#include "mod_skeletal_animatevertices_generic.h" typedef struct { float f[12]; } float12_t; void Mod_Skeletal_AnimateVertices_Generic(const dp_model_t * RESTRICT model, const frameblend_t * RESTRICT frameblend, const skeleton_t *skeleton, float * RESTRICT vertex3f, float * RESTRICT normal3f, float * RESTRICT svector3f, float * RESTRICT tvector3f) { // vertex weighted skeletal int i, k; int blends; float12_t *bonepose; float12_t *boneposerelative; float m[12]; const blendweights_t * RESTRICT weights; if (!model->surfmesh.num_vertices) return; //unsigned long long ts = rdtsc(); bonepose = (float12_t *) Mod_Skeletal_AnimateVertices_AllocBuffers(sizeof(float12_t) * (model->num_bones*2 + model->surfmesh.num_blends)); boneposerelative = bonepose + model->num_bones; if (skeleton && !skeleton->relativetransforms) skeleton = NULL; // interpolate matrices if (skeleton) { for (i = 0;i < model->num_bones;i++) { Matrix4x4_ToArray12FloatD3D(&skeleton->relativetransforms[i], m); if (model->data_bones[i].parent >= 0) R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f); else memcpy(bonepose[i].f, m, sizeof(m)); // create a relative deformation matrix to describe displacement // from the base mesh, which is used by the actual weighting R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f); } } else { float originscale = model->num_posescale; float x,y,z,w,lerp; const short * RESTRICT pose6s; for (i = 0;i < model->num_bones;i++) { memset(m, 0, sizeof(m)); for (blends = 0;blends < MAX_FRAMEBLENDS && frameblend[blends].lerp > 0;blends++) { pose6s = model->data_poses6s + 6 * (frameblend[blends].subframe * model->num_bones + i); lerp = frameblend[blends].lerp; x = pose6s[3] * (1.0f / 32767.0f); y = pose6s[4] * (1.0f / 32767.0f); z = pose6s[5] * (1.0f / 32767.0f); w = 1.0f - (x*x+y*y+z*z); w = w > 0.0f ? -sqrt(w) : 0.0f; m[ 0] += (1-2*(y*y+z*z)) * lerp; m[ 1] += ( 2*(x*y-z*w)) * lerp; m[ 2] += ( 2*(x*z+y*w)) * lerp; m[ 3] += (pose6s[0] * originscale) * lerp; m[ 4] += ( 2*(x*y+z*w)) * lerp; m[ 5] += (1-2*(x*x+z*z)) * lerp; m[ 6] += ( 2*(y*z-x*w)) * lerp; m[ 7] += (pose6s[1] * originscale) * lerp; m[ 8] += ( 2*(x*z-y*w)) * lerp; m[ 9] += ( 2*(y*z+x*w)) * lerp; m[10] += (1-2*(x*x+y*y)) * lerp; m[11] += (pose6s[2] * originscale) * lerp; } VectorNormalize(m ); VectorNormalize(m + 4); VectorNormalize(m + 8); if (i == r_skeletal_debugbone.integer) m[r_skeletal_debugbonecomponent.integer % 12] += r_skeletal_debugbonevalue.value; m[3] *= r_skeletal_debugtranslatex.value; m[7] *= r_skeletal_debugtranslatey.value; m[11] *= r_skeletal_debugtranslatez.value; if (model->data_bones[i].parent >= 0) R_ConcatTransforms(bonepose[model->data_bones[i].parent].f, m, bonepose[i].f); else memcpy(bonepose[i].f, m, sizeof(m)); // create a relative deformation matrix to describe displacement // from the base mesh, which is used by the actual weighting R_ConcatTransforms(bonepose[i].f, model->data_baseboneposeinverse + i * 12, boneposerelative[i].f); } } // generate matrices for all blend combinations weights = model->surfmesh.data_blendweights; for (i = 0;i < model->surfmesh.num_blends;i++, weights++) { float * RESTRICT b = boneposerelative[model->num_bones + i].f; const float * RESTRICT m = boneposerelative[weights->index[0]].f; float f = weights->influence[0] * (1.0f / 255.0f); b[ 0] = f*m[ 0]; b[ 1] = f*m[ 1]; b[ 2] = f*m[ 2]; b[ 3] = f*m[ 3]; b[ 4] = f*m[ 4]; b[ 5] = f*m[ 5]; b[ 6] = f*m[ 6]; b[ 7] = f*m[ 7]; b[ 8] = f*m[ 8]; b[ 9] = f*m[ 9]; b[10] = f*m[10]; b[11] = f*m[11]; for (k = 1;k < 4 && weights->influence[k];k++) { m = boneposerelative[weights->index[k]].f; f = weights->influence[k] * (1.0f / 255.0f); b[ 0] += f*m[ 0]; b[ 1] += f*m[ 1]; b[ 2] += f*m[ 2]; b[ 3] += f*m[ 3]; b[ 4] += f*m[ 4]; b[ 5] += f*m[ 5]; b[ 6] += f*m[ 6]; b[ 7] += f*m[ 7]; b[ 8] += f*m[ 8]; b[ 9] += f*m[ 9]; b[10] += f*m[10]; b[11] += f*m[11]; } } #define LOAD_MATRIX_SCALAR() const float * RESTRICT m = boneposerelative[*b].f #define LOAD_MATRIX3() \ LOAD_MATRIX_SCALAR() #define LOAD_MATRIX4() \ LOAD_MATRIX_SCALAR() #define TRANSFORM_POSITION_SCALAR(in, out) \ (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2] + m[3]); \ (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6] + m[7]); \ (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10] + m[11]); #define TRANSFORM_VECTOR_SCALAR(in, out) \ (out)[0] = ((in)[0] * m[0] + (in)[1] * m[1] + (in)[2] * m[ 2]); \ (out)[1] = ((in)[0] * m[4] + (in)[1] * m[5] + (in)[2] * m[ 6]); \ (out)[2] = ((in)[0] * m[8] + (in)[1] * m[9] + (in)[2] * m[10]); #define TRANSFORM_POSITION(in, out) \ TRANSFORM_POSITION_SCALAR(in, out) #define TRANSFORM_VECTOR(in, out) \ TRANSFORM_VECTOR_SCALAR(in, out) // transform vertex attributes by blended matrices if (vertex3f) { const float * RESTRICT v = model->surfmesh.data_vertex3f; const unsigned short * RESTRICT b = model->surfmesh.blends; // special case common combinations of attributes to avoid repeated loading of matrices if (normal3f) { const float * RESTRICT n = model->surfmesh.data_normal3f; if (svector3f && tvector3f) { const float * RESTRICT sv = model->surfmesh.data_svector3f; const float * RESTRICT tv = model->surfmesh.data_tvector3f; // Note that for SSE each iteration stores one element past end, so we break one vertex short // and handle that with scalars in that case for (i = 0; i < model->surfmesh.num_vertices; i++, v += 3, n += 3, sv += 3, tv += 3, b++, vertex3f += 3, normal3f += 3, svector3f += 3, tvector3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); TRANSFORM_VECTOR(n, normal3f); TRANSFORM_VECTOR(sv, svector3f); TRANSFORM_VECTOR(tv, tvector3f); } return; } for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, n += 3, b++, vertex3f += 3, normal3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); TRANSFORM_VECTOR(n, normal3f); } } else { for (i = 0;i < model->surfmesh.num_vertices; i++, v += 3, b++, vertex3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); } } } else if (normal3f) { const float * RESTRICT n = model->surfmesh.data_normal3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < model->surfmesh.num_vertices; i++, n += 3, b++, normal3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(n, normal3f); } } if (svector3f) { const float * RESTRICT sv = model->surfmesh.data_svector3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < model->surfmesh.num_vertices; i++, sv += 3, b++, svector3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(sv, svector3f); } } if (tvector3f) { const float * RESTRICT tv = model->surfmesh.data_tvector3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < model->surfmesh.num_vertices; i++, tv += 3, b++, tvector3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(tv, tvector3f); } } }