#include "mod_skeletal_animatevertices_sse.h" #ifdef SSE_POSSIBLE #ifdef MATRIX4x4_OPENGLORIENTATION #error "SSE skeletal requires D3D matrix layout" #endif #include void Mod_Skeletal_AnimateVertices_SSE(const dp_model_t * RESTRICT model, const frameblend_t * RESTRICT frameblend, const skeleton_t *skeleton, float * RESTRICT vertex3f, float * RESTRICT normal3f, float * RESTRICT svector3f, float * RESTRICT tvector3f) { // vertex weighted skeletal int i, k; int blends; matrix4x4_t *bonepose; matrix4x4_t *boneposerelative; float m[12]; matrix4x4_t mm, mm2; const blendweights_t * RESTRICT weights; int num_vertices_minus_one; num_vertices_minus_one = model->surfmesh.num_vertices - 1; //unsigned long long ts = rdtsc(); bonepose = (matrix4x4_t *) Mod_Skeletal_AnimateVertices_AllocBuffers(sizeof(matrix4x4_t) * (model->num_bones*2 + model->surfmesh.num_blends)); boneposerelative = bonepose + model->num_bones; if (skeleton && !skeleton->relativetransforms) skeleton = NULL; // interpolate matrices if (skeleton) { for (i = 0;i < model->num_bones;i++) { // relativetransforms is in GL column-major order, which is what we need for SSE // transposed style processing if (model->data_bones[i].parent >= 0) Matrix4x4_Concat(&bonepose[i], &bonepose[model->data_bones[i].parent], &skeleton->relativetransforms[i]); else memcpy(&bonepose[i], &skeleton->relativetransforms[i], sizeof(matrix4x4_t)); // create a relative deformation matrix to describe displacement // from the base mesh, which is used by the actual weighting Matrix4x4_FromArray12FloatD3D(&mm, model->data_baseboneposeinverse + i * 12); // baseboneposeinverse is 4x3 row-major Matrix4x4_Concat(&mm2, &bonepose[i], &mm); Matrix4x4_Transpose(&boneposerelative[i], &mm2); // TODO: Eliminate this transpose } } else { float originscale = model->num_posescale; float x,y,z,w,lerp; const short * RESTRICT pose6s; for (i = 0;i < model->num_bones;i++) { memset(m, 0, sizeof(m)); for (blends = 0;blends < MAX_FRAMEBLENDS && frameblend[blends].lerp > 0;blends++) { pose6s = model->data_poses6s + 6 * (frameblend[blends].subframe * model->num_bones + i); lerp = frameblend[blends].lerp; x = pose6s[3] * (1.0f / 32767.0f); y = pose6s[4] * (1.0f / 32767.0f); z = pose6s[5] * (1.0f / 32767.0f); w = 1.0f - (x*x+y*y+z*z); w = w > 0.0f ? -sqrt(w) : 0.0f; m[ 0] += (1-2*(y*y+z*z)) * lerp; m[ 1] += ( 2*(x*y-z*w)) * lerp; m[ 2] += ( 2*(x*z+y*w)) * lerp; m[ 3] += (pose6s[0] * originscale) * lerp; m[ 4] += ( 2*(x*y+z*w)) * lerp; m[ 5] += (1-2*(x*x+z*z)) * lerp; m[ 6] += ( 2*(y*z-x*w)) * lerp; m[ 7] += (pose6s[1] * originscale) * lerp; m[ 8] += ( 2*(x*z-y*w)) * lerp; m[ 9] += ( 2*(y*z+x*w)) * lerp; m[10] += (1-2*(x*x+y*y)) * lerp; m[11] += (pose6s[2] * originscale) * lerp; } VectorNormalize(m ); VectorNormalize(m + 4); VectorNormalize(m + 8); if (i == r_skeletal_debugbone.integer) m[r_skeletal_debugbonecomponent.integer % 12] += r_skeletal_debugbonevalue.value; m[3] *= r_skeletal_debugtranslatex.value; m[7] *= r_skeletal_debugtranslatey.value; m[11] *= r_skeletal_debugtranslatez.value; Matrix4x4_FromArray12FloatD3D(&mm, m); if (model->data_bones[i].parent >= 0) Matrix4x4_Concat(&bonepose[i], &bonepose[model->data_bones[i].parent], &mm); else memcpy(&bonepose[i], &mm, sizeof(mm)); // create a relative deformation matrix to describe displacement // from the base mesh, which is used by the actual weighting Matrix4x4_FromArray12FloatD3D(&mm, model->data_baseboneposeinverse + i * 12); // baseboneposeinverse is 4x3 row-major Matrix4x4_Concat(&mm2, &bonepose[i], &mm); Matrix4x4_Transpose(&boneposerelative[i], &mm2); // TODO: Eliminate this transpose } } // generate matrices for all blend combinations weights = model->surfmesh.data_blendweights; for (i = 0;i < model->surfmesh.num_blends;i++, weights++) { float * RESTRICT b = &boneposerelative[model->num_bones + i].m[0][0]; const float * RESTRICT m = &boneposerelative[weights->index[0]].m[0][0]; float f = weights->influence[0] * (1.0f / 255.0f); __m128 fv = _mm_set_ps1(f); __m128 b0 = _mm_load_ps(m); __m128 b1 = _mm_load_ps(m+4); __m128 b2 = _mm_load_ps(m+8); __m128 b3 = _mm_load_ps(m+12); __m128 m0, m1, m2, m3; b0 = _mm_mul_ps(b0, fv); b1 = _mm_mul_ps(b1, fv); b2 = _mm_mul_ps(b2, fv); b3 = _mm_mul_ps(b3, fv); for (k = 1;k < 4 && weights->influence[k];k++) { m = &boneposerelative[weights->index[k]].m[0][0]; f = weights->influence[k] * (1.0f / 255.0f); fv = _mm_set_ps1(f); m0 = _mm_load_ps(m); m1 = _mm_load_ps(m+4); m2 = _mm_load_ps(m+8); m3 = _mm_load_ps(m+12); m0 = _mm_mul_ps(m0, fv); m1 = _mm_mul_ps(m1, fv); m2 = _mm_mul_ps(m2, fv); m3 = _mm_mul_ps(m3, fv); b0 = _mm_add_ps(m0, b0); b1 = _mm_add_ps(m1, b1); b2 = _mm_add_ps(m2, b2); b3 = _mm_add_ps(m3, b3); } _mm_store_ps(b, b0); _mm_store_ps(b+4, b1); _mm_store_ps(b+8, b2); _mm_store_ps(b+12, b3); } #define LOAD_MATRIX_SCALAR() const float * RESTRICT m = &boneposerelative[*b].m[0][0] #define LOAD_MATRIX3() \ const float * RESTRICT m = &boneposerelative[*b].m[0][0]; \ /* bonepose array is 16 byte aligned */ \ __m128 m1 = _mm_load_ps((m)); \ __m128 m2 = _mm_load_ps((m)+4); \ __m128 m3 = _mm_load_ps((m)+8); #define LOAD_MATRIX4() \ const float * RESTRICT m = &boneposerelative[*b].m[0][0]; \ /* bonepose array is 16 byte aligned */ \ __m128 m1 = _mm_load_ps((m)); \ __m128 m2 = _mm_load_ps((m)+4); \ __m128 m3 = _mm_load_ps((m)+8); \ __m128 m4 = _mm_load_ps((m)+12) /* Note that matrix is 4x4 and transposed compared to non-USE_SSE codepath */ #define TRANSFORM_POSITION_SCALAR(in, out) \ (out)[0] = ((in)[0] * m[0] + (in)[1] * m[4] + (in)[2] * m[ 8] + m[12]); \ (out)[1] = ((in)[0] * m[1] + (in)[1] * m[5] + (in)[2] * m[ 9] + m[13]); \ (out)[2] = ((in)[0] * m[2] + (in)[1] * m[6] + (in)[2] * m[10] + m[14]); #define TRANSFORM_VECTOR_SCALAR(in, out) \ (out)[0] = ((in)[0] * m[0] + (in)[1] * m[4] + (in)[2] * m[ 8]); \ (out)[1] = ((in)[0] * m[1] + (in)[1] * m[5] + (in)[2] * m[ 9]); \ (out)[2] = ((in)[0] * m[2] + (in)[1] * m[6] + (in)[2] * m[10]); #define TRANSFORM_POSITION(in, out) { \ __m128 pin = _mm_loadu_ps(in); /* we ignore the value in the last element (x from the next vertex) */ \ __m128 x = _mm_shuffle_ps(pin, pin, 0x0); \ __m128 t1 = _mm_mul_ps(x, m1); \ \ /* y, + x */ \ __m128 y = _mm_shuffle_ps(pin, pin, 0x55); \ __m128 t2 = _mm_mul_ps(y, m2); \ __m128 t3 = _mm_add_ps(t1, t2); \ \ /* z, + (y+x) */ \ __m128 z = _mm_shuffle_ps(pin, pin, 0xaa); \ __m128 t4 = _mm_mul_ps(z, m3); \ __m128 t5 = _mm_add_ps(t3, t4); \ \ /* + m3 */ \ __m128 pout = _mm_add_ps(t5, m4); \ _mm_storeu_ps((out), pout); \ } #define TRANSFORM_VECTOR(in, out) { \ __m128 vin = _mm_loadu_ps(in); \ \ /* x */ \ __m128 x = _mm_shuffle_ps(vin, vin, 0x0); \ __m128 t1 = _mm_mul_ps(x, m1); \ \ /* y, + x */ \ __m128 y = _mm_shuffle_ps(vin, vin, 0x55); \ __m128 t2 = _mm_mul_ps(y, m2); \ __m128 t3 = _mm_add_ps(t1, t2); \ \ /* nz, + (ny + nx) */ \ __m128 z = _mm_shuffle_ps(vin, vin, 0xaa); \ __m128 t4 = _mm_mul_ps(z, m3); \ __m128 vout = _mm_add_ps(t3, t4); \ _mm_storeu_ps((out), vout); \ } // transform vertex attributes by blended matrices if (vertex3f) { const float * RESTRICT v = model->surfmesh.data_vertex3f; const unsigned short * RESTRICT b = model->surfmesh.blends; // special case common combinations of attributes to avoid repeated loading of matrices if (normal3f) { const float * RESTRICT n = model->surfmesh.data_normal3f; if (svector3f && tvector3f) { const float * RESTRICT sv = model->surfmesh.data_svector3f; const float * RESTRICT tv = model->surfmesh.data_tvector3f; // Note that for SSE each iteration stores one element past end, so we break one vertex short // and handle that with scalars in that case for (i = 0; i < num_vertices_minus_one; i++, v += 3, n += 3, sv += 3, tv += 3, b++, vertex3f += 3, normal3f += 3, svector3f += 3, tvector3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); TRANSFORM_VECTOR(n, normal3f); TRANSFORM_VECTOR(sv, svector3f); TRANSFORM_VECTOR(tv, tvector3f); } // Last vertex needs to be done with scalars to avoid reading/writing 1 word past end of arrays { LOAD_MATRIX_SCALAR(); TRANSFORM_POSITION_SCALAR(v, vertex3f); TRANSFORM_VECTOR_SCALAR(n, normal3f); TRANSFORM_VECTOR_SCALAR(sv, svector3f); TRANSFORM_VECTOR_SCALAR(tv, tvector3f); } //printf("elapsed ticks: %llu\n", rdtsc() - ts); // XXX return; } for (i = 0;i < num_vertices_minus_one; i++, v += 3, n += 3, b++, vertex3f += 3, normal3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); TRANSFORM_VECTOR(n, normal3f); } { LOAD_MATRIX_SCALAR(); TRANSFORM_POSITION_SCALAR(v, vertex3f); TRANSFORM_VECTOR_SCALAR(n, normal3f); } } else { for (i = 0;i < num_vertices_minus_one; i++, v += 3, b++, vertex3f += 3) { LOAD_MATRIX4(); TRANSFORM_POSITION(v, vertex3f); } { LOAD_MATRIX_SCALAR(); TRANSFORM_POSITION_SCALAR(v, vertex3f); } } } else if (normal3f) { const float * RESTRICT n = model->surfmesh.data_normal3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < num_vertices_minus_one; i++, n += 3, b++, normal3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(n, normal3f); } { LOAD_MATRIX_SCALAR(); TRANSFORM_VECTOR_SCALAR(n, normal3f); } } if (svector3f) { const float * RESTRICT sv = model->surfmesh.data_svector3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < num_vertices_minus_one; i++, sv += 3, b++, svector3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(sv, svector3f); } { LOAD_MATRIX_SCALAR(); TRANSFORM_VECTOR_SCALAR(sv, svector3f); } } if (tvector3f) { const float * RESTRICT tv = model->surfmesh.data_tvector3f; const unsigned short * RESTRICT b = model->surfmesh.blends; for (i = 0; i < num_vertices_minus_one; i++, tv += 3, b++, tvector3f += 3) { LOAD_MATRIX3(); TRANSFORM_VECTOR(tv, tvector3f); } { LOAD_MATRIX_SCALAR(); TRANSFORM_VECTOR_SCALAR(tv, tvector3f); } } #undef LOAD_MATRIX3 #undef LOAD_MATRIX4 #undef TRANSFORM_POSITION #undef TRANSFORM_VECTOR #undef LOAD_MATRIX_SCALAR #undef TRANSFORM_POSITION_SCALAR #undef TRANSFORM_VECTOR_SCALAR } #endif