/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_surf.c: surface-related refresh code #include "quakedef.h" #include "r_shadow.h" #include "portals.h" #define MAX_LIGHTMAP_SIZE 256 cvar_t r_ambient = {0, "r_ambient", "0"}; cvar_t r_drawportals = {0, "r_drawportals", "0"}; cvar_t r_testvis = {0, "r_testvis", "0"}; cvar_t r_detailtextures = {CVAR_SAVE, "r_detailtextures", "1"}; cvar_t r_surfaceworldnode = {0, "r_surfaceworldnode", "0"}; cvar_t r_drawcollisionbrushes_polygonfactor = {0, "r_drawcollisionbrushes_polygonfactor", "-1"}; cvar_t r_drawcollisionbrushes_polygonoffset = {0, "r_drawcollisionbrushes_polygonoffset", "0"}; cvar_t r_q3bsp_renderskydepth = {0, "r_q3bsp_renderskydepth", "0"}; // flag arrays used for visibility checking on world model // (all other entities have no per-surface/per-leaf visibility checks) // TODO: dynamic resize according to r_refdef.worldmodel->brush.num_clusters qbyte r_pvsbits[(32768+7)>>3]; // TODO: dynamic resize according to r_refdef.worldmodel->brush.num_leafs qbyte r_worldleafvisible[32768]; // TODO: dynamic resize according to r_refdef.worldmodel->num_surfaces qbyte r_worldsurfacevisible[262144]; /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ void R_BuildLightMap (const entity_render_t *ent, msurface_t *surface) { int smax, tmax, i, j, size, size3, maps, stride, l; unsigned int *bl, scale; qbyte *lightmap, *out, *stain; static unsigned int intblocklights[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*3]; // LordHavoc: *3 for colored lighting static qbyte templight[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*4]; // update cached lighting info surface->cached_dlight = 0; smax = (surface->lightmapinfo->extents[0]>>4)+1; tmax = (surface->lightmapinfo->extents[1]>>4)+1; size = smax*tmax; size3 = size*3; lightmap = surface->lightmapinfo->samples; // set to full bright if no light data bl = intblocklights; if (!ent->model->brushq1.lightdata) { for (i = 0;i < size3;i++) bl[i] = 255*256; } else { // clear to no light memset(bl, 0, size*3*sizeof(unsigned int)); // add all the lightmaps if (lightmap) { bl = intblocklights; for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3) for (scale = d_lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size3;i++) bl[i] += lightmap[i] * scale; } } stain = surface->lightmapinfo->stainsamples; bl = intblocklights; out = templight; // the >> 16 shift adjusts down 8 bits to account for the stainmap // scaling, and remaps the 0-65536 (2x overbright) to 0-256, it will // be doubled during rendering to achieve 2x overbright // (0 = 0.0, 128 = 1.0, 256 = 2.0) if (ent->model->brushq1.lightmaprgba) { stride = (surface->lightmapinfo->lightmaptexturestride - smax) * 4; for (i = 0;i < tmax;i++, out += stride) { for (j = 0;j < smax;j++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); *out++ = 255; } } } else { stride = (surface->lightmapinfo->lightmaptexturestride - smax) * 3; for (i = 0;i < tmax;i++, out += stride) { for (j = 0;j < smax;j++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); } } } R_UpdateTexture(surface->lightmaptexture, templight); } void R_StainNode (mnode_t *node, model_t *model, const vec3_t origin, float radius, const float fcolor[8]) { float ndist, a, ratio, maxdist, maxdist2, maxdist3, invradius, sdtable[256], td, dist2; msurface_t *surface, *endsurface; int i, s, t, smax, tmax, smax3, impacts, impactt, stained; qbyte *bl; vec3_t impact; maxdist = radius * radius; invradius = 1.0f / radius; loc0: if (!node->plane) return; ndist = PlaneDiff(origin, node->plane); if (ndist > radius) { node = node->children[0]; goto loc0; } if (ndist < -radius) { node = node->children[1]; goto loc0; } dist2 = ndist * ndist; maxdist3 = maxdist - dist2; if (node->plane->type < 3) { VectorCopy(origin, impact); impact[node->plane->type] -= ndist; } else { impact[0] = origin[0] - node->plane->normal[0] * ndist; impact[1] = origin[1] - node->plane->normal[1] * ndist; impact[2] = origin[2] - node->plane->normal[2] * ndist; } for (surface = model->data_surfaces + node->firstsurface, endsurface = surface + node->numsurfaces;surface < endsurface;surface++) { if (surface->lightmapinfo->stainsamples) { smax = (surface->lightmapinfo->extents[0] >> 4) + 1; tmax = (surface->lightmapinfo->extents[1] >> 4) + 1; impacts = DotProduct (impact, surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3] - surface->lightmapinfo->texturemins[0]; impactt = DotProduct (impact, surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3] - surface->lightmapinfo->texturemins[1]; s = bound(0, impacts, smax * 16) - impacts; t = bound(0, impactt, tmax * 16) - impactt; i = s * s + t * t + dist2; if (i > maxdist) continue; // reduce calculations for (s = 0, i = impacts; s < smax; s++, i -= 16) sdtable[s] = i * i + dist2; bl = surface->lightmapinfo->stainsamples; smax3 = smax * 3; stained = false; i = impactt; for (t = 0;t < tmax;t++, i -= 16) { td = i * i; // make sure some part of it is visible on this line if (td < maxdist3) { maxdist2 = maxdist - td; for (s = 0;s < smax;s++) { if (sdtable[s] < maxdist2) { ratio = lhrandom(0.0f, 1.0f); a = (fcolor[3] + ratio * fcolor[7]) * (1.0f - sqrt(sdtable[s] + td) * invradius); if (a >= (1.0f / 64.0f)) { if (a > 1) a = 1; bl[0] = (qbyte) ((float) bl[0] + a * ((fcolor[0] + ratio * fcolor[4]) - (float) bl[0])); bl[1] = (qbyte) ((float) bl[1] + a * ((fcolor[1] + ratio * fcolor[5]) - (float) bl[1])); bl[2] = (qbyte) ((float) bl[2] + a * ((fcolor[2] + ratio * fcolor[6]) - (float) bl[2])); stained = true; } } bl += 3; } } else // skip line bl += smax3; } // force lightmap upload if (stained) surface->cached_dlight = true; } } if (node->children[0]->plane) { if (node->children[1]->plane) { R_StainNode(node->children[0], model, origin, radius, fcolor); node = node->children[1]; goto loc0; } else { node = node->children[0]; goto loc0; } } else if (node->children[1]->plane) { node = node->children[1]; goto loc0; } } void R_Stain (const vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { int n; float fcolor[8]; entity_render_t *ent; model_t *model; vec3_t org; if (r_refdef.worldmodel == NULL || !r_refdef.worldmodel->brush.data_nodes || !r_refdef.worldmodel->brushq1.lightdata) return; fcolor[0] = cr1; fcolor[1] = cg1; fcolor[2] = cb1; fcolor[3] = ca1 * (1.0f / 64.0f); fcolor[4] = cr2 - cr1; fcolor[5] = cg2 - cg1; fcolor[6] = cb2 - cb1; fcolor[7] = (ca2 - ca1) * (1.0f / 64.0f); R_StainNode(r_refdef.worldmodel->brush.data_nodes + r_refdef.worldmodel->brushq1.hulls[0].firstclipnode, r_refdef.worldmodel, origin, radius, fcolor); // look for embedded bmodels for (n = 0;n < cl_num_brushmodel_entities;n++) { ent = &cl_entities[cl_brushmodel_entities[n]].render; model = ent->model; if (model && model->name[0] == '*') { Mod_CheckLoaded(model); if (model->brush.data_nodes) { Matrix4x4_Transform(&ent->inversematrix, origin, org); R_StainNode(model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, model, org, radius, fcolor); } } } } /* ============================================================= BRUSH MODELS ============================================================= */ static void R_DrawPortal_Callback(const void *calldata1, int calldata2) { int i; float *v; rmeshstate_t m; const mportal_t *portal = calldata1; GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthTest(true); R_Mesh_Matrix(&r_identitymatrix); memset(&m, 0, sizeof(m)); m.pointer_vertex = varray_vertex3f; R_Mesh_State(&m); i = calldata2; GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f), ((i & 0x0038) >> 3) * (1.0f / 7.0f), ((i & 0x01C0) >> 6) * (1.0f / 7.0f), 0.125f); if (PlaneDiff(r_vieworigin, (&portal->plane)) < 0) { for (i = portal->numpoints - 1, v = varray_vertex3f;i >= 0;i--, v += 3) VectorCopy(portal->points[i].position, v); } else for (i = 0, v = varray_vertex3f;i < portal->numpoints;i++, v += 3) VectorCopy(portal->points[i].position, v); GL_LockArrays(0, portal->numpoints); R_Mesh_Draw(0, portal->numpoints, portal->numpoints - 2, polygonelements); GL_LockArrays(0, 0); } // LordHavoc: this is just a nice debugging tool, very slow static void R_DrawPortals(void) { int i, leafnum;//, portalnum; mportal_t *portal; float center[3], f; model_t *model = r_refdef.worldmodel; if (model == NULL) return; for (leafnum = 0;leafnum < r_refdef.worldmodel->brush.num_leafs;leafnum++) { if (r_worldleafvisible[leafnum]) { //for (portalnum = 0, portal = model->brush.data_portals;portalnum < model->brush.num_portals;portalnum++, portal++) for (portal = r_refdef.worldmodel->brush.data_leafs[leafnum].portals;portal;portal = portal->next) { if (portal->numpoints <= POLYGONELEMENTS_MAXPOINTS) if (!R_CullBox(portal->mins, portal->maxs)) { VectorClear(center); for (i = 0;i < portal->numpoints;i++) VectorAdd(center, portal->points[i].position, center); f = ixtable[portal->numpoints]; VectorScale(center, f, center); //R_MeshQueue_AddTransparent(center, R_DrawPortal_Callback, portal, portalnum); R_MeshQueue_AddTransparent(center, R_DrawPortal_Callback, portal, leafnum); } } } } } static void R_DrawCollisionBrush(colbrushf_t *brush) { int i; rmeshstate_t m; memset(&m, 0, sizeof(m)); m.pointer_vertex = brush->points->v; R_Mesh_State(&m); i = (int)(((size_t)brush) / sizeof(colbrushf_t)); GL_Color((i & 31) * (1.0f / 32.0f), ((i >> 5) & 31) * (1.0f / 32.0f), ((i >> 10) & 31) * (1.0f / 32.0f), 0.2f); GL_LockArrays(0, brush->numpoints); R_Mesh_Draw(0, brush->numpoints, brush->numtriangles, brush->elements); GL_LockArrays(0, 0); } static void R_DrawCollisionSurface(entity_render_t *ent, msurface_t *surface) { int i; rmeshstate_t m; if (!surface->num_collisiontriangles) return; memset(&m, 0, sizeof(m)); m.pointer_vertex = surface->data_collisionvertex3f; R_Mesh_State(&m); i = (int)(((size_t)surface) / sizeof(msurface_t)); GL_Color((i & 31) * (1.0f / 32.0f), ((i >> 5) & 31) * (1.0f / 32.0f), ((i >> 10) & 31) * (1.0f / 32.0f), 0.2f); GL_LockArrays(0, surface->num_collisionvertices); R_Mesh_Draw(0, surface->num_collisionvertices, surface->num_collisiontriangles, surface->data_collisionelement3i); GL_LockArrays(0, 0); } void R_WorldVisibility(void) { int i, j, *mark; mleaf_t *leaf; mleaf_t *viewleaf; model_t *model = r_refdef.worldmodel; if (!model) return; // if possible find the leaf the view origin is in viewleaf = model->brush.PointInLeaf ? model->brush.PointInLeaf(model, r_vieworigin) : NULL; // if possible fetch the visible cluster bits if (model->brush.FatPVS) model->brush.FatPVS(model, r_vieworigin, 2, r_pvsbits, sizeof(r_pvsbits)); // clear the visible surface and leaf flags arrays memset(r_worldsurfacevisible, 0, model->num_surfaces); memset(r_worldleafvisible, 0, model->brush.num_leafs); // if the user prefers surfaceworldnode (testing?) or the viewleaf could // not be found, or the viewleaf is not part of the visible world // (floating around in the void), use the pvs method if (r_surfaceworldnode.integer || !viewleaf || viewleaf->clusterindex < 0) { // pvs method: // similar to quake's RecursiveWorldNode but without cache misses for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { // if leaf is in current pvs and on the screen, mark its surfaces if (CHECKPVSBIT(r_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs)) { c_leafs++; r_worldleafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_worldsurfacevisible[*mark] = true; } } } else { int leafstackpos; mportal_t *p; mleaf_t *leafstack[8192]; // portal method: // follows portals leading outward from viewleaf, does not venture // offscreen or into leafs that are not visible, faster than Quake's // RecursiveWorldNode and vastly better in unvised maps, often culls a // lot of surface that pvs alone would miss leafstack[0] = viewleaf; leafstackpos = 1; while (leafstackpos) { c_leafs++; leaf = leafstack[--leafstackpos]; r_worldleafvisible[leaf - model->brush.data_leafs] = true; // mark any surfaces bounding this leaf if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_worldsurfacevisible[*mark] = true; // follow portals into other leafs // the checks are: // if viewer is behind portal (portal faces outward into the scene) // and the portal polygon's bounding box is on the screen // and the leaf has not been visited yet // and the leaf is visible in the pvs // (the first two checks won't cause as many cache misses as the leaf checks) for (p = leaf->portals;p;p = p->next) if (DotProduct(r_vieworigin, p->plane.normal) < (p->plane.dist + 1) && !R_CullBox(p->mins, p->maxs) && !r_worldleafvisible[p->past - model->brush.data_leafs] && CHECKPVSBIT(r_pvsbits, p->past->clusterindex)) leafstack[leafstackpos++] = p->past; } } if (r_drawportals.integer) R_DrawPortals(); } void R_Q1BSP_DrawSky(entity_render_t *ent) { if (ent->model == NULL) return; if (r_drawcollisionbrushes.integer < 2) R_DrawSurfaces(ent, true); } void R_Q1BSP_Draw(entity_render_t *ent) { if (ent->model == NULL) return; c_bmodels++; if (r_drawcollisionbrushes.integer < 2) R_DrawSurfaces(ent, false); if (r_drawcollisionbrushes.integer >= 1 && ent->model->brush.num_brushes) { int i; model_t *model = ent->model; msurface_t *surface; q3mbrush_t *brush; R_Mesh_Matrix(&ent->matrix); GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); GL_DepthMask(false); GL_DepthTest(true); qglPolygonOffset(r_drawcollisionbrushes_polygonfactor.value, r_drawcollisionbrushes_polygonoffset.value); for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++) if (brush->colbrushf && brush->colbrushf->numtriangles) R_DrawCollisionBrush(brush->colbrushf); for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++) if (surface->num_collisiontriangles) R_DrawCollisionSurface(ent, surface); qglPolygonOffset(0, 0); } } typedef struct r_q1bsp_getlightinfo_s { model_t *model; vec3_t relativelightorigin; float lightradius; int *outleaflist; qbyte *outleafpvs; int outnumleafs; int *outsurfacelist; qbyte *outsurfacepvs; int outnumsurfaces; vec3_t outmins; vec3_t outmaxs; vec3_t lightmins; vec3_t lightmaxs; const qbyte *pvs; } r_q1bsp_getlightinfo_t; void R_Q1BSP_RecursiveGetLightInfo(r_q1bsp_getlightinfo_t *info, mnode_t *node) { int sides; mleaf_t *leaf; for (;;) { if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs)) return; if (!node->plane) break; sides = BoxOnPlaneSide(info->lightmins, info->lightmaxs, node->plane) - 1; if (sides == 2) { R_Q1BSP_RecursiveGetLightInfo(info, node->children[0]); node = node->children[1]; } else node = node->children[sides]; } leaf = (mleaf_t *)node; if (info->pvs == NULL || CHECKPVSBIT(info->pvs, leaf->clusterindex)) { info->outmins[0] = min(info->outmins[0], leaf->mins[0]); info->outmins[1] = min(info->outmins[1], leaf->mins[1]); info->outmins[2] = min(info->outmins[2], leaf->mins[2]); info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]); info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]); info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]); if (info->outleafpvs) { int leafindex = leaf - info->model->brush.data_leafs; if (!CHECKPVSBIT(info->outleafpvs, leafindex)) { SETPVSBIT(info->outleafpvs, leafindex); info->outleaflist[info->outnumleafs++] = leafindex; } } if (info->outsurfacepvs) { int leafsurfaceindex; for (leafsurfaceindex = 0;leafsurfaceindex < leaf->numleafsurfaces;leafsurfaceindex++) { int surfaceindex = leaf->firstleafsurface[leafsurfaceindex]; if (!CHECKPVSBIT(info->outsurfacepvs, surfaceindex)) { msurface_t *surface = info->model->data_surfaces + surfaceindex; if (BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs)) if ((surface->texture->currentmaterialflags & (MATERIALFLAG_WALL | MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT)) == MATERIALFLAG_WALL) { int triangleindex, t; const int *e; const vec_t *v[3]; for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = info->model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3) { v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3; v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3; v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3; if (PointInfrontOfTriangle(info->relativelightorigin, v[0], v[1], v[2]) && info->lightmaxs[0] > min(v[0][0], min(v[1][0], v[2][0])) && info->lightmins[0] < max(v[0][0], max(v[1][0], v[2][0])) && info->lightmaxs[1] > min(v[0][1], min(v[1][1], v[2][1])) && info->lightmins[1] < max(v[0][1], max(v[1][1], v[2][1])) && info->lightmaxs[2] > min(v[0][2], min(v[1][2], v[2][2])) && info->lightmins[2] < max(v[0][2], max(v[1][2], v[2][2]))) { SETPVSBIT(info->outsurfacepvs, surfaceindex); info->outsurfacelist[info->outnumsurfaces++] = surfaceindex; break; } } } } } } } } void R_Q1BSP_GetLightInfo(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, vec3_t outmins, vec3_t outmaxs, int *outleaflist, qbyte *outleafpvs, int *outnumleafspointer, int *outsurfacelist, qbyte *outsurfacepvs, int *outnumsurfacespointer) { r_q1bsp_getlightinfo_t info; VectorCopy(relativelightorigin, info.relativelightorigin); info.lightradius = lightradius; info.lightmins[0] = info.relativelightorigin[0] - info.lightradius; info.lightmins[1] = info.relativelightorigin[1] - info.lightradius; info.lightmins[2] = info.relativelightorigin[2] - info.lightradius; info.lightmaxs[0] = info.relativelightorigin[0] + info.lightradius; info.lightmaxs[1] = info.relativelightorigin[1] + info.lightradius; info.lightmaxs[2] = info.relativelightorigin[2] + info.lightradius; if (ent->model == NULL) { VectorCopy(info.lightmins, outmins); VectorCopy(info.lightmaxs, outmaxs); *outnumleafspointer = 0; *outnumsurfacespointer = 0; return; } info.model = ent->model; info.outleaflist = outleaflist; info.outleafpvs = outleafpvs; info.outnumleafs = 0; info.outsurfacelist = outsurfacelist; info.outsurfacepvs = outsurfacepvs; info.outnumsurfaces = 0; VectorCopy(info.relativelightorigin, info.outmins); VectorCopy(info.relativelightorigin, info.outmaxs); memset(outleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3); memset(outsurfacepvs, 0, (info.model->nummodelsurfaces + 7) >> 3); if (info.model->brush.GetPVS) info.pvs = info.model->brush.GetPVS(info.model, info.relativelightorigin); else info.pvs = NULL; R_UpdateAllTextureInfo(ent); if (r_shadow_compilingrtlight) { // use portal recursion for exact light volume culling, and exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, true, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs); } else if (r_shadow_realtime_dlight_portalculling.integer) { // use portal recursion for exact light volume culling, but not the expensive exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, r_shadow_realtime_dlight_portalculling.integer >= 2, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs); } else { // use BSP recursion as lights are often small R_Q1BSP_RecursiveGetLightInfo(&info, info.model->brush.data_nodes); } // limit combined leaf box to light boundaries outmins[0] = max(info.outmins[0] - 1, info.lightmins[0]); outmins[1] = max(info.outmins[1] - 1, info.lightmins[1]); outmins[2] = max(info.outmins[2] - 1, info.lightmins[2]); outmaxs[0] = min(info.outmaxs[0] + 1, info.lightmaxs[0]); outmaxs[1] = min(info.outmaxs[1] + 1, info.lightmaxs[1]); outmaxs[2] = min(info.outmaxs[2] + 1, info.lightmaxs[2]); *outnumleafspointer = info.outnumleafs; *outnumsurfacespointer = info.outnumsurfaces; } extern float *rsurface_vertex3f; extern float *rsurface_svector3f; extern float *rsurface_tvector3f; extern float *rsurface_normal3f; extern void RSurf_SetVertexPointer(const entity_render_t *ent, const texture_t *texture, const msurface_t *surface, const vec3_t modelorg); void R_Q1BSP_DrawShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, int numsurfaces, const int *surfacelist, const vec3_t lightmins, const vec3_t lightmaxs) { model_t *model = ent->model; msurface_t *surface; int surfacelistindex; float projectdistance = lightradius + model->radius + r_shadow_projectdistance.value; vec3_t modelorg; texture_t *texture; // check the box in modelspace, it was already checked in worldspace if (!BoxesOverlap(ent->model->normalmins, ent->model->normalmaxs, lightmins, lightmaxs)) return; if (r_drawcollisionbrushes.integer >= 2) return; if (!r_shadow_compilingrtlight) R_UpdateAllTextureInfo(ent); if (model->brush.shadowmesh) { R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles); if (r_shadow_compilingrtlight) { for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->data_surfaces + surfacelist[surfacelistindex]; texture = surface->texture; if ((texture->basematerialflags & (MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT | MATERIALFLAG_WALL)) != MATERIALFLAG_WALL) continue; if (texture->textureflags & (Q3TEXTUREFLAG_TWOSIDED | Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) continue; R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, lightmins, lightmaxs, surface->mins, surface->maxs); } } else { for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->data_surfaces + surfacelist[surfacelistindex]; texture = surface->texture->currentframe; if ((texture->currentmaterialflags & (MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT | MATERIALFLAG_WALL)) != MATERIALFLAG_WALL) continue; if (texture->textureflags & (Q3TEXTUREFLAG_TWOSIDED | Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) continue; R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, lightmins, lightmaxs, surface->mins, surface->maxs); } } R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, lightradius + model->radius + projectdistance, numshadowmark, shadowmarklist); } else { projectdistance = lightradius + ent->model->radius; Matrix4x4_Transform(&ent->inversematrix, r_vieworigin, modelorg); for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->data_surfaces + surfacelist[surfacelistindex]; // FIXME: get current skin texture = surface->texture;//R_FetchAliasSkin(ent, surface->groupmesh); if (texture->currentmaterialflags & (MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT) || !surface->num_triangles) continue; RSurf_SetVertexPointer(ent, texture, surface, modelorg); // identify lit faces within the bounding box R_Shadow_PrepareShadowMark(surface->groupmesh->num_triangles); R_Shadow_MarkVolumeFromBox(surface->num_firsttriangle, surface->num_triangles, rsurface_vertex3f, surface->groupmesh->data_element3i, relativelightorigin, lightmins, lightmaxs, surface->mins, surface->maxs); R_Shadow_VolumeFromList(surface->groupmesh->num_vertices, surface->groupmesh->num_triangles, rsurface_vertex3f, surface->groupmesh->data_element3i, surface->groupmesh->data_neighbor3i, relativelightorigin, projectdistance, numshadowmark, shadowmarklist); } } } void R_Q1BSP_DrawLight(entity_render_t *ent, float *lightcolor, int numsurfaces, const int *surfacelist) { model_t *model = ent->model; msurface_t *surface; texture_t *texture; int surfacelistindex; vec3_t modelorg; if (r_drawcollisionbrushes.integer >= 2) return; if (r_shadow_compilingrtlight) { // if compiling an rtlight, capture the meshes int tri; int *e; float *lightmins, *lightmaxs, *v[3], *vertex3f; for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->data_surfaces + surfacelist[surfacelistindex]; texture = surface->texture; if ((texture->basematerialflags & (MATERIALFLAG_WALL | MATERIALFLAG_TRANSPARENT)) != MATERIALFLAG_WALL || !surface->num_triangles) continue; e = surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle; vertex3f = surface->groupmesh->data_vertex3f; lightmins = r_shadow_compilingrtlight->cullmins; lightmaxs = r_shadow_compilingrtlight->cullmaxs; for (tri = 0;tri < surface->num_triangles;tri++, e += 3) { v[0] = vertex3f + e[0] * 3; v[1] = vertex3f + e[1] * 3; v[2] = vertex3f + e[2] * 3; if (PointInfrontOfTriangle(r_shadow_compilingrtlight->shadoworigin, v[0], v[1], v[2]) && lightmaxs[0] > min(v[0][0], min(v[1][0], v[2][0])) && lightmins[0] < max(v[0][0], max(v[1][0], v[2][0])) && lightmaxs[1] > min(v[0][1], min(v[1][1], v[2][1])) && lightmins[1] < max(v[0][1], max(v[1][1], v[2][1])) && lightmaxs[2] > min(v[0][2], min(v[1][2], v[2][2])) && lightmins[2] < max(v[0][2], max(v[1][2], v[2][2]))) Mod_ShadowMesh_AddMesh(r_shadow_mempool, r_shadow_compilingrtlight->static_meshchain_light, surface->texture->skin.base, surface->texture->skin.gloss, surface->texture->skin.nmap, surface->groupmesh->data_vertex3f, surface->groupmesh->data_svector3f, surface->groupmesh->data_tvector3f, surface->groupmesh->data_normal3f, surface->groupmesh->data_texcoordtexture2f, 1, e); } } } else { R_UpdateAllTextureInfo(ent); Matrix4x4_Transform(&ent->inversematrix, r_vieworigin, modelorg); for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { if (ent == r_refdef.worldentity && !r_worldsurfacevisible[surfacelist[surfacelistindex]]) continue; surface = model->data_surfaces + surfacelist[surfacelistindex]; texture = surface->texture->currentframe; // FIXME: transparent surfaces need to be lit later if ((texture->currentmaterialflags & (MATERIALFLAG_WALL | MATERIALFLAG_TRANSPARENT)) != MATERIALFLAG_WALL || !surface->num_triangles) continue; if (texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) qglDisable(GL_CULL_FACE); RSurf_SetVertexPointer(ent, texture, surface, modelorg); if (!rsurface_svector3f) { rsurface_svector3f = varray_svector3f; rsurface_tvector3f = varray_tvector3f; rsurface_normal3f = varray_normal3f; Mod_BuildTextureVectorsAndNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, rsurface_vertex3f, surface->groupmesh->data_texcoordtexture2f, surface->groupmesh->data_element3i + surface->num_firsttriangle * 3, rsurface_svector3f, rsurface_tvector3f, rsurface_normal3f); } if (ent->colormap >= 0) { vec3_t lightcolorpants, lightcolorshirt; // 128-224 are backwards ranges int b = (ent->colormap & 0xF) << 4;b += (b >= 128 && b < 224) ? 4 : 12; if (texture->skin.pants && b >= 224) { qbyte *bcolor = (qbyte *) (&palette_complete[b]); lightcolorpants[0] = lightcolor[0] * bcolor[0] * (1.0f / 255.0f); lightcolorpants[1] = lightcolor[1] * bcolor[1] * (1.0f / 255.0f); lightcolorpants[2] = lightcolor[2] * bcolor[2] * (1.0f / 255.0f); } else VectorClear(lightcolorpants); // 128-224 are backwards ranges b = (ent->colormap & 0xF0);b += (b >= 128 && b < 224) ? 4 : 12; if (texture->skin.shirt && b >= 224) { qbyte *bcolor = (qbyte *) (&palette_complete[b]); lightcolorshirt[0] = lightcolor[0] * bcolor[0] * (1.0f / 255.0f); lightcolorshirt[1] = lightcolor[1] * bcolor[1] * (1.0f / 255.0f); lightcolorshirt[2] = lightcolor[2] * bcolor[2] * (1.0f / 255.0f); } else VectorClear(lightcolorshirt); R_Shadow_RenderLighting(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle), rsurface_vertex3f, rsurface_svector3f, rsurface_tvector3f, rsurface_normal3f, surface->groupmesh->data_texcoordtexture2f, lightcolor, lightcolorpants, lightcolorshirt, texture->skin.base, texture->skin.pants, texture->skin.shirt, texture->skin.nmap, texture->skin.gloss); } else R_Shadow_RenderLighting(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle), rsurface_vertex3f, rsurface_svector3f, rsurface_tvector3f, rsurface_normal3f, surface->groupmesh->data_texcoordtexture2f, lightcolor, vec3_origin, vec3_origin, texture->skin.merged ? texture->skin.merged : texture->skin.base, NULL, NULL, texture->skin.nmap, texture->skin.gloss); if (texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) qglEnable(GL_CULL_FACE); } } } #if 0 static void gl_surf_start(void) { } static void gl_surf_shutdown(void) { } static void gl_surf_newmap(void) { } #endif void GL_Surf_Init(void) { Cvar_RegisterVariable(&r_ambient); Cvar_RegisterVariable(&r_drawportals); Cvar_RegisterVariable(&r_testvis); Cvar_RegisterVariable(&r_detailtextures); Cvar_RegisterVariable(&r_surfaceworldnode); Cvar_RegisterVariable(&r_drawcollisionbrushes_polygonfactor); Cvar_RegisterVariable(&r_drawcollisionbrushes_polygonoffset); Cvar_RegisterVariable(&r_q3bsp_renderskydepth); //R_RegisterModule("GL_Surf", gl_surf_start, gl_surf_shutdown, gl_surf_newmap); }