/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_surf.c: surface-related refresh code #include "quakedef.h" #include "r_shadow.h" #define MAX_LIGHTMAP_SIZE 256 cvar_t r_ambient = {0, "r_ambient", "0"}; cvar_t r_drawportals = {0, "r_drawportals", "0"}; cvar_t r_testvis = {0, "r_testvis", "0"}; cvar_t r_detailtextures = {CVAR_SAVE, "r_detailtextures", "1"}; cvar_t r_surfaceworldnode = {0, "r_surfaceworldnode", "0"}; cvar_t r_drawcollisionbrushes_polygonfactor = {0, "r_drawcollisionbrushes_polygonfactor", "-1"}; cvar_t r_drawcollisionbrushes_polygonoffset = {0, "r_drawcollisionbrushes_polygonoffset", "0"}; cvar_t r_q3bsp_renderskydepth = {0, "r_q3bsp_renderskydepth", "0"}; cvar_t gl_lightmaps = {0, "gl_lightmaps", "0"}; // flag arrays used for visibility checking on world model // (all other entities have no per-surface/per-leaf visibility checks) // TODO: dynamic resize according to r_refdef.worldmodel->brush.num_clusters qbyte r_pvsbits[(32768+7)>>3]; // TODO: dynamic resize according to r_refdef.worldmodel->brush.num_leafs qbyte r_worldleafvisible[32768]; // TODO: dynamic resize according to r_refdef.worldmodel->brush.num_surfaces qbyte r_worldsurfacevisible[262144]; /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ static void R_BuildLightMap (const entity_render_t *ent, msurface_t *surface) { int smax, tmax, i, j, size, size3, maps, stride, l; unsigned int *bl, scale; qbyte *lightmap, *out, *stain; static unsigned int intblocklights[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*3]; // LordHavoc: *3 for colored lighting static qbyte templight[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*4]; // update cached lighting info surface->cached_dlight = 0; smax = (surface->lightmapinfo->extents[0]>>4)+1; tmax = (surface->lightmapinfo->extents[1]>>4)+1; size = smax*tmax; size3 = size*3; lightmap = surface->lightmapinfo->samples; // set to full bright if no light data bl = intblocklights; if (!ent->model->brushq1.lightdata) { for (i = 0;i < size3;i++) bl[i] = 255*256; } else { // clear to no light memset(bl, 0, size*3*sizeof(unsigned int)); // add all the lightmaps if (lightmap) { bl = intblocklights; for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3) for (scale = d_lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size3;i++) bl[i] += lightmap[i] * scale; } } stain = surface->lightmapinfo->stainsamples; bl = intblocklights; out = templight; // the >> 16 shift adjusts down 8 bits to account for the stainmap // scaling, and remaps the 0-65536 (2x overbright) to 0-256, it will // be doubled during rendering to achieve 2x overbright // (0 = 0.0, 128 = 1.0, 256 = 2.0) if (ent->model->brushq1.lightmaprgba) { stride = (surface->lightmapinfo->lightmaptexturestride - smax) * 4; for (i = 0;i < tmax;i++, out += stride) { for (j = 0;j < smax;j++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); *out++ = 255; } } } else { stride = (surface->lightmapinfo->lightmaptexturestride - smax) * 3; for (i = 0;i < tmax;i++, out += stride) { for (j = 0;j < smax;j++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); } } } R_UpdateTexture(surface->lightmaptexture, templight); } void R_StainNode (mnode_t *node, model_t *model, const vec3_t origin, float radius, const float fcolor[8]) { float ndist, a, ratio, maxdist, maxdist2, maxdist3, invradius, sdtable[256], td, dist2; msurface_t *surface, *endsurface; int i, s, t, smax, tmax, smax3, impacts, impactt, stained; qbyte *bl; vec3_t impact; maxdist = radius * radius; invradius = 1.0f / radius; loc0: if (!node->plane) return; ndist = PlaneDiff(origin, node->plane); if (ndist > radius) { node = node->children[0]; goto loc0; } if (ndist < -radius) { node = node->children[1]; goto loc0; } dist2 = ndist * ndist; maxdist3 = maxdist - dist2; if (node->plane->type < 3) { VectorCopy(origin, impact); impact[node->plane->type] -= ndist; } else { impact[0] = origin[0] - node->plane->normal[0] * ndist; impact[1] = origin[1] - node->plane->normal[1] * ndist; impact[2] = origin[2] - node->plane->normal[2] * ndist; } for (surface = model->brush.data_surfaces + node->firstsurface, endsurface = surface + node->numsurfaces;surface < endsurface;surface++) { if (surface->lightmapinfo->stainsamples) { smax = (surface->lightmapinfo->extents[0] >> 4) + 1; tmax = (surface->lightmapinfo->extents[1] >> 4) + 1; impacts = DotProduct (impact, surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3] - surface->lightmapinfo->texturemins[0]; impactt = DotProduct (impact, surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3] - surface->lightmapinfo->texturemins[1]; s = bound(0, impacts, smax * 16) - impacts; t = bound(0, impactt, tmax * 16) - impactt; i = s * s + t * t + dist2; if (i > maxdist) continue; // reduce calculations for (s = 0, i = impacts; s < smax; s++, i -= 16) sdtable[s] = i * i + dist2; bl = surface->lightmapinfo->stainsamples; smax3 = smax * 3; stained = false; i = impactt; for (t = 0;t < tmax;t++, i -= 16) { td = i * i; // make sure some part of it is visible on this line if (td < maxdist3) { maxdist2 = maxdist - td; for (s = 0;s < smax;s++) { if (sdtable[s] < maxdist2) { ratio = lhrandom(0.0f, 1.0f); a = (fcolor[3] + ratio * fcolor[7]) * (1.0f - sqrt(sdtable[s] + td) * invradius); if (a >= (1.0f / 64.0f)) { if (a > 1) a = 1; bl[0] = (qbyte) ((float) bl[0] + a * ((fcolor[0] + ratio * fcolor[4]) - (float) bl[0])); bl[1] = (qbyte) ((float) bl[1] + a * ((fcolor[1] + ratio * fcolor[5]) - (float) bl[1])); bl[2] = (qbyte) ((float) bl[2] + a * ((fcolor[2] + ratio * fcolor[6]) - (float) bl[2])); stained = true; } } bl += 3; } } else // skip line bl += smax3; } // force lightmap upload if (stained) surface->cached_dlight = true; } } if (node->children[0]->plane) { if (node->children[1]->plane) { R_StainNode(node->children[0], model, origin, radius, fcolor); node = node->children[1]; goto loc0; } else { node = node->children[0]; goto loc0; } } else if (node->children[1]->plane) { node = node->children[1]; goto loc0; } } void R_Stain (const vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { int n; float fcolor[8]; entity_render_t *ent; model_t *model; vec3_t org; if (r_refdef.worldmodel == NULL || !r_refdef.worldmodel->brush.data_nodes || !r_refdef.worldmodel->brushq1.lightdata) return; fcolor[0] = cr1; fcolor[1] = cg1; fcolor[2] = cb1; fcolor[3] = ca1 * (1.0f / 64.0f); fcolor[4] = cr2 - cr1; fcolor[5] = cg2 - cg1; fcolor[6] = cb2 - cb1; fcolor[7] = (ca2 - ca1) * (1.0f / 64.0f); R_StainNode(r_refdef.worldmodel->brush.data_nodes + r_refdef.worldmodel->brushq1.hulls[0].firstclipnode, r_refdef.worldmodel, origin, radius, fcolor); // look for embedded bmodels for (n = 0;n < cl_num_brushmodel_entities;n++) { ent = cl_brushmodel_entities[n]; model = ent->model; if (model && model->name[0] == '*') { Mod_CheckLoaded(model); if (model->brush.data_nodes) { Matrix4x4_Transform(&ent->inversematrix, origin, org); R_StainNode(model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, model, org, radius, fcolor); } } } } /* ============================================================= BRUSH MODELS ============================================================= */ static void RSurf_DeformVertices(const entity_render_t *ent, const texture_t *texture, const msurface_t *surface, const vec3_t modelorg) { int i, j; float center[3], forward[3], right[3], up[3], v[4][3]; matrix4x4_t matrix1, imatrix1; if (texture->textureflags & Q3TEXTUREFLAG_AUTOSPRITE2) { // a single autosprite surface can contain multiple sprites... VectorClear(forward); VectorClear(right); VectorSet(up, 0, 0, 1); for (j = 0;j < surface->num_vertices - 3;j += 4) { VectorClear(center); for (i = 0;i < 4;i++) VectorAdd(center, (surface->groupmesh->data_vertex3f + 3 * surface->num_firstvertex) + (j+i) * 3, center); VectorScale(center, 0.25f, center); // FIXME: calculate vectors from triangle edges instead of using texture vectors as an easy way out? Matrix4x4_FromVectors(&matrix1, (surface->groupmesh->data_normal3f + 3 * surface->num_firstvertex) + j*3, (surface->groupmesh->data_svector3f + 3 * surface->num_firstvertex) + j*3, (surface->groupmesh->data_tvector3f + 3 * surface->num_firstvertex) + j*3, center); Matrix4x4_Invert_Simple(&imatrix1, &matrix1); for (i = 0;i < 4;i++) Matrix4x4_Transform(&imatrix1, (surface->groupmesh->data_vertex3f + 3 * surface->num_firstvertex) + (j+i)*3, v[i]); forward[0] = modelorg[0] - center[0]; forward[1] = modelorg[1] - center[1]; VectorNormalize(forward); right[0] = forward[1]; right[1] = -forward[0]; for (i = 0;i < 4;i++) VectorMAMAMAM(1, center, v[i][0], forward, v[i][1], right, v[i][2], up, varray_vertex3f + (surface->num_firstvertex+i+j) * 3); } } else if (texture->textureflags & Q3TEXTUREFLAG_AUTOSPRITE) { Matrix4x4_Transform(&ent->inversematrix, r_viewforward, forward); Matrix4x4_Transform(&ent->inversematrix, r_viewright, right); Matrix4x4_Transform(&ent->inversematrix, r_viewup, up); // a single autosprite surface can contain multiple sprites... for (j = 0;j < surface->num_vertices - 3;j += 4) { VectorClear(center); for (i = 0;i < 4;i++) VectorAdd(center, (surface->groupmesh->data_vertex3f + 3 * surface->num_firstvertex) + (j+i) * 3, center); VectorScale(center, 0.25f, center); // FIXME: calculate vectors from triangle edges instead of using texture vectors as an easy way out? Matrix4x4_FromVectors(&matrix1, (surface->groupmesh->data_normal3f + 3 * surface->num_firstvertex) + j*3, (surface->groupmesh->data_svector3f + 3 * surface->num_firstvertex) + j*3, (surface->groupmesh->data_tvector3f + 3 * surface->num_firstvertex) + j*3, center); Matrix4x4_Invert_Simple(&imatrix1, &matrix1); for (i = 0;i < 4;i++) Matrix4x4_Transform(&imatrix1, (surface->groupmesh->data_vertex3f + 3 * surface->num_firstvertex) + (j+i)*3, v[i]); for (i = 0;i < 4;i++) VectorMAMAMAM(1, center, v[i][0], forward, v[i][1], right, v[i][2], up, varray_vertex3f + (surface->num_firstvertex+i+j) * 3); } } else memcpy((varray_vertex3f + 3 * surface->num_firstvertex), (surface->groupmesh->data_vertex3f + 3 * surface->num_firstvertex), sizeof(float[3]) * surface->num_vertices); } // any sort of deformvertices call is *VERY* rare, so this must be optimized // to skip deformvertices quickly! #if 1 #define RSurf_GetVertexPointer(ent, texture, surface, modelorg) ((texture->textureflags & (Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) ? (RSurf_DeformVertices(ent, texture, surface, modelorg), varray_vertex3f) : surface->groupmesh->data_vertex3f) #else static float *RSurf_GetVertexPointer(const entity_render_t *ent, const texture_t *texture, const msurface_t *surface, const vec3_t modelorg) { if (texture->textureflags & (Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) { RSurf_DeformVertices(ent, texture, surface, modelorg); return varray_vertex3f; } else return surface->groupmesh->data_vertex3f; } #endif void R_UpdateTextureInfo(const entity_render_t *ent, texture_t *t) { // we don't need to set currentframe if t->animated is false because // it was already set up by the texture loader for non-animating if (t->animated) { t->currentframe = t->anim_frames[ent->frame != 0][(t->anim_total[ent->frame != 0] >= 2) ? ((int)(r_refdef.time * 5.0f) % t->anim_total[ent->frame != 0]) : 0]; t = t->currentframe; } t->currentmaterialflags = t->basematerialflags; t->currentalpha = ent->alpha; if (t->basematerialflags & MATERIALFLAG_WATERALPHA) t->currentalpha *= r_wateralpha.value; if (!(ent->flags & RENDER_LIGHT)) t->currentmaterialflags |= MATERIALFLAG_FULLBRIGHT; if (ent->effects & EF_ADDITIVE) t->currentmaterialflags |= MATERIALFLAG_ADD | MATERIALFLAG_TRANSPARENT; else if (t->currentalpha < 1) t->currentmaterialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_TRANSPARENT; } matrix4x4_t r_surf_waterscrollmatrix; void R_UpdateAllTextureInfo(entity_render_t *ent) { int i; Matrix4x4_CreateTranslate(&r_surf_waterscrollmatrix, sin(r_refdef.time) * 0.025 * r_waterscroll.value, sin(r_refdef.time * 0.8f) * 0.025 * r_waterscroll.value, 0); if (ent->model) for (i = 0;i < ent->model->brush.num_textures;i++) R_UpdateTextureInfo(ent, ent->model->brush.data_textures + i); } static void R_DrawSurfaceList(const entity_render_t *ent, texture_t *texture, int texturenumsurfaces, const msurface_t **texturesurfacelist, const vec3_t modelorg) { int i; int texturesurfaceindex; const float *v, *vertex3f; float *c; float diff[3]; float f, r, g, b, a, base, colorscale; const msurface_t *surface; qboolean dolightmap; qboolean dobase; qboolean doambient; qboolean dodetail; qboolean doglow; qboolean dofogpass; qboolean fogallpasses; qboolean waterscrolling; surfmesh_t *groupmesh; rtexture_t *lightmaptexture; rmeshstate_t m; texture = texture->currentframe; if (texture->currentmaterialflags & MATERIALFLAG_NODRAW) return; c_faces += texturenumsurfaces; // gl_lightmaps debugging mode skips normal texturing if (gl_lightmaps.integer) { GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); GL_DepthTest(true); qglDisable(GL_CULL_FACE); GL_Color(1, 1, 1, 1); memset(&m, 0, sizeof(m)); R_Mesh_State(&m); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; R_Mesh_TexBind(0, R_GetTexture(surface->lightmaptexture)); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordlightmap2f); R_Mesh_ColorPointer(surface->lightmaptexture ? NULL : surface->groupmesh->data_lightmapcolor4f); R_Mesh_VertexPointer(surface->groupmesh->data_vertex3f); GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } qglEnable(GL_CULL_FACE); return; } GL_DepthTest(!(texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST)); GL_DepthMask(!(texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)); if (texture->currentmaterialflags & MATERIALFLAG_ADD) GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); else if (texture->currentmaterialflags & MATERIALFLAG_ALPHA) GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); else GL_BlendFunc(GL_ONE, GL_ZERO); // water waterscrolling in texture matrix waterscrolling = (texture->currentmaterialflags & MATERIALFLAG_WATER) && r_waterscroll.value != 0; if (texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) qglDisable(GL_CULL_FACE); if (texture->currentmaterialflags & MATERIALFLAG_SKY) { if (skyrendernow) { skyrendernow = false; if (skyrendermasked) R_Sky(); } // LordHavoc: HalfLife maps have freaky skypolys... if (!ent->model->brush.ishlbsp) { R_Mesh_Matrix(&ent->matrix); GL_Color(fogcolor[0], fogcolor[1], fogcolor[2], 1); if (skyrendermasked) { // depth-only (masking) GL_ColorMask(0,0,0,0); // just to make sure that braindead drivers don't draw anything // despite that colormask... GL_BlendFunc(GL_ZERO, GL_ONE); } else { // fog sky GL_BlendFunc(GL_ONE, GL_ZERO); } GL_DepthMask(true); GL_DepthTest(true); memset(&m, 0, sizeof(m)); R_Mesh_State(&m); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; R_Mesh_VertexPointer(surface->groupmesh->data_vertex3f); GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } GL_ColorMask(r_refdef.colormask[0], r_refdef.colormask[1], r_refdef.colormask[2], 1); } } else if ((texture->currentmaterialflags & MATERIALFLAG_WATER) && r_watershader.value && gl_textureshader && !texture->skin.glow && !fogenabled && ent->colormod[0] == 1 && ent->colormod[1] == 1 && ent->colormod[2] == 1) { // NVIDIA Geforce3 distortion texture shader on water float args[4] = {0.05f,0,0,0.04f}; memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(mod_shared_distorttexture[(int)(r_refdef.time * 16)&63]); m.tex[1] = R_GetTexture(texture->skin.base); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_REPLACE; Matrix4x4_CreateFromQuakeEntity(&m.texmatrix[0], 0, 0, 0, 0, 0, 0, r_watershader.value); m.texmatrix[1] = r_surf_waterscrollmatrix; R_Mesh_State(&m); GL_Color(1, 1, 1, texture->currentalpha); GL_ActiveTexture(0); qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D); GL_ActiveTexture(1); qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_OFFSET_TEXTURE_2D_NV); qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB); qglTexEnvfv(GL_TEXTURE_SHADER_NV, GL_OFFSET_TEXTURE_MATRIX_NV, &args[0]); qglEnable(GL_TEXTURE_SHADER_NV); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; R_Mesh_VertexPointer(RSurf_GetVertexPointer(ent, texture, surface, modelorg)); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); R_Mesh_TexCoordPointer(1, 2, surface->groupmesh->data_texcoordtexture2f); GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } qglDisable(GL_TEXTURE_SHADER_NV); qglTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D); GL_ActiveTexture(0); } else if (texture->currentmaterialflags & (MATERIALFLAG_WATER | MATERIALFLAG_WALL)) { // normal surface (wall or water) dobase = true; dolightmap = !(texture->currentmaterialflags & MATERIALFLAG_FULLBRIGHT); doambient = r_ambient.value >= (1/64.0f); dodetail = r_detailtextures.integer && texture->skin.detail != NULL && !(texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT); doglow = texture->skin.glow != NULL; dofogpass = fogenabled && !(texture->currentmaterialflags & MATERIALFLAG_ADD); fogallpasses = fogenabled && !(texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT); if (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT) { if (dobase && dolightmap && gl_combine.integer) { dobase = false; memset(&m, 0, sizeof(m)); m.tex[1] = R_GetTexture(texture->skin.base); if (waterscrolling) m.texmatrix[1] = r_surf_waterscrollmatrix; m.texrgbscale[1] = 2; m.pointer_color = varray_color4f; R_Mesh_State(&m); colorscale = 1; r = ent->colormod[0] * colorscale; g = ent->colormod[1] * colorscale; b = ent->colormod[2] * colorscale; a = texture->currentalpha; base = r_ambient.value * (1.0f / 64.0f); // q3bsp has no lightmap updates, so the lightstylevalue that // would normally be baked into the lightmaptexture must be // applied to the color if (ent->model->brushq1.lightdata) { float scale = d_lightstylevalue[0] * (1.0f / 128.0f); r *= scale; g *= scale; b *= scale; } for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordlightmap2f); R_Mesh_TexCoordPointer(1, 2, surface->groupmesh->data_texcoordtexture2f); if (surface->lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(surface->lightmaptexture)); if (fogallpasses) { R_Mesh_ColorPointer(varray_color4f); for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); c[0] = f * r; c[1] = f * g; c[2] = f * b; c[3] = a; } } else { R_Mesh_ColorPointer(NULL); GL_Color(r, g, b, a); } } else { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(varray_color4f); if (!surface->lightmaptexture) { for (i = 0, c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, c += 4) { c[0] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+0] * r; c[1] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+1] * g; c[2] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+2] * b; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * a; } if (fogallpasses) { for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); VectorScale(c, f, c); } } } else { R_Mesh_ColorPointer(NULL); GL_Color(0, 0, 0, a); } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } if (dobase) { dobase = false; memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(texture->skin.base); if (waterscrolling) m.texmatrix[0] = r_surf_waterscrollmatrix; m.texmatrix[0] = r_surf_waterscrollmatrix; m.pointer_color = varray_color4f; colorscale = 1; if (gl_combine.integer) { m.texrgbscale[0] = 4; colorscale *= 0.25f; } R_Mesh_State(&m); r = ent->colormod[0] * colorscale; g = ent->colormod[1] * colorscale; b = ent->colormod[2] * colorscale; a = texture->currentalpha; if (dolightmap) { // q3bsp has no lightmap updates, so the lightstylevalue that // would normally be baked into the lightmaptexture must be // applied to the color if (!ent->model->brushq1.lightdata) { float scale = d_lightstylevalue[0] * (1.0f / 128.0f); r *= scale; g *= scale; b *= scale; } for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { c[0] = 0; c[1] = 0; c[2] = 0; if (!surface->lightmapinfo) VectorCopy((surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex) + i*4, c); else //if (surface->lightmapinfo) { const qbyte *lm = surface->lightmapinfo->samples + (surface->groupmesh->data_lightmapoffsets + surface->num_firstvertex)[i]; float scale = d_lightstylevalue[surface->lightmapinfo->styles[0]] * (1.0f / 32768.0f); VectorMA(c, scale, lm, c); if (surface->lightmapinfo->styles[1] != 255) { int size3 = ((surface->lightmapinfo->extents[0]>>4)+1)*((surface->lightmapinfo->extents[1]>>4)+1)*3; lm += size3; scale = d_lightstylevalue[surface->lightmapinfo->styles[1]] * (1.0f / 32768.0f); VectorMA(c, scale, lm, c); if (surface->lightmapinfo->styles[2] != 255) { lm += size3; scale = d_lightstylevalue[surface->lightmapinfo->styles[2]] * (1.0f / 32768.0f); VectorMA(c, scale, lm, c); if (surface->lightmapinfo->styles[3] != 255) { lm += size3; scale = d_lightstylevalue[surface->lightmapinfo->styles[3]] * (1.0f / 32768.0f); VectorMA(c, scale, lm, c); } } } } c[0] *= r; c[1] *= g; c[2] *= b; if (fogallpasses) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); VectorScale(c, f, c); } if (!surface->lightmapinfo && (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)) c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * a; else c[3] = a; } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } else { if (fogallpasses) { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); if (!surface->lightmapinfo && (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)) { R_Mesh_ColorPointer(varray_color4f); for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); c[0] = r * f; c[1] = g * f; c[2] = b * f; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * a; } } else { R_Mesh_ColorPointer(varray_color4f); for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); c[0] = r * f; c[1] = g * f; c[2] = b * f; c[3] = a; } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } else { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); if (!surface->lightmaptexture && (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)) { R_Mesh_ColorPointer(varray_color4f); for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { c[0] = r; c[1] = g; c[2] = b; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * a; } } else { R_Mesh_ColorPointer(NULL); GL_Color(r, g, b, a); } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } } } } else { if (!dolightmap && dobase) { dolightmap = false; dobase = false; GL_Color(ent->colormod[0], ent->colormod[1], ent->colormod[2], 1); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(texture->skin.base); if (waterscrolling) m.texmatrix[0] = r_surf_waterscrollmatrix; R_Mesh_State(&m); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; R_Mesh_VertexPointer(RSurf_GetVertexPointer(ent, texture, surface, modelorg)); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } if (r_lightmapintensity <= 0 && dolightmap && dobase) { dolightmap = false; dobase = false; GL_Color(0, 0, 0, 1); memset(&m, 0, sizeof(m)); R_Mesh_State(&m); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; R_Mesh_VertexPointer(RSurf_GetVertexPointer(ent, texture, surface, modelorg)); GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } if (r_textureunits.integer >= 2 && gl_combine.integer && dolightmap && dobase) { // dualtexture combine GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); dolightmap = false; dobase = false; memset(&m, 0, sizeof(m)); m.tex[1] = R_GetTexture(texture->skin.base); if (waterscrolling) m.texmatrix[1] = r_surf_waterscrollmatrix; m.texrgbscale[1] = 2; R_Mesh_State(&m); r = ent->colormod[0] * r_lightmapintensity; g = ent->colormod[1] * r_lightmapintensity; b = ent->colormod[2] * r_lightmapintensity; GL_Color(r, g, b, 1); if (texture->textureflags & (Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) { R_Mesh_VertexPointer(varray_vertex3f); if (r == 1 && g == 1 && b == 1) { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; RSurf_DeformVertices(ent, texture, surface, modelorg); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordlightmap2f); R_Mesh_TexCoordPointer(1, 2, surface->groupmesh->data_texcoordtexture2f); if (surface->lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(surface->lightmaptexture)); R_Mesh_ColorPointer(NULL); } else //if (r == 1 && g == 1 && b == 1) { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(surface->groupmesh->data_lightmapcolor4f); } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } else { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; RSurf_DeformVertices(ent, texture, surface, modelorg); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordlightmap2f); R_Mesh_TexCoordPointer(1, 2, surface->groupmesh->data_texcoordtexture2f); if (surface->lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(surface->lightmaptexture)); R_Mesh_ColorPointer(NULL); } else { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(varray_color4f); for (i = 0, c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, c += 4) { c[0] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+0] * r; c[1] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+1] * g; c[2] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+2] * b; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3]; } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } } else { if (r == 1 && g == 1 && b == 1) { #if 0 // experimental direct state calls for measuring // R_Mesh_ call overhead, do not use! R_Mesh_VertexPointer(varray_vertex3f); R_Mesh_TexCoordPointer(0, 2, varray_texcoord2f[0]); R_Mesh_TexCoordPointer(1, 2, varray_texcoord2f[1]); R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(varray_color4f); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; qglVertexPointer(3, GL_FLOAT, sizeof(float[3]), surface->groupmesh->data_vertex3f); qglClientActiveTexture(GL_TEXTURE0_ARB); qglTexCoordPointer(2, GL_FLOAT, sizeof(float[2]), surface->groupmesh->data_texcoordlightmap2f); qglClientActiveTexture(GL_TEXTURE1_ARB); qglTexCoordPointer(2, GL_FLOAT, sizeof(float[2]), surface->groupmesh->data_texcoordtexture2f); if (surface->lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(surface->lightmaptexture)); qglDisableClientState(GL_COLOR_ARRAY); qglColor4f(r, g, b, 1); } else //if (r == 1 && g == 1 && b == 1) { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); qglEnableClientState(GL_COLOR_ARRAY); qglColorPointer(4, GL_FLOAT, sizeof(float[4]), surface->groupmesh->data_lightmapcolor4f); } qglLockArraysEXT(0, surface->num_vertices); qglDrawRangeElements(GL_TRIANGLES, surface->num_firstvertex, surface->num_firstvertex + surface->num_vertices, surface->num_triangles * 3, GL_UNSIGNED_INT, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); qglUnlockArraysEXT(); } #else groupmesh = NULL; lightmaptexture = NULL; for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; if (groupmesh != surface->groupmesh) { groupmesh = surface->groupmesh; R_Mesh_VertexPointer(groupmesh->data_vertex3f); R_Mesh_TexCoordPointer(0, 2, groupmesh->data_texcoordlightmap2f); R_Mesh_TexCoordPointer(1, 2, groupmesh->data_texcoordtexture2f); if (!lightmaptexture) R_Mesh_ColorPointer(groupmesh->data_lightmapcolor4f); } if (lightmaptexture != surface->lightmaptexture) { lightmaptexture = surface->lightmaptexture; if (lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(lightmaptexture)); R_Mesh_ColorPointer(NULL); } else //if (r == 1 && g == 1 && b == 1) { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(surface->groupmesh->data_lightmapcolor4f); } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } #endif } else { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; R_Mesh_VertexPointer(surface->groupmesh->data_vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordlightmap2f); R_Mesh_TexCoordPointer(1, 2, surface->groupmesh->data_texcoordtexture2f); if (surface->lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(surface->lightmaptexture)); R_Mesh_ColorPointer(NULL); } else { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(varray_color4f); for (i = 0, c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, c += 4) { c[0] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+0] * r; c[1] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+1] * g; c[2] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+2] * b; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3]; } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } } } // single texture if (dolightmap) { GL_BlendFunc(GL_ONE, GL_ZERO); GL_DepthMask(true); GL_Color(1, 1, 1, 1); memset(&m, 0, sizeof(m)); R_Mesh_State(&m); if (texture->textureflags & (Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) { R_Mesh_VertexPointer(varray_vertex3f); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; RSurf_DeformVertices(ent, texture, surface, modelorg); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordlightmap2f); if (surface->lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(surface->lightmaptexture)); R_Mesh_ColorPointer(NULL); } else //if (r == 1 && g == 1 && b == 1) { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(surface->groupmesh->data_lightmapcolor4f); } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } else { groupmesh = NULL; lightmaptexture = NULL; for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; if (groupmesh != surface->groupmesh) { groupmesh = surface->groupmesh; R_Mesh_VertexPointer(groupmesh->data_vertex3f); R_Mesh_TexCoordPointer(0, 2, groupmesh->data_texcoordlightmap2f); if (!lightmaptexture) R_Mesh_ColorPointer(groupmesh->data_lightmapcolor4f); } if (lightmaptexture != surface->lightmaptexture) { lightmaptexture = surface->lightmaptexture; if (lightmaptexture) { R_Mesh_TexBind(0, R_GetTexture(lightmaptexture)); R_Mesh_ColorPointer(NULL); } else //if (r == 1 && g == 1 && b == 1) { R_Mesh_TexBind(0, R_GetTexture(r_texture_white)); R_Mesh_ColorPointer(surface->groupmesh->data_lightmapcolor4f); } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } } if (dobase) { GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR); GL_DepthMask(false); GL_Color(r_lightmapintensity * ent->colormod[0], r_lightmapintensity * ent->colormod[1], r_lightmapintensity * ent->colormod[2], 1); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(texture->skin.base); if (waterscrolling) m.texmatrix[0] = r_surf_waterscrollmatrix; R_Mesh_State(&m); if (texture->textureflags & (Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) { R_Mesh_VertexPointer(varray_vertex3f); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; RSurf_DeformVertices(ent, texture, surface, modelorg); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } else { groupmesh = NULL; for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; if (groupmesh != surface->groupmesh) { groupmesh = surface->groupmesh; R_Mesh_VertexPointer(groupmesh->data_vertex3f); R_Mesh_TexCoordPointer(0, 2, groupmesh->data_texcoordtexture2f); } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } } } if (doambient) { doambient = false; GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); GL_DepthMask(false); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(texture->skin.base); if (waterscrolling) m.texmatrix[0] = r_surf_waterscrollmatrix; m.pointer_color = varray_color4f; colorscale = 1; if (gl_combine.integer) { m.texrgbscale[0] = 4; colorscale *= 0.25f; } R_Mesh_State(&m); base = r_ambient.value * (1.0f / 64.0f); r = ent->colormod[0] * colorscale * base; g = ent->colormod[1] * colorscale * base; b = ent->colormod[2] * colorscale * base; a = texture->currentalpha; for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { c[0] = r; c[1] = g; c[2] = b; if (fogallpasses) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); VectorScale(c, f, c); } if (!surface->lightmaptexture && (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)) c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * a; else c[3] = a; } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } if (dodetail) { GL_BlendFunc(GL_DST_COLOR, GL_SRC_COLOR); GL_DepthMask(false); GL_Color(1, 1, 1, 1); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(texture->skin.detail); R_Mesh_State(&m); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; R_Mesh_VertexPointer(RSurf_GetVertexPointer(ent, texture, surface, modelorg)); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoorddetail2f); GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } if (doglow) { // if glow was not already done using multitexture, do it now. GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); GL_DepthMask(false); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(texture->skin.glow); if (waterscrolling) m.texmatrix[0] = r_surf_waterscrollmatrix; m.pointer_color = varray_color4f; R_Mesh_State(&m); colorscale = 1; r = ent->colormod[0] * colorscale; g = ent->colormod[1] * colorscale; b = ent->colormod[2] * colorscale; a = texture->currentalpha; if (fogallpasses) { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); R_Mesh_ColorPointer(varray_color4f); if (!surface->lightmaptexture && (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)) { for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); c[0] = f * r; c[1] = f * g; c[2] = f * b; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * a; } } else { for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = 1 - exp(fogdensity/DotProduct(diff, diff)); c[0] = f * r; c[1] = f * g; c[2] = f * b; c[3] = a; } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } else { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); if (!surface->lightmaptexture && (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)) { R_Mesh_ColorPointer(varray_color4f); for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { c[0] = r; c[1] = g; c[2] = b; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * a; } } else { R_Mesh_ColorPointer(NULL); GL_Color(r, g, b, a); } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } } if (dofogpass) { // if this is opaque use alpha blend which will darken the earlier // passes cheaply. // // if this is an alpha blended material, all the earlier passes // were darkened by fog already, so we only need to add the fog // color ontop through the fog mask texture // // if this is an additive blended material, all the earlier passes // were darkened by fog already, and we should not add fog color // (because the background was not darkened, there is no fog color // that was lost behind it). if (!fogallpasses) GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); else GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(texture->skin.fog); if (waterscrolling) m.texmatrix[0] = r_surf_waterscrollmatrix; R_Mesh_State(&m); r = fogcolor[0]; g = fogcolor[1]; b = fogcolor[2]; a = texture->currentalpha; for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; vertex3f = RSurf_GetVertexPointer(ent, texture, surface, modelorg); R_Mesh_VertexPointer(vertex3f); R_Mesh_TexCoordPointer(0, 2, surface->groupmesh->data_texcoordtexture2f); R_Mesh_ColorPointer(varray_color4f); //RSurf_FogPassColors_Vertex3f_Color4f((surface->groupmesh->data_vertex3f + 3 * surface->num_firstvertex), varray_color4f, fogcolor[0], fogcolor[1], fogcolor[2], texture->currentalpha, 1, surface->num_vertices, modelorg); if (surface->lightmaptexture && !(texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT)) { for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = exp(fogdensity/DotProduct(diff, diff)); c[0] = r; c[1] = g; c[2] = b; c[3] = (surface->groupmesh->data_lightmapcolor4f + 4 * surface->num_firstvertex)[i*4+3] * f * a; } } else { for (i = 0, v = (vertex3f + 3 * surface->num_firstvertex), c = (varray_color4f + 4 * surface->num_firstvertex);i < surface->num_vertices;i++, v += 3, c += 4) { VectorSubtract(v, modelorg, diff); f = exp(fogdensity/DotProduct(diff, diff)); c[0] = r; c[1] = g; c[2] = b; c[3] = f * a; } } GL_LockArrays(surface->num_firstvertex, surface->num_vertices); R_Mesh_Draw(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); GL_LockArrays(0, 0); } } } if (texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) qglEnable(GL_CULL_FACE); } static void RSurfShader_Transparent_Callback(const void *calldata1, int calldata2) { const entity_render_t *ent = calldata1; const msurface_t *surface = ent->model->brush.data_surfaces + calldata2; vec3_t modelorg; texture_t *texture; texture = surface->texture; if (texture->basematerialflags & MATERIALFLAG_SKY) return; // transparent sky is too difficult R_UpdateTextureInfo(ent, texture); R_Mesh_Matrix(&ent->matrix); Matrix4x4_Transform(&ent->inversematrix, r_vieworigin, modelorg); R_DrawSurfaceList(ent, texture, 1, &surface, modelorg); } void R_QueueSurfaceList(entity_render_t *ent, texture_t *texture, int texturenumsurfaces, const msurface_t **texturesurfacelist, const vec3_t modelorg) { int texturesurfaceindex; const msurface_t *surface; vec3_t tempcenter, center; if (texture->currentmaterialflags & MATERIALFLAG_TRANSPARENT) { // drawing sky transparently would be too difficult if (!(texture->currentmaterialflags & MATERIALFLAG_SKY)) { for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { surface = texturesurfacelist[texturesurfaceindex]; tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f; tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f; tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f; Matrix4x4_Transform(&ent->matrix, tempcenter, center); R_MeshQueue_AddTransparent(ent->effects & EF_NODEPTHTEST ? r_vieworigin : center, RSurfShader_Transparent_Callback, ent, surface - ent->model->brush.data_surfaces); } } } else R_DrawSurfaceList(ent, texture, texturenumsurfaces, texturesurfacelist, modelorg); } void R_DrawSurfaces(entity_render_t *ent, qboolean skysurfaces) { int i, j, f, flagsmask; msurface_t *surface, **surfacechain; texture_t *t, *texture; model_t *model = ent->model; vec3_t modelorg; const int maxsurfacelist = 1024; int numsurfacelist = 0; const msurface_t *surfacelist[1024]; if (model == NULL) return; R_Mesh_Matrix(&ent->matrix); Matrix4x4_Transform(&ent->inversematrix, r_vieworigin, modelorg); // update light styles if (!skysurfaces && model->brushq1.light_styleupdatechains) { for (i = 0;i < model->brushq1.light_styles;i++) { if (model->brushq1.light_stylevalue[i] != d_lightstylevalue[model->brushq1.light_style[i]]) { model->brushq1.light_stylevalue[i] = d_lightstylevalue[model->brushq1.light_style[i]]; if ((surfacechain = model->brushq1.light_styleupdatechains[i])) for (;(surface = *surfacechain);surfacechain++) surface->cached_dlight = true; } } } R_UpdateAllTextureInfo(ent); flagsmask = skysurfaces ? MATERIALFLAG_SKY : (MATERIALFLAG_WATER | MATERIALFLAG_WALL); f = 0; t = NULL; texture = NULL; numsurfacelist = 0; if (ent == r_refdef.worldentity) { for (i = 0, j = model->firstmodelsurface, surface = model->brush.data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++) { if (!r_worldsurfacevisible[j]) continue; if (t != surface->texture) { if (numsurfacelist) { R_QueueSurfaceList(ent, texture, numsurfacelist, surfacelist, modelorg); numsurfacelist = 0; } t = surface->texture; f = t->currentmaterialflags & flagsmask; texture = t->currentframe; } if (f && surface->num_triangles) { // if lightmap parameters changed, rebuild lightmap texture if (surface->cached_dlight && surface->lightmapinfo->samples) R_BuildLightMap(ent, surface); // add face to draw list surfacelist[numsurfacelist++] = surface; if (numsurfacelist >= maxsurfacelist) { R_QueueSurfaceList(ent, texture, numsurfacelist, surfacelist, modelorg); numsurfacelist = 0; } } } } else { for (i = 0, j = model->firstmodelsurface, surface = model->brush.data_surfaces + j;i < model->nummodelsurfaces;i++, j++, surface++) { if (t != surface->texture) { if (numsurfacelist) { R_QueueSurfaceList(ent, texture, numsurfacelist, surfacelist, modelorg); numsurfacelist = 0; } t = surface->texture; f = t->currentmaterialflags & flagsmask; texture = t->currentframe; } if (f && surface->num_triangles) { // if lightmap parameters changed, rebuild lightmap texture if (surface->cached_dlight && surface->lightmapinfo->samples) R_BuildLightMap(ent, surface); // add face to draw list surfacelist[numsurfacelist++] = surface; if (numsurfacelist >= maxsurfacelist) { R_QueueSurfaceList(ent, texture, numsurfacelist, surfacelist, modelorg); numsurfacelist = 0; } } } } if (numsurfacelist) R_QueueSurfaceList(ent, texture, numsurfacelist, surfacelist, modelorg); } static void R_DrawPortal_Callback(const void *calldata1, int calldata2) { int i; float *v; rmeshstate_t m; const mportal_t *portal = calldata1; GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthTest(true); R_Mesh_Matrix(&r_identitymatrix); memset(&m, 0, sizeof(m)); m.pointer_vertex = varray_vertex3f; R_Mesh_State(&m); i = calldata2; GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f), ((i & 0x0038) >> 3) * (1.0f / 7.0f), ((i & 0x01C0) >> 6) * (1.0f / 7.0f), 0.125f); if (PlaneDiff(r_vieworigin, (&portal->plane)) < 0) { for (i = portal->numpoints - 1, v = varray_vertex3f;i >= 0;i--, v += 3) VectorCopy(portal->points[i].position, v); } else for (i = 0, v = varray_vertex3f;i < portal->numpoints;i++, v += 3) VectorCopy(portal->points[i].position, v); GL_LockArrays(0, portal->numpoints); R_Mesh_Draw(0, portal->numpoints, portal->numpoints - 2, polygonelements); GL_LockArrays(0, 0); } // LordHavoc: this is just a nice debugging tool, very slow static void R_DrawPortals(void) { int i, leafnum;//, portalnum; mportal_t *portal; float center[3], f; model_t *model = r_refdef.worldmodel; if (model == NULL) return; for (leafnum = 0;leafnum < r_refdef.worldmodel->brush.num_leafs;leafnum++) { if (r_worldleafvisible[leafnum]) { //for (portalnum = 0, portal = model->brush.data_portals;portalnum < model->brush.num_portals;portalnum++, portal++) for (portal = r_refdef.worldmodel->brush.data_leafs[leafnum].portals;portal;portal = portal->next) { if (portal->numpoints <= POLYGONELEMENTS_MAXPOINTS) if (!R_CullBox(portal->mins, portal->maxs)) { VectorClear(center); for (i = 0;i < portal->numpoints;i++) VectorAdd(center, portal->points[i].position, center); f = ixtable[portal->numpoints]; VectorScale(center, f, center); //R_MeshQueue_AddTransparent(center, R_DrawPortal_Callback, portal, portalnum); R_MeshQueue_AddTransparent(center, R_DrawPortal_Callback, portal, leafnum); } } } } } static void R_DrawCollisionBrush(colbrushf_t *brush) { int i; rmeshstate_t m; memset(&m, 0, sizeof(m)); m.pointer_vertex = brush->points->v; R_Mesh_State(&m); i = (int)(((size_t)brush) / sizeof(colbrushf_t)); GL_Color((i & 31) * (1.0f / 32.0f), ((i >> 5) & 31) * (1.0f / 32.0f), ((i >> 10) & 31) * (1.0f / 32.0f), 0.2f); GL_LockArrays(0, brush->numpoints); R_Mesh_Draw(0, brush->numpoints, brush->numtriangles, brush->elements); GL_LockArrays(0, 0); } static void R_DrawCollisionSurface(entity_render_t *ent, msurface_t *surface) { int i; rmeshstate_t m; if (!surface->num_collisiontriangles) return; memset(&m, 0, sizeof(m)); m.pointer_vertex = surface->data_collisionvertex3f; R_Mesh_State(&m); i = (int)(((size_t)surface) / sizeof(msurface_t)); GL_Color((i & 31) * (1.0f / 32.0f), ((i >> 5) & 31) * (1.0f / 32.0f), ((i >> 10) & 31) * (1.0f / 32.0f), 0.2f); GL_LockArrays(0, surface->num_collisionvertices); R_Mesh_Draw(0, surface->num_collisionvertices, surface->num_collisiontriangles, surface->data_collisionelement3i); GL_LockArrays(0, 0); } void R_WorldVisibility(void) { int i, j, *mark; mleaf_t *leaf; mleaf_t *viewleaf; model_t *model = r_refdef.worldmodel; if (!model) return; // if possible find the leaf the view origin is in viewleaf = model->brushq1.PointInLeaf ? model->brushq1.PointInLeaf(model, r_vieworigin) : NULL; // if possible fetch the visible cluster bits if (model->brush.FatPVS) model->brush.FatPVS(model, r_vieworigin, 2, r_pvsbits, sizeof(r_pvsbits)); // clear the visible surface and leaf flags arrays memset(r_worldsurfacevisible, 0, model->brush.num_surfaces); memset(r_worldleafvisible, 0, model->brush.num_leafs); // if the user prefers surfaceworldnode (testing?) or the viewleaf could // not be found, or the viewleaf is not part of the visible world // (floating around in the void), use the pvs method if (r_surfaceworldnode.integer || !viewleaf || viewleaf->clusterindex < 0) { // pvs method: // similar to quake's RecursiveWorldNode but without cache misses for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { // if leaf is in current pvs and on the screen, mark its surfaces if (CHECKPVSBIT(r_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs)) { c_leafs++; r_worldleafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_worldsurfacevisible[*mark] = true; } } } else { int leafstackpos; mportal_t *p; mleaf_t *leafstack[8192]; // portal method: // follows portals leading outward from viewleaf, does not venture // offscreen or into leafs that are not visible, faster than Quake's // RecursiveWorldNode and vastly better in unvised maps, often culls a // lot of surface that pvs alone would miss leafstack[0] = viewleaf; leafstackpos = 1; while (leafstackpos) { c_leafs++; leaf = leafstack[--leafstackpos]; r_worldleafvisible[leaf - model->brush.data_leafs] = true; // mark any surfaces bounding this leaf if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_worldsurfacevisible[*mark] = true; // follow portals into other leafs // the checks are: // if viewer is behind portal (portal faces outward into the scene) // and the portal polygon's bounding box is on the screen // and the leaf has not been visited yet // and the leaf is visible in the pvs // (the first two checks won't cause as many cache misses as the leaf checks) for (p = leaf->portals;p;p = p->next) if (DotProduct(r_vieworigin, p->plane.normal) < (p->plane.dist + 1) && !R_CullBox(p->mins, p->maxs) && !r_worldleafvisible[p->past - model->brush.data_leafs] && CHECKPVSBIT(r_pvsbits, p->past->clusterindex)) leafstack[leafstackpos++] = p->past; } } if (r_drawportals.integer) R_DrawPortals(); } void R_Q1BSP_DrawSky(entity_render_t *ent) { if (ent->model == NULL) return; if (r_drawcollisionbrushes.integer < 2) R_DrawSurfaces(ent, true); } void R_Q1BSP_Draw(entity_render_t *ent) { if (ent->model == NULL) return; c_bmodels++; if (r_drawcollisionbrushes.integer < 2) R_DrawSurfaces(ent, false); if (r_drawcollisionbrushes.integer >= 1 && ent->model->brush.num_brushes) { int i; model_t *model = ent->model; msurface_t *surface; q3mbrush_t *brush; GL_BlendFunc(GL_SRC_ALPHA, GL_ONE); GL_DepthMask(false); GL_DepthTest(true); qglPolygonOffset(r_drawcollisionbrushes_polygonfactor.value, r_drawcollisionbrushes_polygonoffset.value); for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++) if (brush->colbrushf && brush->colbrushf->numtriangles) R_DrawCollisionBrush(brush->colbrushf); for (i = 0, surface = model->brush.data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++) if (surface->num_collisiontriangles) R_DrawCollisionSurface(ent, surface); qglPolygonOffset(0, 0); } } void R_Q1BSP_GetLightInfo(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, vec3_t outmins, vec3_t outmaxs, int *outclusterlist, qbyte *outclusterpvs, int *outnumclusterspointer, int *outsurfacelist, qbyte *outsurfacepvs, int *outnumsurfacespointer) { model_t *model = ent->model; vec3_t lightmins, lightmaxs; int t, leafindex, leafsurfaceindex, surfaceindex, triangleindex, outnumclusters = 0, outnumsurfaces = 0; const int *e; const float *v[3]; msurface_t *surface; mleaf_t *leaf; const qbyte *pvs; lightmins[0] = relativelightorigin[0] - lightradius; lightmins[1] = relativelightorigin[1] - lightradius; lightmins[2] = relativelightorigin[2] - lightradius; lightmaxs[0] = relativelightorigin[0] + lightradius; lightmaxs[1] = relativelightorigin[1] + lightradius; lightmaxs[2] = relativelightorigin[2] + lightradius; *outnumclusterspointer = 0; *outnumsurfacespointer = 0; memset(outclusterpvs, 0, model->brush.num_pvsclusterbytes); memset(outsurfacepvs, 0, (model->nummodelsurfaces + 7) >> 3); if (model == NULL) { VectorCopy(lightmins, outmins); VectorCopy(lightmaxs, outmaxs); return; } VectorCopy(relativelightorigin, outmins); VectorCopy(relativelightorigin, outmaxs); if (model->brush.GetPVS) pvs = model->brush.GetPVS(model, relativelightorigin); else pvs = NULL; R_UpdateAllTextureInfo(ent); // FIXME: use BSP recursion as lights are often small for (leafindex = 0, leaf = model->brush.data_leafs;leafindex < model->brush.num_leafs;leafindex++, leaf++) { if (BoxesOverlap(lightmins, lightmaxs, leaf->mins, leaf->maxs) && (pvs == NULL || CHECKPVSBIT(pvs, leaf->clusterindex))) { outmins[0] = min(outmins[0], leaf->mins[0]); outmins[1] = min(outmins[1], leaf->mins[1]); outmins[2] = min(outmins[2], leaf->mins[2]); outmaxs[0] = max(outmaxs[0], leaf->maxs[0]); outmaxs[1] = max(outmaxs[1], leaf->maxs[1]); outmaxs[2] = max(outmaxs[2], leaf->maxs[2]); if (outclusterpvs) { if (!CHECKPVSBIT(outclusterpvs, leaf->clusterindex)) { SETPVSBIT(outclusterpvs, leaf->clusterindex); outclusterlist[outnumclusters++] = leaf->clusterindex; } } if (outsurfacepvs) { for (leafsurfaceindex = 0;leafsurfaceindex < leaf->numleafsurfaces;leafsurfaceindex++) { surfaceindex = leaf->firstleafsurface[leafsurfaceindex]; if (!CHECKPVSBIT(outsurfacepvs, surfaceindex)) { surface = model->brush.data_surfaces + surfaceindex; if (BoxesOverlap(lightmins, lightmaxs, surface->mins, surface->maxs)) if ((surface->texture->currentmaterialflags & (MATERIALFLAG_WALL | MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT)) == MATERIALFLAG_WALL) { for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3) { v[0] = model->brush.shadowmesh->vertex3f + e[0] * 3; v[1] = model->brush.shadowmesh->vertex3f + e[1] * 3; v[2] = model->brush.shadowmesh->vertex3f + e[2] * 3; if (lightmaxs[0] > min(v[0][0], min(v[1][0], v[2][0])) && lightmins[0] < max(v[0][0], max(v[1][0], v[2][0])) && lightmaxs[1] > min(v[0][1], min(v[1][1], v[2][1])) && lightmins[1] < max(v[0][1], max(v[1][1], v[2][1])) && lightmaxs[2] > min(v[0][2], min(v[1][2], v[2][2])) && lightmins[2] < max(v[0][2], max(v[1][2], v[2][2]))) { SETPVSBIT(outsurfacepvs, surfaceindex); outsurfacelist[outnumsurfaces++] = surfaceindex; break; } } } } } } } } // limit combined leaf box to light boundaries outmins[0] = max(outmins[0], lightmins[0]); outmins[1] = max(outmins[1], lightmins[1]); outmins[2] = max(outmins[2], lightmins[2]); outmaxs[0] = min(outmaxs[0], lightmaxs[0]); outmaxs[1] = min(outmaxs[1], lightmaxs[1]); outmaxs[2] = min(outmaxs[2], lightmaxs[2]); *outnumclusterspointer = outnumclusters; *outnumsurfacespointer = outnumsurfaces; } void R_Q1BSP_DrawShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, int numsurfaces, const int *surfacelist, const vec3_t lightmins, const vec3_t lightmaxs) { model_t *model = ent->model; msurface_t *surface; int surfacelistindex; if (r_drawcollisionbrushes.integer < 2) { R_Mesh_Matrix(&ent->matrix); R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles); if (!r_shadow_compilingrtlight) R_UpdateAllTextureInfo(ent); for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->brush.data_surfaces + surfacelist[surfacelistindex]; if ((surface->texture->currentmaterialflags & (MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT | MATERIALFLAG_WALL)) != MATERIALFLAG_WALL) continue; if (surface->texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) continue; R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, lightmins, lightmaxs, surface->mins, surface->maxs); } R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, lightradius + model->radius + r_shadow_projectdistance.value, numshadowmark, shadowmarklist); } } void R_Q1BSP_DrawLight(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativeeyeorigin, float lightradius, float *lightcolor, const matrix4x4_t *matrix_modeltolight, const matrix4x4_t *matrix_modeltoattenuationxyz, const matrix4x4_t *matrix_modeltoattenuationz, rtexture_t *lightcubemap, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int numsurfaces, const int *surfacelist) { model_t *model = ent->model; msurface_t *surface; texture_t *t; int surfacelistindex; if (r_drawcollisionbrushes.integer < 2) { R_Mesh_Matrix(&ent->matrix); if (!r_shadow_compilingrtlight) R_UpdateAllTextureInfo(ent); for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->brush.data_surfaces + surfacelist[surfacelistindex]; if (surface->texture->basematerialflags & MATERIALFLAG_NODRAW || !surface->num_triangles) continue; if (r_shadow_compilingrtlight) { // if compiling an rtlight, capture the mesh t = surface->texture; if ((t->basematerialflags & (MATERIALFLAG_WALL | MATERIALFLAG_TRANSPARENT)) == MATERIALFLAG_WALL) Mod_ShadowMesh_AddMesh(r_shadow_mempool, r_shadow_compilingrtlight->static_meshchain_light, surface->texture->skin.base, surface->texture->skin.gloss, surface->texture->skin.nmap, surface->groupmesh->data_vertex3f, surface->groupmesh->data_svector3f, surface->groupmesh->data_tvector3f, surface->groupmesh->data_normal3f, surface->groupmesh->data_texcoordtexture2f, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle)); } else if (ent != r_refdef.worldentity || r_worldsurfacevisible[surfacelist[surfacelistindex]]) { t = surface->texture->currentframe; // FIXME: transparent surfaces need to be lit later if ((t->currentmaterialflags & (MATERIALFLAG_WALL | MATERIALFLAG_TRANSPARENT)) == MATERIALFLAG_WALL) { if (surface->texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) qglDisable(GL_CULL_FACE); R_Shadow_RenderLighting(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, (surface->groupmesh->data_element3i + 3 * surface->num_firsttriangle), surface->groupmesh->data_vertex3f, surface->groupmesh->data_svector3f, surface->groupmesh->data_tvector3f, surface->groupmesh->data_normal3f, surface->groupmesh->data_texcoordtexture2f, relativelightorigin, relativeeyeorigin, lightcolor, matrix_modeltolight, matrix_modeltoattenuationxyz, matrix_modeltoattenuationz, t->skin.base, t->skin.nmap, t->skin.gloss, lightcubemap, ambientscale, diffusescale, specularscale); if (surface->texture->textureflags & Q3TEXTUREFLAG_TWOSIDED) qglEnable(GL_CULL_FACE); } } } } } #if 0 static void gl_surf_start(void) { } static void gl_surf_shutdown(void) { } static void gl_surf_newmap(void) { } #endif void GL_Surf_Init(void) { Cvar_RegisterVariable(&r_ambient); Cvar_RegisterVariable(&r_drawportals); Cvar_RegisterVariable(&r_testvis); Cvar_RegisterVariable(&r_detailtextures); Cvar_RegisterVariable(&r_surfaceworldnode); Cvar_RegisterVariable(&r_drawcollisionbrushes_polygonfactor); Cvar_RegisterVariable(&r_drawcollisionbrushes_polygonoffset); Cvar_RegisterVariable(&r_q3bsp_renderskydepth); Cvar_RegisterVariable(&gl_lightmaps); //R_RegisterModule("GL_Surf", gl_surf_start, gl_surf_shutdown, gl_surf_newmap); }