/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_surf.c: surface-related refresh code #include "quakedef.h" #include "r_shadow.h" #include "portals.h" #define MAX_LIGHTMAP_SIZE 256 cvar_t r_ambient = {0, "r_ambient", "0", "brightens map, value is 0-128"}; cvar_t r_lockpvs = {0, "r_lockpvs", "0", "disables pvs switching, allows you to walk around and inspect what is visible from a given location in the map (anything not visible from your current location will not be drawn)"}; cvar_t r_lockvisibility = {0, "r_lockvisibility", "0", "disables visibility updates, allows you to walk around and inspect what is visible from a given viewpoint in the map (anything offscreen at the moment this is enabled will not be drawn)"}; cvar_t r_useportalculling = {0, "r_useportalculling", "1", "use advanced portal culling visibility method to improve performance over just Potentially Visible Set, provides an even more significant speed improvement in unvised maps"}; cvar_t r_q3bsp_renderskydepth = {0, "r_q3bsp_renderskydepth", "0", "draws sky depth masking in q3 maps (as in q1 maps), this means for example that sky polygons can hide other things"}; /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ void R_BuildLightMap (const entity_render_t *ent, msurface_t *surface) { int smax, tmax, i, size, size3, maps, l; int *bl, scale; unsigned char *lightmap, *out, *stain; model_t *model = ent->model; static int intblocklights[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*3]; // LordHavoc: *3 for colored lighting static unsigned char templight[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*4]; // update cached lighting info surface->cached_dlight = 0; smax = (surface->lightmapinfo->extents[0]>>4)+1; tmax = (surface->lightmapinfo->extents[1]>>4)+1; size = smax*tmax; size3 = size*3; lightmap = surface->lightmapinfo->samples; // set to full bright if no light data bl = intblocklights; if (!model->brushq1.lightdata) { for (i = 0;i < size3;i++) bl[i] = 128*256; } else { // clear to no light memset(bl, 0, size3*sizeof(*bl)); // add all the lightmaps if (lightmap) for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3) for (scale = r_refdef.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size3;i++) bl[i] += lightmap[i] * scale; } stain = surface->lightmapinfo->stainsamples; bl = intblocklights; out = templight; // the >> 16 shift adjusts down 8 bits to account for the stainmap // scaling, and remaps the 0-65536 (2x overbright) to 0-256, it will // be doubled during rendering to achieve 2x overbright // (0 = 0.0, 128 = 1.0, 256 = 2.0) if (model->brushq1.lightmaprgba) { for (i = 0;i < size;i++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); *out++ = 255; } } else { for (i = 0;i < size;i++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); } } R_UpdateTexture(surface->lightmaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], smax, tmax); // update the surface's deluxemap if it has one if (surface->deluxemaptexture != r_texture_blanknormalmap) { vec3_t n; unsigned char *normalmap = surface->lightmapinfo->nmapsamples; lightmap = surface->lightmapinfo->samples; // clear to no normalmap bl = intblocklights; memset(bl, 0, size3*sizeof(*bl)); // add all the normalmaps if (lightmap && normalmap) { for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3, normalmap += size3) { for (scale = r_refdef.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size;i++) { // add the normalmap with weighting proportional to the style's lightmap intensity l = (int)(VectorLength(lightmap + i*3) * scale); bl[i*3+0] += ((int)normalmap[i*3+0] - 128) * l; bl[i*3+1] += ((int)normalmap[i*3+1] - 128) * l; bl[i*3+2] += ((int)normalmap[i*3+2] - 128) * l; } } } bl = intblocklights; out = templight; // we simply renormalize the weighted normals to get a valid deluxemap if (model->brushq1.lightmaprgba) { for (i = 0;i < size;i++, bl += 3) { VectorCopy(bl, n); VectorNormalize(n); l = (int)(n[0] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[1] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[2] * 128 + 128);*out++ = bound(0, l, 255); *out++ = 255; } } else { for (i = 0;i < size;i++, bl += 3) { VectorCopy(bl, n); VectorNormalize(n); l = (int)(n[0] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[1] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[2] * 128 + 128);*out++ = bound(0, l, 255); } } R_UpdateTexture(surface->deluxemaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], smax, tmax); } } void R_StainNode (mnode_t *node, model_t *model, const vec3_t origin, float radius, const float fcolor[8]) { float ndist, a, ratio, maxdist, maxdist2, maxdist3, invradius, sdtable[256], td, dist2; msurface_t *surface, *endsurface; int i, s, t, smax, tmax, smax3, impacts, impactt, stained; unsigned char *bl; vec3_t impact; maxdist = radius * radius; invradius = 1.0f / radius; loc0: if (!node->plane) return; ndist = PlaneDiff(origin, node->plane); if (ndist > radius) { node = node->children[0]; goto loc0; } if (ndist < -radius) { node = node->children[1]; goto loc0; } dist2 = ndist * ndist; maxdist3 = maxdist - dist2; if (node->plane->type < 3) { VectorCopy(origin, impact); impact[node->plane->type] -= ndist; } else { impact[0] = origin[0] - node->plane->normal[0] * ndist; impact[1] = origin[1] - node->plane->normal[1] * ndist; impact[2] = origin[2] - node->plane->normal[2] * ndist; } for (surface = model->data_surfaces + node->firstsurface, endsurface = surface + node->numsurfaces;surface < endsurface;surface++) { if (surface->lightmapinfo->stainsamples) { smax = (surface->lightmapinfo->extents[0] >> 4) + 1; tmax = (surface->lightmapinfo->extents[1] >> 4) + 1; impacts = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3] - surface->lightmapinfo->texturemins[0]); impactt = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3] - surface->lightmapinfo->texturemins[1]); s = bound(0, impacts, smax * 16) - impacts; t = bound(0, impactt, tmax * 16) - impactt; i = (int)(s * s + t * t + dist2); if (i > maxdist) continue; // reduce calculations for (s = 0, i = impacts; s < smax; s++, i -= 16) sdtable[s] = i * i + dist2; bl = surface->lightmapinfo->stainsamples; smax3 = smax * 3; stained = false; i = impactt; for (t = 0;t < tmax;t++, i -= 16) { td = i * i; // make sure some part of it is visible on this line if (td < maxdist3) { maxdist2 = maxdist - td; for (s = 0;s < smax;s++) { if (sdtable[s] < maxdist2) { ratio = lhrandom(0.0f, 1.0f); a = (fcolor[3] + ratio * fcolor[7]) * (1.0f - sqrt(sdtable[s] + td) * invradius); if (a >= (1.0f / 64.0f)) { if (a > 1) a = 1; bl[0] = (unsigned char) ((float) bl[0] + a * ((fcolor[0] + ratio * fcolor[4]) - (float) bl[0])); bl[1] = (unsigned char) ((float) bl[1] + a * ((fcolor[1] + ratio * fcolor[5]) - (float) bl[1])); bl[2] = (unsigned char) ((float) bl[2] + a * ((fcolor[2] + ratio * fcolor[6]) - (float) bl[2])); stained = true; } } bl += 3; } } else // skip line bl += smax3; } // force lightmap upload if (stained) surface->cached_dlight = true; } } if (node->children[0]->plane) { if (node->children[1]->plane) { R_StainNode(node->children[0], model, origin, radius, fcolor); node = node->children[1]; goto loc0; } else { node = node->children[0]; goto loc0; } } else if (node->children[1]->plane) { node = node->children[1]; goto loc0; } } void R_Stain (const vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { int n; float fcolor[8]; entity_render_t *ent; model_t *model; vec3_t org; if (r_refdef.worldmodel == NULL || !r_refdef.worldmodel->brush.data_nodes || !r_refdef.worldmodel->brushq1.lightdata) return; fcolor[0] = cr1; fcolor[1] = cg1; fcolor[2] = cb1; fcolor[3] = ca1 * (1.0f / 64.0f); fcolor[4] = cr2 - cr1; fcolor[5] = cg2 - cg1; fcolor[6] = cb2 - cb1; fcolor[7] = (ca2 - ca1) * (1.0f / 64.0f); R_StainNode(r_refdef.worldmodel->brush.data_nodes + r_refdef.worldmodel->brushq1.hulls[0].firstclipnode, r_refdef.worldmodel, origin, radius, fcolor); // look for embedded bmodels for (n = 0;n < cl.num_brushmodel_entities;n++) { ent = &cl.entities[cl.brushmodel_entities[n]].render; model = ent->model; if (model && model->name[0] == '*') { if (model->brush.data_nodes) { Matrix4x4_Transform(&ent->inversematrix, origin, org); R_StainNode(model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, model, org, radius, fcolor); } } } } /* ============================================================= BRUSH MODELS ============================================================= */ static void R_DrawPortal_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { // due to the hacky nature of this function's parameters, this is never // called with a batch, so numsurfaces is always 1, and the surfacelist // contains only a leaf number for coloring purposes const mportal_t *portal = (mportal_t *)ent; int i, numpoints; float *v; float vertex3f[POLYGONELEMENTS_MAXPOINTS*3]; CHECKGLERROR GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthRange(0, 1); GL_DepthTest(true); GL_CullFace(GL_NONE); R_Mesh_Matrix(&identitymatrix); numpoints = min(portal->numpoints, POLYGONELEMENTS_MAXPOINTS); R_Mesh_VertexPointer(vertex3f, 0, 0); R_Mesh_ColorPointer(NULL, 0, 0); R_Mesh_ResetTextureState(); i = surfacelist[0]; GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_view.colorscale, ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_view.colorscale, ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_view.colorscale, 0.125f); for (i = 0, v = vertex3f;i < numpoints;i++, v += 3) VectorCopy(portal->points[i].position, v); R_Mesh_Draw(0, numpoints, numpoints - 2, polygonelements, 0, 0); } // LordHavoc: this is just a nice debugging tool, very slow void R_DrawPortals(void) { int i, leafnum; mportal_t *portal; float center[3], f; model_t *model = r_refdef.worldmodel; if (model == NULL) return; for (leafnum = 0;leafnum < r_refdef.worldmodel->brush.num_leafs;leafnum++) { if (r_viewcache.world_leafvisible[leafnum]) { //for (portalnum = 0, portal = model->brush.data_portals;portalnum < model->brush.num_portals;portalnum++, portal++) for (portal = r_refdef.worldmodel->brush.data_leafs[leafnum].portals;portal;portal = portal->next) { if (portal->numpoints <= POLYGONELEMENTS_MAXPOINTS) if (!R_CullBox(portal->mins, portal->maxs)) { VectorClear(center); for (i = 0;i < portal->numpoints;i++) VectorAdd(center, portal->points[i].position, center); f = ixtable[portal->numpoints]; VectorScale(center, f, center); R_MeshQueue_AddTransparent(center, R_DrawPortal_Callback, (entity_render_t *)portal, leafnum, r_shadow_rtlight); } } } } } void R_View_WorldVisibility(void) { int i, j, *mark; mleaf_t *leaf; mleaf_t *viewleaf; model_t *model = r_refdef.worldmodel; if (!model) return; // if possible find the leaf the view origin is in viewleaf = model->brush.PointInLeaf ? model->brush.PointInLeaf(model, r_view.origin) : NULL; // if possible fetch the visible cluster bits if (!r_lockpvs.integer && model->brush.FatPVS) model->brush.FatPVS(model, r_view.origin, 2, r_viewcache.world_pvsbits, sizeof(r_viewcache.world_pvsbits)); if (!r_lockvisibility.integer) { // clear the visible surface and leaf flags arrays memset(r_viewcache.world_surfacevisible, 0, model->num_surfaces); memset(r_viewcache.world_leafvisible, 0, model->brush.num_leafs); r_viewcache.world_novis = false; // if floating around in the void (no pvs data available, and no // portals available), simply use all on-screen leafs. if (!viewleaf || viewleaf->clusterindex < 0) { // no visibility method: (used when floating around in the void) // simply cull each leaf to the frustum (view pyramid) // similar to quake's RecursiveWorldNode but without cache misses r_viewcache.world_novis = true; for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { // if leaf is in current pvs and on the screen, mark its surfaces if (!R_CullBox(leaf->mins, leaf->maxs)) { r_refdef.stats.world_leafs++; r_viewcache.world_leafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_viewcache.world_surfacevisible[*mark] = true; } } } // if the user prefers to disable portal culling (testing?), simply // use all on-screen leafs that are in the pvs. else if (!r_useportalculling.integer) { // pvs method: // simply check if each leaf is in the Potentially Visible Set, // and cull to frustum (view pyramid) // similar to quake's RecursiveWorldNode but without cache misses for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { // if leaf is in current pvs and on the screen, mark its surfaces if (CHECKPVSBIT(r_viewcache.world_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs)) { r_refdef.stats.world_leafs++; r_viewcache.world_leafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_viewcache.world_surfacevisible[*mark] = true; } } } // otherwise use a recursive portal flow, culling each portal to // frustum and checking if the leaf the portal leads to is in the pvs else { int leafstackpos; mportal_t *p; mleaf_t *leafstack[8192]; // simple-frustum portal method: // follows portals leading outward from viewleaf, does not venture // offscreen or into leafs that are not visible, faster than // Quake's RecursiveWorldNode and vastly better in unvised maps, // often culls some surfaces that pvs alone would miss // (such as a room in pvs that is hidden behind a wall, but the // passage leading to the room is off-screen) leafstack[0] = viewleaf; leafstackpos = 1; while (leafstackpos) { leaf = leafstack[--leafstackpos]; if (r_viewcache.world_leafvisible[leaf - model->brush.data_leafs]) continue; r_refdef.stats.world_leafs++; r_viewcache.world_leafvisible[leaf - model->brush.data_leafs] = true; // mark any surfaces bounding this leaf if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_viewcache.world_surfacevisible[*mark] = true; // follow portals into other leafs // the checks are: // if viewer is behind portal (portal faces outward into the scene) // and the portal polygon's bounding box is on the screen // and the leaf has not been visited yet // and the leaf is visible in the pvs // (the first two checks won't cause as many cache misses as the leaf checks) for (p = leaf->portals;p;p = p->next) { r_refdef.stats.world_portals++; if (DotProduct(r_view.origin, p->plane.normal) < (p->plane.dist + 1) && !r_viewcache.world_leafvisible[p->past - model->brush.data_leafs] && CHECKPVSBIT(r_viewcache.world_pvsbits, p->past->clusterindex) && !R_CullBox(p->mins, p->maxs) && leafstackpos < (int)(sizeof(leafstack) / sizeof(leafstack[0]))) leafstack[leafstackpos++] = p->past; } } } } } void R_Q1BSP_DrawSky(entity_render_t *ent) { if (ent->model == NULL) return; if (ent == r_refdef.worldentity) R_DrawWorldSurfaces(true); else R_DrawModelSurfaces(ent, true); } void R_Q1BSP_Draw(entity_render_t *ent) { model_t *model = ent->model; if (model == NULL) return; if (ent == r_refdef.worldentity) R_DrawWorldSurfaces(false); else R_DrawModelSurfaces(ent, false); } typedef struct r_q1bsp_getlightinfo_s { model_t *model; vec3_t relativelightorigin; float lightradius; int *outleaflist; unsigned char *outleafpvs; int outnumleafs; int *outsurfacelist; unsigned char *outsurfacepvs; unsigned char *tempsurfacepvs; unsigned char *outshadowtrispvs; unsigned char *outlighttrispvs; int outnumsurfaces; vec3_t outmins; vec3_t outmaxs; vec3_t lightmins; vec3_t lightmaxs; const unsigned char *pvs; qboolean svbsp_active; qboolean svbsp_insertoccluder; } r_q1bsp_getlightinfo_t; void R_Q1BSP_RecursiveGetLightInfo(r_q1bsp_getlightinfo_t *info, mnode_t *node) { int sides; mleaf_t *leaf; for (;;) { mplane_t *plane = node->plane; //if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs)) // return; if (!plane) break; //if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(node->mins, node->maxs, r_shadow_rtlight_numfrustumplanes, r_shadow_rtlight_frustumplanes)) // return; if (plane->type < 3) { if (info->lightmins[plane->type] > plane->dist) node = node->children[0]; else if (info->lightmaxs[plane->type] < plane->dist) node = node->children[1]; else if (info->relativelightorigin[plane->type] >= plane->dist) { R_Q1BSP_RecursiveGetLightInfo(info, node->children[0]); node = node->children[1]; } else { R_Q1BSP_RecursiveGetLightInfo(info, node->children[1]); node = node->children[0]; } } else { sides = BoxOnPlaneSide(info->lightmins, info->lightmaxs, plane); if (sides == 3) { // recurse front side first because the svbsp building prefers it if (PlaneDist(info->relativelightorigin, plane) >= 0) { R_Q1BSP_RecursiveGetLightInfo(info, node->children[0]); node = node->children[1]; } else { R_Q1BSP_RecursiveGetLightInfo(info, node->children[1]); node = node->children[0]; } } else if (sides == 0) return; // ERROR: NAN bounding box! else node = node->children[sides - 1]; } } if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(node->mins, node->maxs, r_shadow_rtlight_numfrustumplanes, r_shadow_rtlight_frustumplanes)) return; leaf = (mleaf_t *)node; if (info->svbsp_active) { int i; mportal_t *portal; double points[128][3]; for (portal = leaf->portals;portal;portal = portal->next) { for (i = 0;i < portal->numpoints;i++) VectorCopy(portal->points[i].position, points[i]); if (SVBSP_AddPolygon(&r_svbsp, portal->numpoints, points[0], false, NULL, NULL, 0) & 2) break; } if (portal == NULL) return; // no portals of this leaf visible } else { if (r_shadow_frontsidecasting.integer && info->pvs != NULL && !CHECKPVSBIT(info->pvs, leaf->clusterindex)) return; } // inserting occluders does not alter the leaf info if (!info->svbsp_insertoccluder) { info->outmins[0] = min(info->outmins[0], leaf->mins[0]); info->outmins[1] = min(info->outmins[1], leaf->mins[1]); info->outmins[2] = min(info->outmins[2], leaf->mins[2]); info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]); info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]); info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]); if (info->outleafpvs) { int leafindex = leaf - info->model->brush.data_leafs; if (!CHECKPVSBIT(info->outleafpvs, leafindex)) { SETPVSBIT(info->outleafpvs, leafindex); info->outleaflist[info->outnumleafs++] = leafindex; } } } if (info->outsurfacepvs) { int leafsurfaceindex; int surfaceindex; int triangleindex, t; msurface_t *surface; const int *e; const vec_t *v[3]; double v2[3][3]; for (leafsurfaceindex = 0;leafsurfaceindex < leaf->numleafsurfaces;leafsurfaceindex++) { surfaceindex = leaf->firstleafsurface[leafsurfaceindex]; if (!CHECKPVSBIT(info->outsurfacepvs, surfaceindex)) { surface = info->model->data_surfaces + surfaceindex; if (BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs) && (!info->svbsp_insertoccluder || !(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOSHADOW))) { qboolean addedtris = false; qboolean insidebox = BoxInsideBox(surface->mins, surface->maxs, info->lightmins, info->lightmaxs); for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = info->model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3) { v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3; v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3; v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3; if (insidebox || TriangleOverlapsBox(v[0], v[1], v[2], info->lightmins, info->lightmaxs)) { if (info->svbsp_insertoccluder) { if (!(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOCULLFACE) && r_shadow_frontsidecasting.integer != PointInfrontOfTriangle(info->relativelightorigin, v[0], v[1], v[2])) continue; if (surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOSHADOW) continue; VectorCopy(v[0], v2[0]); VectorCopy(v[1], v2[1]); VectorCopy(v[2], v2[2]); if (!(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], true, NULL, NULL, 0) & 2)) continue; addedtris = true; } else { if (info->svbsp_active) { VectorCopy(v[0], v2[0]); VectorCopy(v[1], v2[1]); VectorCopy(v[2], v2[2]); if (!(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], false, NULL, NULL, 0) & 2)) continue; } if (surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOCULLFACE) { // if the material is double sided we // can't cull by direction SETPVSBIT(info->outlighttrispvs, t); addedtris = true; if (!(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOSHADOW)) SETPVSBIT(info->outshadowtrispvs, t); } else if (r_shadow_frontsidecasting.integer) { // front side casting occludes backfaces, // so they are completely useless as both // casters and lit polygons if (!PointInfrontOfTriangle(info->relativelightorigin, v[0], v[1], v[2])) continue; SETPVSBIT(info->outlighttrispvs, t); addedtris = true; if (!(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOSHADOW)) SETPVSBIT(info->outshadowtrispvs, t); } else { // back side casting does not occlude // anything so we can't cull lit polygons SETPVSBIT(info->outlighttrispvs, t); addedtris = true; if (!PointInfrontOfTriangle(info->relativelightorigin, v[0], v[1], v[2]) && !(surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOSHADOW)) SETPVSBIT(info->outshadowtrispvs, t); } } } } if (addedtris) { SETPVSBIT(info->outsurfacepvs, surfaceindex); info->outsurfacelist[info->outnumsurfaces++] = surfaceindex; } } } } } } void R_Q1BSP_CallRecursiveGetLightInfo(r_q1bsp_getlightinfo_t *info, qboolean use_svbsp) { if (use_svbsp) { double origin[3]; VectorCopy(info->relativelightorigin, origin); if (!r_svbsp.nodes) { r_svbsp.maxnodes = max(r_svbsp.maxnodes, 1<<18); r_svbsp.nodes = Mem_Alloc(r_main_mempool, r_svbsp.maxnodes * sizeof(svbsp_node_t)); } info->svbsp_active = true; info->svbsp_insertoccluder = true; for (;;) { SVBSP_Init(&r_svbsp, origin, r_svbsp.maxnodes, r_svbsp.nodes); R_Q1BSP_RecursiveGetLightInfo(info, info->model->brush.data_nodes); // if that failed, retry with more nodes if (r_svbsp.ranoutofnodes) { // an upper limit is imposed if (r_svbsp.maxnodes >= 2<<22) break; Mem_Free(r_svbsp.nodes); r_svbsp.maxnodes *= 2; r_svbsp.nodes = Mem_Alloc(tempmempool, r_svbsp.maxnodes * sizeof(svbsp_node_t)); } else break; } // now clear the surfacepvs array because we need to redo it memset(info->outsurfacepvs, 0, (info->model->nummodelsurfaces + 7) >> 3); info->outnumsurfaces = 0; } else info->svbsp_active = false; // we HAVE to mark the leaf the light is in as lit, because portals are // irrelevant to a leaf that the light source is inside of // (and they are all facing away, too) { mnode_t *node = info->model->brush.data_nodes; mleaf_t *leaf; while (node->plane) node = node->children[(node->plane->type < 3 ? info->relativelightorigin[node->plane->type] : DotProduct(info->relativelightorigin,node->plane->normal)) < node->plane->dist]; leaf = (mleaf_t *)node; info->outmins[0] = min(info->outmins[0], leaf->mins[0]); info->outmins[1] = min(info->outmins[1], leaf->mins[1]); info->outmins[2] = min(info->outmins[2], leaf->mins[2]); info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]); info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]); info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]); if (info->outleafpvs) { int leafindex = leaf - info->model->brush.data_leafs; if (!CHECKPVSBIT(info->outleafpvs, leafindex)) { SETPVSBIT(info->outleafpvs, leafindex); info->outleaflist[info->outnumleafs++] = leafindex; } } } info->svbsp_insertoccluder = false; R_Q1BSP_RecursiveGetLightInfo(info, info->model->brush.data_nodes); if (developer.integer >= 100 && use_svbsp) { Con_Printf("GetLightInfo: svbsp built with %i nodes, polygon stats:\n", r_svbsp.numnodes); Con_Printf("occluders: %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_occluders_accepted, r_svbsp.stat_occluders_rejected, r_svbsp.stat_occluders_fragments_accepted, r_svbsp.stat_occluders_fragments_rejected); Con_Printf("queries : %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_queries_accepted, r_svbsp.stat_queries_rejected, r_svbsp.stat_queries_fragments_accepted, r_svbsp.stat_queries_fragments_rejected); } } void R_Q1BSP_GetLightInfo(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, vec3_t outmins, vec3_t outmaxs, int *outleaflist, unsigned char *outleafpvs, int *outnumleafspointer, int *outsurfacelist, unsigned char *outsurfacepvs, int *outnumsurfacespointer, unsigned char *outshadowtrispvs, unsigned char *outlighttrispvs) { r_q1bsp_getlightinfo_t info; VectorCopy(relativelightorigin, info.relativelightorigin); info.lightradius = lightradius; info.lightmins[0] = info.relativelightorigin[0] - info.lightradius; info.lightmins[1] = info.relativelightorigin[1] - info.lightradius; info.lightmins[2] = info.relativelightorigin[2] - info.lightradius; info.lightmaxs[0] = info.relativelightorigin[0] + info.lightradius; info.lightmaxs[1] = info.relativelightorigin[1] + info.lightradius; info.lightmaxs[2] = info.relativelightorigin[2] + info.lightradius; if (ent->model == NULL) { VectorCopy(info.lightmins, outmins); VectorCopy(info.lightmaxs, outmaxs); *outnumleafspointer = 0; *outnumsurfacespointer = 0; return; } info.model = ent->model; info.outleaflist = outleaflist; info.outleafpvs = outleafpvs; info.outnumleafs = 0; info.outsurfacelist = outsurfacelist; info.outsurfacepvs = outsurfacepvs; info.outshadowtrispvs = outshadowtrispvs; info.outlighttrispvs = outlighttrispvs; info.outnumsurfaces = 0; VectorCopy(info.relativelightorigin, info.outmins); VectorCopy(info.relativelightorigin, info.outmaxs); memset(outleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3); memset(outsurfacepvs, 0, (info.model->nummodelsurfaces + 7) >> 3); if (info.model->brush.shadowmesh) memset(outshadowtrispvs, 0, (info.model->brush.shadowmesh->numtriangles + 7) >> 3); else memset(outshadowtrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3); memset(outlighttrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3); if (info.model->brush.GetPVS && r_shadow_frontsidecasting.integer) info.pvs = info.model->brush.GetPVS(info.model, info.relativelightorigin); else info.pvs = NULL; R_UpdateAllTextureInfo(ent); if (r_shadow_frontsidecasting.integer && r_shadow_compilingrtlight && r_shadow_realtime_world_compileportalculling.integer) { // use portal recursion for exact light volume culling, and exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, true, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs); } else if (r_shadow_frontsidecasting.integer && r_shadow_realtime_dlight_portalculling.integer) { // use portal recursion for exact light volume culling, but not the expensive exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, r_shadow_realtime_dlight_portalculling.integer >= 2, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs); } else { // recurse the bsp tree, checking leafs and surfaces for visibility // optionally using svbsp for exact culling of compiled lights // (or if the user enables dlight svbsp culling, which is mostly for // debugging not actual use) R_Q1BSP_CallRecursiveGetLightInfo(&info, r_shadow_compilingrtlight ? r_shadow_realtime_world_compilesvbsp.integer : r_shadow_realtime_dlight_svbspculling.integer); } // limit combined leaf box to light boundaries outmins[0] = max(info.outmins[0] - 1, info.lightmins[0]); outmins[1] = max(info.outmins[1] - 1, info.lightmins[1]); outmins[2] = max(info.outmins[2] - 1, info.lightmins[2]); outmaxs[0] = min(info.outmaxs[0] + 1, info.lightmaxs[0]); outmaxs[1] = min(info.outmaxs[1] + 1, info.lightmaxs[1]); outmaxs[2] = min(info.outmaxs[2] + 1, info.lightmaxs[2]); *outnumleafspointer = info.outnumleafs; *outnumsurfacespointer = info.outnumsurfaces; } void R_Q1BSP_CompileShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int numsurfaces, const int *surfacelist) { model_t *model = ent->model; msurface_t *surface; int surfacelistindex; float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value; r_shadow_compilingrtlight->static_meshchain_shadow = Mod_ShadowMesh_Begin(r_main_mempool, 32768, 32768, NULL, NULL, NULL, false, false, true); R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles); for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->data_surfaces + surfacelist[surfacelistindex]; if (surface->texture->currentframe->basematerialflags & MATERIALFLAG_NOSHADOW) continue; R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, r_shadow_compilingrtlight->cullmins, r_shadow_compilingrtlight->cullmaxs, surface->mins, surface->maxs); } R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist); r_shadow_compilingrtlight->static_meshchain_shadow = Mod_ShadowMesh_Finish(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow, false, false, true); } void R_Q1BSP_DrawShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int modelnumsurfaces, const int *modelsurfacelist, const vec3_t lightmins, const vec3_t lightmaxs) { model_t *model = ent->model; msurface_t *surface; int modelsurfacelistindex; float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value; // check the box in modelspace, it was already checked in worldspace if (!BoxesOverlap(model->normalmins, model->normalmaxs, lightmins, lightmaxs)) return; R_UpdateAllTextureInfo(ent); if (model->brush.shadowmesh) { R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles); for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++) { surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex]; if (surface->texture->currentframe->currentmaterialflags & MATERIALFLAG_NOSHADOW) continue; R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs); } R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist); } else { projectdistance = lightradius + model->radius*2; R_Shadow_PrepareShadowMark(model->surfmesh.num_triangles); // identify lit faces within the bounding box for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++) { surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex]; rsurface_texture = surface->texture->currentframe; if (rsurface_texture->currentmaterialflags & MATERIALFLAG_NOSHADOW) continue; RSurf_PrepareVerticesForBatch(false, false, 1, &surface); R_Shadow_MarkVolumeFromBox(surface->num_firsttriangle, surface->num_triangles, rsurface_vertex3f, rsurface_model->surfmesh.data_element3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs); } R_Shadow_VolumeFromList(model->surfmesh.num_vertices, model->surfmesh.num_triangles, rsurface_vertex3f, model->surfmesh.data_element3i, model->surfmesh.data_neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist); } } #define BATCHSIZE 1024 static void R_Q1BSP_DrawLight_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { int i, j, endsurface; texture_t *t; msurface_t *surface; // note: in practice this never actually receives batches), oh well R_Shadow_RenderMode_Begin(); R_Shadow_RenderMode_ActiveLight((rtlight_t *)rtlight); R_Shadow_RenderMode_Lighting(false, true); R_Shadow_SetupEntityLight(ent); for (i = 0;i < numsurfaces;i = j) { j = i + 1; surface = rsurface_model->data_surfaces + surfacelist[i]; t = surface->texture; R_UpdateTextureInfo(ent, t); rsurface_texture = t->currentframe; endsurface = min(j + BATCHSIZE, numsurfaces); for (j = i;j < endsurface;j++) { surface = rsurface_model->data_surfaces + surfacelist[j]; if (t != surface->texture) break; RSurf_PrepareVerticesForBatch(true, true, 1, &surface); R_Shadow_RenderLighting(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, ent->model->surfmesh.data_element3i + surface->num_firsttriangle * 3, ent->model->surfmesh.ebo, (sizeof(int[3]) * surface->num_firsttriangle)); } } R_Shadow_RenderMode_End(); } #define RSURF_MAX_BATCHSURFACES 1024 void R_Q1BSP_DrawLight(entity_render_t *ent, int numsurfaces, const int *surfacelist, const unsigned char *trispvs) { model_t *model = ent->model; msurface_t *surface; int i, k, l, m, mend, endsurface, batchnumsurfaces, batchnumtriangles, batchfirstvertex, batchlastvertex; qboolean usebufferobject, culltriangles; const int *element3i; msurface_t *batchsurfacelist[RSURF_MAX_BATCHSURFACES]; int batchelements[BATCHSIZE*3]; texture_t *tex; CHECKGLERROR RSurf_ActiveModelEntity(ent, true, true); R_UpdateAllTextureInfo(ent); CHECKGLERROR culltriangles = r_shadow_culltriangles.integer && !(ent->flags & RENDER_NOSELFSHADOW); element3i = rsurface_model->surfmesh.data_element3i; // this is a double loop because non-visible surface skipping has to be // fast, and even if this is not the world model (and hence no visibility // checking) the input surface list and batch buffer are different formats // so some processing is necessary. (luckily models have few surfaces) for (i = 0;i < numsurfaces;) { batchnumsurfaces = 0; endsurface = min(i + RSURF_MAX_BATCHSURFACES, numsurfaces); if (ent == r_refdef.worldentity) { for (;i < endsurface;i++) if (r_viewcache.world_surfacevisible[surfacelist[i]]) batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i]; } else { for (;i < endsurface;i++) batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i]; } if (!batchnumsurfaces) continue; for (k = 0;k < batchnumsurfaces;k = l) { surface = batchsurfacelist[k]; tex = surface->texture; rsurface_texture = tex->currentframe; if (rsurface_texture->currentmaterialflags & (MATERIALFLAG_WALL | MATERIALFLAG_WATER)) { if (rsurface_texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED) { vec3_t tempcenter, center; for (l = k;l < batchnumsurfaces && tex == batchsurfacelist[l]->texture;l++) { surface = batchsurfacelist[l]; tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f; tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f; tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f; Matrix4x4_Transform(&rsurface_entity->matrix, tempcenter, center); R_MeshQueue_AddTransparent(rsurface_texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST ? r_view.origin : center, R_Q1BSP_DrawLight_TransparentCallback, rsurface_entity, surface - rsurface_model->data_surfaces, r_shadow_rtlight); } } else { // use the bufferobject if all triangles are accepted usebufferobject = true; batchnumtriangles = 0; // note: this only accepts consecutive surfaces because // non-consecutive surfaces often have extreme vertex // ranges (due to large numbers of surfaces omitted // between them) surface = batchsurfacelist[k]; for (l = k;l < batchnumsurfaces && surface == batchsurfacelist[l] && tex == surface->texture;l++, surface++) { RSurf_PrepareVerticesForBatch(true, true, 1, &surface); for (m = surface->num_firsttriangle, mend = m + surface->num_triangles;m < mend;m++) { if (culltriangles) { if (trispvs) { if (!CHECKPVSBIT(trispvs, m)) { usebufferobject = false; continue; } } else { if (r_shadow_frontsidecasting.integer && !PointInfrontOfTriangle(r_shadow_entitylightorigin, rsurface_vertex3f + element3i[m*3+0]*3, rsurface_vertex3f + element3i[m*3+1]*3, rsurface_vertex3f + element3i[m*3+2]*3)) { usebufferobject = false; continue; } } } batchelements[batchnumtriangles*3+0] = element3i[m*3+0]; batchelements[batchnumtriangles*3+1] = element3i[m*3+1]; batchelements[batchnumtriangles*3+2] = element3i[m*3+2]; batchnumtriangles++; r_refdef.stats.lights_lighttriangles++; if (batchnumtriangles >= BATCHSIZE) { Mod_VertexRangeFromElements(batchnumtriangles*3, batchelements, &batchfirstvertex, &batchlastvertex); R_Shadow_RenderLighting(batchfirstvertex, batchlastvertex + 1 - batchfirstvertex, batchnumtriangles, batchelements, 0, 0); batchnumtriangles = 0; usebufferobject = false; } } r_refdef.stats.lights_lighttriangles += batchsurfacelist[l]->num_triangles; } if (batchnumtriangles > 0) { Mod_VertexRangeFromElements(batchnumtriangles*3, batchelements, &batchfirstvertex, &batchlastvertex); if (usebufferobject) R_Shadow_RenderLighting(batchfirstvertex, batchlastvertex + 1 - batchfirstvertex, batchnumtriangles, batchelements, ent->model->surfmesh.ebo, sizeof(int[3]) * batchsurfacelist[k]->num_firsttriangle); else R_Shadow_RenderLighting(batchfirstvertex, batchlastvertex + 1 - batchfirstvertex, batchnumtriangles, batchelements, 0, 0); } } } else { // skip ahead to the next texture for (l = k;l < batchnumsurfaces && tex == batchsurfacelist[l]->texture;l++) ; } } } } //Made by [515] void R_ReplaceWorldTexture (void) { model_t *m; texture_t *t; int i; const char *r, *newt; skinframe_t *skinframe; m = r_refdef.worldmodel; if(Cmd_Argc() < 2) { Con_Print("r_replacemaptexture - replaces texture\n"); Con_Print("r_replacemaptexture - switch back to default texture\n"); return; } if(!cl.islocalgame || !cl.worldmodel) { Con_Print("This command works only in singleplayer\n"); return; } r = Cmd_Argv(1); newt = Cmd_Argv(2); if(!newt[0]) newt = r; for(i=0,t=m->data_textures;inum_textures;i++,t++) { if(t->width && !strcasecmp(t->name, r)) { if ((skinframe = R_SkinFrame_LoadExternal((char*)newt, TEXF_MIPMAP | TEXF_ALPHA | TEXF_PRECACHE | TEXF_PICMIP))) { t->skinframes[0] = skinframe; Con_Printf("%s replaced with %s\n", r, newt); return; } else { Con_Printf("%s was not found\n", newt); return; } } } } //Made by [515] void R_ListWorldTextures (void) { model_t *m; texture_t *t; int i; m = r_refdef.worldmodel; Con_Print("Worldmodel textures :\n"); for(i=0,t=m->data_textures;inum_textures;i++,t++) if (t->numskinframes) Con_Printf("%s\n", t->name); } #if 0 static void gl_surf_start(void) { } static void gl_surf_shutdown(void) { } static void gl_surf_newmap(void) { } #endif void GL_Surf_Init(void) { Cvar_RegisterVariable(&r_ambient); Cvar_RegisterVariable(&r_lockpvs); Cvar_RegisterVariable(&r_lockvisibility); Cvar_RegisterVariable(&r_useportalculling); Cvar_RegisterVariable(&r_q3bsp_renderskydepth); Cmd_AddCommand ("r_replacemaptexture", R_ReplaceWorldTexture, "override a map texture for testing purposes"); Cmd_AddCommand ("r_listmaptextures", R_ListWorldTextures, "list all textures used by the current map"); //R_RegisterModule("GL_Surf", gl_surf_start, gl_surf_shutdown, gl_surf_newmap); }