/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.h #ifndef M_PI #define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif typedef float vec_t; typedef vec_t vec2_t[2]; typedef vec_t vec3_t[3]; typedef vec_t vec4_t[4]; typedef vec_t vec5_t[5]; typedef vec_t vec6_t[6]; typedef vec_t vec7_t[7]; typedef vec_t vec8_t[8]; struct mplane_s; extern vec3_t vec3_origin; extern int nanmask; #define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask) #define bound(min,num,max) (num >= min ? (num < max ? num : max) : min) #ifndef min #define min(A,B) (A < B ? A : B) #define max(A,B) (A > B ? A : B) #endif #define lhrandom(MIN,MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN)) #define DEG2RAD(a) ((a) * ((float) M_PI / 180.0f)) #define RAD2DEG(a) ((a) * (180.0f / (float) M_PI)) #define ANGLEMOD(a) (((int) ((a) * (65536.0f / 360.0f)) & 65535) * (360.0f / 65536.0f)) #define VectorNegate(a,b) {b[0] = -(a[0]);b[1] = -(a[1]);b[2] = -(a[2]);} #define VectorSet(a,b,c,d) {d[0]=(a);d[1]=(b);d[2]=(c);} #define VectorClear(a) {a[0]=a[1]=a[2]=0;} #define DotProduct(x,y) (x[0]*y[0]+x[1]*y[1]+x[2]*y[2]) #define VectorSubtract(a,b,c) {c[0]=a[0]-b[0];c[1]=a[1]-b[1];c[2]=a[2]-b[2];} #define VectorAdd(a,b,c) {c[0]=a[0]+b[0];c[1]=a[1]+b[1];c[2]=a[2]+b[2];} #define VectorCopy(a,b) {b[0]=a[0];b[1]=a[1];b[2]=a[2];} #define CrossProduct(v1,v2,cross) {cross[0] = v1[1]*v2[2] - v1[2]*v2[1];cross[1] = v1[2]*v2[0] - v1[0]*v2[2];cross[2] = v1[0]*v2[1] - v1[1]*v2[0];} #define VectorNormalize(v) {float ilength = 1.0f / (float) sqrt(DotProduct(v,v));v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} #define VectorNormalize2(v,dest) {float ilength = 1.0f / (float) sqrt(DotProduct(v,v));dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength;} #define VectorNormalizeDouble(v) {double ilength = 1.0 / (float) sqrt(DotProduct(v,v));v[0] *= ilength;v[1] *= ilength;v[2] *= ilength;} #define VectorDistance2(a, b) ((a[0] - b[0]) * (a[0] - b[0]) + (a[1] - b[1]) * (a[1] - b[1]) + (a[2] - b[2]) * (a[2] - b[2])) #define VectorDistance(a, b) (sqrt(VectorDistance2(a,b))) #define VectorLength(a) sqrt(DotProduct(a, a)) #define VectorScale(in, scale, out) {(out)[0] = (in)[0] * (scale);(out)[1] = (in)[1] * (scale);(out)[2] = (in)[2] * (scale);} #define VectorMA(a, scale, b, c) {(c)[0] = (a)[0] + (scale) * (b)[0];(c)[1] = (a)[1] + (scale) * (b)[1];(c)[2] = (a)[2] + (scale) * (b)[2];} #define VectorNormalizeFast(_v)\ {\ float _y, _number;\ _number = DotProduct(_v, _v);\ if (_number != 0.0)\ {\ *((long *)&_y) = 0x5f3759df - ((* (long *) &_number) >> 1);\ _y = _y * (1.5f - (_number * 0.5f * _y * _y));\ VectorScale(_v, _y, _v);\ }\ } #define VectorRandom(v) {do{(v)[0] = lhrandom(-1, 1);(v)[1] = lhrandom(-1, 1);(v)[2] = lhrandom(-1, 1);}while(DotProduct(v, v) > 1);} // LordHavoc: quaternion math, untested, don't know if these are correct, // need to add conversion to/from matrices // returns length of quaternion #define qlen(a) ((float) sqrt(a[0]*a[0]+a[1]*a[1]+a[2]*a[2]+a[3]*a[3])) // returns squared length of quaternion #define qlen2(a) (a[0]*a[0]+a[1]*a[1]+a[2]*a[2]+a[3]*a[3]) // makes a quaternion from x, y, z, and a rotation angle #define QuatMake(x,y,z,r,c) {if (r2 == 0) {(c)[0]=(float) ((x)*sin(r2));c[1]=(float) ((y)*sin(r2));c[2]=((float) (z)*sin(r2));c[3]=(float) 1;} else {float r2 = (r) * 0.5 * (M_PI / 180);(c)[0]=(float) ((x)*sin(r2));c[1]=(float) ((y)*sin(r2));c[2]=((float) (z)*sin(r2));c[3]=(float) (cos(r2));}} // makes a quaternion from a vector and a rotation angle #define QuatFromVec(a,r,c) QuatMake((a)[0],(a)[1],(a)[2],(r)) // copies a quaternion #define QuatCopy(a,c) {c[0]=a[0];c[1]=a[1];c[2]=a[2];c[3]=a[3];} #define QuatSubtract(a,b,c) {c[0]=a[0]-b[0];c[1]=a[1]-b[1];c[2]=a[2]-b[2];c[3]=a[3]-b[3];} #define QuatAdd(a,b,c) {c[0]=a[0]+b[0];c[1]=a[1]+b[1];c[2]=a[2]+b[2];c[3]=a[3]+b[3];} #define QuatScale(a,b,c) {c[0]=a[0]*b;c[1]=a[1]*b;c[2]=a[2]*b;c[3]=a[3]*b;} // FIXME: this is wrong, do some more research on quaternions //#define QuatMultiply(a,b,c) {c[0]=a[0]*b[0];c[1]=a[1]*b[1];c[2]=a[2]*b[2];c[3]=a[3]*b[3];} // FIXME: this is wrong, do some more research on quaternions //#define QuatMultiplyAdd(a,b,d,c) {c[0]=a[0]*b[0]+d[0];c[1]=a[1]*b[1]+d[1];c[2]=a[2]*b[2]+d[2];c[3]=a[3]*b[3]+d[3];} #define qdist(a,b) ((float) sqrt((b[0]-a[0])*(b[0]-a[0])+(b[1]-a[1])*(b[1]-a[1])+(b[2]-a[2])*(b[2]-a[2])+(b[3]-a[3])*(b[3]-a[3]))) #define qdist2(a,b) ((b[0]-a[0])*(b[0]-a[0])+(b[1]-a[1])*(b[1]-a[1])+(b[2]-a[2])*(b[2]-a[2])+(b[3]-a[3])*(b[3]-a[3])) #define VectorCopy4(a,b) {b[0]=a[0];b[1]=a[1];b[2]=a[2];b[3]=a[3];} void VectorMASlow (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc); vec_t _DotProduct (vec3_t v1, vec3_t v2); void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out); void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out); void _VectorCopy (vec3_t in, vec3_t out); int VectorCompare (vec3_t v1, vec3_t v2); vec_t Length (vec3_t v); float VectorNormalizeLength (vec3_t v); // returns vector length float VectorNormalizeLength2 (vec3_t v, vec3_t dest); // returns vector length void _VectorInverse (vec3_t v); void _VectorScale (vec3_t in, vec_t scale, vec3_t out); int Q_log2(int val); void _VectorNormalizeFast (vec3_t v); float Q_RSqrt(float number); #define NUMVERTEXNORMALS 162 extern float m_bytenormals[NUMVERTEXNORMALS][3]; byte NormalToByte(vec3_t n); void ByteToNormal(byte num, vec3_t n); void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]); void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]); void FloorDivMod (double numer, double denom, int *quotient, int *rem); int GreatestCommonDivisor (int i1, int i2); void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up); // LordHavoc: proper matrix version of AngleVectors void AngleVectorsFLU (vec3_t angles, vec3_t forward, vec3_t left, vec3_t up); // LordHavoc: builds a [3][4] matrix void AngleMatrix (vec3_t angles, vec3_t translate, vec_t matrix[][4]); // LordHavoc: like AngleVectors, but taking a forward vector instead of angles, useful! void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up); void VectorVectorsDouble(const double *forward, double *right, double *up); void PlaneClassify(struct mplane_s *p); #define BOX_ON_PLANE_SIDE(emins, emaxs, p) \ (((p)->type < 3)? \ ( \ ((p)->dist <= (emins)[(p)->type])? \ 1 \ : \ ( \ ((p)->dist >= (emaxs)[(p)->type])?\ 2 \ : \ 3 \ ) \ ) \ : \ (p)->BoxOnPlaneSideFunc( (emins), (emaxs), (p))) #define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) #define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) //#define PlaneDist(point,plane) (DotProduct((point), (plane)->normal)) //#define PlaneDiff(point,plane) (DotProduct((point), (plane)->normal) - (plane)->dist) // LordHavoc: minimal plane structure typedef struct { float normal[3], dist; } tinyplane_t; typedef struct { double normal[3], dist; } tinydoubleplane_t; void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees);