#include "mod_skeletal_animatevertices_generic.h" typedef struct { float f[12]; } float12_t; void Mod_Skeletal_AnimateVertices_Generic(const dp_model_t * RESTRICT model, const frameblend_t * RESTRICT frameblend, const skeleton_t *skeleton, float * RESTRICT vertex3f, float * RESTRICT normal3f, float * RESTRICT svector3f, float * RESTRICT tvector3f) { // vertex weighted skeletal int i, k; int blends; float12_t *bonepose; float12_t *boneposerelative; float m[12]; const blendweights_t * RESTRICT weights; //unsigned long long ts = rdtsc(); bonepose = (float12_t *) Mod_Skeletal_AnimateVertices_AllocBuffers(sizeof(float12_t) * (model->num_bones*2 + model->surfmesh.num_blends)); boneposerelative = bonepose + model->num_bones; if (skeleton && !skeleton->relativetransforms) skeleton = NULL; // interpolate matrices if (skeleton) { for (i = 0;i < model->num_bones;i++) { Matrix4x4_ToArray12FloatD3D(&skeleton->relativetransforms[i], m); if (model->data_bones[i].parent >= 0) R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f); else memcpy(bonepose[i].f, m, sizeof(m)); // create a relative deformation matrix to describe displacement // from the base mesh, which is used by the actual weighting R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f); } } else { for (i = 0;i < model->num_bones;i++) { const short * RESTRICT pose7s = model->data_poses7s + 7 * (frameblend[0].subframe * model->num_bones + i); float lerp = frameblend[0].lerp, tx = pose7s[0], ty = pose7s[1], tz = pose7s[2], rx = pose7s[3] * lerp, ry = pose7s[4] * lerp, rz = pose7s[5] * lerp, rw = pose7s[6] * lerp, dx = tx*rw + ty*rz - tz*ry, dy = -tx*rz + ty*rw + tz*rx, dz = tx*ry - ty*rx + tz*rw, dw = -tx*rx - ty*ry - tz*rz, scale, sx, sy, sz, sw; for (blends = 1;blends < MAX_FRAMEBLENDS && frameblend[blends].lerp > 0;blends++) { const short * RESTRICT pose7s = model->data_poses7s + 7 * (frameblend[blends].subframe * model->num_bones + i); float lerp = frameblend[blends].lerp, tx = pose7s[0], ty = pose7s[1], tz = pose7s[2], qx = pose7s[3], qy = pose7s[4], qz = pose7s[5], qw = pose7s[6]; if(rx*qx + ry*qy + rz*qz + rw*qw < 0) lerp = -lerp; qx *= lerp; qy *= lerp; qz *= lerp; qw *= lerp; rx += qx; ry += qy; rz += qz; rw += qw; dx += tx*qw + ty*qz - tz*qy; dy += -tx*qz + ty*qw + tz*qx; dz += tx*qy - ty*qx + tz*qw; dw += -tx*qx - ty*qy - tz*qz; } scale = 1.0f / (rx*rx + ry*ry + rz*rz + rw*rw); sx = rx * scale; sy = ry * scale; sz = rz * scale; sw = rw * scale; m[0] = sw*rw + sx*rx - sy*ry - sz*rz; m[1] = 2*(sx*ry - sw*rz); m[2] = 2*(sx*rz + sw*ry); m[3] = model->num_posescale*(dx*sw - dy*sz + dz*sy - dw*sx); m[4] = 2*(sx*ry + sw*rz); m[5] = sw*rw + sy*ry - sx*rx - sz*rz; m[6] = 2*(sy*rz - sw*rx); m[7] = model->num_posescale*(dx*sz + dy*sw - dz*sx - dw*sy); m[8] = 2*(sx*rz - sw*ry); m[9] = 2*(sy*rz + sw*rx); m[10] = sw*rw + sz*rz - sx*rx - sy*ry; m[11] = model->num_posescale*(dy*sx + dz*sw - dx*sy - dw*sz); if (i == r_skeletal_debugbone.integer) m[r_skeletal_debugbonecomponent.integer % 12] += r_skeletal_debugbonevalue.value; m[3] *= r_skeletal_debugtranslatex.value; m[7] *= r_skeletal_debugtranslatey.value; m[11] *= r_skeletal_debugtranslatez.value; if (model->data_bones[i].parent >= 0) R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f); else memcpy(bonepose[i].f, m, sizeof(m)); // create a relative deformation matrix to describe displacement // from the base mesh, which is used by the actual weighting R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f); } } // generate matrices for all blend combinations weights = model->surfmesh.data_blendweights; for (i = 0;i < model->surfmesh.num_blends;i++, weights++) { float * RESTRICT b = boneposerelative[model->num_bones + i].f; const float * RESTRICT m = boneposerelative[weights->index[0]].f; float f = weights->influence[0] * (1.0f / 255.0f); b[ 0] = f*m[ 0]; b[ 1] = f*m[ 1]; b[ 2] = f*m[ 2]; b[ 3] = f*m[ 3]; b[ 4] = f*m[ 4]; b[ 5] = f*m[ 5]; b[ 6] = f*m[ 6]; b[ 7] = f*m[ 7]; b[ 8] = f*m[ 8]; b[ 9] = f*m[ 9]; b[10] = f*m[10]; b[11] = f*m[11]; for (k = 1;k < 4 && weights->influence[k];k++) { m = boneposerelative[weights->index[k]].f; f = weights->influence[k] * (1.0f / 255.0f); b[ 0] += f*m[ 0]; b[ 1] += f*m[ 1]; b[ 2] += f*m[ 2]; b[ 3] += f*m[ 3]; b[ 4] += f*m[ 4]; b[ 5] += f*m[ 5]; b[ 6] += f*m[ 6]; b[ 7] += f*m[ 7]; b[ 8] += f*m[ 8]; b[ 9] += f*m[ 9]; b[10] += f*m[10]; b[11] += f*m[11]; } } #define LOAD_MATRIX_SCALAR() const float * RESTRICT m = boneposerelative[*b].f #define LOAD_MATRIX3() \ LOAD_MATRIX_SCALAR() #define LOAD_MATRIX4() \ LOAD_MATRIX_SCALAR() #define TRANSFORM_POSITION_SCALAR(in, out) \ (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2] + m[3]); \ (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6] + m[7]); \ (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10] + m[11]); #define TRANSFORM_VECTOR_SCALAR(in, out) \ (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2]); \ (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6]); \ (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10]); #define TRANSFORM_POSITION(in, out) \ TRANSFORM_POSITION_SCALAR(in, out) #define TRANSFORM_VECTOR(in, out) \ TRANSFORM_VECTOR_SCALAR(in, out) // transform vertex attributes by blended matrices if (vertex3f) { const float * RESTRICT v = model->surfmesh.data_vertex3f; const unsigned short * RESTRICT b = model->surfmesh.blends; // special case common combinations of attributes to avoid repeated loading of matrices if (normal3f) { const float * RESTRICT n = model->surfmesh.data_normal3f; if (svector3f && tvector3f) { const float * RESTRICT sv = model->surfmesh.data_svector3f; const float * RESTRICT tv = model->surfmesh.data_tvector3f; // Note that for SSE each iteration stores one element past end, so we break one vertex short // and handle that with scalars in that case for (i = 0; i < model->surfmesh.num_vertices; i++, v += 3, n += 3, sv += 3, tv += 3, b++, vertex3f += 3, normal3f += 3, svector3f += 3, tvector3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); TRANSFORM_VECTOR(n, normal3f); TRANSFORM_VECTOR(sv, svector3f); TRANSFORM_VECTOR(tv, tvector3f); } return; } for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, n += 3, b++, vertex3f += 3, normal3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); TRANSFORM_VECTOR(n, normal3f); } } else { for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, b++, vertex3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); } } } else if (normal3f) { const float * RESTRICT n = model->surfmesh.data_normal3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < model->surfmesh.num_vertices; i++, n += 3, b++, normal3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(n, normal3f); } } if (svector3f) { const float * RESTRICT sv = model->surfmesh.data_svector3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < model->surfmesh.num_vertices; i++, sv += 3, b++, svector3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(sv, svector3f); } } if (tvector3f) { const float * RESTRICT tv = model->surfmesh.data_tvector3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < model->surfmesh.num_vertices; i++, tv += 3, b++, tvector3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(tv, tvector3f); } } }