/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_surf.c: surface-related refresh code #include "quakedef.h" extern int skytexturenum; int lightmap_textures; signed blocklights[18*18*3]; // LordHavoc: *3 for colored lighting // LordHavoc: skinny but tall lightmaps for quicker subimage uploads #define BLOCK_WIDTH 128 #define BLOCK_HEIGHT 128 // LordHavoc: increased lightmap limit from 64 to 1024 #define MAX_LIGHTMAPS 1024 #define LIGHTMAPSIZE (BLOCK_WIDTH*BLOCK_HEIGHT*3) int active_lightmaps; short allocated[MAX_LIGHTMAPS][BLOCK_WIDTH]; byte *lightmaps[MAX_LIGHTMAPS]; short lightmapupdate[MAX_LIGHTMAPS][2]; int lightmapalign, lightmapalignmask; // LordHavoc: NVIDIA's broken subimage fix, see BuildLightmaps for notes cvar_t gl_lightmapalign = {"gl_lightmapalign", "4"}; cvar_t gl_lightmaprgba = {"gl_lightmaprgba", "1"}; cvar_t gl_nosubimagefragments = {"gl_nosubimagefragments", "0"}; cvar_t gl_nosubimage = {"gl_nosubimage", "0"}; cvar_t r_ambient = {"r_ambient", "0"}; qboolean lightmaprgba, nosubimagefragments, nosubimage; int lightmapbytes; qboolean skyisvisible; extern qboolean gl_arrays; void glrsurf_init() { int i; for (i = 0;i < MAX_LIGHTMAPS;i++) lightmaps[i] = NULL; Cvar_RegisterVariable(&gl_lightmapalign); Cvar_RegisterVariable(&gl_lightmaprgba); Cvar_RegisterVariable(&gl_nosubimagefragments); Cvar_RegisterVariable(&gl_nosubimage); Cvar_RegisterVariable(&r_ambient); // check if it's the glquake minigl driver if (strncasecmp(gl_vendor,"3Dfx",4)==0) if (!gl_arrays) { // Cvar_SetValue("gl_nosubimagefragments", 1); // Cvar_SetValue("gl_nosubimage", 1); Cvar_SetValue("gl_lightmode", 0); } } int dlightdivtable[8192]; int dlightdivtableinitialized = 0; /* =============== R_AddDynamicLights =============== */ void R_AddDynamicLights (msurface_t *surf) { int sdtable[18], lnum, td, maxdist, maxdist2, maxdist3, i, s, t, smax, tmax, red, green, blue, j; unsigned *bl; float dist, f; vec3_t impact, local; // use 64bit integer... shame it's not very standardized... #if _MSC_VER || __BORLANDC__ __int64 k; // MSVC #else long long k; // GCC #endif if (!dlightdivtableinitialized) { dlightdivtable[0] = 1048576 >> 7; for (s = 1;s < 8192;s++) dlightdivtable[s] = 1048576 / (s << 7); dlightdivtableinitialized = 1; } smax = (surf->extents[0]>>4)+1; tmax = (surf->extents[1]>>4)+1; for (lnum=0 ; lnumdlightbits[lnum >> 5] & (1<<(lnum&31)) ) ) continue; // not lit by this light VectorSubtract(cl_dlights[lnum].origin, currententity->origin, local); dist = DotProduct (local, surf->plane->normal) - surf->plane->dist; for (i=0 ; i<3 ; i++) impact[i] = cl_dlights[lnum].origin[i] - surf->plane->normal[i]*dist; f = DotProduct (impact, surf->texinfo->vecs[0]) + surf->texinfo->vecs[0][3] - surf->texturemins[0]; i = f; // reduce calculations t = dist*dist; for (s = 0;s < smax;s++, i -= 16) sdtable[s] = i*i + t; f = DotProduct (impact, surf->texinfo->vecs[1]) + surf->texinfo->vecs[1][3] - surf->texturemins[1]; i = f; maxdist = (int) (cl_dlights[lnum].radius*cl_dlights[lnum].radius); // for comparisons to minimum acceptable light // clamp radius to avoid exceeding 8192 entry division table if (maxdist > 1048576) maxdist = 1048576; maxdist3 = maxdist - (int) (dist*dist); // convert to 8.8 blocklights format if (!cl_dlights[lnum].dark) { f = cl_dlights[lnum].color[0] * maxdist;red = f; f = cl_dlights[lnum].color[1] * maxdist;green = f; f = cl_dlights[lnum].color[2] * maxdist;blue = f; } else // negate for darklight { f = cl_dlights[lnum].color[0] * -maxdist;red = f; f = cl_dlights[lnum].color[1] * -maxdist;green = f; f = cl_dlights[lnum].color[2] * -maxdist;blue = f; } bl = blocklights; for (t = 0;t < tmax;t++,i -= 16) { td = i*i; if (td < maxdist3) // make sure some part of it is visible on this line { maxdist2 = maxdist - td; for (s = 0;s < smax;s++) { if (sdtable[s] < maxdist2) { j = dlightdivtable[(sdtable[s]+td) >> 7]; k = (red * j) >> 8;bl[0] += k; k = (green * j) >> 8;bl[1] += k; k = (blue * j) >> 8;bl[2] += k; } bl += 3; } } else bl+=smax*3; // skip line } } } extern qboolean lighthalf; /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ void R_BuildLightMap (msurface_t *surf, byte *dest, int stride) { int smax, tmax; int t; int i, j, size; byte *lightmap; int scale; int maps; int *bl; surf->cached_dlight = (surf->dlightframe == r_framecount); surf->cached_lighthalf = lighthalf; surf->cached_ambient = r_ambient.value; smax = (surf->extents[0]>>4)+1; tmax = (surf->extents[1]>>4)+1; size = smax*tmax; lightmap = surf->samples; // set to full bright if no light data if (currententity->effects & EF_FULLBRIGHT || !cl.worldmodel->lightdata) { bl = blocklights; for (i=0 ; istyles[maps] != 255;maps++) { scale = d_lightstylevalue[surf->styles[maps]]; surf->cached_light[maps] = scale; // 8.8 fraction bl = blocklights; for (i=0 ; idlightframe == r_framecount) R_AddDynamicLights (surf); } stride -= (smax*lightmapbytes); bl = blocklights; if (lighthalf) { // LordHavoc: I shift down by 8 unlike GLQuake's 7, // the image is brightened as a processing pass if (lightmaprgba) { for (i=0 ; i> 8;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 8;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 8;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; *dest++ = 255; } } } else { for (i=0 ; i> 8;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 8;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 8;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; } } } } else { if (lightmaprgba) { for (i=0 ; i> 7;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 7;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 7;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; *dest++ = 255; } } } else { for (i=0 ; i> 7;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 7;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; t = *bl++ >> 7;if (t > 255) t = 255;else if (t < 0) t = 0;*dest++ = t; } } } } } byte templight[32*32*4]; void R_UpdateLightmap(msurface_t *s, int lnum) { int smax, tmax; // upload the new lightmap texture fragment glBindTexture(GL_TEXTURE_2D, lightmap_textures + lnum); if (nosubimage || nosubimagefragments) { if (lightmapupdate[lnum][0] > s->light_t) lightmapupdate[lnum][0] = s->light_t; if (lightmapupdate[lnum][1] < (s->light_t + ((s->extents[1]>>4)+1))) lightmapupdate[lnum][1] = (s->light_t + ((s->extents[1]>>4)+1)); if (lightmaprgba) R_BuildLightMap (s, lightmaps[s->lightmaptexturenum] + (s->light_t * BLOCK_WIDTH + s->light_s) * 4, BLOCK_WIDTH * 4); else R_BuildLightMap (s, lightmaps[s->lightmaptexturenum] + (s->light_t * BLOCK_WIDTH + s->light_s) * 3, BLOCK_WIDTH * 3); } else { smax = ((s->extents[0]>>4)+lightmapalign) & lightmapalignmask; tmax = (s->extents[1]>>4)+1; if (lightmaprgba) { R_BuildLightMap (s, templight, smax * 4); glTexSubImage2D(GL_TEXTURE_2D, 0, s->light_s, s->light_t, smax, tmax, GL_RGBA, GL_UNSIGNED_BYTE, templight); } else { R_BuildLightMap (s, templight, smax * 3); glTexSubImage2D(GL_TEXTURE_2D, 0, s->light_s, s->light_t, smax, tmax, GL_RGB , GL_UNSIGNED_BYTE, templight); } } } /* =============== R_TextureAnimation Returns the proper texture for a given time and base texture =============== */ texture_t *R_TextureAnimation (texture_t *base) { texture_t *original; int relative; int count; if (currententity->frame) { if (base->alternate_anims) base = base->alternate_anims; } if (!base->anim_total) return base; original = base; relative = (int)(cl.time*10) % base->anim_total; count = 0; while (base->anim_min > relative || base->anim_max <= relative) { base = base->anim_next; if (!base) { Con_Printf("R_TextureAnimation: broken cycle"); return original; } if (++count > 100) { Con_Printf("R_TextureAnimation: infinite cycle"); return original; } } return base; } /* ============================================================= BRUSH MODELS ============================================================= */ extern int solidskytexture; extern int alphaskytexture; extern float speedscale; // for top sky and bottom sky qboolean mtexenabled = false; extern char skyname[]; void R_DynamicLightPoint(vec3_t color, vec3_t org, int *dlightbits); //extern cvar_t r_dynamicwater; extern int r_dlightframecount; float turbsin[256] = { #include "gl_warp_sin.h" }; #define TURBSCALE (256.0 / (2 * M_PI)) void UploadLightmaps() { int i; if (nosubimage || nosubimagefragments) { for (i = 0;i < MAX_LIGHTMAPS;i++) { if (lightmapupdate[i][0] < lightmapupdate[i][1]) { glBindTexture(GL_TEXTURE_2D, lightmap_textures + i); if (nosubimage) { if (lightmaprgba) glTexImage2D(GL_TEXTURE_2D, 0, 4, BLOCK_WIDTH, BLOCK_HEIGHT, 0, GL_RGBA, GL_UNSIGNED_BYTE, lightmaps[i]); else glTexImage2D(GL_TEXTURE_2D, 0, 3, BLOCK_WIDTH, BLOCK_HEIGHT, 0, GL_RGB, GL_UNSIGNED_BYTE, lightmaps[i]); } else { if (lightmaprgba) glTexSubImage2D(GL_TEXTURE_2D, 0, 0, lightmapupdate[i][0], BLOCK_WIDTH, lightmapupdate[i][1] - lightmapupdate[i][0], GL_RGBA, GL_UNSIGNED_BYTE, lightmaps[i] + (BLOCK_WIDTH * 4 * lightmapupdate[i][0])); else glTexSubImage2D(GL_TEXTURE_2D, 0, 0, lightmapupdate[i][0], BLOCK_WIDTH, lightmapupdate[i][1] - lightmapupdate[i][0], GL_RGB, GL_UNSIGNED_BYTE, lightmaps[i] + (BLOCK_WIDTH * 3 * lightmapupdate[i][0])); } } lightmapupdate[i][0] = BLOCK_HEIGHT; lightmapupdate[i][1] = 0; } } } /* ================ DrawTextureChains ================ */ extern qboolean hlbsp; extern void R_Sky(); extern char skyname[]; void DrawTextureChains (void) { int i, j, maps; msurface_t *s; texture_t *t; glpoly_t *p; float *v; float os = turbsin[(int)(realtime * TURBSCALE) & 255], ot = turbsin[(int)(realtime * TURBSCALE + 96.0) & 255]; // first the sky skypolyclear(); for (j = 0;j < cl.worldmodel->numtextures;j++) { if (!cl.worldmodel->textures[j] || !(s = cl.worldmodel->textures[j]->texturechain)) continue; // LordHavoc: decide the render type only once, because the surface properties were determined by texture anyway // subdivided water surface warp if (s->flags & SURF_DRAWSKY) { cl.worldmodel->textures[j]->texturechain = NULL; t = R_TextureAnimation (cl.worldmodel->textures[j]); skyisvisible = true; if (!hlbsp) // LordHavoc: HalfLife maps have freaky skypolys... { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { if (currentskypoly < MAX_SKYPOLYS && currentskyvert + p->numverts <= MAX_SKYVERTS) { skypoly[currentskypoly].firstvert = currentskyvert; skypoly[currentskypoly++].verts = p->numverts; for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { skyvert[currentskyvert].v[0] = v[0]; skyvert[currentskyvert].v[1] = v[1]; skyvert[currentskyvert++].v[2] = v[2]; } } } } } } } skypolyrender(); // fogged sky polys, affects depth if (skyname[0] && skyisvisible && !fogenabled) R_Sky(); // does not affect depth, draws over the sky polys // then walls wallpolyclear(); for (j = 0;j < cl.worldmodel->numtextures;j++) { if (!cl.worldmodel->textures[j] || !(s = cl.worldmodel->textures[j]->texturechain)) continue; if (!(s->flags & SURF_DRAWTURB)) { cl.worldmodel->textures[j]->texturechain = NULL; t = R_TextureAnimation (cl.worldmodel->textures[j]); for (;s;s = s->texturechain) { if (currentwallpoly < MAX_WALLPOLYS && currentwallvert < MAX_WALLVERTS && (currentwallvert + s->polys->numverts) <= MAX_WALLVERTS) { // check for lightmap modification if (r_dynamic.value) { if (s->dlightframe == r_framecount || s->cached_dlight || r_ambient.value != s->cached_ambient || lighthalf != s->cached_lighthalf) // dynamic this frame or previously, or lighthalf changed, or r_ambient changed R_UpdateLightmap(s, s->lightmaptexturenum); else for (maps = 0 ; maps < MAXLIGHTMAPS && s->styles[maps] != 255 ; maps++) if (d_lightstylevalue[s->styles[maps]] != s->cached_light[maps]) { R_UpdateLightmap(s, s->lightmaptexturenum); break; } } wallpoly[currentwallpoly].texnum = (unsigned short) t->gl_texturenum; wallpoly[currentwallpoly].lighttexnum = (unsigned short) lightmap_textures + s->lightmaptexturenum; wallpoly[currentwallpoly].glowtexnum = (unsigned short) t->gl_glowtexturenum; wallpoly[currentwallpoly].firstvert = currentwallvert; wallpoly[currentwallpoly++].verts = s->polys->numverts; for (i = 0,v = s->polys->verts[0];ipolys->numverts;i++, v += VERTEXSIZE) { wallvert[currentwallvert].vert[0] = v[0]; wallvert[currentwallvert].vert[1] = v[1]; wallvert[currentwallvert].vert[2] = v[2]; wallvert[currentwallvert].s = v[3]; wallvert[currentwallvert].t = v[4]; wallvert[currentwallvert].u = v[5]; wallvert[currentwallvert++].v = v[6]; } } } } } UploadLightmaps(); wallpolyrender(); // then water (water gets diverted to transpoly list) for (j = 0;j < cl.worldmodel->numtextures;j++) { if (!cl.worldmodel->textures[j] || !(s = cl.worldmodel->textures[j]->texturechain)) continue; cl.worldmodel->textures[j]->texturechain = NULL; t = R_TextureAnimation (cl.worldmodel->textures[j]); // LordHavoc: decide the render type only once, because the surface properties were determined by texture anyway // subdivided water surface warp if (s->flags & SURF_DRAWTURB) { int light, alpha, r = 0, g = 0, b = 0; vec3_t nv, shadecolor; alpha = s->flags & SURF_DRAWNOALPHA ? 255 : r_wateralpha.value*255.0f; light = false; if (s->flags & SURF_DRAWFULLBRIGHT) r = g = b = lighthalf ? 128 : 255; else if (s->dlightframe == r_dlightframecount && r_dynamic.value) light = true; else r = g = b = (lighthalf ? 64 : 128) + (int) (r_ambient.value * 2.0f); if (r_waterripple.value) { if (lighthalf) { if (light) { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { nv[0] = v[0]; nv[1] = v[1]; nv[2] = v[2] + r_waterripple.value * turbsin[(int)((v[3]*0.125f+realtime) * TURBSCALE) & 255] * turbsin[(int)((v[4]*0.125f+realtime) * TURBSCALE) & 255] * (1.0f / 64.0f); shadecolor[0] = shadecolor[1] = shadecolor[2] = 128 + (int) (r_ambient.value * 2.0f); R_DynamicLightPoint(shadecolor, nv, s->dlightbits); transpolyvert(nv[0], nv[1], nv[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), (int) shadecolor[0] >> 1,(int) shadecolor[1] >> 1,(int) shadecolor[2] >> 1,alpha); } transpolyend(); } } } else { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { nv[0] = v[0]; nv[1] = v[1]; nv[2] = v[2] + r_waterripple.value * turbsin[(int)((v[3]*0.125f+realtime) * TURBSCALE) & 255] * turbsin[(int)((v[4]*0.125f+realtime) * TURBSCALE) & 255] * (1.0f / 64.0f); transpolyvert(nv[0], nv[1], nv[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), r,g,b,alpha); } transpolyend(); } } } } else { if (light) { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { nv[0] = v[0]; nv[1] = v[1]; nv[2] = v[2] + r_waterripple.value * turbsin[(int)((v[3]*0.125f+realtime) * TURBSCALE) & 255] * turbsin[(int)((v[4]*0.125f+realtime) * TURBSCALE) & 255] * (1.0f / 64.0f); shadecolor[0] = shadecolor[1] = shadecolor[2] = 128 + (int) (r_ambient.value * 2.0f); R_DynamicLightPoint(shadecolor, nv, s->dlightbits); transpolyvert(nv[0], nv[1], nv[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), shadecolor[0],shadecolor[1],shadecolor[2],alpha); } transpolyend(); } } } else { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { nv[0] = v[0]; nv[1] = v[1]; nv[2] = v[2] + r_waterripple.value * turbsin[(int)((v[3]*0.125f+realtime) * TURBSCALE) & 255] * turbsin[(int)((v[4]*0.125f+realtime) * TURBSCALE) & 255] * (1.0f / 64.0f); transpolyvert(nv[0], nv[1], nv[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), r,g,b,alpha); } transpolyend(); } } } } } else { if (lighthalf) { if (light) { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { shadecolor[0] = shadecolor[1] = shadecolor[2] = 128 + (int) (r_ambient.value * 2.0f); R_DynamicLightPoint(shadecolor, v, s->dlightbits); transpolyvert(v[0], v[1], v[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), (int) shadecolor[0] >> 1,(int) shadecolor[1] >> 1,(int) shadecolor[2] >> 1,alpha); } transpolyend(); } } } else { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { transpolyvert(v[0], v[1], v[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), r,g,b,alpha); } transpolyend(); } } } } else { if (light) { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { shadecolor[0] = shadecolor[1] = shadecolor[2] = 128 + (int) (r_ambient.value * 2.0f); R_DynamicLightPoint(shadecolor, v, s->dlightbits); transpolyvert(v[0], v[1], v[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), shadecolor[0],shadecolor[1],shadecolor[2],alpha); } transpolyend(); } } } else { for (;s;s = s->texturechain) { for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { transpolyvert(v[0], v[1], v[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), r,g,b,alpha); } transpolyend(); } } } } } } } } // LordHavoc: transparent brush models extern int r_dlightframecount; extern float modelalpha; extern vec3_t shadecolor; //qboolean R_CullBox (vec3_t mins, vec3_t maxs); void R_DynamicLightPoint(vec3_t color, vec3_t org, int *dlightbits); void R_DynamicLightPointNoMask(vec3_t color, vec3_t org); void EmitWaterPolys (msurface_t *fa); void R_MarkLights (vec3_t lightorigin, dlight_t *light, int bit, int bitindex, mnode_t *node); /* ================= R_DrawBrushModel ================= */ void R_DrawBrushModel (entity_t *e) { int i, j, k, smax, tmax, size3, maps; vec3_t mins, maxs, nv; msurface_t *s; mplane_t *pplane; model_t *clmodel; qboolean rotated, vertexlit = false; float dot, *v, scale; texture_t *t; byte *lm; float os = turbsin[(int)(realtime * TURBSCALE) & 255], ot = turbsin[(int)(realtime * TURBSCALE + 96.0) & 255]; currententity = e; clmodel = e->model; if (e->angles[0] || e->angles[1] || e->angles[2]) { rotated = true; for (i=0 ; i<3 ; i++) { mins[i] = e->origin[i] - clmodel->radius; maxs[i] = e->origin[i] + clmodel->radius; } } else { rotated = false; VectorAdd (e->origin, clmodel->mins, mins); VectorAdd (e->origin, clmodel->maxs, maxs); } if (R_CullBox (mins, maxs)) return; VectorSubtract (r_refdef.vieworg, e->origin, modelorg); if (rotated) { vec3_t temp; vec3_t forward, right, up; VectorCopy (modelorg, temp); AngleVectors (e->angles, forward, right, up); modelorg[0] = DotProduct (temp, forward); modelorg[1] = -DotProduct (temp, right); modelorg[2] = DotProduct (temp, up); } s = &clmodel->surfaces[clmodel->firstmodelsurface]; // calculate dynamic lighting for bmodel if it's not an // instanced model if (modelalpha == 1 && clmodel->firstmodelsurface != 0 && !(currententity->effects & EF_FULLBRIGHT) && currententity->colormod[0] == 1 && currententity->colormod[2] == 1 && currententity->colormod[2] == 1) { // if (!gl_flashblend.value) // { vec3_t org; for (k=0 ; korigin, org); R_MarkLights (org, &cl_dlights[k], 1<<(k&31), k >> 5, clmodel->nodes + clmodel->hulls[0].firstclipnode); } // } } else vertexlit = true; e->angles[0] = -e->angles[0]; // stupid quake bug softwaretransformforentity (e); e->angles[0] = -e->angles[0]; // stupid quake bug // draw texture for (j = 0;j < clmodel->nummodelsurfaces;j++, s++) { // find which side of the node we are on pplane = s->plane; dot = DotProduct (modelorg, pplane->normal) - pplane->dist; // draw the polygon if (((s->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) || (!(s->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) { if (s->flags & SURF_DRAWSKY) continue; if (s->flags & SURF_DRAWTURB) { glpoly_t *p; int light, alpha, r = 0, g = 0, b = 0; vec3_t shadecolor; if (s->flags & SURF_DRAWNOALPHA) alpha = modelalpha*255.0f; else alpha = r_wateralpha.value*modelalpha*255.0f; light = false; if (s->flags & SURF_DRAWFULLBRIGHT || currententity->effects & EF_FULLBRIGHT) { if (lighthalf) { r = 128.0f * currententity->colormod[0]; g = 128.0f * currententity->colormod[1]; b = 128.0f * currententity->colormod[2]; } else { r = 255.0f * currententity->colormod[0]; g = 255.0f * currententity->colormod[1]; b = 255.0f * currententity->colormod[2]; } } else if (s->dlightframe == r_dlightframecount && r_dynamic.value) light = true; else { if (lighthalf) { r = 64.0f * currententity->colormod[0] + (int) r_ambient.value; g = 64.0f * currententity->colormod[1] + (int) r_ambient.value; b = 64.0f * currententity->colormod[2] + (int) r_ambient.value; } else { r = 128.0f * currententity->colormod[0] + (int) (r_ambient.value * 2.0f); g = 128.0f * currententity->colormod[1] + (int) (r_ambient.value * 2.0f); b = 128.0f * currententity->colormod[2] + (int) (r_ambient.value * 2.0f); } } for (p=s->polys ; p ; p=p->next) { // FIXME: could be a transparent water texture transpolybegin(s->texinfo->texture->gl_texturenum, s->texinfo->texture->gl_glowtexturenum, 0, currententity->effects & EF_ADDITIVE ? TPOLYTYPE_ADD : TPOLYTYPE_ALPHA); for (i = 0,v = p->verts[0];i < p->numverts;i++, v += VERTEXSIZE) { softwaretransform(v, nv); if (r_waterripple.value) nv[2] += r_waterripple.value * turbsin[(int)((v[3]*0.125f+realtime) * TURBSCALE) & 255] * turbsin[(int)((v[4]*0.125f+realtime) * TURBSCALE) & 255] * (1.0f / 64.0f); if (light) { shadecolor[0] = shadecolor[1] = shadecolor[2] = 128 + (int) (r_ambient.value * 2.0f); R_DynamicLightPoint(shadecolor, nv, s->dlightbits); if (lighthalf) { r = (int) ((float) (shadecolor[0] * currententity->colormod[0])) >> 1; g = (int) ((float) (shadecolor[1] * currententity->colormod[1])) >> 1; b = (int) ((float) (shadecolor[2] * currententity->colormod[2])) >> 1; } else { r = (int) ((float) (shadecolor[0] * currententity->colormod[0])); g = (int) ((float) (shadecolor[1] * currententity->colormod[1])); b = (int) ((float) (shadecolor[2] * currententity->colormod[2])); } } transpolyvert(nv[0], nv[1], nv[2], (v[3] + os) * (1.0f/64.0f), (v[4] + ot) * (1.0f/64.0f), r,g,b,alpha); } transpolyend(); } continue; } t = R_TextureAnimation (s->texinfo->texture); v = s->polys->verts[0]; if (vertexlit || s->texinfo->texture->transparent) { // FIXME: could be a transparent water texture transpolybegin(t->gl_texturenum, t->gl_glowtexturenum, 0, currententity->effects & EF_ADDITIVE ? TPOLYTYPE_ADD : TPOLYTYPE_ALPHA); if ((currententity->effects & EF_FULLBRIGHT) || !s->samples) { for (i = 0;i < s->polys->numverts;i++, v += VERTEXSIZE) { softwaretransform(v, nv); transpolyvert(nv[0], nv[1], nv[2], v[3], v[4], 255,255,255,modelalpha*255.0f); } } else { smax = (s->extents[0]>>4)+1; tmax = (s->extents[1]>>4)+1; size3 = smax*tmax*3; // *3 for colored lighting for (i = 0;i < s->polys->numverts;i++, v += VERTEXSIZE) { shadecolor[0] = shadecolor[1] = shadecolor[2] = r_ambient.value * 2.0f; lm = (byte *)((long) s->samples + ((int) v[8] * smax + (int) v[7]) * 3); // LordHavoc: *3 for colored lighting for (maps = 0;maps < MAXLIGHTMAPS && s->styles[maps] != 255;maps++) { scale = d_lightstylevalue[s->styles[maps]] * (1.0 / 128.0); shadecolor[0] += lm[0] * scale; shadecolor[1] += lm[1] * scale; shadecolor[2] += lm[2] * scale; lm += size3; // LordHavoc: *3 for colored lighting } softwaretransform(v, nv); R_DynamicLightPointNoMask(shadecolor, nv); // LordHavoc: dynamic lighting if (lighthalf) { transpolyvert(nv[0], nv[1], nv[2], v[3], v[4], (int) shadecolor[0] >> 1, (int) shadecolor[1] >> 1, (int) shadecolor[2] >> 1, modelalpha*255.0f); } else { transpolyvert(nv[0], nv[1], nv[2], v[3], v[4], shadecolor[0], shadecolor[1], shadecolor[2], modelalpha*255.0f); } } } transpolyend(); } else { // check for lightmap modification if (r_dynamic.value) { if (s->dlightframe == r_framecount || s->cached_dlight || r_ambient.value != s->cached_ambient || lighthalf != s->cached_lighthalf) // dynamic this frame or previously, or lighthalf changed R_UpdateLightmap(s, s->lightmaptexturenum); else for (maps = 0 ; maps < MAXLIGHTMAPS && s->styles[maps] != 255 ; maps++) if (d_lightstylevalue[s->styles[maps]] != s->cached_light[maps]) { R_UpdateLightmap(s, s->lightmaptexturenum); break; } } if (currentwallpoly < MAX_WALLPOLYS && (currentwallvert + s->polys->numverts) <= MAX_WALLVERTS) { wallpoly[currentwallpoly].texnum = (unsigned short) t->gl_texturenum; wallpoly[currentwallpoly].lighttexnum = (unsigned short) lightmap_textures + s->lightmaptexturenum; wallpoly[currentwallpoly].glowtexnum = (unsigned short) t->gl_glowtexturenum; wallpoly[currentwallpoly].firstvert = currentwallvert; wallpoly[currentwallpoly++].verts = s->polys->numverts; for (i = 0;ipolys->numverts;i++, v += VERTEXSIZE) { softwaretransform(v, wallvert[currentwallvert].vert); wallvert[currentwallvert].s = v[3]; wallvert[currentwallvert].t = v[4]; wallvert[currentwallvert].u = v[5]; wallvert[currentwallvert++].v = v[6]; } } } } } UploadLightmaps(); } /* ============================================================= WORLD MODEL ============================================================= */ void R_StoreEfrags (efrag_t **ppefrag); /* ================ R_RecursiveWorldNode ================ */ //extern qboolean R_CullBox (vec3_t mins, vec3_t maxs); /* void R_RecursiveWorldNode (mnode_t *node) { int c, side; double dot; loc0: // if a leaf node, draw stuff if (node->contents < 0) { mleaf_t *pleaf; pleaf = (mleaf_t *)node; if (c = pleaf->nummarksurfaces) { msurface_t **mark; mark = pleaf->firstmarksurface; do { (*mark)->visframe = r_framecount; mark++; } while (--c); } // deal with model fragments in this leaf if (pleaf->efrags) R_StoreEfrags (&pleaf->efrags); return; } // node is just a decision point, so go down the apropriate sides // find which side of the node we are on dot = (node->plane->type < 3 ? modelorg[node->plane->type] : DotProduct (modelorg, node->plane->normal)) - node->plane->dist; // recurse down the children, front side first side = dot < 0; // LordHavoc: save a stack frame by avoiding a call // if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && !R_CullBox (node->children[side]->minmaxs, node->children[side]->minmaxs+3)) // LordHavoc: inlined further to reduce conditions if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && frustum[0].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[0]) != 2 && frustum[1].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[1]) != 2 && frustum[2].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[2]) != 2 && frustum[3].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[3]) != 2) R_RecursiveWorldNode (node->children[side]); // backside side = dot >= 0; // draw stuff if (c = node->numsurfaces) { msurface_t *surf; surf = cl.worldmodel->surfaces + node->firstsurface; // LordHavoc: caused a crash due to texsort (it could render twice...) // back side //side = dot >= -BACKFACE_EPSILON; if (dot < 0) { for (;c;c--, surf++) { if (surf->visframe == r_framecount && (surf->flags & SURF_PLANEBACK)) { surf->texturechain = surf->texinfo->texture->texturechain; surf->texinfo->texture->texturechain = surf; } } } else { for (;c;c--, surf++) { if (surf->visframe == r_framecount && (!(surf->flags & SURF_PLANEBACK))) { surf->texturechain = surf->texinfo->texture->texturechain; surf->texinfo->texture->texturechain = surf; } } } } // recurse down the back side // LordHavoc: save a stack frame by avoiding a call // if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && !R_CullBox (node->children[side]->minmaxs, node->children[side]->minmaxs+3)) // LordHavoc: inlined further to reduce conditions if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && frustum[0].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[0]) != 2 && frustum[1].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[1]) != 2 && frustum[2].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[2]) != 2 && frustum[3].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[3]) != 2) { node = node->children[side]; goto loc0; } // R_RecursiveWorldNode (node->children[side]); } */ extern int c_nodes; void R_WorldNode () { int c, side; double dot; struct { double dot; mnode_t *node; } nodestack[1024]; int s = 0; mnode_t *node; if (!(node = cl.worldmodel->nodes)) return; while(1) { // if a leaf node, draw stuff c_nodes++; if (node->contents < 0) { if (node->contents != CONTENTS_SOLID) { mleaf_t *pleaf; pleaf = (mleaf_t *)node; if ((c = pleaf->nummarksurfaces)) { msurface_t **mark; mark = pleaf->firstmarksurface; do { (*mark)->visframe = r_framecount; mark++; } while (--c); } // deal with model fragments in this leaf if (pleaf->efrags) R_StoreEfrags (&pleaf->efrags); } if (!s) break; node = nodestack[--s].node; dot = nodestack[s].dot; goto loc0; } // node is just a decision point, so go down the apropriate sides // find which side of the node we are on dot = (node->plane->type < 3 ? modelorg[node->plane->type] : DotProduct (modelorg, node->plane->normal)) - node->plane->dist; // recurse down the children, front side first side = dot < 0; if (node->children[side]->visframe == r_visframecount && frustum[0].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[0]) != 2 && frustum[1].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[1]) != 2 && frustum[2].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[2]) != 2 && frustum[3].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[3]) != 2) { nodestack[s].node = node; nodestack[s++].dot = dot; node = node->children[side]; continue; } loc0: // backside side = dot >= 0; // draw stuff if ((c = node->numsurfaces)) { msurface_t *surf; surf = cl.worldmodel->surfaces + node->firstsurface; if (side) { for (;c;c--, surf++) { if (surf->visframe == r_framecount && !(surf->flags & SURF_PLANEBACK)) { surf->texturechain = surf->texinfo->texture->texturechain; surf->texinfo->texture->texturechain = surf; } } } else { for (;c;c--, surf++) { if (surf->visframe == r_framecount && (surf->flags & SURF_PLANEBACK)) { surf->texturechain = surf->texinfo->texture->texturechain; surf->texinfo->texture->texturechain = surf; } } } } // recurse down the back side if (node->children[side]->visframe == r_visframecount && frustum[0].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[0]) != 2 && frustum[1].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[1]) != 2 && frustum[2].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[2]) != 2 && frustum[3].BoxOnPlaneSideFunc(node->children[side]->minmaxs, node->children[side]->minmaxs+3, &frustum[3]) != 2) { node = node->children[side]; continue; } if (!s) break; node = nodestack[--s].node; dot = nodestack[s].dot; goto loc0; } } /* ============= R_DrawWorld ============= */ void R_DrawWorld (void) { entity_t ent; memset (&ent, 0, sizeof(ent)); ent.model = cl.worldmodel; ent.colormod[0] = ent.colormod[1] = ent.colormod[2] = 1; modelalpha = ent.alpha = 1; ent.scale = 1; VectorCopy (r_refdef.vieworg, modelorg); currententity = &ent; softwaretransformidentity(); // LordHavoc: clear transform skyisvisible = false; if (cl.worldmodel) R_WorldNode (); glClear (GL_DEPTH_BUFFER_BIT); DrawTextureChains (); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } /* =============== R_MarkLeaves =============== */ void R_MarkLeaves (void) { byte *vis; mnode_t *node; int i; if (r_oldviewleaf == r_viewleaf && !r_novis.value) return; r_visframecount++; r_oldviewleaf = r_viewleaf; if (r_novis.value) { for (i=0 ; inumleafs ; i++) { node = (mnode_t *)&cl.worldmodel->leafs[i+1]; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } else { vis = Mod_LeafPVS (r_viewleaf, cl.worldmodel); for (i=0 ; inumleafs ; i++) { if (vis[i>>3] & (1<<(i&7))) { node = (mnode_t *)&cl.worldmodel->leafs[i+1]; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } } } /* ============================================================================= LIGHTMAP ALLOCATION ============================================================================= */ // returns a texture number and the position inside it int AllocBlock (int w, int h, int *x, int *y) { int i, j; int best, best2; int texnum; for (texnum=0 ; texnum= best) break; if (allocated[texnum][i+j] > best2) best2 = allocated[texnum][i+j]; } if (j == w) { // this is a valid spot *x = i; *y = best = best2; } } if (best + h > BLOCK_HEIGHT) continue; if (nosubimagefragments || nosubimage) { if (!lightmaps[texnum]) lightmaps[texnum] = calloc(BLOCK_WIDTH*BLOCK_HEIGHT*4, 1); } // LordHavoc: clear texture to blank image, fragments are uploaded using subimage else if (!allocated[texnum][0]) { byte blank[BLOCK_WIDTH*BLOCK_HEIGHT*3]; memset(blank, 0, sizeof(blank)); glBindTexture(GL_TEXTURE_2D, lightmap_textures + texnum); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (lightmaprgba) glTexImage2D (GL_TEXTURE_2D, 0, 4, BLOCK_WIDTH, BLOCK_HEIGHT, 0, GL_RGBA, GL_UNSIGNED_BYTE, blank); else glTexImage2D (GL_TEXTURE_2D, 0, 3, BLOCK_WIDTH, BLOCK_HEIGHT, 0, GL_RGB, GL_UNSIGNED_BYTE, blank); } for (i=0 ; iedges; lnumverts = fa->numedges; vertpage = 0; // // draw texture // poly = Hunk_Alloc (sizeof(glpoly_t) + (lnumverts-4) * VERTEXSIZE*sizeof(float)); poly->next = fa->polys; poly->flags = fa->flags; fa->polys = poly; poly->numverts = lnumverts; for (i=0 ; isurfedges[fa->firstedge + i]; if (lindex > 0) { r_pedge = &pedges[lindex]; vec = r_pcurrentvertbase[r_pedge->v[0]].position; } else { r_pedge = &pedges[-lindex]; vec = r_pcurrentvertbase[r_pedge->v[1]].position; } s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3]; s /= fa->texinfo->texture->width; t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3]; t /= fa->texinfo->texture->height; VectorCopy (vec, poly->verts[i]); poly->verts[i][3] = s; poly->verts[i][4] = t; // // lightmap texture coordinates // s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3]; s -= fa->texturemins[0]; poly->verts[i][7] = bound(0l, ((int)s>>4), (fa->extents[0]>>4)); // LordHavoc: raw lightmap coordinates s += fa->light_s*16; s += 8; s /= BLOCK_WIDTH*16; //fa->texinfo->texture->width; t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3]; t -= fa->texturemins[1]; poly->verts[i][8] = bound(0l, ((int)t>>4), (fa->extents[1]>>4)); // LordHavoc: raw lightmap coordinates t += fa->light_t*16; t += 8; t /= BLOCK_HEIGHT*16; //fa->texinfo->texture->height; poly->verts[i][5] = s; poly->verts[i][6] = t; } // // remove co-linear points - Ed // /* if (!gl_keeptjunctions.value) { for (i = 0 ; i < lnumverts ; ++i) { vec3_t v1, v2; float *prev, *this, *next; prev = poly->verts[(i + lnumverts - 1) % lnumverts]; this = poly->verts[i]; next = poly->verts[(i + 1) % lnumverts]; VectorSubtract( this, prev, v1 ); VectorNormalize( v1 ); VectorSubtract( next, prev, v2 ); VectorNormalize( v2 ); // skip co-linear points #define COLINEAR_EPSILON 0.001 if ((fabs( v1[0] - v2[0] ) <= COLINEAR_EPSILON) && (fabs( v1[1] - v2[1] ) <= COLINEAR_EPSILON) && (fabs( v1[2] - v2[2] ) <= COLINEAR_EPSILON)) { int j; for (j = i + 1; j < lnumverts; ++j) { int k; for (k = 0; k < VERTEXSIZE; ++k) poly->verts[j - 1][k] = poly->verts[j][k]; } --lnumverts; ++nColinElim; // retry next vertex next time, which is now current vertex --i; } } } */ poly->numverts = lnumverts; } /* ======================== GL_CreateSurfaceLightmap ======================== */ void GL_CreateSurfaceLightmap (msurface_t *surf) { int smax, tmax; if (surf->flags & (SURF_DRAWSKY|SURF_DRAWTURB)) return; smax = (surf->extents[0]>>4)+1; tmax = (surf->extents[1]>>4)+1; surf->lightmaptexturenum = AllocBlock (smax, tmax, &surf->light_s, &surf->light_t); if (nosubimage || nosubimagefragments) return; glBindTexture(GL_TEXTURE_2D, lightmap_textures + surf->lightmaptexturenum); smax = ((surf->extents[0]>>4)+lightmapalign) & lightmapalignmask; if (lightmaprgba) { R_BuildLightMap (surf, templight, smax * 4); glTexSubImage2D(GL_TEXTURE_2D, 0, surf->light_s, surf->light_t, smax, tmax, GL_RGBA, GL_UNSIGNED_BYTE, templight); } else { R_BuildLightMap (surf, templight, smax * 3); glTexSubImage2D(GL_TEXTURE_2D, 0, surf->light_s, surf->light_t, smax, tmax, GL_RGB , GL_UNSIGNED_BYTE, templight); } } /* ================== GL_BuildLightmaps Builds the lightmap texture with all the surfaces from all brush models ================== */ void GL_BuildLightmaps (void) { int i, j; model_t *m; memset (allocated, 0, sizeof(allocated)); r_framecount = 1; // no dlightcache if (gl_nosubimagefragments.value) nosubimagefragments = 1; else nosubimagefragments = 0; if (gl_nosubimage.value) nosubimage = 1; else nosubimage = 0; if (gl_lightmaprgba.value) { lightmaprgba = true; lightmapbytes = 4; } else { lightmaprgba = false; lightmapbytes = 3; } // LordHavoc: NVIDIA seems to have a broken glTexSubImage2D, // it needs to be aligned on 4 pixel boundaries... // so I implemented an adjustable lightmap alignment if (gl_lightmapalign.value < 1) gl_lightmapalign.value = 1; if (gl_lightmapalign.value > 16) gl_lightmapalign.value = 16; lightmapalign = 1; while (lightmapalign < gl_lightmapalign.value) lightmapalign <<= 1; gl_lightmapalign.value = lightmapalign; lightmapalignmask = ~(lightmapalign - 1); if (nosubimagefragments || nosubimage) { lightmapalign = 1; lightmapalignmask = ~0; } if (!lightmap_textures) { lightmap_textures = texture_extension_number; texture_extension_number += MAX_LIGHTMAPS; } for (j=1 ; jname[0] == '*') continue; r_pcurrentvertbase = m->vertexes; currentmodel = m; for (i=0 ; inumsurfaces ; i++) { if ( m->surfaces[i].flags & SURF_DRAWTURB ) continue; if ( m->surfaces[i].flags & SURF_DRAWSKY ) continue; GL_CreateSurfaceLightmap (m->surfaces + i); BuildSurfaceDisplayList (m->surfaces + i); } } if (nosubimage || nosubimagefragments) { if (gl_mtexable) qglSelectTexture(gl_mtex_enum+1); for (i = 0;i < MAX_LIGHTMAPS;i++) { if (!allocated[i][0]) break; lightmapupdate[i][0] = BLOCK_HEIGHT; lightmapupdate[i][1] = 0; glBindTexture(GL_TEXTURE_2D, lightmap_textures + i); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); if (lightmaprgba) glTexImage2D(GL_TEXTURE_2D, 0, 4, BLOCK_WIDTH, BLOCK_HEIGHT, 0, GL_RGBA, GL_UNSIGNED_BYTE, lightmaps[i]); else glTexImage2D(GL_TEXTURE_2D, 0, 3, BLOCK_WIDTH, BLOCK_HEIGHT, 0, GL_RGB, GL_UNSIGNED_BYTE, lightmaps[i]); } if (gl_mtexable) qglSelectTexture(gl_mtex_enum+0); } }