/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.c -- math primitives #include #include "quakedef.h" void Sys_Error (char *error, ...); vec3_t vec3_origin = {0,0,0}; int nanmask = 255<<23; /*-----------------------------------------------------------------*/ #define DEG2RAD( a ) ( a * M_PI ) / 180.0F void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst ); } #ifdef _WIN32 #pragma optimize( "", off ) #endif void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; zrot[0][0] = cos( DEG2RAD( degrees ) ); zrot[0][1] = sin( DEG2RAD( degrees ) ); zrot[1][0] = -sin( DEG2RAD( degrees ) ); zrot[1][1] = cos( DEG2RAD( degrees ) ); R_ConcatRotations( m, zrot, tmpmat ); R_ConcatRotations( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } #ifdef _WIN32 #pragma optimize( "", on ) #endif /*-----------------------------------------------------------------*/ float anglemod(float a) { #if 0 if (a >= 0) a -= 360*(int)(a/360); else a += 360*( 1 + (int)(-a/360) ); #endif a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); return a; } int BoxOnPlaneSide0 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) < p->dist) << 1));} int BoxOnPlaneSide1 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) < p->dist) << 1));} int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) < p->dist) << 1));} int BoxOnPlaneSide3 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) < p->dist) << 1));} int BoxOnPlaneSide4 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));} int BoxOnPlaneSide5 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));} int BoxOnPlaneSide6 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));} int BoxOnPlaneSide7 (vec3_t emins, vec3_t emaxs, mplane_t *p) {return (((p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]) >= p->dist) | (((p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]) < p->dist) << 1));} void BoxOnPlaneSideClassify(mplane_t *p) { if (p->normal[2] < 0) // 4 { if (p->normal[1] < 0) // 2 { if (p->normal[0] < 0) // 1 p->BoxOnPlaneSideFunc = BoxOnPlaneSide7; else p->BoxOnPlaneSideFunc = BoxOnPlaneSide6; } else { if (p->normal[0] < 0) // 1 p->BoxOnPlaneSideFunc = BoxOnPlaneSide5; else p->BoxOnPlaneSideFunc = BoxOnPlaneSide4; } } else { if (p->normal[1] < 0) // 2 { if (p->normal[0] < 0) // 1 p->BoxOnPlaneSideFunc = BoxOnPlaneSide3; else p->BoxOnPlaneSideFunc = BoxOnPlaneSide2; } else { if (p->normal[0] < 0) // 1 p->BoxOnPlaneSideFunc = BoxOnPlaneSide1; else p->BoxOnPlaneSideFunc = BoxOnPlaneSide0; } } } void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } int VectorCompare (vec3_t v1, vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (v1[i] != v2[i]) return 0; return 1; } void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale*vecb[0]; vecc[1] = veca[1] + scale*vecb[1]; vecc[2] = veca[2] + scale*vecb[2]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]-vecb[0]; out[1] = veca[1]-vecb[1]; out[2] = veca[2]-vecb[2]; } void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]+vecb[0]; out[1] = veca[1]+vecb[1]; out[2] = veca[2]+vecb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } // LordHavoc: changed CrossProduct to a #define /* void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } */ double sqrt(double x); vec_t Length(vec3_t v) { int i; float length; length = 0; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = sqrt (length); // FIXME return length; } // LordHavoc: renamed these to Length, and made the normal ones #define float VectorNormalizeLength (vec3_t v) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; length = sqrt (length); // FIXME if (length) { ilength = 1/length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } float VectorNormalizeLength2 (vec3_t v, vec3_t dest) // LordHavoc: added to allow copying while doing the calculation... { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; length = sqrt (length); // FIXME if (length) { ilength = 1/length; dest[0] = v[0] * ilength; dest[1] = v[1] * ilength; dest[2] = v[2] * ilength; } else dest[0] = dest[1] = dest[2] = 0; return length; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale (vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; } int Q_log2(int val) { int answer=0; while (val>>=1) answer++; return answer; } /* ================ R_ConcatRotations ================ */ void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } /* ================ R_ConcatTransforms ================ */ void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } /* =================== FloorDivMod Returns mathematically correct (floor-based) quotient and remainder for numer and denom, both of which should contain no fractional part. The quotient must fit in 32 bits. ==================== */ void FloorDivMod (double numer, double denom, int *quotient, int *rem) { int q, r; double x; #ifndef PARANOID if (denom <= 0.0) Sys_Error ("FloorDivMod: bad denominator %d\n", denom); // if ((floor(numer) != numer) || (floor(denom) != denom)) // Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n", // numer, denom); #endif if (numer >= 0.0) { x = floor(numer / denom); q = (int)x; r = (int)floor(numer - (x * denom)); } else { // // perform operations with positive values, and fix mod to make floor-based // x = floor(-numer / denom); q = -(int)x; r = (int)floor(-numer - (x * denom)); if (r != 0) { q--; r = (int)denom - r; } } *quotient = q; *rem = r; } /* =================== GreatestCommonDivisor ==================== */ int GreatestCommonDivisor (int i1, int i2) { if (i1 > i2) { if (i2 == 0) return (i1); return GreatestCommonDivisor (i2, i1 % i2); } else { if (i1 == 0) return (i2); return GreatestCommonDivisor (i1, i2 % i1); } }