcolor4f; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } static void RSurf_DrawBatch_GL11_Lightmap(float r, float g, float b, float a, qboolean applycolor, qboolean applyfog) { // TODO: optimize rsurface.passcolor4f = NULL; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; if (applyfog) RSurf_DrawBatch_GL11_ApplyFog(); if (applycolor) RSurf_DrawBatch_GL11_ApplyColor(r, g, b, a); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.passcolor4f, rsurface.passcolor4f_vertexbuffer, rsurface.passcolor4f_bufferoffset); GL_Color(r, g, b, a); R_Mesh_TexBind(0, rsurface.lightmaptexture); RSurf_DrawBatch(); } static void RSurf_DrawBatch_GL11_Unlit(float r, float g, float b, float a, qboolean applycolor, qboolean applyfog) { // TODO: optimize applyfog && applycolor case // just apply fog if necessary, and tint the fog color array if necessary rsurface.passcolor4f = NULL; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; if (applyfog) RSurf_DrawBatch_GL11_ApplyFog(); if (applycolor) RSurf_DrawBatch_GL11_ApplyColor(r, g, b, a); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.passcolor4f, rsurface.passcolor4f_vertexbuffer, rsurface.passcolor4f_bufferoffset); GL_Color(r, g, b, a); RSurf_DrawBatch(); } static void RSurf_DrawBatch_GL11_VertexColor(float r, float g, float b, float a, qboolean applycolor, qboolean applyfog) { // TODO: optimize rsurface.passcolor4f = rsurface.batchlightmapcolor4f; rsurface.passcolor4f_vertexbuffer = rsurface.batchlightmapcolor4f_vertexbuffer; rsurface.passcolor4f_bufferoffset = rsurface.batchlightmapcolor4f_bufferoffset; if (applyfog) RSurf_DrawBatch_GL11_ApplyFog(); if (applycolor) RSurf_DrawBatch_GL11_ApplyColor(r, g, b, a); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.passcolor4f, rsurface.passcolor4f_vertexbuffer, rsurface.passcolor4f_bufferoffset); GL_Color(r, g, b, a); RSurf_DrawBatch(); } static void RSurf_DrawBatch_GL11_ClampColor(void) { int i; const float *c1; float *c2; if (!rsurface.passcolor4f) return; for (i = 0, c1 = rsurface.passcolor4f + 4*rsurface.batchfirstvertex, c2 = rsurface.array_passcolor4f + 4*rsurface.batchfirstvertex;i < rsurface.batchnumvertices;i++, c1 += 4, c2 += 4) { c2[0] = bound(0.0f, c1[0], 1.0f); c2[1] = bound(0.0f, c1[1], 1.0f); c2[2] = bound(0.0f, c1[2], 1.0f); c2[3] = bound(0.0f, c1[3], 1.0f); } } static void RSurf_DrawBatch_GL11_ApplyFakeLight(void) { int i; float f; const float *v; const float *n; float *c; //vec3_t eyedir; // fake shading for (i = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3, n = rsurface.batchnormal3f + rsurface.batchfirstvertex * 3, c = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, v += 3, n += 3, c += 4) { f = -DotProduct(r_refdef.view.forward, n); f = max(0, f); f = f * 0.85 + 0.15; // work around so stuff won't get black f *= r_refdef.lightmapintensity; Vector4Set(c, f, f, f, 1); } rsurface.passcolor4f = rsurface.array_passcolor4f; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } static void RSurf_DrawBatch_GL11_FakeLight(float r, float g, float b, float a, qboolean applycolor, qboolean applyfog) { RSurf_DrawBatch_GL11_ApplyFakeLight(); if (applyfog) RSurf_DrawBatch_GL11_ApplyFog(); if (applycolor) RSurf_DrawBatch_GL11_ApplyColor(r, g, b, a); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.passcolor4f, rsurface.passcolor4f_vertexbuffer, rsurface.passcolor4f_bufferoffset); GL_Color(r, g, b, a); RSurf_DrawBatch(); } static void RSurf_DrawBatch_GL11_ApplyVertexShade(float *r, float *g, float *b, float *a, qboolean *applycolor) { int i; float f; float alpha; const float *v; const float *n; float *c; vec3_t ambientcolor; vec3_t diffusecolor; vec3_t lightdir; // TODO: optimize // model lighting VectorCopy(rsurface.modellight_lightdir, lightdir); f = 0.5f * r_refdef.lightmapintensity; ambientcolor[0] = rsurface.modellight_ambient[0] * *r * f; ambientcolor[1] = rsurface.modellight_ambient[1] * *g * f; ambientcolor[2] = rsurface.modellight_ambient[2] * *b * f; diffusecolor[0] = rsurface.modellight_diffuse[0] * *r * f; diffusecolor[1] = rsurface.modellight_diffuse[1] * *g * f; diffusecolor[2] = rsurface.modellight_diffuse[2] * *b * f; alpha = *a; if (VectorLength2(diffusecolor) > 0) { // q3-style directional shading for (i = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3, n = rsurface.batchnormal3f + rsurface.batchfirstvertex * 3, c = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, v += 3, n += 3, c += 4) { if ((f = DotProduct(n, lightdir)) > 0) VectorMA(ambientcolor, f, diffusecolor, c); else VectorCopy(ambientcolor, c); c[3] = alpha; } *r = 1; *g = 1; *b = 1; *a = 1; rsurface.passcolor4f = rsurface.array_passcolor4f; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; *applycolor = false; } else { *r = ambientcolor[0]; *g = ambientcolor[1]; *b = ambientcolor[2]; rsurface.passcolor4f = NULL; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } } static void RSurf_DrawBatch_GL11_VertexShade(float r, float g, float b, float a, qboolean applycolor, qboolean applyfog) { RSurf_DrawBatch_GL11_ApplyVertexShade(&r, &g, &b, &a, &applycolor); if (applyfog) RSurf_DrawBatch_GL11_ApplyFog(); if (applycolor) RSurf_DrawBatch_GL11_ApplyColor(r, g, b, a); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.passcolor4f, rsurface.passcolor4f_vertexbuffer, rsurface.passcolor4f_bufferoffset); GL_Color(r, g, b, a); RSurf_DrawBatch(); } static void RSurf_DrawBatch_GL11_MakeFogColor(float r, float g, float b, float a) { int i; float f; const float *v; float *c; for (i = 0, v = rsurface.batchvertex3f + rsurface.batchfirstvertex * 3, c = rsurface.array_passcolor4f + rsurface.batchfirstvertex * 4;i < rsurface.batchnumvertices;i++, v += 3, c += 4) { f = 1 - RSurf_FogVertex(v); c[0] = r; c[1] = g; c[2] = b; c[3] = f * a; } } void RSurf_SetupDepthAndCulling(void) { // submodels are biased to avoid z-fighting with world surfaces that they // may be exactly overlapping (avoids z-fighting artifacts on certain // doors and things in Quake maps) GL_DepthRange(0, (rsurface.texture->currentmaterialflags & MATERIALFLAG_SHORTDEPTHRANGE) ? 0.0625 : 1); GL_PolygonOffset(rsurface.basepolygonfactor + rsurface.texture->biaspolygonfactor, rsurface.basepolygonoffset + rsurface.texture->biaspolygonoffset); GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST)); GL_CullFace((rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE) ? GL_NONE : r_refdef.view.cullface_back); } static void R_DrawTextureSurfaceList_Sky(int texturenumsurfaces, const msurface_t **texturesurfacelist) { // transparent sky would be ridiculous if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) return; R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); skyrenderlater = true; RSurf_SetupDepthAndCulling(); GL_DepthMask(true); // LordHavoc: HalfLife maps have freaky skypolys so don't use // skymasking on them, and Quake3 never did sky masking (unlike // software Quake and software Quake2), so disable the sky masking // in Quake3 maps as it causes problems with q3map2 sky tricks, // and skymasking also looks very bad when noclipping outside the // level, so don't use it then either. if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->type == mod_brushq1 && r_q1bsp_skymasking.integer && !r_refdef.viewcache.world_novis) { R_Mesh_ResetTextureState(); if (skyrendermasked) { R_SetupShader_DepthOrShadow(); // depth-only (masking) GL_ColorMask(0,0,0,0); // just to make sure that braindead drivers don't draw // anything despite that colormask... GL_BlendFunc(GL_ZERO, GL_ONE); RSurf_PrepareVerticesForBatch(BATCHNEED_VERTEXPOSITION | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); R_Mesh_PrepareVertices_Position(rsurface.batchnumvertices, rsurface.batchvertexposition, rsurface.batchvertexpositionbuffer); } else { R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); // fog sky GL_BlendFunc(GL_ONE, GL_ZERO); RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); GL_Color(r_refdef.fogcolor[0], r_refdef.fogcolor[1], r_refdef.fogcolor[2], 1); R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL); } RSurf_DrawBatch(); if (skyrendermasked) GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1); } R_Mesh_ResetTextureState(); GL_Color(1, 1, 1, 1); } extern rtexture_t *r_shadow_prepasslightingdiffusetexture; extern rtexture_t *r_shadow_prepasslightingspeculartexture; static void R_DrawTextureSurfaceList_GL20(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean prepass) { if (r_waterstate.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))) return; if (prepass) { // render screenspace normalmap to texture GL_DepthMask(true); R_SetupShader_Surface(vec3_origin, (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) != 0, 1, 1, rsurface.texture->specularscale, RSURFPASS_DEFERREDGEOMETRY, texturenumsurfaces, texturesurfacelist, NULL); RSurf_DrawBatch(); return; } // bind lightmap texture // water/refraction/reflection/camera surfaces have to be handled specially if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA | MATERIALFLAG_REFLECTION))) { int start, end, startplaneindex; for (start = 0;start < texturenumsurfaces;start = end) { startplaneindex = RSurf_FindWaterPlaneForSurface(texturesurfacelist[start]); if(startplaneindex < 0) { // this happens if the plane e.g. got backface culled and thus didn't get a water plane. We can just ignore this. // Con_Printf("No matching water plane for surface with material flags 0x%08x - PLEASE DEBUG THIS\n", rsurface.texture->currentmaterialflags); end = start + 1; continue; } for (end = start + 1;end < texturenumsurfaces && startplaneindex == RSurf_FindWaterPlaneForSurface(texturesurfacelist[end]);end++) ; // now that we have a batch using the same planeindex, render it if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_CAMERA))) { // render water or distortion background GL_DepthMask(true); R_SetupShader_Surface(vec3_origin, (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) != 0, 1, 1, rsurface.texture->specularscale, RSURFPASS_BACKGROUND, end-start, texturesurfacelist + start, (void *)(r_waterstate.waterplanes + startplaneindex)); RSurf_DrawBatch(); // blend surface on top GL_DepthMask(false); R_SetupShader_Surface(vec3_origin, (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) != 0, 1, 1, rsurface.texture->specularscale, RSURFPASS_BASE, end-start, texturesurfacelist + start, NULL); RSurf_DrawBatch(); } else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_REFLECTION)) { // render surface with reflection texture as input GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED)); R_SetupShader_Surface(vec3_origin, (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) != 0, 1, 1, rsurface.texture->specularscale, RSURFPASS_BASE, end-start, texturesurfacelist + start, (void *)(r_waterstate.waterplanes + startplaneindex)); RSurf_DrawBatch(); } } return; } // render surface batch normally GL_DepthMask(writedepth && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED)); R_SetupShader_Surface(vec3_origin, (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) != 0, 1, 1, rsurface.texture->specularscale, RSURFPASS_BASE, texturenumsurfaces, texturesurfacelist, NULL); RSurf_DrawBatch(); } static void R_DrawTextureSurfaceList_GL13(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth) { // OpenGL 1.3 path - anything not completely ancient qboolean applycolor; qboolean applyfog; int layerindex; const texturelayer_t *layer; RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | ((!rsurface.uselightmaptexture && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)) ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.modeltexcoordlightmap2f ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset); for (layerindex = 0, layer = rsurface.texture->currentlayers;layerindex < rsurface.texture->currentnumlayers;layerindex++, layer++) { vec4_t layercolor; int layertexrgbscale; if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) { if (layerindex == 0) GL_AlphaTest(true); else { GL_AlphaTest(false); GL_DepthFunc(GL_EQUAL); } } GL_DepthMask(layer->depthmask && writedepth); GL_BlendFunc(layer->blendfunc1, layer->blendfunc2); if (layer->color[0] > 2 || layer->color[1] > 2 || layer->color[2] > 2) { layertexrgbscale = 4; VectorScale(layer->color, 0.25f, layercolor); } else if (layer->color[0] > 1 || layer->color[1] > 1 || layer->color[2] > 1) { layertexrgbscale = 2; VectorScale(layer->color, 0.5f, layercolor); } else { layertexrgbscale = 1; VectorScale(layer->color, 1.0f, layercolor); } layercolor[3] = layer->color[3]; applycolor = layercolor[0] != 1 || layercolor[1] != 1 || layercolor[2] != 1 || layercolor[3] != 1; R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, 0, 0); applyfog = r_refdef.fogenabled && (rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED); switch (layer->type) { case TEXTURELAYERTYPE_LITTEXTURE: // single-pass lightmapped texture with 2x rgbscale R_Mesh_TexBind(0, r_texture_white); R_Mesh_TexMatrix(0, NULL); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset); R_Mesh_TexBind(1, layer->texture); R_Mesh_TexMatrix(1, &layer->texmatrix); R_Mesh_TexCombine(1, GL_MODULATE, GL_MODULATE, layertexrgbscale, 1); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) RSurf_DrawBatch_GL11_VertexShade(layercolor[0], layercolor[1], layercolor[2], layercolor[3], applycolor, applyfog); else if (FAKELIGHT_ENABLED) RSurf_DrawBatch_GL11_FakeLight(layercolor[0], layercolor[1], layercolor[2], layercolor[3], applycolor, applyfog); else if (rsurface.uselightmaptexture) RSurf_DrawBatch_GL11_Lightmap(layercolor[0], layercolor[1], layercolor[2], layercolor[3], applycolor, applyfog); else RSurf_DrawBatch_GL11_VertexColor(layercolor[0], layercolor[1], layercolor[2], layercolor[3], applycolor, applyfog); break; case TEXTURELAYERTYPE_TEXTURE: // singletexture unlit texture with transparency support R_Mesh_TexBind(0, layer->texture); R_Mesh_TexMatrix(0, &layer->texmatrix); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, layertexrgbscale, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); R_Mesh_TexBind(1, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, 0, 0); RSurf_DrawBatch_GL11_Unlit(layercolor[0], layercolor[1], layercolor[2], layercolor[3], applycolor, applyfog); break; case TEXTURELAYERTYPE_FOG: // singletexture fogging if (layer->texture) { R_Mesh_TexBind(0, layer->texture); R_Mesh_TexMatrix(0, &layer->texmatrix); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, layertexrgbscale, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); } else { R_Mesh_TexBind(0, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, 0, 0); } R_Mesh_TexBind(1, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, 0, 0); // generate a color array for the fog pass R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.array_passcolor4f, 0, 0); RSurf_DrawBatch_GL11_MakeFogColor(layercolor[0], layercolor[1], layercolor[2], layercolor[3]); RSurf_DrawBatch(); break; default: Con_Printf("R_DrawTextureSurfaceList: unknown layer type %i\n", layer->type); } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) { GL_DepthFunc(GL_LEQUAL); GL_AlphaTest(false); } } static void R_DrawTextureSurfaceList_GL11(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth) { // OpenGL 1.1 - crusty old voodoo path qboolean applyfog; int layerindex; const texturelayer_t *layer; RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | ((!rsurface.uselightmaptexture && !(rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT)) ? BATCHNEED_ARRAY_VERTEXCOLOR : 0) | BATCHNEED_ARRAY_TEXCOORD | (rsurface.modeltexcoordlightmap2f ? BATCHNEED_ARRAY_LIGHTMAP : 0) | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset); for (layerindex = 0, layer = rsurface.texture->currentlayers;layerindex < rsurface.texture->currentnumlayers;layerindex++, layer++) { if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) { if (layerindex == 0) GL_AlphaTest(true); else { GL_AlphaTest(false); GL_DepthFunc(GL_EQUAL); } } GL_DepthMask(layer->depthmask && writedepth); GL_BlendFunc(layer->blendfunc1, layer->blendfunc2); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, 0, 0); applyfog = r_refdef.fogenabled && (rsurface.texture->currentmaterialflags & MATERIALFLAG_BLENDED); switch (layer->type) { case TEXTURELAYERTYPE_LITTEXTURE: if (layer->blendfunc1 == GL_ONE && layer->blendfunc2 == GL_ZERO) { // two-pass lit texture with 2x rgbscale // first the lightmap pass R_Mesh_TexBind(0, r_texture_white); R_Mesh_TexMatrix(0, NULL); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordlightmap2f, rsurface.batchtexcoordlightmap2f_vertexbuffer, rsurface.batchtexcoordlightmap2f_bufferoffset); if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) RSurf_DrawBatch_GL11_VertexShade(1, 1, 1, 1, false, false); else if (FAKELIGHT_ENABLED) RSurf_DrawBatch_GL11_FakeLight(1, 1, 1, 1, false, false); else if (rsurface.uselightmaptexture) RSurf_DrawBatch_GL11_Lightmap(1, 1, 1, 1, false, false); else RSurf_DrawBatch_GL11_VertexColor(1, 1, 1, 1, false, false); // then apply the texture to it GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR); R_Mesh_TexBind(0, layer->texture); R_Mesh_TexMatrix(0, &layer->texmatrix); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); RSurf_DrawBatch_GL11_Unlit(layer->color[0] * 0.5f, layer->color[1] * 0.5f, layer->color[2] * 0.5f, layer->color[3], layer->color[0] != 2 || layer->color[1] != 2 || layer->color[2] != 2 || layer->color[3] != 1, false); } else { // single pass vertex-lighting-only texture with 1x rgbscale and transparency support R_Mesh_TexBind(0, layer->texture); R_Mesh_TexMatrix(0, &layer->texmatrix); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) RSurf_DrawBatch_GL11_VertexShade(layer->color[0], layer->color[1], layer->color[2], layer->color[3], layer->color[0] != 1 || layer->color[1] != 1 || layer->color[2] != 1 || layer->color[3] != 1, applyfog); else RSurf_DrawBatch_GL11_VertexColor(layer->color[0], layer->color[1], layer->color[2], layer->color[3], layer->color[0] != 1 || layer->color[1] != 1 || layer->color[2] != 1 || layer->color[3] != 1, applyfog); } break; case TEXTURELAYERTYPE_TEXTURE: // singletexture unlit texture with transparency support R_Mesh_TexBind(0, layer->texture); R_Mesh_TexMatrix(0, &layer->texmatrix); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); RSurf_DrawBatch_GL11_Unlit(layer->color[0], layer->color[1], layer->color[2], layer->color[3], layer->color[0] != 1 || layer->color[1] != 1 || layer->color[2] != 1 || layer->color[3] != 1, applyfog); break; case TEXTURELAYERTYPE_FOG: // singletexture fogging if (layer->texture) { R_Mesh_TexBind(0, layer->texture); R_Mesh_TexMatrix(0, &layer->texmatrix); R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset); } else { R_Mesh_TexBind(0, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, 0, 0); } // generate a color array for the fog pass R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.array_passcolor4f, 0, 0); RSurf_DrawBatch_GL11_MakeFogColor(layer->color[0], layer->color[1], layer->color[2], layer->color[3]); RSurf_DrawBatch(); break; default: Con_Printf("R_DrawTextureSurfaceList: unknown layer type %i\n", layer->type); } } if (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) { GL_DepthFunc(GL_LEQUAL); GL_AlphaTest(false); } } static void R_DrawTextureSurfaceList_ShowSurfaces(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth) { int vi; int j; r_vertexgeneric_t *batchvertex; float c[4]; GL_AlphaTest(false); // R_Mesh_ResetTextureState(); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); if(rsurface.texture && rsurface.texture->currentskinframe) { memcpy(c, rsurface.texture->currentskinframe->avgcolor, sizeof(c)); c[3] *= rsurface.texture->currentalpha; } else { c[0] = 1; c[1] = 0; c[2] = 1; c[3] = 1; } if (rsurface.texture->pantstexture || rsurface.texture->shirttexture) { c[0] = 0.5 * (rsurface.colormap_pantscolor[0] * 0.3 + rsurface.colormap_shirtcolor[0] * 0.7); c[1] = 0.5 * (rsurface.colormap_pantscolor[1] * 0.3 + rsurface.colormap_shirtcolor[1] * 0.7); c[2] = 0.5 * (rsurface.colormap_pantscolor[2] * 0.3 + rsurface.colormap_shirtcolor[2] * 0.7); } // brighten it up (as texture value 127 means "unlit") c[0] *= 2 * r_refdef.view.colorscale; c[1] *= 2 * r_refdef.view.colorscale; c[2] *= 2 * r_refdef.view.colorscale; if(rsurface.texture->currentmaterialflags & MATERIALFLAG_WATERALPHA) c[3] *= r_wateralpha.value; if(rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHA && c[3] != 1) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); } else if(rsurface.texture->currentmaterialflags & MATERIALFLAG_ADD) { GL_BlendFunc(GL_ONE, GL_ONE); GL_DepthMask(false); } else if(rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // can't do alpha test without texture, so let's blend instead GL_DepthMask(false); } else if(rsurface.texture->currentmaterialflags & MATERIALFLAG_CUSTOMBLEND) { GL_BlendFunc(rsurface.texture->customblendfunc[0], rsurface.texture->customblendfunc[1]); GL_DepthMask(false); } else { GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(writedepth); } if (r_showsurfaces.integer == 3) { rsurface.passcolor4f = NULL; if (rsurface.texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); rsurface.passcolor4f = NULL; rsurface.passcolor4f_vertexbuffer = 0; rsurface.passcolor4f_bufferoffset = 0; } else if (rsurface.texture->currentmaterialflags & MATERIALFLAG_MODELLIGHT) { qboolean applycolor = true; float one = 1.0; RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); r_refdef.lightmapintensity = 1; RSurf_DrawBatch_GL11_ApplyVertexShade(&one, &one, &one, &one, &applycolor); r_refdef.lightmapintensity = 0; // we're in showsurfaces, after all } else if (FAKELIGHT_ENABLED) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); r_refdef.lightmapintensity = r_fakelight_intensity.value; RSurf_DrawBatch_GL11_ApplyFakeLight(); r_refdef.lightmapintensity = 0; // we're in showsurfaces, after all } else { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_VERTEXCOLOR | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); rsurface.passcolor4f = rsurface.batchlightmapcolor4f; rsurface.passcolor4f_vertexbuffer = rsurface.batchlightmapcolor4f_vertexbuffer; rsurface.passcolor4f_bufferoffset = rsurface.batchlightmapcolor4f_bufferoffset; } if(!rsurface.passcolor4f) RSurf_DrawBatch_GL11_MakeFullbrightLightmapColorArray(); RSurf_DrawBatch_GL11_ApplyAmbient(); RSurf_DrawBatch_GL11_ApplyColor(c[0], c[1], c[2], c[3]); if(r_refdef.fogenabled) RSurf_DrawBatch_GL11_ApplyFogToFinishedVertexColors(); RSurf_DrawBatch_GL11_ClampColor(); R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.passcolor4f, NULL); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); RSurf_DrawBatch(); } else if (!r_refdef.view.showdebug) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); batchvertex = R_Mesh_PrepareVertices_Generic_Lock(rsurface.batchnumvertices); for (j = 0, vi = rsurface.batchfirstvertex;j < rsurface.batchnumvertices;j++, vi++) { VectorCopy(rsurface.batchvertex3f + 3*vi, batchvertex[vi].vertex3f); Vector4Set(batchvertex[vi].color4ub, 0, 0, 0, 255); } R_Mesh_PrepareVertices_Generic_Unlock(); RSurf_DrawBatch(); } else if (r_showsurfaces.integer == 4) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); batchvertex = R_Mesh_PrepareVertices_Generic_Lock(rsurface.batchnumvertices); for (j = 0, vi = rsurface.batchfirstvertex;j < rsurface.batchnumvertices;j++, vi++) { unsigned char c = vi << 3; VectorCopy(rsurface.batchvertex3f + 3*vi, batchvertex[vi].vertex3f); Vector4Set(batchvertex[vi].color4ub, c, c, c, 255); } R_Mesh_PrepareVertices_Generic_Unlock(); RSurf_DrawBatch(); } else if (r_showsurfaces.integer == 2) { const int *e; RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); batchvertex = R_Mesh_PrepareVertices_Generic_Lock(3*rsurface.batchnumtriangles); for (j = 0, e = rsurface.batchelement3i + 3 * rsurface.batchfirsttriangle;j < rsurface.batchnumtriangles;j++, e += 3) { unsigned char c = (j + rsurface.batchfirsttriangle) << 3; VectorCopy(rsurface.batchvertex3f + 3*e[0], batchvertex[j*3+0].vertex3f); VectorCopy(rsurface.batchvertex3f + 3*e[1], batchvertex[j*3+1].vertex3f); VectorCopy(rsurface.batchvertex3f + 3*e[2], batchvertex[j*3+2].vertex3f); Vector4Set(batchvertex[j*3+0].color4ub, c, c, c, 255); Vector4Set(batchvertex[j*3+1].color4ub, c, c, c, 255); Vector4Set(batchvertex[j*3+2].color4ub, c, c, c, 255); } R_Mesh_PrepareVertices_Generic_Unlock(); R_Mesh_Draw(0, rsurface.batchnumtriangles*3, 0, rsurface.batchnumtriangles, NULL, NULL, 0, NULL, NULL, 0); } else { int texturesurfaceindex; int k; const msurface_t *surface; unsigned char surfacecolor4ub[4]; RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist); batchvertex = R_Mesh_PrepareVertices_Generic_Lock(rsurface.batchfirstvertex + rsurface.batchnumvertices); vi = 0; for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; k = (int)(((size_t)surface) / sizeof(msurface_t)); Vector4Set(surfacecolor4ub, (k & 0xF) << 4, (k & 0xF0), (k & 0xF00) >> 4, 255); for (j = 0;j < surface->num_vertices;j++) { VectorCopy(rsurface.batchvertex3f + 3*vi, batchvertex[vi].vertex3f); Vector4Copy(surfacecolor4ub, batchvertex[vi].color4ub); vi++; } } R_Mesh_PrepareVertices_Generic_Unlock(); RSurf_DrawBatch(); } } static void R_DrawWorldTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean prepass) { CHECKGLERROR RSurf_SetupDepthAndCulling(); if (r_showsurfaces.integer) { R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth); return; } switch (vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass); break; case RENDERPATH_GL13: R_DrawTextureSurfaceList_GL13(texturenumsurfaces, texturesurfacelist, writedepth); break; case RENDERPATH_GL11: R_DrawTextureSurfaceList_GL11(texturenumsurfaces, texturesurfacelist, writedepth); break; } CHECKGLERROR } static void R_DrawModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean prepass) { CHECKGLERROR RSurf_SetupDepthAndCulling(); if (r_showsurfaces.integer) { R_DrawTextureSurfaceList_ShowSurfaces(texturenumsurfaces, texturesurfacelist, writedepth); return; } switch (vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: R_DrawTextureSurfaceList_GL20(texturenumsurfaces, texturesurfacelist, writedepth, prepass); break; case RENDERPATH_GL13: R_DrawTextureSurfaceList_GL13(texturenumsurfaces, texturesurfacelist, writedepth); break; case RENDERPATH_GL11: R_DrawTextureSurfaceList_GL11(texturenumsurfaces, texturesurfacelist, writedepth); break; } CHECKGLERROR } static void R_DrawSurface_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { int i, j; int texturenumsurfaces, endsurface; texture_t *texture; const msurface_t *surface; #define MAXBATCH_TRANSPARENTSURFACES 256 const msurface_t *texturesurfacelist[MAXBATCH_TRANSPARENTSURFACES]; // if the model is static it doesn't matter what value we give for // wantnormals and wanttangents, so this logic uses only rules applicable // to a model, knowing that they are meaningless otherwise if (ent == r_refdef.scene.worldentity) RSurf_ActiveWorldEntity(); else if (r_showsurfaces.integer && r_showsurfaces.integer != 3) RSurf_ActiveModelEntity(ent, false, false, false); else { switch (vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: RSurf_ActiveModelEntity(ent, true, true, false); break; case RENDERPATH_GL13: case RENDERPATH_GL11: RSurf_ActiveModelEntity(ent, true, false, false); break; } } if (r_transparentdepthmasking.integer) { qboolean setup = false; for (i = 0;i < numsurfaces;i = j) { j = i + 1; surface = rsurface.modelsurfaces + surfacelist[i]; texture = surface->texture; rsurface.texture = R_GetCurrentTexture(texture); rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; // scan ahead until we find a different texture endsurface = min(i + 1024, numsurfaces); texturenumsurfaces = 0; texturesurfacelist[texturenumsurfaces++] = surface; for (;j < endsurface;j++) { surface = rsurface.modelsurfaces + surfacelist[j]; if (texture != surface->texture) break; texturesurfacelist[texturenumsurfaces++] = surface; } if (!(rsurface.texture->currentmaterialflags & MATERIALFLAG_TRANSDEPTH)) continue; // render the range of surfaces as depth if (!setup) { setup = true; GL_ColorMask(0,0,0,0); GL_Color(1,1,1,1); GL_DepthTest(true); GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); GL_AlphaTest(false); // R_Mesh_ResetTextureState(); R_SetupShader_DepthOrShadow(); } RSurf_SetupDepthAndCulling(); RSurf_PrepareVerticesForBatch(BATCHNEED_VERTEXPOSITION, texturenumsurfaces, texturesurfacelist); R_Mesh_PrepareVertices_Position(rsurface.batchnumvertices, rsurface.batchvertexposition, rsurface.batchvertexpositionbuffer); RSurf_DrawBatch(); } if (setup) GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1); } for (i = 0;i < numsurfaces;i = j) { j = i + 1; surface = rsurface.modelsurfaces + surfacelist[i]; texture = surface->texture; rsurface.texture = R_GetCurrentTexture(texture); // scan ahead until we find a different texture endsurface = min(i + MAXBATCH_TRANSPARENTSURFACES, numsurfaces); texturenumsurfaces = 0; texturesurfacelist[texturenumsurfaces++] = surface; if(FAKELIGHT_ENABLED) { rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; for (;j < endsurface;j++) { surface = rsurface.modelsurfaces + surfacelist[j]; if (texture != surface->texture) break; texturesurfacelist[texturenumsurfaces++] = surface; } } else { rsurface.lightmaptexture = surface->lightmaptexture; rsurface.deluxemaptexture = surface->deluxemaptexture; rsurface.uselightmaptexture = surface->lightmaptexture != NULL; for (;j < endsurface;j++) { surface = rsurface.modelsurfaces + surfacelist[j]; if (texture != surface->texture || rsurface.lightmaptexture != surface->lightmaptexture) break; texturesurfacelist[texturenumsurfaces++] = surface; } } // render the range of surfaces if (ent == r_refdef.scene.worldentity) R_DrawWorldTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false); else R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, false, false); } rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity GL_AlphaTest(false); } static void R_ProcessTransparentTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, const entity_render_t *queueentity) { // transparent surfaces get pushed off into the transparent queue int surfacelistindex; const msurface_t *surface; vec3_t tempcenter, center; for (surfacelistindex = 0;surfacelistindex < texturenumsurfaces;surfacelistindex++) { surface = texturesurfacelist[surfacelistindex]; tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f; tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f; tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f; Matrix4x4_Transform(&rsurface.matrix, tempcenter, center); if (queueentity->transparent_offset) // transparent offset { center[0] += r_refdef.view.forward[0]*queueentity->transparent_offset; center[1] += r_refdef.view.forward[1]*queueentity->transparent_offset; center[2] += r_refdef.view.forward[2]*queueentity->transparent_offset; } R_MeshQueue_AddTransparent(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST ? r_refdef.view.origin : center, R_DrawSurface_TransparentCallback, queueentity, surface - rsurface.modelsurfaces, rsurface.rtlight); } } static void R_DrawTextureSurfaceList_DepthOnly(int texturenumsurfaces, const msurface_t **texturesurfacelist) { if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_BLENDED | MATERIALFLAG_ALPHATEST))) return; if (r_waterstate.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFLECTION))) return; RSurf_SetupDepthAndCulling(); RSurf_PrepareVerticesForBatch(BATCHNEED_VERTEXPOSITION, texturenumsurfaces, texturesurfacelist); R_Mesh_PrepareVertices_Position(rsurface.batchnumvertices, rsurface.batchvertexposition, rsurface.batchvertexpositionbuffer); RSurf_DrawBatch(); } static void R_ProcessWorldTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean depthonly, qboolean prepass) { const entity_render_t *queueentity = r_refdef.scene.worldentity; CHECKGLERROR if (depthonly) R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist); else if (prepass) { if (!rsurface.texture->currentnumlayers) return; if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist, queueentity); else R_DrawWorldTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass); } else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && !r_showsurfaces.integer) R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist); else if (!rsurface.texture->currentnumlayers) return; else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))) && queueentity) { // in the deferred case, transparent surfaces were queued during prepass if (!r_shadow_usingdeferredprepass) R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist, queueentity); } else { // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier R_DrawWorldTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass); } CHECKGLERROR } void R_QueueWorldSurfaceList(int numsurfaces, const msurface_t **surfacelist, int flagsmask, qboolean writedepth, qboolean depthonly, qboolean prepass) { int i, j; texture_t *texture; // break the surface list down into batches by texture and use of lightmapping for (i = 0;i < numsurfaces;i = j) { j = i + 1; // texture is the base texture pointer, rsurface.texture is the // current frame/skin the texture is directing us to use (for example // if a model has 2 skins and it is on skin 1, then skin 0 tells us to // use skin 1 instead) texture = surfacelist[i]->texture; rsurface.texture = R_GetCurrentTexture(texture); if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW)) { // if this texture is not the kind we want, skip ahead to the next one for (;j < numsurfaces && texture == surfacelist[j]->texture;j++) ; continue; } if(FAKELIGHT_ENABLED || depthonly || prepass) { rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; // simply scan ahead until we find a different texture or lightmap state for (;j < numsurfaces && texture == surfacelist[j]->texture;j++) ; } else { rsurface.lightmaptexture = surfacelist[i]->lightmaptexture; rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture; rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL; // simply scan ahead until we find a different texture or lightmap state for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++) ; } // render the range of surfaces R_ProcessWorldTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, prepass); } } static void R_ProcessModelTextureSurfaceList(int texturenumsurfaces, const msurface_t **texturesurfacelist, qboolean writedepth, qboolean depthonly, const entity_render_t *queueentity, qboolean prepass) { CHECKGLERROR if (depthonly) R_DrawTextureSurfaceList_DepthOnly(texturenumsurfaces, texturesurfacelist); else if (prepass) { if (!rsurface.texture->currentnumlayers) return; if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist, queueentity); else R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth, prepass); } else if ((rsurface.texture->currentmaterialflags & MATERIALFLAG_SKY) && !r_showsurfaces.integer) R_DrawTextureSurfaceList_Sky(texturenumsurfaces, texturesurfacelist); else if (!rsurface.texture->currentnumlayers) return; else if (((rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) || (r_showsurfaces.integer == 3 && (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST))) && queueentity) { // in the deferred case, transparent surfaces were queued during prepass if (!r_shadow_usingdeferredprepass) R_ProcessTransparentTextureSurfaceList(texturenumsurfaces, texturesurfacelist, queueentity); } else { // the alphatest check is to make sure we write depth for anything we skipped on the depth-only pass earlier R_DrawModelTextureSurfaceList(texturenumsurfaces, texturesurfacelist, writedepth || (rsurface.texture->currentmaterialflags & MATERIALFLAG_ALPHATEST), prepass); } CHECKGLERROR } void R_QueueModelSurfaceList(entity_render_t *ent, int numsurfaces, const msurface_t **surfacelist, int flagsmask, qboolean writedepth, qboolean depthonly, qboolean prepass) { int i, j; texture_t *texture; // break the surface list down into batches by texture and use of lightmapping for (i = 0;i < numsurfaces;i = j) { j = i + 1; // texture is the base texture pointer, rsurface.texture is the // current frame/skin the texture is directing us to use (for example // if a model has 2 skins and it is on skin 1, then skin 0 tells us to // use skin 1 instead) texture = surfacelist[i]->texture; rsurface.texture = R_GetCurrentTexture(texture); if (!(rsurface.texture->currentmaterialflags & flagsmask) || (rsurface.texture->currentmaterialflags & MATERIALFLAG_NODRAW)) { // if this texture is not the kind we want, skip ahead to the next one for (;j < numsurfaces && texture == surfacelist[j]->texture;j++) ; continue; } if(FAKELIGHT_ENABLED || depthonly || prepass) { rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; // simply scan ahead until we find a different texture or lightmap state for (;j < numsurfaces && texture == surfacelist[j]->texture;j++) ; } else { rsurface.lightmaptexture = surfacelist[i]->lightmaptexture; rsurface.deluxemaptexture = surfacelist[i]->deluxemaptexture; rsurface.uselightmaptexture = surfacelist[i]->lightmaptexture != NULL; // simply scan ahead until we find a different texture or lightmap state for (;j < numsurfaces && texture == surfacelist[j]->texture && rsurface.lightmaptexture == surfacelist[j]->lightmaptexture;j++) ; } // render the range of surfaces R_ProcessModelTextureSurfaceList(j - i, surfacelist + i, writedepth, depthonly, ent, prepass); } } float locboxvertex3f[6*4*3] = { 1,0,1, 1,0,0, 1,1,0, 1,1,1, 0,1,1, 0,1,0, 0,0,0, 0,0,1, 1,1,1, 1,1,0, 0,1,0, 0,1,1, 0,0,1, 0,0,0, 1,0,0, 1,0,1, 0,0,1, 1,0,1, 1,1,1, 0,1,1, 1,0,0, 0,0,0, 0,1,0, 1,1,0 }; unsigned short locboxelements[6*2*3] = { 0, 1, 2, 0, 2, 3, 4, 5, 6, 4, 6, 7, 8, 9,10, 8,10,11, 12,13,14, 12,14,15, 16,17,18, 16,18,19, 20,21,22, 20,22,23 }; void R_DrawLoc_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { int i, j; cl_locnode_t *loc = (cl_locnode_t *)ent; vec3_t mins, size; float vertex3f[6*4*3]; CHECKGLERROR GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthRange(0, 1); GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset); GL_DepthTest(true); GL_CullFace(GL_NONE); R_EntityMatrix(&identitymatrix); // R_Mesh_ResetTextureState(); i = surfacelist[0]; GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale, ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale, ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale, surfacelist[0] < 0 ? 0.5f : 0.125f); if (VectorCompare(loc->mins, loc->maxs)) { VectorSet(size, 2, 2, 2); VectorMA(loc->mins, -0.5f, size, mins); } else { VectorCopy(loc->mins, mins); VectorSubtract(loc->maxs, loc->mins, size); } for (i = 0;i < 6*4*3;) for (j = 0;j < 3;j++, i++) vertex3f[i] = mins[j] + size[j] * locboxvertex3f[i]; R_Mesh_PrepareVertices_Generic_Arrays(6*4, vertex3f, NULL, NULL); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); R_Mesh_Draw(0, 6*4, 0, 6*2, NULL, NULL, 0, locboxelements, NULL, 0); } void R_DrawLocs(void) { int index; cl_locnode_t *loc, *nearestloc; vec3_t center; nearestloc = CL_Locs_FindNearest(cl.movement_origin); for (loc = cl.locnodes, index = 0;loc;loc = loc->next, index++) { VectorLerp(loc->mins, 0.5f, loc->maxs, center); R_MeshQueue_AddTransparent(center, R_DrawLoc_Callback, (entity_render_t *)loc, loc == nearestloc ? -1 : index, NULL); } } void R_DecalSystem_Reset(decalsystem_t *decalsystem) { if (decalsystem->decals) Mem_Free(decalsystem->decals); memset(decalsystem, 0, sizeof(*decalsystem)); } static void R_DecalSystem_SpawnTriangle(decalsystem_t *decalsystem, const float *v0, const float *v1, const float *v2, const float *t0, const float *t1, const float *t2, const float *c0, const float *c1, const float *c2, int triangleindex, int surfaceindex, int decalsequence) { tridecal_t *decal; tridecal_t *decals; int i; // expand or initialize the system if (decalsystem->maxdecals <= decalsystem->numdecals) { decalsystem_t old = *decalsystem; qboolean useshortelements; decalsystem->maxdecals = max(16, decalsystem->maxdecals * 2); useshortelements = decalsystem->maxdecals * 3 <= 65536; decalsystem->decals = (tridecal_t *)Mem_Alloc(cls.levelmempool, decalsystem->maxdecals * (sizeof(tridecal_t) + sizeof(float[3][3]) + sizeof(float[3][2]) + sizeof(float[3][4]) + sizeof(int[3]) + (useshortelements ? sizeof(unsigned short[3]) : 0))); decalsystem->color4f = (float *)(decalsystem->decals + decalsystem->maxdecals); decalsystem->texcoord2f = (float *)(decalsystem->color4f + decalsystem->maxdecals*12); decalsystem->vertex3f = (float *)(decalsystem->texcoord2f + decalsystem->maxdecals*6); decalsystem->element3i = (int *)(decalsystem->vertex3f + decalsystem->maxdecals*9); decalsystem->element3s = (useshortelements ? ((unsigned short *)(decalsystem->element3i + decalsystem->maxdecals*3)) : NULL); if (decalsystem->numdecals) memcpy(decalsystem->decals, old.decals, decalsystem->numdecals * sizeof(tridecal_t)); if (old.decals) Mem_Free(old.decals); for (i = 0;i < decalsystem->maxdecals*3;i++) decalsystem->element3i[i] = i; if (useshortelements) for (i = 0;i < decalsystem->maxdecals*3;i++) decalsystem->element3s[i] = i; } // grab a decal and search for another free slot for the next one decals = decalsystem->decals; decal = decalsystem->decals + (i = decalsystem->freedecal++); for (i = decalsystem->freedecal;i < decalsystem->numdecals && decals[i].color4ub[0][3];i++) ; decalsystem->freedecal = i; if (decalsystem->numdecals <= i) decalsystem->numdecals = i + 1; // initialize the decal decal->lived = 0; decal->triangleindex = triangleindex; decal->surfaceindex = surfaceindex; decal->decalsequence = decalsequence; decal->color4ub[0][0] = (unsigned char)(c0[0]*255.0f); decal->color4ub[0][1] = (unsigned char)(c0[1]*255.0f); decal->color4ub[0][2] = (unsigned char)(c0[2]*255.0f); decal->color4ub[0][3] = 255; decal->color4ub[1][0] = (unsigned char)(c1[0]*255.0f); decal->color4ub[1][1] = (unsigned char)(c1[1]*255.0f); decal->color4ub[1][2] = (unsigned char)(c1[2]*255.0f); decal->color4ub[1][3] = 255; decal->color4ub[2][0] = (unsigned char)(c2[0]*255.0f); decal->color4ub[2][1] = (unsigned char)(c2[1]*255.0f); decal->color4ub[2][2] = (unsigned char)(c2[2]*255.0f); decal->color4ub[2][3] = 255; decal->vertex3f[0][0] = v0[0]; decal->vertex3f[0][1] = v0[1]; decal->vertex3f[0][2] = v0[2]; decal->vertex3f[1][0] = v1[0]; decal->vertex3f[1][1] = v1[1]; decal->vertex3f[1][2] = v1[2]; decal->vertex3f[2][0] = v2[0]; decal->vertex3f[2][1] = v2[1]; decal->vertex3f[2][2] = v2[2]; decal->texcoord2f[0][0] = t0[0]; decal->texcoord2f[0][1] = t0[1]; decal->texcoord2f[1][0] = t1[0]; decal->texcoord2f[1][1] = t1[1]; decal->texcoord2f[2][0] = t2[0]; decal->texcoord2f[2][1] = t2[1]; } extern cvar_t cl_decals_bias; extern cvar_t cl_decals_models; extern cvar_t cl_decals_newsystem_intensitymultiplier; // baseparms, parms, temps static void R_DecalSystem_SplatTriangle(decalsystem_t *decalsystem, float r, float g, float b, float a, float s1, float t1, float s2, float t2, int decalsequence, qboolean dynamic, float (*planes)[4], matrix4x4_t *projection, int triangleindex, int surfaceindex) { int cornerindex; int index; float v[9][3]; const float *vertex3f; int numpoints; float points[2][9][3]; float temp[3]; float tc[9][2]; float f; float c[9][4]; const int *e; e = rsurface.modelelement3i + 3*triangleindex; vertex3f = rsurface.modelvertex3f; for (cornerindex = 0;cornerindex < 3;cornerindex++) { index = 3*e[cornerindex]; VectorCopy(vertex3f + index, v[cornerindex]); } // cull backfaces //TriangleNormal(v[0], v[1], v[2], normal); //if (DotProduct(normal, localnormal) < 0.0f) // continue; // clip by each of the box planes formed from the projection matrix // if anything survives, we emit the decal numpoints = PolygonF_Clip(3 , v[0] , planes[0][0], planes[0][1], planes[0][2], planes[0][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]); if (numpoints < 3) return; numpoints = PolygonF_Clip(numpoints, points[1][0], planes[1][0], planes[1][1], planes[1][2], planes[1][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]); if (numpoints < 3) return; numpoints = PolygonF_Clip(numpoints, points[0][0], planes[2][0], planes[2][1], planes[2][2], planes[2][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]); if (numpoints < 3) return; numpoints = PolygonF_Clip(numpoints, points[1][0], planes[3][0], planes[3][1], planes[3][2], planes[3][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[0][0]); if (numpoints < 3) return; numpoints = PolygonF_Clip(numpoints, points[0][0], planes[4][0], planes[4][1], planes[4][2], planes[4][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), points[1][0]); if (numpoints < 3) return; numpoints = PolygonF_Clip(numpoints, points[1][0], planes[5][0], planes[5][1], planes[5][2], planes[5][3], 1.0f/64.0f, sizeof(points[0])/sizeof(points[0][0]), v[0]); if (numpoints < 3) return; // some part of the triangle survived, so we have to accept it... if (dynamic) { // dynamic always uses the original triangle numpoints = 3; for (cornerindex = 0;cornerindex < 3;cornerindex++) { index = 3*e[cornerindex]; VectorCopy(vertex3f + index, v[cornerindex]); } } for (cornerindex = 0;cornerindex < numpoints;cornerindex++) { // convert vertex positions to texcoords Matrix4x4_Transform(projection, v[cornerindex], temp); tc[cornerindex][0] = (temp[1]+1.0f)*0.5f * (s2-s1) + s1; tc[cornerindex][1] = (temp[2]+1.0f)*0.5f * (t2-t1) + t1; // calculate distance fade from the projection origin f = a * (1.0f-fabs(temp[0])) * cl_decals_newsystem_intensitymultiplier.value; f = bound(0.0f, f, 1.0f); c[cornerindex][0] = r * f; c[cornerindex][1] = g * f; c[cornerindex][2] = b * f; c[cornerindex][3] = 1.0f; //VectorMA(v[cornerindex], cl_decals_bias.value, localnormal, v[cornerindex]); } if (dynamic) R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[1], v[2], tc[0], tc[1], tc[2], c[0], c[1], c[2], triangleindex, surfaceindex, decalsequence); else for (cornerindex = 0;cornerindex < numpoints-2;cornerindex++) R_DecalSystem_SpawnTriangle(decalsystem, v[0], v[cornerindex+1], v[cornerindex+2], tc[0], tc[cornerindex+1], tc[cornerindex+2], c[0], c[cornerindex+1], c[cornerindex+2], -1, surfaceindex, decalsequence); } static void R_DecalSystem_SplatEntity(entity_render_t *ent, const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, int decalsequence) { matrix4x4_t projection; decalsystem_t *decalsystem; qboolean dynamic; dp_model_t *model; const msurface_t *surface; const msurface_t *surfaces; const int *surfacelist; const texture_t *texture; int numtriangles; int numsurfacelist; int surfacelistindex; int surfaceindex; int triangleindex; float localorigin[3]; float localnormal[3]; float localmins[3]; float localmaxs[3]; float localsize; //float normal[3]; float planes[6][4]; float angles[3]; bih_t *bih; int bih_triangles_count; int bih_triangles[256]; int bih_surfaces[256]; decalsystem = &ent->decalsystem; model = ent->model; if (!model || !ent->allowdecals || ent->alpha < 1 || (ent->flags & (RENDER_ADDITIVE | RENDER_NODEPTHTEST))) { R_DecalSystem_Reset(&ent->decalsystem); return; } if (!model->brush.data_leafs && !cl_decals_models.integer) { if (decalsystem->model) R_DecalSystem_Reset(decalsystem); return; } if (decalsystem->model != model) R_DecalSystem_Reset(decalsystem); decalsystem->model = model; RSurf_ActiveModelEntity(ent, false, false, false); Matrix4x4_Transform(&rsurface.inversematrix, worldorigin, localorigin); Matrix4x4_Transform3x3(&rsurface.inversematrix, worldnormal, localnormal); VectorNormalize(localnormal); localsize = worldsize*rsurface.inversematrixscale; localmins[0] = localorigin[0] - localsize; localmins[1] = localorigin[1] - localsize; localmins[2] = localorigin[2] - localsize; localmaxs[0] = localorigin[0] + localsize; localmaxs[1] = localorigin[1] + localsize; localmaxs[2] = localorigin[2] + localsize; //VectorCopy(localnormal, planes[4]); //VectorVectors(planes[4], planes[2], planes[0]); AnglesFromVectors(angles, localnormal, NULL, false); AngleVectors(angles, planes[0], planes[2], planes[4]); VectorNegate(planes[0], planes[1]); VectorNegate(planes[2], planes[3]); VectorNegate(planes[4], planes[5]); planes[0][3] = DotProduct(planes[0], localorigin) - localsize; planes[1][3] = DotProduct(planes[1], localorigin) - localsize; planes[2][3] = DotProduct(planes[2], localorigin) - localsize; planes[3][3] = DotProduct(planes[3], localorigin) - localsize; planes[4][3] = DotProduct(planes[4], localorigin) - localsize; planes[5][3] = DotProduct(planes[5], localorigin) - localsize; #if 1 // works { matrix4x4_t forwardprojection; Matrix4x4_CreateFromQuakeEntity(&forwardprojection, localorigin[0], localorigin[1], localorigin[2], angles[0], angles[1], angles[2], localsize); Matrix4x4_Invert_Simple(&projection, &forwardprojection); } #else // broken { float projectionvector[4][3]; VectorScale(planes[0], ilocalsize, projectionvector[0]); VectorScale(planes[2], ilocalsize, projectionvector[1]); VectorScale(planes[4], ilocalsize, projectionvector[2]); projectionvector[0][0] = planes[0][0] * ilocalsize; projectionvector[0][1] = planes[1][0] * ilocalsize; projectionvector[0][2] = planes[2][0] * ilocalsize; projectionvector[1][0] = planes[0][1] * ilocalsize; projectionvector[1][1] = planes[1][1] * ilocalsize; projectionvector[1][2] = planes[2][1] * ilocalsize; projectionvector[2][0] = planes[0][2] * ilocalsize; projectionvector[2][1] = planes[1][2] * ilocalsize; projectionvector[2][2] = planes[2][2] * ilocalsize; projectionvector[3][0] = -(localorigin[0]*projectionvector[0][0]+localorigin[1]*projectionvector[1][0]+localorigin[2]*projectionvector[2][0]); projectionvector[3][1] = -(localorigin[0]*projectionvector[0][1]+localorigin[1]*projectionvector[1][1]+localorigin[2]*projectionvector[2][1]); projectionvector[3][2] = -(localorigin[0]*projectionvector[0][2]+localorigin[1]*projectionvector[1][2]+localorigin[2]*projectionvector[2][2]); Matrix4x4_FromVectors(&projection, projectionvector[0], projectionvector[1], projectionvector[2], projectionvector[3]); } #endif dynamic = model->surfmesh.isanimated; numsurfacelist = model->nummodelsurfaces; surfacelist = model->sortedmodelsurfaces; surfaces = model->data_surfaces; bih = NULL; bih_triangles_count = -1; if(!dynamic) { if(model->render_bih.numleafs) bih = &model->render_bih; else if(model->collision_bih.numleafs) bih = &model->collision_bih; } if(bih) bih_triangles_count = BIH_GetTriangleListForBox(bih, sizeof(bih_triangles) / sizeof(*bih_triangles), bih_triangles, bih_surfaces, localmins, localmaxs); if(bih_triangles_count == 0) return; if(bih_triangles_count > (int) (sizeof(bih_triangles) / sizeof(*bih_triangles))) // hit too many, likely bad anyway return; if(bih_triangles_count > 0) { for (triangleindex = 0; triangleindex < bih_triangles_count; ++triangleindex) { surfaceindex = bih_surfaces[triangleindex]; surface = surfaces + surfaceindex; texture = surface->texture; if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION)) continue; if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS) continue; R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, bih_triangles[triangleindex], surfaceindex); } } else { for (surfacelistindex = 0;surfacelistindex < numsurfacelist;surfacelistindex++) { surfaceindex = surfacelist[surfacelistindex]; surface = surfaces + surfaceindex; // check cull box first because it rejects more than any other check if (!dynamic && !BoxesOverlap(surface->mins, surface->maxs, localmins, localmaxs)) continue; // skip transparent surfaces texture = surface->texture; if (texture->currentmaterialflags & (MATERIALFLAG_BLENDED | MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_SKY | MATERIALFLAG_SHORTDEPTHRANGE | MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION)) continue; if (texture->surfaceflags & Q3SURFACEFLAG_NOMARKS) continue; numtriangles = surface->num_triangles; for (triangleindex = 0; triangleindex < numtriangles; triangleindex++) R_DecalSystem_SplatTriangle(decalsystem, r, g, b, a, s1, t1, s2, t2, decalsequence, dynamic, planes, &projection, triangleindex + surface->num_firsttriangle, surfaceindex); } } } // do not call this outside of rendering code - use R_DecalSystem_SplatEntities instead static void R_DecalSystem_ApplySplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize, int decalsequence) { int renderentityindex; float worldmins[3]; float worldmaxs[3]; entity_render_t *ent; if (!cl_decals_newsystem.integer) return; worldmins[0] = worldorigin[0] - worldsize; worldmins[1] = worldorigin[1] - worldsize; worldmins[2] = worldorigin[2] - worldsize; worldmaxs[0] = worldorigin[0] + worldsize; worldmaxs[1] = worldorigin[1] + worldsize; worldmaxs[2] = worldorigin[2] + worldsize; R_DecalSystem_SplatEntity(r_refdef.scene.worldentity, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence); for (renderentityindex = 0;renderentityindex < r_refdef.scene.numentities;renderentityindex++) { ent = r_refdef.scene.entities[renderentityindex]; if (!BoxesOverlap(ent->mins, ent->maxs, worldmins, worldmaxs)) continue; R_DecalSystem_SplatEntity(ent, worldorigin, worldnormal, r, g, b, a, s1, t1, s2, t2, worldsize, decalsequence); } } typedef struct r_decalsystem_splatqueue_s { vec3_t worldorigin; vec3_t worldnormal; float color[4]; float tcrange[4]; float worldsize; int decalsequence; } r_decalsystem_splatqueue_t; int r_decalsystem_numqueued = 0; r_decalsystem_splatqueue_t r_decalsystem_queue[MAX_DECALSYSTEM_QUEUE]; void R_DecalSystem_SplatEntities(const vec3_t worldorigin, const vec3_t worldnormal, float r, float g, float b, float a, float s1, float t1, float s2, float t2, float worldsize) { r_decalsystem_splatqueue_t *queue; if (!cl_decals_newsystem.integer || r_decalsystem_numqueued == MAX_DECALSYSTEM_QUEUE) return; queue = &r_decalsystem_queue[r_decalsystem_numqueued++]; VectorCopy(worldorigin, queue->worldorigin); VectorCopy(worldnormal, queue->worldnormal); Vector4Set(queue->color, r, g, b, a); Vector4Set(queue->tcrange, s1, t1, s2, t2); queue->worldsize = worldsize; queue->decalsequence = cl.decalsequence++; } static void R_DecalSystem_ApplySplatEntitiesQueue(void) { int i; r_decalsystem_splatqueue_t *queue; for (i = 0, queue = r_decalsystem_queue;i < r_decalsystem_numqueued;i++, queue++) R_DecalSystem_ApplySplatEntities(queue->worldorigin, queue->worldnormal, queue->color[0], queue->color[1], queue->color[2], queue->color[3], queue->tcrange[0], queue->tcrange[1], queue->tcrange[2], queue->tcrange[3], queue->worldsize, queue->decalsequence); r_decalsystem_numqueued = 0; } extern cvar_t cl_decals_max; static void R_DrawModelDecals_FadeEntity(entity_render_t *ent) { int i; decalsystem_t *decalsystem = &ent->decalsystem; int numdecals; int killsequence; tridecal_t *decal; float frametime; float lifetime; if (!decalsystem->numdecals) return; if (r_showsurfaces.integer) return; if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE)) { R_DecalSystem_Reset(decalsystem); return; } killsequence = cl.decalsequence - max(1, cl_decals_max.integer); lifetime = cl_decals_time.value + cl_decals_fadetime.value; if (decalsystem->lastupdatetime) frametime = (cl.time - decalsystem->lastupdatetime); else frametime = 0; decalsystem->lastupdatetime = cl.time; decal = decalsystem->decals; numdecals = decalsystem->numdecals; for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++) { if (decal->color4ub[0][3]) { decal->lived += frametime; if (killsequence - decal->decalsequence > 0 || decal->lived >= lifetime) { memset(decal, 0, sizeof(*decal)); if (decalsystem->freedecal > i) decalsystem->freedecal = i; } } } decal = decalsystem->decals; while (numdecals > 0 && !decal[numdecals-1].color4ub[0][3]) numdecals--; // collapse the array by shuffling the tail decals into the gaps for (;;) { while (decalsystem->freedecal < numdecals && decal[decalsystem->freedecal].color4ub[0][3]) decalsystem->freedecal++; if (decalsystem->freedecal == numdecals) break; decal[decalsystem->freedecal] = decal[--numdecals]; } decalsystem->numdecals = numdecals; if (numdecals <= 0) { // if there are no decals left, reset decalsystem R_DecalSystem_Reset(decalsystem); } } extern skinframe_t *decalskinframe; static void R_DrawModelDecals_Entity(entity_render_t *ent) { int i; decalsystem_t *decalsystem = &ent->decalsystem; int numdecals; tridecal_t *decal; float faderate; float alpha; float *v3f; float *c4f; float *t2f; const int *e; const unsigned char *surfacevisible = ent == r_refdef.scene.worldentity ? r_refdef.viewcache.world_surfacevisible : NULL; int numtris = 0; numdecals = decalsystem->numdecals; if (!numdecals) return; if (r_showsurfaces.integer) return; if (ent->model != decalsystem->model || ent->alpha < 1 || (ent->flags & RENDER_ADDITIVE)) { R_DecalSystem_Reset(decalsystem); return; } // if the model is static it doesn't matter what value we give for // wantnormals and wanttangents, so this logic uses only rules applicable // to a model, knowing that they are meaningless otherwise if (ent == r_refdef.scene.worldentity) RSurf_ActiveWorldEntity(); else RSurf_ActiveModelEntity(ent, false, false, false); decalsystem->lastupdatetime = cl.time; decal = decalsystem->decals; faderate = 1.0f / max(0.001f, cl_decals_fadetime.value); // update vertex positions for animated models v3f = decalsystem->vertex3f; c4f = decalsystem->color4f; t2f = decalsystem->texcoord2f; for (i = 0, decal = decalsystem->decals;i < numdecals;i++, decal++) { if (!decal->color4ub[0][3]) continue; if (surfacevisible && !surfacevisible[decal->surfaceindex]) continue; // update color values for fading decals if (decal->lived >= cl_decals_time.value) { alpha = 1 - faderate * (decal->lived - cl_decals_time.value); alpha *= (1.0f/255.0f); } else alpha = 1.0f/255.0f; c4f[ 0] = decal->color4ub[0][0] * alpha; c4f[ 1] = decal->color4ub[0][1] * alpha; c4f[ 2] = decal->color4ub[0][2] * alpha; c4f[ 3] = 1; c4f[ 4] = decal->color4ub[1][0] * alpha; c4f[ 5] = decal->color4ub[1][1] * alpha; c4f[ 6] = decal->color4ub[1][2] * alpha; c4f[ 7] = 1; c4f[ 8] = decal->color4ub[2][0] * alpha; c4f[ 9] = decal->color4ub[2][1] * alpha; c4f[10] = decal->color4ub[2][2] * alpha; c4f[11] = 1; t2f[0] = decal->texcoord2f[0][0]; t2f[1] = decal->texcoord2f[0][1]; t2f[2] = decal->texcoord2f[1][0]; t2f[3] = decal->texcoord2f[1][1]; t2f[4] = decal->texcoord2f[2][0]; t2f[5] = decal->texcoord2f[2][1]; // update vertex positions for animated models if (decal->triangleindex >= 0 && decal->triangleindex < rsurface.modelnumtriangles) { e = rsurface.modelelement3i + 3*decal->triangleindex; VectorCopy(rsurface.modelvertex3f + 3*e[0], v3f); VectorCopy(rsurface.modelvertex3f + 3*e[1], v3f + 3); VectorCopy(rsurface.modelvertex3f + 3*e[2], v3f + 6); } else { VectorCopy(decal->vertex3f[0], v3f); VectorCopy(decal->vertex3f[1], v3f + 3); VectorCopy(decal->vertex3f[2], v3f + 6); } if (r_refdef.fogenabled) { alpha = RSurf_FogVertex(v3f); VectorScale(c4f, alpha, c4f); alpha = RSurf_FogVertex(v3f + 3); VectorScale(c4f + 4, alpha, c4f + 4); alpha = RSurf_FogVertex(v3f + 6); VectorScale(c4f + 8, alpha, c4f + 8); } v3f += 9; c4f += 12; t2f += 6; numtris++; } if (numtris > 0) { r_refdef.stats.drawndecals += numtris; // now render the decals all at once // (this assumes they all use one particle font texture!) RSurf_ActiveCustomEntity(&rsurface.matrix, &rsurface.inversematrix, rsurface.ent_flags, rsurface.ent_shadertime, 1, 1, 1, 1, numdecals*3, decalsystem->vertex3f, decalsystem->texcoord2f, NULL, NULL, NULL, decalsystem->color4f, numtris, decalsystem->element3i, decalsystem->element3s, false, false); // R_Mesh_ResetTextureState(); R_Mesh_PrepareVertices_Generic_Arrays(numtris * 3, decalsystem->vertex3f, decalsystem->color4f, decalsystem->texcoord2f); GL_DepthMask(false); GL_DepthRange(0, 1); GL_PolygonOffset(rsurface.basepolygonfactor + r_polygonoffset_decals_factor.value, rsurface.basepolygonoffset + r_polygonoffset_decals_offset.value); GL_DepthTest(true); GL_CullFace(GL_NONE); GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR); R_SetupShader_Generic(decalskinframe->base, NULL, GL_MODULATE, 1); R_Mesh_Draw(0, numtris * 3, 0, numtris, decalsystem->element3i, NULL, 0, decalsystem->element3s, NULL, 0); } } static void R_DrawModelDecals(void) { int i, numdecals; // fade faster when there are too many decals numdecals = r_refdef.scene.worldentity->decalsystem.numdecals; for (i = 0;i < r_refdef.scene.numentities;i++) numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals; R_DrawModelDecals_FadeEntity(r_refdef.scene.worldentity); for (i = 0;i < r_refdef.scene.numentities;i++) if (r_refdef.scene.entities[i]->decalsystem.numdecals) R_DrawModelDecals_FadeEntity(r_refdef.scene.entities[i]); R_DecalSystem_ApplySplatEntitiesQueue(); numdecals = r_refdef.scene.worldentity->decalsystem.numdecals; for (i = 0;i < r_refdef.scene.numentities;i++) numdecals += r_refdef.scene.entities[i]->decalsystem.numdecals; r_refdef.stats.totaldecals += numdecals; if (r_showsurfaces.integer) return; R_DrawModelDecals_Entity(r_refdef.scene.worldentity); for (i = 0;i < r_refdef.scene.numentities;i++) { if (!r_refdef.viewcache.entityvisible[i]) continue; if (r_refdef.scene.entities[i]->decalsystem.numdecals) R_DrawModelDecals_Entity(r_refdef.scene.entities[i]); } } extern cvar_t mod_collision_bih; void R_DrawDebugModel(void) { entity_render_t *ent = rsurface.entity; int i, j, k, l, flagsmask; const msurface_t *surface; dp_model_t *model = ent->model; vec3_t v; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_CGGL: break; case RENDERPATH_D3D9: //Con_DPrintf("FIXME D3D9 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); return; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); return; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); return; } flagsmask = MATERIALFLAG_SKY | MATERIALFLAG_WALL; // R_Mesh_ResetTextureState(); R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1); GL_DepthRange(0, 1); GL_DepthTest(!r_showdisabledepthtest.integer); GL_DepthMask(false); GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); if (r_showcollisionbrushes.value > 0 && model->collision_bih.numleafs) { int triangleindex; int bihleafindex; qboolean cullbox = ent == r_refdef.scene.worldentity; const q3mbrush_t *brush; const bih_t *bih = &model->collision_bih; const bih_leaf_t *bihleaf; float vertex3f[3][3]; GL_PolygonOffset(r_refdef.polygonfactor + r_showcollisionbrushes_polygonfactor.value, r_refdef.polygonoffset + r_showcollisionbrushes_polygonoffset.value); cullbox = false; for (bihleafindex = 0, bihleaf = bih->leafs;bihleafindex < bih->numleafs;bihleafindex++, bihleaf++) { if (cullbox && R_CullBox(bihleaf->mins, bihleaf->maxs)) continue; switch (bihleaf->type) { case BIH_BRUSH: brush = model->brush.data_brushes + bihleaf->itemindex; if (brush->colbrushf && brush->colbrushf->numtriangles) { GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value); R_Mesh_PrepareVertices_Generic_Arrays(brush->colbrushf->numpoints, brush->colbrushf->points->v, NULL, NULL); R_Mesh_Draw(0, brush->colbrushf->numpoints, 0, brush->colbrushf->numtriangles, brush->colbrushf->elements, NULL, 0, NULL, NULL, 0); } break; case BIH_COLLISIONTRIANGLE: triangleindex = bihleaf->itemindex; VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+0], vertex3f[0]); VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+1], vertex3f[1]); VectorCopy(model->brush.data_collisionvertex3f + 3*model->brush.data_collisionelement3i[triangleindex*3+2], vertex3f[2]); GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value); R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL); R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); break; case BIH_RENDERTRIANGLE: triangleindex = bihleaf->itemindex; VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+0], vertex3f[0]); VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+1], vertex3f[1]); VectorCopy(model->surfmesh.data_vertex3f + 3*model->surfmesh.data_element3i[triangleindex*3+2], vertex3f[2]); GL_Color((bihleafindex & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 5) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, ((bihleafindex >> 10) & 31) * (1.0f / 32.0f) * r_refdef.view.colorscale, r_showcollisionbrushes.value); R_Mesh_PrepareVertices_Generic_Arrays(3, vertex3f[0], NULL, NULL); R_Mesh_Draw(0, 3, 0, 1, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0); break; } } } GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset); if (r_showtris.integer || r_shownormals.integer) { if (r_showdisabledepthtest.integer) { GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); } else { GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); } for (i = 0, j = model->firstmodelsurface, surface = model->data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++) { if (ent == r_refdef.scene.worldentity && !r_refdef.viewcache.world_surfacevisible[j]) continue; rsurface.texture = R_GetCurrentTexture(surface->texture); if ((rsurface.texture->currentmaterialflags & flagsmask) && surface->num_triangles) { RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ARRAY_NORMAL | BATCHNEED_ARRAY_VECTOR | BATCHNEED_NOGAPS, 1, &surface); if (r_showtris.value > 0) { if (!rsurface.texture->currentlayers->depthmask) GL_Color(r_refdef.view.colorscale, 0, 0, r_showtris.value); else if (ent == r_refdef.scene.worldentity) GL_Color(r_refdef.view.colorscale, r_refdef.view.colorscale, r_refdef.view.colorscale, r_showtris.value); else GL_Color(0, r_refdef.view.colorscale, 0, r_showtris.value); R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL); qglPolygonMode(GL_FRONT_AND_BACK, GL_LINE); RSurf_DrawBatch(); qglPolygonMode(GL_FRONT_AND_BACK, GL_FILL); CHECKGLERROR } if (r_shownormals.value < 0) { qglBegin(GL_LINES); for (k = 0, l = surface->num_firstvertex;k < surface->num_vertices;k++, l++) { VectorCopy(rsurface.batchvertex3f + l * 3, v); GL_Color(r_refdef.view.colorscale, 0, 0, 1); qglVertex3f(v[0], v[1], v[2]); VectorMA(v, -r_shownormals.value, rsurface.batchsvector3f + l * 3, v); GL_Color(r_refdef.view.colorscale, 1, 1, 1); qglVertex3f(v[0], v[1], v[2]); } qglEnd(); CHECKGLERROR } if (r_shownormals.value > 0 && rsurface.batchsvector3f) { qglBegin(GL_LINES); for (k = 0, l = surface->num_firstvertex;k < surface->num_vertices;k++, l++) { VectorCopy(rsurface.batchvertex3f + l * 3, v); GL_Color(r_refdef.view.colorscale, 0, 0, 1); qglVertex3f(v[0], v[1], v[2]); VectorMA(v, r_shownormals.value, rsurface.batchsvector3f + l * 3, v); GL_Color(r_refdef.view.colorscale, 1, 1, 1); qglVertex3f(v[0], v[1], v[2]); } qglEnd(); CHECKGLERROR qglBegin(GL_LINES); for (k = 0, l = surface->num_firstvertex;k < surface->num_vertices;k++, l++) { VectorCopy(rsurface.batchvertex3f + l * 3, v); GL_Color(0, r_refdef.view.colorscale, 0, 1); qglVertex3f(v[0], v[1], v[2]); VectorMA(v, r_shownormals.value, rsurface.batchtvector3f + l * 3, v); GL_Color(r_refdef.view.colorscale, 1, 1, 1); qglVertex3f(v[0], v[1], v[2]); } qglEnd(); CHECKGLERROR qglBegin(GL_LINES); for (k = 0, l = surface->num_firstvertex;k < surface->num_vertices;k++, l++) { VectorCopy(rsurface.batchvertex3f + l * 3, v); GL_Color(0, 0, r_refdef.view.colorscale, 1); qglVertex3f(v[0], v[1], v[2]); VectorMA(v, r_shownormals.value, rsurface.batchnormal3f + l * 3, v); GL_Color(r_refdef.view.colorscale, 1, 1, 1); qglVertex3f(v[0], v[1], v[2]); } qglEnd(); CHECKGLERROR } } } rsurface.texture = NULL; } } extern void R_BuildLightMap(const entity_render_t *ent, msurface_t *surface); int r_maxsurfacelist = 0; const msurface_t **r_surfacelist = NULL; void R_DrawWorldSurfaces(qboolean skysurfaces, qboolean writedepth, qboolean depthonly, qboolean debug, qboolean prepass) { int i, j, endj, flagsmask; dp_model_t *model = r_refdef.scene.worldmodel; msurface_t *surfaces; unsigned char *update; int numsurfacelist = 0; if (model == NULL) return; if (r_maxsurfacelist < model->num_surfaces) { r_maxsurfacelist = model->num_surfaces; if (r_surfacelist) Mem_Free((msurface_t**)r_surfacelist); r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist)); } RSurf_ActiveWorldEntity(); surfaces = model->data_surfaces; update = model->brushq1.lightmapupdateflags; // update light styles on this submodel if (!skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.lightmapintensity > 0) { model_brush_lightstyleinfo_t *style; for (i = 0, style = model->brushq1.data_lightstyleinfo;i < model->brushq1.num_lightstyles;i++, style++) { if (style->value != r_refdef.scene.lightstylevalue[style->style]) { int *list = style->surfacelist; style->value = r_refdef.scene.lightstylevalue[style->style]; for (j = 0;j < style->numsurfaces;j++) update[list[j]] = true; } } } flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL; if (debug) { R_DrawDebugModel(); rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity return; } rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; rsurface.texture = NULL; rsurface.rtlight = NULL; numsurfacelist = 0; // add visible surfaces to draw list for (i = 0;i < model->nummodelsurfaces;i++) { j = model->sortedmodelsurfaces[i]; if (r_refdef.viewcache.world_surfacevisible[j]) r_surfacelist[numsurfacelist++] = surfaces + j; } // update lightmaps if needed if (model->brushq1.firstrender) { model->brushq1.firstrender = false; for (j = model->firstmodelsurface, endj = model->firstmodelsurface + model->nummodelsurfaces;j < endj;j++) if (update[j]) R_BuildLightMap(r_refdef.scene.worldentity, surfaces + j); } else if (update) { for (j = model->firstmodelsurface, endj = model->firstmodelsurface + model->nummodelsurfaces;j < endj;j++) if (r_refdef.viewcache.world_surfacevisible[j]) if (update[j]) R_BuildLightMap(r_refdef.scene.worldentity, surfaces + j); } // don't do anything if there were no surfaces if (!numsurfacelist) { rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity return; } R_QueueWorldSurfaceList(numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass); GL_AlphaTest(false); // add to stats if desired if (r_speeds.integer && !skysurfaces && !depthonly) { r_refdef.stats.world_surfaces += numsurfacelist; for (j = 0;j < numsurfacelist;j++) r_refdef.stats.world_triangles += r_surfacelist[j]->num_triangles; } rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity } void R_DrawModelSurfaces(entity_render_t *ent, qboolean skysurfaces, qboolean writedepth, qboolean depthonly, qboolean debug, qboolean prepass) { int i, j, endj, flagsmask; dp_model_t *model = ent->model; msurface_t *surfaces; unsigned char *update; int numsurfacelist = 0; if (model == NULL) return; if (r_maxsurfacelist < model->num_surfaces) { r_maxsurfacelist = model->num_surfaces; if (r_surfacelist) Mem_Free((msurface_t **)r_surfacelist); r_surfacelist = (const msurface_t **) Mem_Alloc(r_main_mempool, r_maxsurfacelist * sizeof(*r_surfacelist)); } // if the model is static it doesn't matter what value we give for // wantnormals and wanttangents, so this logic uses only rules applicable // to a model, knowing that they are meaningless otherwise if (ent == r_refdef.scene.worldentity) RSurf_ActiveWorldEntity(); else if (r_showsurfaces.integer && r_showsurfaces.integer != 3) RSurf_ActiveModelEntity(ent, false, false, false); else if (prepass) RSurf_ActiveModelEntity(ent, true, true, true); else if (depthonly) { switch (vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: RSurf_ActiveModelEntity(ent, model->wantnormals, model->wanttangents, false); break; case RENDERPATH_GL13: case RENDERPATH_GL11: RSurf_ActiveModelEntity(ent, model->wantnormals, false, false); break; } } else { switch (vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_CGGL: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: RSurf_ActiveModelEntity(ent, true, true, false); break; case RENDERPATH_GL13: case RENDERPATH_GL11: RSurf_ActiveModelEntity(ent, true, false, false); break; } } surfaces = model->data_surfaces; update = model->brushq1.lightmapupdateflags; // update light styles if (!skysurfaces && !depthonly && !prepass && model->brushq1.num_lightstyles && r_refdef.lightmapintensity > 0) { model_brush_lightstyleinfo_t *style; for (i = 0, style = model->brushq1.data_lightstyleinfo;i < model->brushq1.num_lightstyles;i++, style++) { if (style->value != r_refdef.scene.lightstylevalue[style->style]) { int *list = style->surfacelist; style->value = r_refdef.scene.lightstylevalue[style->style]; for (j = 0;j < style->numsurfaces;j++) update[list[j]] = true; } } } flagsmask = skysurfaces ? MATERIALFLAG_SKY : MATERIALFLAG_WALL; if (debug) { R_DrawDebugModel(); rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity return; } rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; rsurface.texture = NULL; rsurface.rtlight = NULL; numsurfacelist = 0; // add visible surfaces to draw list for (i = 0;i < model->nummodelsurfaces;i++) r_surfacelist[numsurfacelist++] = surfaces + model->sortedmodelsurfaces[i]; // don't do anything if there were no surfaces if (!numsurfacelist) { rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity return; } // update lightmaps if needed if (update) { int updated = 0; for (j = model->firstmodelsurface, endj = model->firstmodelsurface + model->nummodelsurfaces;j < endj;j++) { if (update[j]) { updated++; R_BuildLightMap(ent, surfaces + j); } } } if (update) for (j = model->firstmodelsurface, endj = model->firstmodelsurface + model->nummodelsurfaces;j < endj;j++) if (update[j]) R_BuildLightMap(ent, surfaces + j); R_QueueModelSurfaceList(ent, numsurfacelist, r_surfacelist, flagsmask, writedepth, depthonly, prepass); GL_AlphaTest(false); // add to stats if desired if (r_speeds.integer && !skysurfaces && !depthonly) { r_refdef.stats.entities_surfaces += numsurfacelist; for (j = 0;j < numsurfacelist;j++) r_refdef.stats.entities_triangles += r_surfacelist[j]->num_triangles; } rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity } void R_DrawCustomSurface(skinframe_t *skinframe, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qboolean writedepth, qboolean prepass) { static texture_t texture; static msurface_t surface; const msurface_t *surfacelist = &surface; // fake enough texture and surface state to render this geometry texture.update_lastrenderframe = -1; // regenerate this texture texture.basematerialflags = materialflags | MATERIALFLAG_CUSTOMSURFACE | MATERIALFLAG_WALL; texture.currentskinframe = skinframe; texture.currenttexmatrix = *texmatrix; // requires MATERIALFLAG_CUSTOMSURFACE texture.offsetmapping = OFFSETMAPPING_OFF; texture.offsetscale = 1; texture.specularscalemod = 1; texture.specularpowermod = 1; surface.texture = &texture; surface.num_triangles = numtriangles; surface.num_firsttriangle = firsttriangle; surface.num_vertices = numvertices; surface.num_firstvertex = firstvertex; // now render it rsurface.texture = R_GetCurrentTexture(surface.texture); rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass); } void R_DrawCustomSurface_Texture(texture_t *texture, const matrix4x4_t *texmatrix, int materialflags, int firstvertex, int numvertices, int firsttriangle, int numtriangles, qboolean writedepth, qboolean prepass) { static msurface_t surface; const msurface_t *surfacelist = &surface; // fake enough texture and surface state to render this geometry surface.texture = texture; surface.num_triangles = numtriangles; surface.num_firsttriangle = firsttriangle; surface.num_vertices = numvertices; surface.num_firstvertex = firstvertex; // now render it rsurface.texture = R_GetCurrentTexture(surface.texture); rsurface.lightmaptexture = NULL; rsurface.deluxemaptexture = NULL; rsurface.uselightmaptexture = false; R_DrawModelTextureSurfaceList(1, &surfacelist, writedepth, prepass); }