/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_surf.c: surface-related refresh code #include "quakedef.h" #include "r_shadow.h" #include "portals.h" #define MAX_LIGHTMAP_SIZE 256 cvar_t r_ambient = {0, "r_ambient", "0", "brighter world cheat (not allowed in multiplayer), value is 0-128"}; cvar_t r_lockpvs = {0, "r_lockpvs", "0", "disables pvs switching, allows you to walk around and inspect what is visible from a given location in the map (anything not visible from your current location will not be drawn)"}; cvar_t r_lockvisibility = {0, "r_lockvisibility", "0", "disables visibility updates, allows you to walk around and inspect what is visible from a given viewpoint in the map (anything offscreen at the moment this is enabled will not be drawn)"}; cvar_t r_useportalculling = {0, "r_useportalculling", "1", "use advanced portal culling visibility method to improve performance over just Potentially Visible Set, provides an even more significant speed improvement in unvised maps"}; cvar_t r_q3bsp_renderskydepth = {0, "r_q3bsp_renderskydepth", "0", "draws sky depth masking in q3 maps (as in q1 maps), this means for example that sky polygons can hide other things"}; /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ void R_BuildLightMap (const entity_render_t *ent, msurface_t *surface) { int smax, tmax, i, size, size3, maps, l; int *bl, scale; unsigned char *lightmap, *out, *stain; model_t *model = ent->model; static int intblocklights[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*3]; // LordHavoc: *3 for colored lighting static unsigned char templight[MAX_LIGHTMAP_SIZE*MAX_LIGHTMAP_SIZE*4]; // update cached lighting info surface->cached_dlight = 0; smax = (surface->lightmapinfo->extents[0]>>4)+1; tmax = (surface->lightmapinfo->extents[1]>>4)+1; size = smax*tmax; size3 = size*3; lightmap = surface->lightmapinfo->samples; // set to full bright if no light data bl = intblocklights; if (!model->brushq1.lightdata) { for (i = 0;i < size3;i++) bl[i] = 255*256; } else { // clear to no light memset(bl, 0, size3*sizeof(*bl)); // add all the lightmaps if (lightmap) for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3) for (scale = r_refdef.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size3;i++) bl[i] += lightmap[i] * scale; } stain = surface->lightmapinfo->stainsamples; bl = intblocklights; out = templight; // the >> 16 shift adjusts down 8 bits to account for the stainmap // scaling, and remaps the 0-65536 (2x overbright) to 0-256, it will // be doubled during rendering to achieve 2x overbright // (0 = 0.0, 128 = 1.0, 256 = 2.0) if (model->brushq1.lightmaprgba) { for (i = 0;i < size;i++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); *out++ = 255; } } else { for (i = 0;i < size;i++) { l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); l = (*bl++ * *stain++) >> 16;*out++ = min(l, 255); } } R_UpdateTexture(surface->lightmaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], smax, tmax); // update the surface's deluxemap if it has one if (surface->deluxemaptexture != r_texture_blanknormalmap) { vec3_t n; unsigned char *normalmap = surface->lightmapinfo->nmapsamples; lightmap = surface->lightmapinfo->samples; // clear to no normalmap bl = intblocklights; memset(bl, 0, size3*sizeof(*bl)); // add all the normalmaps if (lightmap && normalmap) { for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3, normalmap += size3) { for (scale = r_refdef.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size;i++) { // add the normalmap with weighting proportional to the style's lightmap intensity l = (int)(VectorLength(lightmap + i*3) * scale); bl[i*3+0] += ((int)normalmap[i*3+0] - 128) * l; bl[i*3+1] += ((int)normalmap[i*3+1] - 128) * l; bl[i*3+2] += ((int)normalmap[i*3+2] - 128) * l; } } } bl = intblocklights; out = templight; // we simply renormalize the weighted normals to get a valid deluxemap if (model->brushq1.lightmaprgba) { for (i = 0;i < size;i++, bl += 3) { VectorCopy(bl, n); VectorNormalize(n); l = (int)(n[0] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[1] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[2] * 128 + 128);*out++ = bound(0, l, 255); *out++ = 255; } } else { for (i = 0;i < size;i++, bl += 3) { VectorCopy(bl, n); VectorNormalize(n); l = (int)(n[0] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[1] * 128 + 128);*out++ = bound(0, l, 255); l = (int)(n[2] * 128 + 128);*out++ = bound(0, l, 255); } } R_UpdateTexture(surface->deluxemaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], smax, tmax); } } void R_StainNode (mnode_t *node, model_t *model, const vec3_t origin, float radius, const float fcolor[8]) { float ndist, a, ratio, maxdist, maxdist2, maxdist3, invradius, sdtable[256], td, dist2; msurface_t *surface, *endsurface; int i, s, t, smax, tmax, smax3, impacts, impactt, stained; unsigned char *bl; vec3_t impact; maxdist = radius * radius; invradius = 1.0f / radius; loc0: if (!node->plane) return; ndist = PlaneDiff(origin, node->plane); if (ndist > radius) { node = node->children[0]; goto loc0; } if (ndist < -radius) { node = node->children[1]; goto loc0; } dist2 = ndist * ndist; maxdist3 = maxdist - dist2; if (node->plane->type < 3) { VectorCopy(origin, impact); impact[node->plane->type] -= ndist; } else { impact[0] = origin[0] - node->plane->normal[0] * ndist; impact[1] = origin[1] - node->plane->normal[1] * ndist; impact[2] = origin[2] - node->plane->normal[2] * ndist; } for (surface = model->data_surfaces + node->firstsurface, endsurface = surface + node->numsurfaces;surface < endsurface;surface++) { if (surface->lightmapinfo->stainsamples) { smax = (surface->lightmapinfo->extents[0] >> 4) + 1; tmax = (surface->lightmapinfo->extents[1] >> 4) + 1; impacts = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3] - surface->lightmapinfo->texturemins[0]); impactt = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3] - surface->lightmapinfo->texturemins[1]); s = bound(0, impacts, smax * 16) - impacts; t = bound(0, impactt, tmax * 16) - impactt; i = (int)(s * s + t * t + dist2); if (i > maxdist) continue; // reduce calculations for (s = 0, i = impacts; s < smax; s++, i -= 16) sdtable[s] = i * i + dist2; bl = surface->lightmapinfo->stainsamples; smax3 = smax * 3; stained = false; i = impactt; for (t = 0;t < tmax;t++, i -= 16) { td = i * i; // make sure some part of it is visible on this line if (td < maxdist3) { maxdist2 = maxdist - td; for (s = 0;s < smax;s++) { if (sdtable[s] < maxdist2) { ratio = lhrandom(0.0f, 1.0f); a = (fcolor[3] + ratio * fcolor[7]) * (1.0f - sqrt(sdtable[s] + td) * invradius); if (a >= (1.0f / 64.0f)) { if (a > 1) a = 1; bl[0] = (unsigned char) ((float) bl[0] + a * ((fcolor[0] + ratio * fcolor[4]) - (float) bl[0])); bl[1] = (unsigned char) ((float) bl[1] + a * ((fcolor[1] + ratio * fcolor[5]) - (float) bl[1])); bl[2] = (unsigned char) ((float) bl[2] + a * ((fcolor[2] + ratio * fcolor[6]) - (float) bl[2])); stained = true; } } bl += 3; } } else // skip line bl += smax3; } // force lightmap upload if (stained) surface->cached_dlight = true; } } if (node->children[0]->plane) { if (node->children[1]->plane) { R_StainNode(node->children[0], model, origin, radius, fcolor); node = node->children[1]; goto loc0; } else { node = node->children[0]; goto loc0; } } else if (node->children[1]->plane) { node = node->children[1]; goto loc0; } } void R_Stain (const vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2) { int n; float fcolor[8]; entity_render_t *ent; model_t *model; vec3_t org; if (r_refdef.worldmodel == NULL || !r_refdef.worldmodel->brush.data_nodes || !r_refdef.worldmodel->brushq1.lightdata) return; fcolor[0] = cr1; fcolor[1] = cg1; fcolor[2] = cb1; fcolor[3] = ca1 * (1.0f / 64.0f); fcolor[4] = cr2 - cr1; fcolor[5] = cg2 - cg1; fcolor[6] = cb2 - cb1; fcolor[7] = (ca2 - ca1) * (1.0f / 64.0f); R_StainNode(r_refdef.worldmodel->brush.data_nodes + r_refdef.worldmodel->brushq1.hulls[0].firstclipnode, r_refdef.worldmodel, origin, radius, fcolor); // look for embedded bmodels for (n = 0;n < cl.num_brushmodel_entities;n++) { ent = &cl.entities[cl.brushmodel_entities[n]].render; model = ent->model; if (model && model->name[0] == '*') { if (model->brush.data_nodes) { Matrix4x4_Transform(&ent->inversematrix, origin, org); R_StainNode(model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, model, org, radius, fcolor); } } } } /* ============================================================= BRUSH MODELS ============================================================= */ static void R_DrawPortal_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { // due to the hacky nature of this function's parameters, this is never // called with a batch, so numsurfaces is always 1, and the surfacelist // contains only a leaf number for coloring purposes const mportal_t *portal = (mportal_t *)ent; int i, numpoints; float *v; float vertex3f[POLYGONELEMENTS_MAXPOINTS*3]; CHECKGLERROR GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_DepthMask(false); GL_DepthTest(true); GL_CullFace(GL_NONE); R_Mesh_Matrix(&identitymatrix); numpoints = min(portal->numpoints, POLYGONELEMENTS_MAXPOINTS); R_Mesh_VertexPointer(vertex3f); R_Mesh_ColorPointer(NULL); R_Mesh_ResetTextureState(); i = surfacelist[0]; GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_view.colorscale, ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_view.colorscale, ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_view.colorscale, 0.125f); for (i = 0, v = vertex3f;i < numpoints;i++, v += 3) VectorCopy(portal->points[i].position, v); R_Mesh_Draw(0, numpoints, numpoints - 2, polygonelements); } // LordHavoc: this is just a nice debugging tool, very slow void R_DrawPortals(void) { int i, leafnum; mportal_t *portal; float center[3], f; model_t *model = r_refdef.worldmodel; if (model == NULL) return; for (leafnum = 0;leafnum < r_refdef.worldmodel->brush.num_leafs;leafnum++) { if (r_viewcache.world_leafvisible[leafnum]) { //for (portalnum = 0, portal = model->brush.data_portals;portalnum < model->brush.num_portals;portalnum++, portal++) for (portal = r_refdef.worldmodel->brush.data_leafs[leafnum].portals;portal;portal = portal->next) { if (portal->numpoints <= POLYGONELEMENTS_MAXPOINTS) if (!R_CullBox(portal->mins, portal->maxs)) { VectorClear(center); for (i = 0;i < portal->numpoints;i++) VectorAdd(center, portal->points[i].position, center); f = ixtable[portal->numpoints]; VectorScale(center, f, center); R_MeshQueue_AddTransparent(center, R_DrawPortal_Callback, (entity_render_t *)portal, leafnum, r_shadow_rtlight); } } } } } void R_View_WorldVisibility(void) { int i, j, *mark; mleaf_t *leaf; mleaf_t *viewleaf; model_t *model = r_refdef.worldmodel; if (!model) return; // if possible find the leaf the view origin is in viewleaf = model->brush.PointInLeaf ? model->brush.PointInLeaf(model, r_view.origin) : NULL; // if possible fetch the visible cluster bits if (!r_lockpvs.integer && model->brush.FatPVS) model->brush.FatPVS(model, r_view.origin, 2, r_viewcache.world_pvsbits, sizeof(r_viewcache.world_pvsbits)); if (!r_lockvisibility.integer) { // clear the visible surface and leaf flags arrays memset(r_viewcache.world_surfacevisible, 0, model->num_surfaces); memset(r_viewcache.world_leafvisible, 0, model->brush.num_leafs); r_viewcache.world_novis = false; // if floating around in the void (no pvs data available, and no // portals available), simply use all on-screen leafs. if (!viewleaf || viewleaf->clusterindex < 0) { // no visibility method: (used when floating around in the void) // simply cull each leaf to the frustum (view pyramid) // similar to quake's RecursiveWorldNode but without cache misses r_viewcache.world_novis = true; for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { // if leaf is in current pvs and on the screen, mark its surfaces if (!R_CullBox(leaf->mins, leaf->maxs)) { r_refdef.stats.world_leafs++; r_viewcache.world_leafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_viewcache.world_surfacevisible[*mark] = true; } } } // if the user prefers to disable portal culling (testing?), simply // use all on-screen leafs that are in the pvs. else if (!r_useportalculling.integer) { // pvs method: // simply check if each leaf is in the Potentially Visible Set, // and cull to frustum (view pyramid) // similar to quake's RecursiveWorldNode but without cache misses for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++) { // if leaf is in current pvs and on the screen, mark its surfaces if (CHECKPVSBIT(r_viewcache.world_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs)) { r_refdef.stats.world_leafs++; r_viewcache.world_leafvisible[j] = true; if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_viewcache.world_surfacevisible[*mark] = true; } } } // otherwise use a recursive portal flow, culling each portal to // frustum and checking if the leaf the portal leads to is in the pvs else { int leafstackpos; mportal_t *p; mleaf_t *leafstack[8192]; // simple-frustum portal method: // follows portals leading outward from viewleaf, does not venture // offscreen or into leafs that are not visible, faster than // Quake's RecursiveWorldNode and vastly better in unvised maps, // often culls some surfaces that pvs alone would miss // (such as a room in pvs that is hidden behind a wall, but the // passage leading to the room is off-screen) leafstack[0] = viewleaf; leafstackpos = 1; while (leafstackpos) { r_refdef.stats.world_leafs++; leaf = leafstack[--leafstackpos]; r_viewcache.world_leafvisible[leaf - model->brush.data_leafs] = true; // mark any surfaces bounding this leaf if (leaf->numleafsurfaces) for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++) r_viewcache.world_surfacevisible[*mark] = true; // follow portals into other leafs // the checks are: // if viewer is behind portal (portal faces outward into the scene) // and the portal polygon's bounding box is on the screen // and the leaf has not been visited yet // and the leaf is visible in the pvs // (the first two checks won't cause as many cache misses as the leaf checks) for (p = leaf->portals;p;p = p->next) { r_refdef.stats.world_portals++; if (DotProduct(r_view.origin, p->plane.normal) < (p->plane.dist + 1) && !R_CullBox(p->mins, p->maxs) && !r_viewcache.world_leafvisible[p->past - model->brush.data_leafs] && CHECKPVSBIT(r_viewcache.world_pvsbits, p->past->clusterindex)) leafstack[leafstackpos++] = p->past; } } } } } void R_Q1BSP_DrawSky(entity_render_t *ent) { if (ent->model == NULL) return; R_DrawSurfaces(ent, true); } void R_Q1BSP_Draw(entity_render_t *ent) { model_t *model = ent->model; if (model == NULL) return; R_DrawSurfaces(ent, false); } typedef struct r_q1bsp_getlightinfo_s { model_t *model; vec3_t relativelightorigin; float lightradius; int *outleaflist; unsigned char *outleafpvs; int outnumleafs; int *outsurfacelist; unsigned char *outsurfacepvs; int outnumsurfaces; vec3_t outmins; vec3_t outmaxs; vec3_t lightmins; vec3_t lightmaxs; const unsigned char *pvs; } r_q1bsp_getlightinfo_t; void R_Q1BSP_RecursiveGetLightInfo(r_q1bsp_getlightinfo_t *info, mnode_t *node) { int sides; mleaf_t *leaf; for (;;) { mplane_t *plane = node->plane; //if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs)) // return; if (!plane) break; if (plane->type < 3) sides = ((info->lightmaxs[plane->type] >= plane->dist) | ((info->lightmins[plane->type] < plane->dist) << 1)); else sides = BoxOnPlaneSide(info->lightmins, info->lightmaxs, plane); if (sides == 3) { R_Q1BSP_RecursiveGetLightInfo(info, node->children[0]); node = node->children[1]; } else if (sides == 0) return; // ERROR: NAN bounding box! else node = node->children[sides - 1]; } leaf = (mleaf_t *)node; if (info->pvs == NULL || CHECKPVSBIT(info->pvs, leaf->clusterindex)) { info->outmins[0] = min(info->outmins[0], leaf->mins[0]); info->outmins[1] = min(info->outmins[1], leaf->mins[1]); info->outmins[2] = min(info->outmins[2], leaf->mins[2]); info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]); info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]); info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]); if (info->outleafpvs) { int leafindex = leaf - info->model->brush.data_leafs; if (!CHECKPVSBIT(info->outleafpvs, leafindex)) { SETPVSBIT(info->outleafpvs, leafindex); info->outleaflist[info->outnumleafs++] = leafindex; } } if (info->outsurfacepvs) { int leafsurfaceindex; for (leafsurfaceindex = 0;leafsurfaceindex < leaf->numleafsurfaces;leafsurfaceindex++) { int surfaceindex = leaf->firstleafsurface[leafsurfaceindex]; if (!CHECKPVSBIT(info->outsurfacepvs, surfaceindex)) { msurface_t *surface = info->model->data_surfaces + surfaceindex; if (BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs)) { int triangleindex, t; const int *e; const vec_t *v[3]; for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = info->model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3) { v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3; v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3; v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3; if (PointInfrontOfTriangle(info->relativelightorigin, v[0], v[1], v[2]) && info->lightmaxs[0] > min(v[0][0], min(v[1][0], v[2][0])) && info->lightmins[0] < max(v[0][0], max(v[1][0], v[2][0])) && info->lightmaxs[1] > min(v[0][1], min(v[1][1], v[2][1])) && info->lightmins[1] < max(v[0][1], max(v[1][1], v[2][1])) && info->lightmaxs[2] > min(v[0][2], min(v[1][2], v[2][2])) && info->lightmins[2] < max(v[0][2], max(v[1][2], v[2][2]))) { SETPVSBIT(info->outsurfacepvs, surfaceindex); info->outsurfacelist[info->outnumsurfaces++] = surfaceindex; break; } } } } } } } } void R_Q1BSP_GetLightInfo(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, vec3_t outmins, vec3_t outmaxs, int *outleaflist, unsigned char *outleafpvs, int *outnumleafspointer, int *outsurfacelist, unsigned char *outsurfacepvs, int *outnumsurfacespointer) { r_q1bsp_getlightinfo_t info; VectorCopy(relativelightorigin, info.relativelightorigin); info.lightradius = lightradius; info.lightmins[0] = info.relativelightorigin[0] - info.lightradius; info.lightmins[1] = info.relativelightorigin[1] - info.lightradius; info.lightmins[2] = info.relativelightorigin[2] - info.lightradius; info.lightmaxs[0] = info.relativelightorigin[0] + info.lightradius; info.lightmaxs[1] = info.relativelightorigin[1] + info.lightradius; info.lightmaxs[2] = info.relativelightorigin[2] + info.lightradius; if (ent->model == NULL) { VectorCopy(info.lightmins, outmins); VectorCopy(info.lightmaxs, outmaxs); *outnumleafspointer = 0; *outnumsurfacespointer = 0; return; } info.model = ent->model; info.outleaflist = outleaflist; info.outleafpvs = outleafpvs; info.outnumleafs = 0; info.outsurfacelist = outsurfacelist; info.outsurfacepvs = outsurfacepvs; info.outnumsurfaces = 0; VectorCopy(info.relativelightorigin, info.outmins); VectorCopy(info.relativelightorigin, info.outmaxs); memset(outleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3); memset(outsurfacepvs, 0, (info.model->nummodelsurfaces + 7) >> 3); if (info.model->brush.GetPVS) info.pvs = info.model->brush.GetPVS(info.model, info.relativelightorigin); else info.pvs = NULL; R_UpdateAllTextureInfo(ent); if (r_shadow_compilingrtlight) { // use portal recursion for exact light volume culling, and exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, true, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs); } else if (r_shadow_realtime_dlight_portalculling.integer) { // use portal recursion for exact light volume culling, but not the expensive exact surface checking Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, r_shadow_realtime_dlight_portalculling.integer >= 2, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs); } else { // use BSP recursion as lights are often small R_Q1BSP_RecursiveGetLightInfo(&info, info.model->brush.data_nodes); } // limit combined leaf box to light boundaries outmins[0] = max(info.outmins[0] - 1, info.lightmins[0]); outmins[1] = max(info.outmins[1] - 1, info.lightmins[1]); outmins[2] = max(info.outmins[2] - 1, info.lightmins[2]); outmaxs[0] = min(info.outmaxs[0] + 1, info.lightmaxs[0]); outmaxs[1] = min(info.outmaxs[1] + 1, info.lightmaxs[1]); outmaxs[2] = min(info.outmaxs[2] + 1, info.lightmaxs[2]); *outnumleafspointer = info.outnumleafs; *outnumsurfacespointer = info.outnumsurfaces; } void R_Q1BSP_CompileShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int numsurfaces, const int *surfacelist) { model_t *model = ent->model; msurface_t *surface; int surfacelistindex; float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value; texture_t *texture; r_shadow_compilingrtlight->static_meshchain_shadow = Mod_ShadowMesh_Begin(r_main_mempool, 32768, 32768, NULL, NULL, NULL, false, false, true); R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles); for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { surface = model->data_surfaces + surfacelist[surfacelistindex]; texture = surface->texture; if ((texture->basematerialflags & (MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT | MATERIALFLAG_WALL)) != MATERIALFLAG_WALL) continue; if ((texture->textureflags & (Q3TEXTUREFLAG_TWOSIDED | Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) || (ent->flags & RENDER_NOCULLFACE)) continue; R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, r_shadow_compilingrtlight->cullmins, r_shadow_compilingrtlight->cullmaxs, surface->mins, surface->maxs); } R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist); r_shadow_compilingrtlight->static_meshchain_shadow = Mod_ShadowMesh_Finish(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow, false, false); } void R_Q1BSP_DrawShadowVolume_Batch(const vec3_t relativelightorigin, const vec3_t relativelightdirection, const vec3_t lightmins, const vec3_t lightmaxs, int texturenumsurfaces, msurface_t **texturesurfacelist) { int texturesurfaceindex; RSurf_PrepareVerticesForBatch(false, false, texturenumsurfaces, texturesurfacelist); for (texturesurfaceindex = 0;texturesurfaceindex < texturenumsurfaces;texturesurfaceindex++) { msurface_t *surface = texturesurfacelist[texturesurfaceindex]; R_Shadow_MarkVolumeFromBox(surface->num_firsttriangle, surface->num_triangles, rsurface_vertex3f, rsurface_model->surfmesh.data_element3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs); } } void R_Q1BSP_DrawShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int modelnumsurfaces, const int *modelsurfacelist, const vec3_t lightmins, const vec3_t lightmaxs) { model_t *model = ent->model; msurface_t *surface; int modelsurfacelistindex; int f = 0; float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value; texture_t *t = NULL; const int maxsurfacelist = 1024; int numsurfacelist = 0; msurface_t *surfacelist[1024]; // check the box in modelspace, it was already checked in worldspace if (!BoxesOverlap(model->normalmins, model->normalmaxs, lightmins, lightmaxs)) return; R_UpdateAllTextureInfo(ent); if (model->brush.shadowmesh) { R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles); for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++) { surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex]; t = surface->texture->currentframe; if ((t->currentmaterialflags & (MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT | MATERIALFLAG_WALL)) != MATERIALFLAG_WALL) continue; if ((t->textureflags & (Q3TEXTUREFLAG_TWOSIDED | Q3TEXTUREFLAG_AUTOSPRITE | Q3TEXTUREFLAG_AUTOSPRITE2)) || (ent->flags & RENDER_NOCULLFACE)) continue; R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs); } R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist); } else { projectdistance = lightradius + model->radius*2; RSurf_ActiveEntity(ent, false, false); R_Shadow_PrepareShadowMark(model->surfmesh.num_triangles); // identify lit faces within the bounding box for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++) { surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex]; if (t != surface->texture || numsurfacelist >= maxsurfacelist) { if (numsurfacelist) { R_Q1BSP_DrawShadowVolume_Batch(relativelightorigin, relativelightdirection, lightmins, lightmaxs, numsurfacelist, surfacelist); numsurfacelist = 0; } t = surface->texture; rsurface_texture = t->currentframe; f = (rsurface_texture->currentmaterialflags & (MATERIALFLAG_NODRAW | MATERIALFLAG_TRANSPARENT | MATERIALFLAG_WALL)) == MATERIALFLAG_WALL; } if (f && surface->num_triangles) surfacelist[numsurfacelist++] = surface; } if (numsurfacelist) R_Q1BSP_DrawShadowVolume_Batch(relativelightorigin, relativelightdirection, lightmins, lightmaxs, numsurfacelist, surfacelist); R_Shadow_VolumeFromList(model->surfmesh.num_vertices, model->surfmesh.num_triangles, rsurface_vertex3f, model->surfmesh.data_element3i, model->surfmesh.data_neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist); } } #define BATCHSIZE 256 static void R_Q1BSP_DrawLight_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist) { int surfacelistindex, batchcount; texture_t *t; msurface_t *batchsurfaces[BATCHSIZE]; // note: in practice this never actually batches, oh well R_Shadow_RenderMode_Begin(); R_Shadow_RenderMode_ActiveLight((rtlight_t *)rtlight); R_Shadow_RenderMode_Lighting(false, true); R_Shadow_SetupEntityLight(ent); t = NULL; batchcount = 0; for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { msurface_t *surface = ent->model->data_surfaces + surfacelist[surfacelistindex]; if (t != surface->texture) { if (batchcount > 0) R_Shadow_RenderSurfacesLighting(batchcount, batchsurfaces); batchcount = 0; t = surface->texture; R_UpdateTextureInfo(ent, t); rsurface_texture = t->currentframe; } batchsurfaces[batchcount++] = surface; } if (batchcount > 0) R_Shadow_RenderSurfacesLighting(batchcount, batchsurfaces); R_Shadow_RenderMode_End(); } static void R_Q1BSP_DrawLight_TransparentBatch(int batchnumsurfaces, msurface_t **batchsurfacelist) { int batchsurfaceindex; msurface_t *batchsurface; vec3_t tempcenter, center; for (batchsurfaceindex = 0;batchsurfaceindex < batchnumsurfaces;batchsurfaceindex++) { batchsurface = batchsurfacelist[batchsurfaceindex]; tempcenter[0] = (batchsurface->mins[0] + batchsurface->maxs[0]) * 0.5f; tempcenter[1] = (batchsurface->mins[1] + batchsurface->maxs[1]) * 0.5f; tempcenter[2] = (batchsurface->mins[2] + batchsurface->maxs[2]) * 0.5f; Matrix4x4_Transform(&rsurface_entity->matrix, tempcenter, center); R_MeshQueue_AddTransparent(rsurface_texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST ? r_view.origin : center, R_Q1BSP_DrawLight_TransparentCallback, rsurface_entity, batchsurface - rsurface_model->data_surfaces, r_shadow_rtlight); } } #define RSURF_MAX_BATCHSURFACES 1024 void R_Q1BSP_DrawLight(entity_render_t *ent, int numsurfaces, const int *surfacelist) { model_t *model = ent->model; msurface_t *surface; int surfacelistindex, batchnumsurfaces; msurface_t *batchsurfacelist[RSURF_MAX_BATCHSURFACES]; texture_t *tex; qboolean skip; CHECKGLERROR RSurf_ActiveEntity(ent, true, true); R_UpdateAllTextureInfo(ent); tex = NULL; rsurface_texture = NULL; skip = false; batchnumsurfaces = 0; CHECKGLERROR for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++) { if ((ent == r_refdef.worldentity && !r_viewcache.world_surfacevisible[surfacelist[surfacelistindex]])) continue; surface = model->data_surfaces + surfacelist[surfacelistindex]; r_refdef.stats.lights_lighttriangles += surface->num_triangles; if (tex != surface->texture) { if (batchnumsurfaces > 0) { if (rsurface_texture->currentmaterialflags & MATERIALFLAG_BLENDED) R_Q1BSP_DrawLight_TransparentBatch(batchnumsurfaces, batchsurfacelist); else R_Shadow_RenderSurfacesLighting(batchnumsurfaces, batchsurfacelist); batchnumsurfaces = 0; } tex = surface->texture; rsurface_texture = surface->texture->currentframe; skip = (rsurface_texture->currentmaterialflags & MATERIALFLAG_SKY) != 0; if (skip) continue; } if (!skip && surface->num_triangles) { if (batchnumsurfaces == RSURF_MAX_BATCHSURFACES) { if (rsurface_texture->currentmaterialflags & MATERIALFLAG_BLENDED) R_Q1BSP_DrawLight_TransparentBatch(batchnumsurfaces, batchsurfacelist); else R_Shadow_RenderSurfacesLighting(batchnumsurfaces, batchsurfacelist); batchnumsurfaces = 0; } batchsurfacelist[batchnumsurfaces++] = surface; } } if (batchnumsurfaces > 0) { if (rsurface_texture->currentmaterialflags & MATERIALFLAG_BLENDED) R_Q1BSP_DrawLight_TransparentBatch(batchnumsurfaces, batchsurfacelist); else R_Shadow_RenderSurfacesLighting(batchnumsurfaces, batchsurfacelist); batchnumsurfaces = 0; } } //Made by [515] void R_ReplaceWorldTexture (void) { model_t *m; texture_t *t; int i; const char *r, *newt; m = r_refdef.worldmodel; if(Cmd_Argc() < 2) { Con_Print("r_replacemaptexture - replaces texture\n"); Con_Print("r_replacemaptexture - switch back to default texture\n"); return; } if(!cl.islocalgame || !cl.worldmodel) { Con_Print("This command works only in singleplayer\n"); return; } r = Cmd_Argv(1); newt = Cmd_Argv(2); if(!newt[0]) newt = r; for(i=0,t=m->data_textures;inum_textures;i++,t++) { if(t->width && !strcasecmp(t->name, r)) { if(Mod_LoadSkinFrame(&t->skinframes[0], (char*)newt, TEXF_MIPMAP | TEXF_ALPHA | TEXF_PRECACHE | TEXF_PICMIP, false, r_fullbrights.integer)) { Con_Printf("%s replaced with %s\n", r, newt); return; } else { Con_Printf("%s was not found\n", newt); Mod_LoadSkinFrame(&t->skinframes[0], (char*)r, TEXF_MIPMAP | TEXF_ALPHA | TEXF_PRECACHE | TEXF_PICMIP, false, r_fullbrights.integer);//back to default return; } } } } //Made by [515] void R_ListWorldTextures (void) { model_t *m; texture_t *t; int i; m = r_refdef.worldmodel; Con_Print("Worldmodel textures :\n"); for(i=0,t=m->data_textures;inum_textures;i++,t++) if (t->numskinframes) Con_Printf("%s\n", t->name); } #if 0 static void gl_surf_start(void) { } static void gl_surf_shutdown(void) { } static void gl_surf_newmap(void) { } #endif void GL_Surf_Init(void) { Cvar_RegisterVariable(&r_ambient); Cvar_RegisterVariable(&r_lockpvs); Cvar_RegisterVariable(&r_lockvisibility); Cvar_RegisterVariable(&r_useportalculling); Cvar_RegisterVariable(&r_q3bsp_renderskydepth); Cmd_AddCommand ("r_replacemaptexture", R_ReplaceWorldTexture, "override a map texture for testing purposes"); // By [515] Cmd_AddCommand ("r_listmaptextures", R_ListWorldTextures, "list all textures used by the current map"); // By [515] //R_RegisterModule("GL_Surf", gl_surf_start, gl_surf_shutdown, gl_surf_newmap); }