/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "quakedef.h" #include "image.h" #include "r_shadow.h" #include "polygon.h" #include "curves.h" #include "wad.h" //cvar_t r_subdivide_size = {CVAR_SAVE, "r_subdivide_size", "128", "how large water polygons should be (smaller values produce more polygons which give better warping effects)"}; cvar_t mod_bsp_portalize = {0, "mod_bsp_portalize", "1", "enables portal generation from BSP tree (may take several seconds per map), used by r_drawportals, r_useportalculling, r_shadow_realtime_world_compileportalculling, sv_cullentities_portal"}; cvar_t r_novis = {0, "r_novis", "0", "draws whole level, see also sv_cullentities_pvs 0"}; cvar_t r_nosurftextures = {0, "r_nosurftextures", "0", "pretends there was no texture lump found in the q1bsp/hlbsp loading (useful for debugging this rare case)"}; cvar_t r_subdivisions_tolerance = {0, "r_subdivisions_tolerance", "4", "maximum error tolerance on curve subdivision for rendering purposes (in other words, the curves will be given as many polygons as necessary to represent curves at this quality)"}; cvar_t r_subdivisions_mintess = {0, "r_subdivisions_mintess", "0", "minimum number of subdivisions (values above 0 will smooth curves that don't need it)"}; cvar_t r_subdivisions_maxtess = {0, "r_subdivisions_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"}; cvar_t r_subdivisions_maxvertices = {0, "r_subdivisions_maxvertices", "65536", "maximum vertices allowed per subdivided curve"}; cvar_t r_subdivisions_collision_tolerance = {0, "r_subdivisions_collision_tolerance", "15", "maximum error tolerance on curve subdivision for collision purposes (usually a larger error tolerance than for rendering)"}; cvar_t r_subdivisions_collision_mintess = {0, "r_subdivisions_collision_mintess", "0", "minimum number of subdivisions (values above 0 will smooth curves that don't need it)"}; cvar_t r_subdivisions_collision_maxtess = {0, "r_subdivisions_collision_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"}; cvar_t r_subdivisions_collision_maxvertices = {0, "r_subdivisions_collision_maxvertices", "4225", "maximum vertices allowed per subdivided curve"}; cvar_t mod_q3bsp_curves_collisions = {0, "mod_q3bsp_curves_collisions", "1", "enables collisions with curves (SLOW)"}; cvar_t mod_q3bsp_curves_collisions_stride = {0, "mod_q3bsp_curves_collisions_stride", "16", "collisions against curves: optimize performance by doing a combined collision check for this triangle amount first (-1 avoids any box tests)"}; cvar_t mod_q3bsp_curves_stride = {0, "mod_q3bsp_curves_stride", "16", "particle effect collisions against curves: optimize performance by doing a combined collision check for this triangle amount first (-1 avoids any box tests)"}; cvar_t mod_q3bsp_optimizedtraceline = {0, "mod_q3bsp_optimizedtraceline", "1", "whether to use optimized traceline code for line traces (as opposed to tracebox code)"}; cvar_t mod_q3bsp_debugtracebrush = {0, "mod_q3bsp_debugtracebrush", "0", "selects different tracebrush bsp recursion algorithms (for debugging purposes only)"}; cvar_t mod_q3bsp_lightmapmergepower = {CVAR_SAVE, "mod_q3bsp_lightmapmergepower", "4", "merges the quake3 128x128 lightmap textures into larger lightmap group textures to speed up rendering, 1 = 256x256, 2 = 512x512, 3 = 1024x1024, 4 = 2048x2048, 5 = 4096x4096, ..."}; cvar_t mod_q3bsp_nolightmaps = {CVAR_SAVE, "mod_q3bsp_nolightmaps", "0", "do not load lightmaps in Q3BSP maps (to save video RAM, but be warned: it looks ugly)"}; cvar_t mod_q3bsp_tracelineofsight_brushes = {0, "mod_q3bsp_tracelineofsight_brushes", "0", "enables culling of entities behind detail brushes, curves, etc"}; cvar_t mod_q3shader_default_offsetmapping = {CVAR_SAVE, "mod_q3shader_default_offsetmapping", "1", "use offsetmapping by default on all surfaces"}; cvar_t mod_q3shader_default_polygonfactor = {0, "mod_q3shader_default_polygonfactor", "0", "biases depth values of 'polygonoffset' shaders to prevent z-fighting artifacts"}; cvar_t mod_q3shader_default_polygonoffset = {0, "mod_q3shader_default_polygonoffset", "-2", "biases depth values of 'polygonoffset' shaders to prevent z-fighting artifacts"}; cvar_t mod_q1bsp_polygoncollisions = {0, "mod_q1bsp_polygoncollisions", "0", "disables use of precomputed cliphulls and instead collides with polygons (uses Bounding Interval Hierarchy optimizations)"}; cvar_t mod_collision_bih = {0, "mod_collision_bih", "1", "enables use of generated Bounding Interval Hierarchy tree instead of compiled bsp tree in collision code"}; cvar_t mod_recalculatenodeboxes = {0, "mod_recalculatenodeboxes", "1", "enables use of generated node bounding boxes based on BSP tree portal reconstruction, rather than the node boxes supplied by the map compiler"}; static texture_t mod_q1bsp_texture_solid; static texture_t mod_q1bsp_texture_sky; static texture_t mod_q1bsp_texture_lava; static texture_t mod_q1bsp_texture_slime; static texture_t mod_q1bsp_texture_water; void Mod_BrushInit(void) { // Cvar_RegisterVariable(&r_subdivide_size); Cvar_RegisterVariable(&mod_bsp_portalize); Cvar_RegisterVariable(&r_novis); Cvar_RegisterVariable(&r_nosurftextures); Cvar_RegisterVariable(&r_subdivisions_tolerance); Cvar_RegisterVariable(&r_subdivisions_mintess); Cvar_RegisterVariable(&r_subdivisions_maxtess); Cvar_RegisterVariable(&r_subdivisions_maxvertices); Cvar_RegisterVariable(&r_subdivisions_collision_tolerance); Cvar_RegisterVariable(&r_subdivisions_collision_mintess); Cvar_RegisterVariable(&r_subdivisions_collision_maxtess); Cvar_RegisterVariable(&r_subdivisions_collision_maxvertices); Cvar_RegisterVariable(&mod_q3bsp_curves_collisions); Cvar_RegisterVariable(&mod_q3bsp_curves_collisions_stride); Cvar_RegisterVariable(&mod_q3bsp_curves_stride); Cvar_RegisterVariable(&mod_q3bsp_optimizedtraceline); Cvar_RegisterVariable(&mod_q3bsp_debugtracebrush); Cvar_RegisterVariable(&mod_q3bsp_lightmapmergepower); Cvar_RegisterVariable(&mod_q3bsp_nolightmaps); Cvar_RegisterVariable(&mod_q3bsp_tracelineofsight_brushes); Cvar_RegisterVariable(&mod_q3shader_default_offsetmapping); Cvar_RegisterVariable(&mod_q3shader_default_polygonfactor); Cvar_RegisterVariable(&mod_q3shader_default_polygonoffset); Cvar_RegisterVariable(&mod_q1bsp_polygoncollisions); Cvar_RegisterVariable(&mod_collision_bih); Cvar_RegisterVariable(&mod_recalculatenodeboxes); memset(&mod_q1bsp_texture_solid, 0, sizeof(mod_q1bsp_texture_solid)); strlcpy(mod_q1bsp_texture_solid.name, "solid" , sizeof(mod_q1bsp_texture_solid.name)); mod_q1bsp_texture_solid.surfaceflags = 0; mod_q1bsp_texture_solid.supercontents = SUPERCONTENTS_SOLID; mod_q1bsp_texture_sky = mod_q1bsp_texture_solid; strlcpy(mod_q1bsp_texture_sky.name, "sky", sizeof(mod_q1bsp_texture_sky.name)); mod_q1bsp_texture_sky.surfaceflags = Q3SURFACEFLAG_SKY | Q3SURFACEFLAG_NOIMPACT | Q3SURFACEFLAG_NOMARKS | Q3SURFACEFLAG_NODLIGHT | Q3SURFACEFLAG_NOLIGHTMAP; mod_q1bsp_texture_sky.supercontents = SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP; mod_q1bsp_texture_lava = mod_q1bsp_texture_solid; strlcpy(mod_q1bsp_texture_lava.name, "*lava", sizeof(mod_q1bsp_texture_lava.name)); mod_q1bsp_texture_lava.surfaceflags = Q3SURFACEFLAG_NOMARKS; mod_q1bsp_texture_lava.supercontents = SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP; mod_q1bsp_texture_slime = mod_q1bsp_texture_solid; strlcpy(mod_q1bsp_texture_slime.name, "*slime", sizeof(mod_q1bsp_texture_slime.name)); mod_q1bsp_texture_slime.surfaceflags = Q3SURFACEFLAG_NOMARKS; mod_q1bsp_texture_slime.supercontents = SUPERCONTENTS_SLIME; mod_q1bsp_texture_water = mod_q1bsp_texture_solid; strlcpy(mod_q1bsp_texture_water.name, "*water", sizeof(mod_q1bsp_texture_water.name)); mod_q1bsp_texture_water.surfaceflags = Q3SURFACEFLAG_NOMARKS; mod_q1bsp_texture_water.supercontents = SUPERCONTENTS_WATER; } static mleaf_t *Mod_Q1BSP_PointInLeaf(dp_model_t *model, const vec3_t p) { mnode_t *node; if (model == NULL) return NULL; // LordHavoc: modified to start at first clip node, // in other words: first node of the (sub)model node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode; while (node->plane) node = node->children[(node->plane->type < 3 ? p[node->plane->type] : DotProduct(p,node->plane->normal)) < node->plane->dist]; return (mleaf_t *)node; } static void Mod_Q1BSP_AmbientSoundLevelsForPoint(dp_model_t *model, const vec3_t p, unsigned char *out, int outsize) { int i; mleaf_t *leaf; leaf = Mod_Q1BSP_PointInLeaf(model, p); if (leaf) { i = min(outsize, (int)sizeof(leaf->ambient_sound_level)); if (i) { memcpy(out, leaf->ambient_sound_level, i); out += i; outsize -= i; } } if (outsize) memset(out, 0, outsize); } static int Mod_Q1BSP_FindBoxClusters(dp_model_t *model, const vec3_t mins, const vec3_t maxs, int maxclusters, int *clusterlist) { int numclusters = 0; int nodestackindex = 0; mnode_t *node, *nodestack[1024]; if (!model->brush.num_pvsclusters) return -1; node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode; for (;;) { #if 1 if (node->plane) { // node - recurse down the BSP tree int sides = BoxOnPlaneSide(mins, maxs, node->plane); if (sides < 3) { if (sides == 0) return -1; // ERROR: NAN bounding box! // box is on one side of plane, take that path node = node->children[sides-1]; } else { // box crosses plane, take one path and remember the other if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; } continue; } else { // leaf - add clusterindex to list if (numclusters < maxclusters) clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex; numclusters++; } #else if (BoxesOverlap(mins, maxs, node->mins, node->maxs)) { if (node->plane) { if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; continue; } else { // leaf - add clusterindex to list if (numclusters < maxclusters) clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex; numclusters++; } } #endif // try another path we didn't take earlier if (nodestackindex == 0) break; node = nodestack[--nodestackindex]; } // return number of clusters found (even if more than the maxclusters) return numclusters; } static int Mod_Q1BSP_BoxTouchingPVS(dp_model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs) { int nodestackindex = 0; mnode_t *node, *nodestack[1024]; if (!model->brush.num_pvsclusters) return true; node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode; for (;;) { #if 1 if (node->plane) { // node - recurse down the BSP tree int sides = BoxOnPlaneSide(mins, maxs, node->plane); if (sides < 3) { if (sides == 0) return -1; // ERROR: NAN bounding box! // box is on one side of plane, take that path node = node->children[sides-1]; } else { // box crosses plane, take one path and remember the other if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; } continue; } else { // leaf - check cluster bit int clusterindex = ((mleaf_t *)node)->clusterindex; if (CHECKPVSBIT(pvs, clusterindex)) { // it is visible, return immediately with the news return true; } } #else if (BoxesOverlap(mins, maxs, node->mins, node->maxs)) { if (node->plane) { if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; continue; } else { // leaf - check cluster bit int clusterindex = ((mleaf_t *)node)->clusterindex; if (CHECKPVSBIT(pvs, clusterindex)) { // it is visible, return immediately with the news return true; } } } #endif // nothing to see here, try another path we didn't take earlier if (nodestackindex == 0) break; node = nodestack[--nodestackindex]; } // it is not visible return false; } static int Mod_Q1BSP_BoxTouchingLeafPVS(dp_model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs) { int nodestackindex = 0; mnode_t *node, *nodestack[1024]; if (!model->brush.num_leafs) return true; node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode; for (;;) { #if 1 if (node->plane) { // node - recurse down the BSP tree int sides = BoxOnPlaneSide(mins, maxs, node->plane); if (sides < 3) { if (sides == 0) return -1; // ERROR: NAN bounding box! // box is on one side of plane, take that path node = node->children[sides-1]; } else { // box crosses plane, take one path and remember the other if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; } continue; } else { // leaf - check cluster bit int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs; if (CHECKPVSBIT(pvs, clusterindex)) { // it is visible, return immediately with the news return true; } } #else if (BoxesOverlap(mins, maxs, node->mins, node->maxs)) { if (node->plane) { if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; continue; } else { // leaf - check cluster bit int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs; if (CHECKPVSBIT(pvs, clusterindex)) { // it is visible, return immediately with the news return true; } } } #endif // nothing to see here, try another path we didn't take earlier if (nodestackindex == 0) break; node = nodestack[--nodestackindex]; } // it is not visible return false; } static int Mod_Q1BSP_BoxTouchingVisibleLeafs(dp_model_t *model, const unsigned char *visibleleafs, const vec3_t mins, const vec3_t maxs) { int nodestackindex = 0; mnode_t *node, *nodestack[1024]; if (!model->brush.num_leafs) return true; node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode; for (;;) { #if 1 if (node->plane) { // node - recurse down the BSP tree int sides = BoxOnPlaneSide(mins, maxs, node->plane); if (sides < 3) { if (sides == 0) return -1; // ERROR: NAN bounding box! // box is on one side of plane, take that path node = node->children[sides-1]; } else { // box crosses plane, take one path and remember the other if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; } continue; } else { // leaf - check if it is visible if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs]) { // it is visible, return immediately with the news return true; } } #else if (BoxesOverlap(mins, maxs, node->mins, node->maxs)) { if (node->plane) { if (nodestackindex < 1024) nodestack[nodestackindex++] = node->children[0]; node = node->children[1]; continue; } else { // leaf - check if it is visible if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs]) { // it is visible, return immediately with the news return true; } } } #endif // nothing to see here, try another path we didn't take earlier if (nodestackindex == 0) break; node = nodestack[--nodestackindex]; } // it is not visible return false; } typedef struct findnonsolidlocationinfo_s { vec3_t center; vec3_t absmin, absmax; vec_t radius; vec3_t nudge; vec_t bestdist; dp_model_t *model; } findnonsolidlocationinfo_t; static void Mod_Q1BSP_FindNonSolidLocation_r_Triangle(findnonsolidlocationinfo_t *info, msurface_t *surface, int k) { int i, *tri; float dist, f, vert[3][3], edge[3][3], facenormal[3], edgenormal[3][3], point[3]; tri = (info->model->surfmesh.data_element3i + 3 * surface->num_firsttriangle) + k * 3; VectorCopy((info->model->surfmesh.data_vertex3f + tri[0] * 3), vert[0]); VectorCopy((info->model->surfmesh.data_vertex3f + tri[1] * 3), vert[1]); VectorCopy((info->model->surfmesh.data_vertex3f + tri[2] * 3), vert[2]); VectorSubtract(vert[1], vert[0], edge[0]); VectorSubtract(vert[2], vert[1], edge[1]); CrossProduct(edge[1], edge[0], facenormal); if (facenormal[0] || facenormal[1] || facenormal[2]) { VectorNormalize(facenormal); f = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal); if (f <= info->bestdist && f >= -info->bestdist) { VectorSubtract(vert[0], vert[2], edge[2]); VectorNormalize(edge[0]); VectorNormalize(edge[1]); VectorNormalize(edge[2]); CrossProduct(facenormal, edge[0], edgenormal[0]); CrossProduct(facenormal, edge[1], edgenormal[1]); CrossProduct(facenormal, edge[2], edgenormal[2]); // face distance if (DotProduct(info->center, edgenormal[0]) < DotProduct(vert[0], edgenormal[0]) && DotProduct(info->center, edgenormal[1]) < DotProduct(vert[1], edgenormal[1]) && DotProduct(info->center, edgenormal[2]) < DotProduct(vert[2], edgenormal[2])) { // we got lucky, the center is within the face dist = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal); if (dist < 0) { dist = -dist; if (info->bestdist > dist) { info->bestdist = dist; VectorScale(facenormal, (info->radius - -dist), info->nudge); } } else { if (info->bestdist > dist) { info->bestdist = dist; VectorScale(facenormal, (info->radius - dist), info->nudge); } } } else { // check which edge or vertex the center is nearest for (i = 0;i < 3;i++) { f = DotProduct(info->center, edge[i]); if (f >= DotProduct(vert[0], edge[i]) && f <= DotProduct(vert[1], edge[i])) { // on edge VectorMA(info->center, -f, edge[i], point); dist = sqrt(DotProduct(point, point)); if (info->bestdist > dist) { info->bestdist = dist; VectorScale(point, (info->radius / dist), info->nudge); } // skip both vertex checks // (both are further away than this edge) i++; } else { // not on edge, check first vertex of edge VectorSubtract(info->center, vert[i], point); dist = sqrt(DotProduct(point, point)); if (info->bestdist > dist) { info->bestdist = dist; VectorScale(point, (info->radius / dist), info->nudge); } } } } } } } static void Mod_Q1BSP_FindNonSolidLocation_r_Leaf(findnonsolidlocationinfo_t *info, mleaf_t *leaf) { int surfacenum, k, *mark; msurface_t *surface; for (surfacenum = 0, mark = leaf->firstleafsurface;surfacenum < leaf->numleafsurfaces;surfacenum++, mark++) { surface = info->model->data_surfaces + *mark; if (surface->texture->supercontents & SUPERCONTENTS_SOLID) { if(surface->deprecatedq3num_bboxstride > 0) { int i, cnt, tri; cnt = (surface->num_triangles + surface->deprecatedq3num_bboxstride - 1) / surface->deprecatedq3num_bboxstride; for(i = 0; i < cnt; ++i) { if(BoxesOverlap(surface->deprecatedq3data_bbox6f + i * 6, surface->deprecatedq3data_bbox6f + i * 6 + 3, info->absmin, info->absmax)) { for(k = 0; k < surface->deprecatedq3num_bboxstride; ++k) { tri = i * surface->deprecatedq3num_bboxstride + k; if(tri >= surface->num_triangles) break; Mod_Q1BSP_FindNonSolidLocation_r_Triangle(info, surface, tri); } } } } else { for (k = 0;k < surface->num_triangles;k++) { Mod_Q1BSP_FindNonSolidLocation_r_Triangle(info, surface, k); } } } } } static void Mod_Q1BSP_FindNonSolidLocation_r(findnonsolidlocationinfo_t *info, mnode_t *node) { if (node->plane) { float f = PlaneDiff(info->center, node->plane); if (f >= -info->bestdist) Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[0]); if (f <= info->bestdist) Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[1]); } else { if (((mleaf_t *)node)->numleafsurfaces) Mod_Q1BSP_FindNonSolidLocation_r_Leaf(info, (mleaf_t *)node); } } static void Mod_Q1BSP_FindNonSolidLocation(dp_model_t *model, const vec3_t in, vec3_t out, float radius) { int i; findnonsolidlocationinfo_t info; if (model == NULL) { VectorCopy(in, out); return; } VectorCopy(in, info.center); info.radius = radius; info.model = model; i = 0; do { VectorClear(info.nudge); info.bestdist = radius; VectorCopy(info.center, info.absmin); VectorCopy(info.center, info.absmax); info.absmin[0] -= info.radius + 1; info.absmin[1] -= info.radius + 1; info.absmin[2] -= info.radius + 1; info.absmax[0] += info.radius + 1; info.absmax[1] += info.radius + 1; info.absmax[2] += info.radius + 1; Mod_Q1BSP_FindNonSolidLocation_r(&info, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode); VectorAdd(info.center, info.nudge, info.center); } while (info.bestdist < radius && ++i < 10); VectorCopy(info.center, out); } int Mod_Q1BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents) { switch(nativecontents) { case CONTENTS_EMPTY: return 0; case CONTENTS_SOLID: return SUPERCONTENTS_SOLID | SUPERCONTENTS_OPAQUE; case CONTENTS_WATER: return SUPERCONTENTS_WATER; case CONTENTS_SLIME: return SUPERCONTENTS_SLIME; case CONTENTS_LAVA: return SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP; case CONTENTS_SKY: return SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP | SUPERCONTENTS_OPAQUE; // to match behaviour of Q3 maps, let sky count as opaque } return 0; } int Mod_Q1BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents) { if (supercontents & (SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY)) return CONTENTS_SOLID; if (supercontents & SUPERCONTENTS_SKY) return CONTENTS_SKY; if (supercontents & SUPERCONTENTS_LAVA) return CONTENTS_LAVA; if (supercontents & SUPERCONTENTS_SLIME) return CONTENTS_SLIME; if (supercontents & SUPERCONTENTS_WATER) return CONTENTS_WATER; return CONTENTS_EMPTY; } typedef struct RecursiveHullCheckTraceInfo_s { // the hull we're tracing through const hull_t *hull; // the trace structure to fill in trace_t *trace; // start, end, and end - start (in model space) double start[3]; double end[3]; double dist[3]; } RecursiveHullCheckTraceInfo_t; // 1/32 epsilon to keep floating point happy #define DIST_EPSILON (0.03125) #define HULLCHECKSTATE_EMPTY 0 #define HULLCHECKSTATE_SOLID 1 #define HULLCHECKSTATE_DONE 2 extern cvar_t collision_prefernudgedfraction; static int Mod_Q1BSP_RecursiveHullCheck(RecursiveHullCheckTraceInfo_t *t, int num, double p1f, double p2f, double p1[3], double p2[3]) { // status variables, these don't need to be saved on the stack when // recursing... but are because this should be thread-safe // (note: tracing against a bbox is not thread-safe, yet) int ret; mplane_t *plane; double t1, t2; // variables that need to be stored on the stack when recursing mclipnode_t *node; int side; double midf, mid[3]; // LordHavoc: a goto! everyone flee in terror... :) loc0: // check for empty if (num < 0) { num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num); if (!t->trace->startfound) { t->trace->startfound = true; t->trace->startsupercontents |= num; } if (num & SUPERCONTENTS_LIQUIDSMASK) t->trace->inwater = true; if (num == 0) t->trace->inopen = true; if (num & SUPERCONTENTS_SOLID) t->trace->hittexture = &mod_q1bsp_texture_solid; else if (num & SUPERCONTENTS_SKY) t->trace->hittexture = &mod_q1bsp_texture_sky; else if (num & SUPERCONTENTS_LAVA) t->trace->hittexture = &mod_q1bsp_texture_lava; else if (num & SUPERCONTENTS_SLIME) t->trace->hittexture = &mod_q1bsp_texture_slime; else t->trace->hittexture = &mod_q1bsp_texture_water; t->trace->hitq3surfaceflags = t->trace->hittexture->surfaceflags; t->trace->hitsupercontents = num; if (num & t->trace->hitsupercontentsmask) { // if the first leaf is solid, set startsolid if (t->trace->allsolid) t->trace->startsolid = true; #if COLLISIONPARANOID >= 3 Con_Print("S"); #endif return HULLCHECKSTATE_SOLID; } else { t->trace->allsolid = false; #if COLLISIONPARANOID >= 3 Con_Print("E"); #endif return HULLCHECKSTATE_EMPTY; } } // find the point distances node = t->hull->clipnodes + num; plane = t->hull->planes + node->planenum; if (plane->type < 3) { t1 = p1[plane->type] - plane->dist; t2 = p2[plane->type] - plane->dist; } else { t1 = DotProduct (plane->normal, p1) - plane->dist; t2 = DotProduct (plane->normal, p2) - plane->dist; } if (t1 < 0) { if (t2 < 0) { #if COLLISIONPARANOID >= 3 Con_Print("<"); #endif num = node->children[1]; goto loc0; } side = 1; } else { if (t2 >= 0) { #if COLLISIONPARANOID >= 3 Con_Print(">"); #endif num = node->children[0]; goto loc0; } side = 0; } // the line intersects, find intersection point // LordHavoc: this uses the original trace for maximum accuracy #if COLLISIONPARANOID >= 3 Con_Print("M"); #endif if (plane->type < 3) { t1 = t->start[plane->type] - plane->dist; t2 = t->end[plane->type] - plane->dist; } else { t1 = DotProduct (plane->normal, t->start) - plane->dist; t2 = DotProduct (plane->normal, t->end) - plane->dist; } midf = t1 / (t1 - t2); midf = bound(p1f, midf, p2f); VectorMA(t->start, midf, t->dist, mid); // recurse both sides, front side first ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side], p1f, midf, p1, mid); // if this side is not empty, return what it is (solid or done) if (ret != HULLCHECKSTATE_EMPTY) return ret; ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side ^ 1], midf, p2f, mid, p2); // if other side is not solid, return what it is (empty or done) if (ret != HULLCHECKSTATE_SOLID) return ret; // front is air and back is solid, this is the impact point... if (side) { t->trace->plane.dist = -plane->dist; VectorNegate (plane->normal, t->trace->plane.normal); } else { t->trace->plane.dist = plane->dist; VectorCopy (plane->normal, t->trace->plane.normal); } // calculate the true fraction t1 = DotProduct(t->trace->plane.normal, t->start) - t->trace->plane.dist; t2 = DotProduct(t->trace->plane.normal, t->end) - t->trace->plane.dist; midf = t1 / (t1 - t2); t->trace->realfraction = bound(0, midf, 1); // calculate the return fraction which is nudged off the surface a bit midf = (t1 - DIST_EPSILON) / (t1 - t2); t->trace->fraction = bound(0, midf, 1); if (collision_prefernudgedfraction.integer) t->trace->realfraction = t->trace->fraction; #if COLLISIONPARANOID >= 3 Con_Print("D"); #endif return HULLCHECKSTATE_DONE; } //#if COLLISIONPARANOID < 2 static int Mod_Q1BSP_RecursiveHullCheckPoint(RecursiveHullCheckTraceInfo_t *t, int num) { mplane_t *plane; mclipnode_t *nodes = t->hull->clipnodes; mplane_t *planes = t->hull->planes; vec3_t point; VectorCopy(t->start, point); while (num >= 0) { plane = planes + nodes[num].planenum; num = nodes[num].children[(plane->type < 3 ? point[plane->type] : DotProduct(plane->normal, point)) < plane->dist]; } num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num); t->trace->startsupercontents |= num; if (num & SUPERCONTENTS_LIQUIDSMASK) t->trace->inwater = true; if (num == 0) t->trace->inopen = true; if (num & t->trace->hitsupercontentsmask) { t->trace->allsolid = t->trace->startsolid = true; return HULLCHECKSTATE_SOLID; } else { t->trace->allsolid = t->trace->startsolid = false; return HULLCHECKSTATE_EMPTY; } } //#endif static void Mod_Q1BSP_TracePoint(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask) { RecursiveHullCheckTraceInfo_t rhc; memset(&rhc, 0, sizeof(rhc)); memset(trace, 0, sizeof(trace_t)); rhc.trace = trace; rhc.trace->fraction = 1; rhc.trace->realfraction = 1; rhc.trace->allsolid = true; rhc.hull = &model->brushq1.hulls[0]; // 0x0x0 VectorCopy(start, rhc.start); VectorCopy(start, rhc.end); Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode); } static void Mod_Q1BSP_TraceLine(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask) { RecursiveHullCheckTraceInfo_t rhc; if (VectorCompare(start, end)) { Mod_Q1BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask); return; } memset(&rhc, 0, sizeof(rhc)); memset(trace, 0, sizeof(trace_t)); rhc.trace = trace; rhc.trace->hitsupercontentsmask = hitsupercontentsmask; rhc.trace->fraction = 1; rhc.trace->realfraction = 1; rhc.trace->allsolid = true; rhc.hull = &model->brushq1.hulls[0]; // 0x0x0 VectorCopy(start, rhc.start); VectorCopy(end, rhc.end); VectorSubtract(rhc.end, rhc.start, rhc.dist); #if COLLISIONPARANOID >= 2 Con_Printf("t(%f %f %f,%f %f %f)", rhc.start[0], rhc.start[1], rhc.start[2], rhc.end[0], rhc.end[1], rhc.end[2]); Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end); { double test[3]; trace_t testtrace; VectorLerp(rhc.start, rhc.trace->fraction, rhc.end, test); memset(&testtrace, 0, sizeof(trace_t)); rhc.trace = &testtrace; rhc.trace->hitsupercontentsmask = hitsupercontentsmask; rhc.trace->fraction = 1; rhc.trace->realfraction = 1; rhc.trace->allsolid = true; VectorCopy(test, rhc.start); VectorCopy(test, rhc.end); VectorClear(rhc.dist); Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode); //Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, test, test); if (!trace->startsolid && testtrace.startsolid) Con_Printf(" - ended in solid!\n"); } Con_Print("\n"); #else if (VectorLength2(rhc.dist)) Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end); else Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode); #endif } static void Mod_Q1BSP_TraceBox(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask) { // this function currently only supports same size start and end double boxsize[3]; RecursiveHullCheckTraceInfo_t rhc; if (VectorCompare(boxmins, boxmaxs)) { if (VectorCompare(start, end)) Mod_Q1BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask); else Mod_Q1BSP_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask); return; } memset(&rhc, 0, sizeof(rhc)); memset(trace, 0, sizeof(trace_t)); rhc.trace = trace; rhc.trace->hitsupercontentsmask = hitsupercontentsmask; rhc.trace->fraction = 1; rhc.trace->realfraction = 1; rhc.trace->allsolid = true; VectorSubtract(boxmaxs, boxmins, boxsize); if (boxsize[0] < 3) rhc.hull = &model->brushq1.hulls[0]; // 0x0x0 else if (model->brush.ishlbsp) { // LordHavoc: this has to have a minor tolerance (the .1) because of // minor float precision errors from the box being transformed around if (boxsize[0] < 32.1) { if (boxsize[2] < 54) // pick the nearest of 36 or 72 rhc.hull = &model->brushq1.hulls[3]; // 32x32x36 else rhc.hull = &model->brushq1.hulls[1]; // 32x32x72 } else rhc.hull = &model->brushq1.hulls[2]; // 64x64x64 } else { // LordHavoc: this has to have a minor tolerance (the .1) because of // minor float precision errors from the box being transformed around if (boxsize[0] < 32.1) rhc.hull = &model->brushq1.hulls[1]; // 32x32x56 else rhc.hull = &model->brushq1.hulls[2]; // 64x64x88 } VectorMAMAM(1, start, 1, boxmins, -1, rhc.hull->clip_mins, rhc.start); VectorMAMAM(1, end, 1, boxmins, -1, rhc.hull->clip_mins, rhc.end); VectorSubtract(rhc.end, rhc.start, rhc.dist); #if COLLISIONPARANOID >= 2 Con_Printf("t(%f %f %f,%f %f %f,%i %f %f %f)", rhc.start[0], rhc.start[1], rhc.start[2], rhc.end[0], rhc.end[1], rhc.end[2], rhc.hull - model->brushq1.hulls, rhc.hull->clip_mins[0], rhc.hull->clip_mins[1], rhc.hull->clip_mins[2]); Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end); { double test[3]; trace_t testtrace; VectorLerp(rhc.start, rhc.trace->fraction, rhc.end, test); memset(&testtrace, 0, sizeof(trace_t)); rhc.trace = &testtrace; rhc.trace->hitsupercontentsmask = hitsupercontentsmask; rhc.trace->fraction = 1; rhc.trace->realfraction = 1; rhc.trace->allsolid = true; VectorCopy(test, rhc.start); VectorCopy(test, rhc.end); VectorClear(rhc.dist); Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode); //Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, test, test); if (!trace->startsolid && testtrace.startsolid) Con_Printf(" - ended in solid!\n"); } Con_Print("\n"); #else if (VectorLength2(rhc.dist)) Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end); else Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode); #endif } static int Mod_Q1BSP_PointSuperContents(struct model_s *model, int frame, const vec3_t point) { int num = model->brushq1.hulls[0].firstclipnode; mplane_t *plane; mclipnode_t *nodes = model->brushq1.hulls[0].clipnodes; mplane_t *planes = model->brushq1.hulls[0].planes; while (num >= 0) { plane = planes + nodes[num].planenum; num = nodes[num].children[(plane->type < 3 ? point[plane->type] : DotProduct(plane->normal, point)) < plane->dist]; } return Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num); } void Collision_ClipTrace_Box(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask, int boxsupercontents, int boxq3surfaceflags, const texture_t *boxtexture) { #if 1 colbrushf_t cbox; colplanef_t cbox_planes[6]; cbox.isaabb = true; cbox.hasaabbplanes = true; cbox.supercontents = boxsupercontents; cbox.numplanes = 6; cbox.numpoints = 0; cbox.numtriangles = 0; cbox.planes = cbox_planes; cbox.points = NULL; cbox.elements = NULL; cbox.markframe = 0; cbox.mins[0] = 0; cbox.mins[1] = 0; cbox.mins[2] = 0; cbox.maxs[0] = 0; cbox.maxs[1] = 0; cbox.maxs[2] = 0; cbox_planes[0].normal[0] = 1;cbox_planes[0].normal[1] = 0;cbox_planes[0].normal[2] = 0;cbox_planes[0].dist = cmaxs[0] - mins[0]; cbox_planes[1].normal[0] = -1;cbox_planes[1].normal[1] = 0;cbox_planes[1].normal[2] = 0;cbox_planes[1].dist = maxs[0] - cmins[0]; cbox_planes[2].normal[0] = 0;cbox_planes[2].normal[1] = 1;cbox_planes[2].normal[2] = 0;cbox_planes[2].dist = cmaxs[1] - mins[1]; cbox_planes[3].normal[0] = 0;cbox_planes[3].normal[1] = -1;cbox_planes[3].normal[2] = 0;cbox_planes[3].dist = maxs[1] - cmins[1]; cbox_planes[4].normal[0] = 0;cbox_planes[4].normal[1] = 0;cbox_planes[4].normal[2] = 1;cbox_planes[4].dist = cmaxs[2] - mins[2]; cbox_planes[5].normal[0] = 0;cbox_planes[5].normal[1] = 0;cbox_planes[5].normal[2] = -1;cbox_planes[5].dist = maxs[2] - cmins[2]; cbox_planes[0].q3surfaceflags = boxq3surfaceflags;cbox_planes[0].texture = boxtexture; cbox_planes[1].q3surfaceflags = boxq3surfaceflags;cbox_planes[1].texture = boxtexture; cbox_planes[2].q3surfaceflags = boxq3surfaceflags;cbox_planes[2].texture = boxtexture; cbox_planes[3].q3surfaceflags = boxq3surfaceflags;cbox_planes[3].texture = boxtexture; cbox_planes[4].q3surfaceflags = boxq3surfaceflags;cbox_planes[4].texture = boxtexture; cbox_planes[5].q3surfaceflags = boxq3surfaceflags;cbox_planes[5].texture = boxtexture; memset(trace, 0, sizeof(trace_t)); trace->hitsupercontentsmask = hitsupercontentsmask; trace->fraction = 1; trace->realfraction = 1; Collision_TraceLineBrushFloat(trace, start, end, &cbox, &cbox); #else RecursiveHullCheckTraceInfo_t rhc; static hull_t box_hull; static mclipnode_t box_clipnodes[6]; static mplane_t box_planes[6]; // fill in a default trace memset(&rhc, 0, sizeof(rhc)); memset(trace, 0, sizeof(trace_t)); //To keep everything totally uniform, bounding boxes are turned into small //BSP trees instead of being compared directly. // create a temp hull from bounding box sizes box_planes[0].dist = cmaxs[0] - mins[0]; box_planes[1].dist = cmins[0] - maxs[0]; box_planes[2].dist = cmaxs[1] - mins[1]; box_planes[3].dist = cmins[1] - maxs[1]; box_planes[4].dist = cmaxs[2] - mins[2]; box_planes[5].dist = cmins[2] - maxs[2]; #if COLLISIONPARANOID >= 3 Con_Printf("box_planes %f:%f %f:%f %f:%f\ncbox %f %f %f:%f %f %f\nbox %f %f %f:%f %f %f\n", box_planes[0].dist, box_planes[1].dist, box_planes[2].dist, box_planes[3].dist, box_planes[4].dist, box_planes[5].dist, cmins[0], cmins[1], cmins[2], cmaxs[0], cmaxs[1], cmaxs[2], mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2]); #endif if (box_hull.clipnodes == NULL) { int i, side; //Set up the planes and clipnodes so that the six floats of a bounding box //can just be stored out and get a proper hull_t structure. box_hull.clipnodes = box_clipnodes; box_hull.planes = box_planes; box_hull.firstclipnode = 0; box_hull.lastclipnode = 5; for (i = 0;i < 6;i++) { box_clipnodes[i].planenum = i; side = i&1; box_clipnodes[i].children[side] = CONTENTS_EMPTY; if (i != 5) box_clipnodes[i].children[side^1] = i + 1; else box_clipnodes[i].children[side^1] = CONTENTS_SOLID; box_planes[i].type = i>>1; box_planes[i].normal[i>>1] = 1; } } // trace a line through the generated clipping hull //rhc.boxsupercontents = boxsupercontents; rhc.hull = &box_hull; rhc.trace = trace; rhc.trace->hitsupercontentsmask = hitsupercontentsmask; rhc.trace->fraction = 1; rhc.trace->realfraction = 1; rhc.trace->allsolid = true; VectorCopy(start, rhc.start); VectorCopy(end, rhc.end); VectorSubtract(rhc.end, rhc.start, rhc.dist); Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end); //VectorMA(rhc.start, rhc.trace->fraction, rhc.dist, rhc.trace->endpos); if (rhc.trace->startsupercontents) rhc.trace->startsupercontents = boxsupercontents; #endif } void Collision_ClipTrace_Point(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, int hitsupercontentsmask, int boxsupercontents, int boxq3surfaceflags, const texture_t *boxtexture) { memset(trace, 0, sizeof(trace_t)); trace->fraction = 1; trace->realfraction = 1; if (BoxesOverlap(start, start, cmins, cmaxs)) { trace->startsupercontents |= boxsupercontents; if (hitsupercontentsmask & boxsupercontents) { trace->startsolid = true; trace->allsolid = true; } } } static qboolean Mod_Q1BSP_TraceLineOfSight(struct model_s *model, const vec3_t start, const vec3_t end) { trace_t trace; model->TraceLine(model, NULL, NULL, &trace, start, end, SUPERCONTENTS_VISBLOCKERMASK); return trace.fraction == 1; } static int Mod_Q1BSP_LightPoint_RecursiveBSPNode(dp_model_t *model, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal, const mnode_t *node, float x, float y, float startz, float endz) { int side; float front, back; float mid, distz = endz - startz; loc0: if (!node->plane) return false; // didn't hit anything switch (node->plane->type) { case PLANE_X: node = node->children[x < node->plane->dist]; goto loc0; case PLANE_Y: node = node->children[y < node->plane->dist]; goto loc0; case PLANE_Z: side = startz < node->plane->dist; if ((endz < node->plane->dist) == side) { node = node->children[side]; goto loc0; } // found an intersection mid = node->plane->dist; break; default: back = front = x * node->plane->normal[0] + y * node->plane->normal[1]; front += startz * node->plane->normal[2]; back += endz * node->plane->normal[2]; side = front < node->plane->dist; if ((back < node->plane->dist) == side) { node = node->children[side]; goto loc0; } // found an intersection mid = startz + distz * (front - node->plane->dist) / (front - back); break; } // go down front side if (node->children[side]->plane && Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, node->children[side], x, y, startz, mid)) return true; // hit something else { // check for impact on this node if (node->numsurfaces) { int i, dsi, dti, lmwidth, lmheight; float ds, dt; msurface_t *surface; unsigned char *lightmap; int maps, line3, size3; float dsfrac; float dtfrac; float scale, w, w00, w01, w10, w11; surface = model->data_surfaces + node->firstsurface; for (i = 0;i < node->numsurfaces;i++, surface++) { if (!(surface->texture->basematerialflags & MATERIALFLAG_WALL) || !surface->lightmapinfo || !surface->lightmapinfo->samples) continue; // no lightmaps // location we want to sample in the lightmap ds = ((x * surface->lightmapinfo->texinfo->vecs[0][0] + y * surface->lightmapinfo->texinfo->vecs[0][1] + mid * surface->lightmapinfo->texinfo->vecs[0][2] + surface->lightmapinfo->texinfo->vecs[0][3]) - surface->lightmapinfo->texturemins[0]) * 0.0625f; dt = ((x * surface->lightmapinfo->texinfo->vecs[1][0] + y * surface->lightmapinfo->texinfo->vecs[1][1] + mid * surface->lightmapinfo->texinfo->vecs[1][2] + surface->lightmapinfo->texinfo->vecs[1][3]) - surface->lightmapinfo->texturemins[1]) * 0.0625f; // check the bounds dsi = (int)ds; dti = (int)dt; lmwidth = ((surface->lightmapinfo->extents[0]>>4)+1); lmheight = ((surface->lightmapinfo->extents[1]>>4)+1); // is it in bounds? if (dsi >= 0 && dsi < lmwidth-1 && dti >= 0 && dti < lmheight-1) { // calculate bilinear interpolation factors // and also multiply by fixedpoint conversion factors dsfrac = ds - dsi; dtfrac = dt - dti; w00 = (1 - dsfrac) * (1 - dtfrac) * (1.0f / 32768.0f); w01 = ( dsfrac) * (1 - dtfrac) * (1.0f / 32768.0f); w10 = (1 - dsfrac) * ( dtfrac) * (1.0f / 32768.0f); w11 = ( dsfrac) * ( dtfrac) * (1.0f / 32768.0f); // values for pointer math line3 = lmwidth * 3; // LordHavoc: *3 for colored lighting size3 = lmwidth * lmheight * 3; // LordHavoc: *3 for colored lighting // look up the pixel lightmap = surface->lightmapinfo->samples + dti * line3 + dsi*3; // LordHavoc: *3 for colored lighting // bilinear filter each lightmap style, and sum them for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++) { scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]]; w = w00 * scale;VectorMA(ambientcolor, w, lightmap , ambientcolor); w = w01 * scale;VectorMA(ambientcolor, w, lightmap + 3 , ambientcolor); w = w10 * scale;VectorMA(ambientcolor, w, lightmap + line3 , ambientcolor); w = w11 * scale;VectorMA(ambientcolor, w, lightmap + line3 + 3, ambientcolor); lightmap += size3; } return true; // success } } } // go down back side node = node->children[side ^ 1]; startz = mid; distz = endz - startz; goto loc0; } } void Mod_Q1BSP_LightPoint(dp_model_t *model, const vec3_t p, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal) { // pretend lighting is coming down from above (due to lack of a lightgrid to know primary lighting direction) VectorSet(diffusenormal, 0, 0, 1); if (!model->brushq1.lightdata) { VectorSet(ambientcolor, 1, 1, 1); VectorSet(diffusecolor, 0, 0, 0); return; } Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, p[0], p[1], p[2] + 0.125, p[2] - 65536); } static const texture_t *Mod_Q1BSP_TraceLineAgainstSurfacesFindTextureOnNode(RecursiveHullCheckTraceInfo_t *t, const dp_model_t *model, const mnode_t *node, double mid[3]) { int i; int j; int k; const msurface_t *surface; float normal[3]; float v0[3]; float v1[3]; float edgedir[3]; float edgenormal[3]; float p[4]; float midf; float t1; float t2; VectorCopy(mid, p); p[3] = 1; surface = model->data_surfaces + node->firstsurface; for (i = 0;i < node->numsurfaces;i++, surface++) { // skip surfaces whose bounding box does not include the point // if (!BoxesOverlap(mid, mid, surface->mins, surface->maxs)) // continue; // skip faces with contents we don't care about if (!(t->trace->hitsupercontentsmask & surface->texture->supercontents)) continue; // get the surface normal - since it is flat we know any vertex normal will suffice VectorCopy(model->surfmesh.data_normal3f + 3 * surface->num_firstvertex, normal); // skip backfaces if (DotProduct(t->dist, normal) > 0) continue; // iterate edges and see if the point is outside one of them for (j = 0, k = surface->num_vertices - 1;j < surface->num_vertices;k = j, j++) { VectorCopy(model->surfmesh.data_vertex3f + 3 * (surface->num_firstvertex + k), v0); VectorCopy(model->surfmesh.data_vertex3f + 3 * (surface->num_firstvertex + j), v1); VectorSubtract(v0, v1, edgedir); CrossProduct(edgedir, normal, edgenormal); if (DotProduct(edgenormal, p) > DotProduct(edgenormal, v0)) break; } // if the point is outside one of the edges, it is not within the surface if (j < surface->num_vertices) continue; // we hit a surface, this is the impact point... VectorCopy(normal, t->trace->plane.normal); t->trace->plane.dist = DotProduct(normal, p); // calculate the true fraction t1 = DotProduct(t->start, t->trace->plane.normal) - t->trace->plane.dist; t2 = DotProduct(t->end, t->trace->plane.normal) - t->trace->plane.dist; midf = t1 / (t1 - t2); t->trace->realfraction = midf; // calculate the return fraction which is nudged off the surface a bit midf = (t1 - DIST_EPSILON) / (t1 - t2); t->trace->fraction = bound(0, midf, 1); if (collision_prefernudgedfraction.integer) t->trace->realfraction = t->trace->fraction; t->trace->hittexture = surface->texture->currentframe; t->trace->hitq3surfaceflags = t->trace->hittexture->surfaceflags; t->trace->hitsupercontents = t->trace->hittexture->supercontents; return surface->texture->currentframe; } return NULL; } static int Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(RecursiveHullCheckTraceInfo_t *t, const dp_model_t *model, const mnode_t *node, const double p1[3], const double p2[3]) { const mplane_t *plane; double t1, t2; int side; double midf, mid[3]; const mleaf_t *leaf; while (node->plane) { plane = node->plane; if (plane->type < 3) { t1 = p1[plane->type] - plane->dist; t2 = p2[plane->type] - plane->dist; } else { t1 = DotProduct (plane->normal, p1) - plane->dist; t2 = DotProduct (plane->normal, p2) - plane->dist; } if (t1 < 0) { if (t2 < 0) { node = node->children[1]; continue; } side = 1; } else { if (t2 >= 0) { node = node->children[0]; continue; } side = 0; } // the line intersects, find intersection point // LordHavoc: this uses the original trace for maximum accuracy if (plane->type < 3) { t1 = t->start[plane->type] - plane->dist; t2 = t->end[plane->type] - plane->dist; } else { t1 = DotProduct (plane->normal, t->start) - plane->dist; t2 = DotProduct (plane->normal, t->end) - plane->dist; } midf = t1 / (t1 - t2); VectorMA(t->start, midf, t->dist, mid); // recurse both sides, front side first, return if we hit a surface if (Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(t, model, node->children[side], p1, mid) == HULLCHECKSTATE_DONE) return HULLCHECKSTATE_DONE; // test each surface on the node Mod_Q1BSP_TraceLineAgainstSurfacesFindTextureOnNode(t, model, node, mid); if (t->trace->hittexture) return HULLCHECKSTATE_DONE; // recurse back side return Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(t, model, node->children[side ^ 1], mid, p2); } leaf = (const mleaf_t *)node; side = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, leaf->contents); if (!t->trace->startfound) { t->trace->startfound = true; t->trace->startsupercontents |= side; } if (side & SUPERCONTENTS_LIQUIDSMASK) t->trace->inwater = true; if (side == 0) t->trace->inopen = true; if (side & t->trace->hitsupercontentsmask) { // if the first leaf is solid, set startsolid if (t->trace->allsolid) t->trace->startsolid = true; return HULLCHECKSTATE_SOLID; } else { t->trace->allsolid = false; return HULLCHECKSTATE_EMPTY; } } static void Mod_Q1BSP_TraceLineAgainstSurfaces(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask) { RecursiveHullCheckTraceInfo_t rhc; memset(&rhc, 0, sizeof(rhc)); memset(trace, 0, sizeof(trace_t)); rhc.trace = trace; rhc.trace->hitsupercontentsmask = hitsupercontentsmask; rhc.trace->fraction = 1; rhc.trace->realfraction = 1; rhc.trace->allsolid = true; rhc.hull = &model->brushq1.hulls[0]; // 0x0x0 VectorCopy(start, rhc.start); VectorCopy(end, rhc.end); VectorSubtract(rhc.end, rhc.start, rhc.dist); Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(&rhc, model, model->brush.data_nodes + rhc.hull->firstclipnode, rhc.start, rhc.end); VectorMA(rhc.start, rhc.trace->fraction, rhc.dist, rhc.trace->endpos); } static void Mod_Q1BSP_DecompressVis(const unsigned char *in, const unsigned char *inend, unsigned char *out, unsigned char *outend) { int c; unsigned char *outstart = out; while (out < outend) { if (in == inend) { Con_Printf("Mod_Q1BSP_DecompressVis: input underrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart)); return; } c = *in++; if (c) *out++ = c; else { if (in == inend) { Con_Printf("Mod_Q1BSP_DecompressVis: input underrun (during zero-run) on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart)); return; } for (c = *in++;c > 0;c--) { if (out == outend) { Con_Printf("Mod_Q1BSP_DecompressVis: output overrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart)); return; } *out++ = 0; } } } } /* ============= R_Q1BSP_LoadSplitSky A sky texture is 256*128, with the right side being a masked overlay ============== */ void R_Q1BSP_LoadSplitSky (unsigned char *src, int width, int height, int bytesperpixel) { int x, y; int w = width/2; int h = height; unsigned int *solidpixels = (unsigned int *)Mem_Alloc(tempmempool, w*h*sizeof(unsigned char[4])); unsigned int *alphapixels = (unsigned int *)Mem_Alloc(tempmempool, w*h*sizeof(unsigned char[4])); // allocate a texture pool if we need it if (loadmodel->texturepool == NULL && cls.state != ca_dedicated) loadmodel->texturepool = R_AllocTexturePool(); if (bytesperpixel == 4) { for (y = 0;y < h;y++) { for (x = 0;x < w;x++) { solidpixels[y*w+x] = ((unsigned *)src)[y*width+x+w]; alphapixels[y*w+x] = ((unsigned *)src)[y*width+x]; } } } else { // make an average value for the back to avoid // a fringe on the top level int p, r, g, b; union { unsigned int i; unsigned char b[4]; } bgra; r = g = b = 0; for (y = 0;y < h;y++) { for (x = 0;x < w;x++) { p = src[x*width+y+w]; r += palette_rgb[p][0]; g += palette_rgb[p][1]; b += palette_rgb[p][2]; } } bgra.b[2] = r/(w*h); bgra.b[1] = g/(w*h); bgra.b[0] = b/(w*h); bgra.b[3] = 0; for (y = 0;y < h;y++) { for (x = 0;x < w;x++) { solidpixels[y*w+x] = palette_bgra_complete[src[y*width+x+w]]; p = src[y*width+x]; alphapixels[y*w+x] = p ? palette_bgra_complete[p] : bgra.i; } } } loadmodel->brush.solidskyskinframe = R_SkinFrame_LoadInternalBGRA("sky_solidtexture", 0 , (unsigned char *) solidpixels, w, h); loadmodel->brush.alphaskyskinframe = R_SkinFrame_LoadInternalBGRA("sky_alphatexture", TEXF_ALPHA, (unsigned char *) alphapixels, w, h); Mem_Free(solidpixels); Mem_Free(alphapixels); } static void Mod_Q1BSP_LoadTextures(lump_t *l) { int i, j, k, num, max, altmax, mtwidth, mtheight, *dofs, incomplete; skinframe_t *skinframe; miptex_t *dmiptex; texture_t *tx, *tx2, *anims[10], *altanims[10]; dmiptexlump_t *m; unsigned char *data, *mtdata; const char *s; char mapname[MAX_QPATH], name[MAX_QPATH]; unsigned char zero[4]; memset(zero, 0, sizeof(zero)); loadmodel->data_textures = NULL; // add two slots for notexture walls and notexture liquids if (l->filelen) { m = (dmiptexlump_t *)(mod_base + l->fileofs); m->nummiptex = LittleLong (m->nummiptex); loadmodel->num_textures = m->nummiptex + 2; loadmodel->num_texturesperskin = loadmodel->num_textures; } else { m = NULL; loadmodel->num_textures = 2; loadmodel->num_texturesperskin = loadmodel->num_textures; } loadmodel->data_textures = (texture_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_textures * sizeof(texture_t)); // fill out all slots with notexture if (cls.state != ca_dedicated) skinframe = R_SkinFrame_LoadMissing(); else skinframe = NULL; for (i = 0, tx = loadmodel->data_textures;i < loadmodel->num_textures;i++, tx++) { strlcpy(tx->name, "NO TEXTURE FOUND", sizeof(tx->name)); tx->width = 16; tx->height = 16; if (cls.state != ca_dedicated) { tx->numskinframes = 1; tx->skinframerate = 1; tx->skinframes[0] = skinframe; tx->currentskinframe = tx->skinframes[0]; } tx->basematerialflags = MATERIALFLAG_WALL; if (i == loadmodel->num_textures - 1) { tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW; tx->supercontents = mod_q1bsp_texture_water.supercontents; tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags; } else { tx->supercontents = mod_q1bsp_texture_solid.supercontents; tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags; } tx->currentframe = tx; // clear water settings tx->reflectmin = 0; tx->reflectmax = 1; tx->refractfactor = 1; Vector4Set(tx->refractcolor4f, 1, 1, 1, 1); tx->reflectfactor = 1; Vector4Set(tx->reflectcolor4f, 1, 1, 1, 1); tx->r_water_wateralpha = 1; tx->offsetmapping = OFFSETMAPPING_OFF; tx->offsetscale = 1; tx->specularscalemod = 1; tx->specularpowermod = 1; } if (!m) { Con_Printf("%s: no miptex lump to load textures from\n", loadmodel->name); return; } s = loadmodel->name; if (!strncasecmp(s, "maps/", 5)) s += 5; FS_StripExtension(s, mapname, sizeof(mapname)); // just to work around bounds checking when debugging with it (array index out of bounds error thing) dofs = m->dataofs; // LordHavoc: mostly rewritten map texture loader for (i = 0;i < m->nummiptex;i++) { dofs[i] = LittleLong(dofs[i]); if (r_nosurftextures.integer) continue; if (dofs[i] == -1) { Con_DPrintf("%s: miptex #%i missing\n", loadmodel->name, i); continue; } dmiptex = (miptex_t *)((unsigned char *)m + dofs[i]); // copy name, but only up to 16 characters // (the output buffer can hold more than this, but the input buffer is // only 16) for (j = 0;j < 16 && dmiptex->name[j];j++) name[j] = dmiptex->name[j]; name[j] = 0; if (!name[0]) { dpsnprintf(name, sizeof(name), "unnamed%i", i); Con_DPrintf("%s: warning: renaming unnamed texture to %s\n", loadmodel->name, name); } mtwidth = LittleLong(dmiptex->width); mtheight = LittleLong(dmiptex->height); mtdata = NULL; j = LittleLong(dmiptex->offsets[0]); if (j) { // texture included if (j < 40 || j + mtwidth * mtheight > l->filelen) { Con_Printf("%s: Texture \"%s\" is corrupt or incomplete\n", loadmodel->name, dmiptex->name); continue; } mtdata = (unsigned char *)dmiptex + j; } if ((mtwidth & 15) || (mtheight & 15)) Con_DPrintf("%s: warning: texture \"%s\" is not 16 aligned\n", loadmodel->name, dmiptex->name); // LordHavoc: force all names to lowercase for (j = 0;name[j];j++) if (name[j] >= 'A' && name[j] <= 'Z') name[j] += 'a' - 'A'; if (dmiptex->name[0] && Mod_LoadTextureFromQ3Shader(loadmodel->data_textures + i, name, false, false, 0)) continue; tx = loadmodel->data_textures + i; strlcpy(tx->name, name, sizeof(tx->name)); tx->width = mtwidth; tx->height = mtheight; if (tx->name[0] == '*') { if (!strncmp(tx->name, "*lava", 5)) { tx->supercontents = mod_q1bsp_texture_lava.supercontents; tx->surfaceflags = mod_q1bsp_texture_lava.surfaceflags; } else if (!strncmp(tx->name, "*slime", 6)) { tx->supercontents = mod_q1bsp_texture_slime.supercontents; tx->surfaceflags = mod_q1bsp_texture_slime.surfaceflags; } else { tx->supercontents = mod_q1bsp_texture_water.supercontents; tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags; } } else if (!strncmp(tx->name, "sky", 3)) { tx->supercontents = mod_q1bsp_texture_sky.supercontents; tx->surfaceflags = mod_q1bsp_texture_sky.surfaceflags; } else { tx->supercontents = mod_q1bsp_texture_solid.supercontents; tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags; } if (cls.state != ca_dedicated) { // LordHavoc: HL sky textures are entirely different than quake if (!loadmodel->brush.ishlbsp && !strncmp(tx->name, "sky", 3) && mtwidth == mtheight * 2) { data = loadimagepixelsbgra(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s/%s", mapname, tx->name), false, false, r_texture_convertsRGB_skin.integer != 0, NULL); if (!data) data = loadimagepixelsbgra(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s", tx->name), false, false, r_texture_convertsRGB_skin.integer != 0, NULL); if (data && image_width == image_height * 2) { R_Q1BSP_LoadSplitSky(data, image_width, image_height, 4); Mem_Free(data); } else if (mtdata != NULL) R_Q1BSP_LoadSplitSky(mtdata, mtwidth, mtheight, 1); } else { skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s/%s", mapname, tx->name), TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS, false); if (!skinframe) skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s", tx->name), TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS, false); if (!skinframe) { // did not find external texture, load it from the bsp or wad3 if (loadmodel->brush.ishlbsp) { // internal texture overrides wad unsigned char *pixels, *freepixels; pixels = freepixels = NULL; if (mtdata) pixels = W_ConvertWAD3TextureBGRA(dmiptex); if (pixels == NULL) pixels = freepixels = W_GetTextureBGRA(tx->name); if (pixels != NULL) { tx->width = image_width; tx->height = image_height; skinframe = R_SkinFrame_LoadInternalBGRA(tx->name, TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP, pixels, image_width, image_height); } if (freepixels) Mem_Free(freepixels); } else if (mtdata) // texture included skinframe = R_SkinFrame_LoadInternalQuake(tx->name, TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP, false, r_fullbrights.integer, mtdata, tx->width, tx->height); } // if skinframe is still NULL the "missing" texture will be used if (skinframe) tx->skinframes[0] = skinframe; } tx->basematerialflags = MATERIALFLAG_WALL; if (tx->name[0] == '*') { // LordHavoc: some turbulent textures should not be affected by wateralpha if (!strncmp(tx->name, "*glassmirror", 12)) // Tenebrae { // replace the texture with transparent black Vector4Set(zero, 128, 128, 128, 128); tx->skinframes[0] = R_SkinFrame_LoadInternalBGRA(tx->name, TEXF_MIPMAP | TEXF_ALPHA, zero, 1, 1); tx->basematerialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_REFLECTION; } else if (!strncmp(tx->name,"*lava",5) || !strncmp(tx->name,"*teleport",9) || !strncmp(tx->name,"*rift",5)) // Scourge of Armagon texture tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW; else tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW | MATERIALFLAG_WATERALPHA | MATERIALFLAG_WATERSHADER; if (tx->skinframes[0] && tx->skinframes[0]->hasalpha) tx->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; } else if (!strncmp(tx->name, "mirror", 6)) // Tenebrae { // replace the texture with black tx->skinframes[0] = R_SkinFrame_LoadInternalBGRA(tx->name, 0, zero, 1, 1); tx->basematerialflags |= MATERIALFLAG_REFLECTION; } else if (!strncmp(tx->name, "sky", 3)) tx->basematerialflags = MATERIALFLAG_SKY | MATERIALFLAG_NOSHADOW; else if (!strcmp(tx->name, "caulk")) tx->basematerialflags = MATERIALFLAG_NODRAW | MATERIALFLAG_NOSHADOW; else if (tx->skinframes[0] && tx->skinframes[0]->hasalpha) tx->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW; // start out with no animation tx->currentframe = tx; tx->currentskinframe = tx->skinframes[0]; } } // sequence the animations for (i = 0;i < m->nummiptex;i++) { tx = loadmodel->data_textures + i; if (!tx || tx->name[0] != '+' || tx->name[1] == 0 || tx->name[2] == 0) continue; if (tx->anim_total[0] || tx->anim_total[1]) continue; // already sequenced // find the number of frames in the animation memset(anims, 0, sizeof(anims)); memset(altanims, 0, sizeof(altanims)); for (j = i;j < m->nummiptex;j++) { tx2 = loadmodel->data_textures + j; if (!tx2 || tx2->name[0] != '+' || strcmp(tx2->name+2, tx->name+2)) continue; num = tx2->name[1]; if (num >= '0' && num <= '9') anims[num - '0'] = tx2; else if (num >= 'a' && num <= 'j') altanims[num - 'a'] = tx2; else Con_Printf("Bad animating texture %s\n", tx->name); } max = altmax = 0; for (j = 0;j < 10;j++) { if (anims[j]) max = j + 1; if (altanims[j]) altmax = j + 1; } //Con_Printf("linking animation %s (%i:%i frames)\n\n", tx->name, max, altmax); incomplete = false; for (j = 0;j < max;j++) { if (!anims[j]) { Con_Printf("Missing frame %i of %s\n", j, tx->name); incomplete = true; } } for (j = 0;j < altmax;j++) { if (!altanims[j]) { Con_Printf("Missing altframe %i of %s\n", j, tx->name); incomplete = true; } } if (incomplete) continue; if (altmax < 1) { // if there is no alternate animation, duplicate the primary // animation into the alternate altmax = max; for (k = 0;k < 10;k++) altanims[k] = anims[k]; } // link together the primary animation for (j = 0;j < max;j++) { tx2 = anims[j]; tx2->animated = true; tx2->anim_total[0] = max; tx2->anim_total[1] = altmax; for (k = 0;k < 10;k++) { tx2->anim_frames[0][k] = anims[k]; tx2->anim_frames[1][k] = altanims[k]; } } // if there really is an alternate anim... if (anims[0] != altanims[0]) { // link together the alternate animation for (j = 0;j < altmax;j++) { tx2 = altanims[j]; tx2->animated = true; // the primary/alternate are reversed here tx2->anim_total[0] = altmax; tx2->anim_total[1] = max; for (k = 0;k < 10;k++) { tx2->anim_frames[0][k] = altanims[k]; tx2->anim_frames[1][k] = anims[k]; } } } } } static void Mod_Q1BSP_LoadLighting(lump_t *l) { int i; unsigned char *in, *out, *data, d; char litfilename[MAX_QPATH]; char dlitfilename[MAX_QPATH]; fs_offset_t filesize; if (loadmodel->brush.ishlbsp) // LordHavoc: load the colored lighting data straight { loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen); for (i=0; ifilelen; i++) loadmodel->brushq1.lightdata[i] = mod_base[l->fileofs+i] >>= 1; } else // LordHavoc: bsp version 29 (normal white lighting) { // LordHavoc: hope is not lost yet, check for a .lit file to load strlcpy (litfilename, loadmodel->name, sizeof (litfilename)); FS_StripExtension (litfilename, litfilename, sizeof (litfilename)); strlcpy (dlitfilename, litfilename, sizeof (dlitfilename)); strlcat (litfilename, ".lit", sizeof (litfilename)); strlcat (dlitfilename, ".dlit", sizeof (dlitfilename)); data = (unsigned char*) FS_LoadFile(litfilename, tempmempool, false, &filesize); if (data) { if (filesize == (fs_offset_t)(8 + l->filelen * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T') { i = LittleLong(((int *)data)[1]); if (i == 1) { if (developer_loading.integer) Con_Printf("loaded %s\n", litfilename); loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8); memcpy(loadmodel->brushq1.lightdata, data + 8, filesize - 8); Mem_Free(data); data = (unsigned char*) FS_LoadFile(dlitfilename, tempmempool, false, &filesize); if (data) { if (filesize == (fs_offset_t)(8 + l->filelen * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T') { i = LittleLong(((int *)data)[1]); if (i == 1) { if (developer_loading.integer) Con_Printf("loaded %s\n", dlitfilename); loadmodel->brushq1.nmaplightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8); memcpy(loadmodel->brushq1.nmaplightdata, data + 8, filesize - 8); loadmodel->brushq3.deluxemapping_modelspace = false; loadmodel->brushq3.deluxemapping = true; } } Mem_Free(data); data = NULL; } return; } else Con_Printf("Unknown .lit file version (%d)\n", i); } else if (filesize == 8) Con_Print("Empty .lit file, ignoring\n"); else Con_Printf("Corrupt .lit file (file size %i bytes, should be %i bytes), ignoring\n", (int) filesize, (int) (8 + l->filelen * 3)); if (data) { Mem_Free(data); data = NULL; } } // LordHavoc: oh well, expand the white lighting data if (!l->filelen) return; loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen*3); in = mod_base + l->fileofs; out = loadmodel->brushq1.lightdata; for (i = 0;i < l->filelen;i++) { d = *in++; *out++ = d; *out++ = d; *out++ = d; } } } static void Mod_Q1BSP_LoadVisibility(lump_t *l) { loadmodel->brushq1.num_compressedpvs = 0; loadmodel->brushq1.data_compressedpvs = NULL; if (!l->filelen) return; loadmodel->brushq1.num_compressedpvs = l->filelen; loadmodel->brushq1.data_compressedpvs = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen); memcpy(loadmodel->brushq1.data_compressedpvs, mod_base + l->fileofs, l->filelen); } // used only for HalfLife maps static void Mod_Q1BSP_ParseWadsFromEntityLump(const char *data) { char key[128], value[4096]; int i, j, k; if (!data) return; if (!COM_ParseToken_Simple(&data, false, false)) return; // error if (com_token[0] != '{') return; // error while (1) { if (!COM_ParseToken_Simple(&data, false, false)) return; // error if (com_token[0] == '}') break; // end of worldspawn if (com_token[0] == '_') strlcpy(key, com_token + 1, sizeof(key)); else strlcpy(key, com_token, sizeof(key)); while (key[strlen(key)-1] == ' ') // remove trailing spaces key[strlen(key)-1] = 0; if (!COM_ParseToken_Simple(&data, false, false)) return; // error dpsnprintf(value, sizeof(value), "%s", com_token); if (!strcmp("wad", key)) // for HalfLife maps { if (loadmodel->brush.ishlbsp) { j = 0; for (i = 0;i < (int)sizeof(value);i++) if (value[i] != ';' && value[i] != '\\' && value[i] != '/' && value[i] != ':') break; if (value[i]) { for (;i < (int)sizeof(value);i++) { // ignore path - the \\ check is for HalfLife... stupid windoze 'programmers'... if (value[i] == '\\' || value[i] == '/' || value[i] == ':') j = i+1; else if (value[i] == ';' || value[i] == 0) { k = value[i]; value[i] = 0; W_LoadTextureWadFile(&value[j], false); j = i+1; if (!k) break; } } } } } } } static void Mod_Q1BSP_LoadEntities(lump_t *l) { loadmodel->brush.entities = NULL; if (!l->filelen) return; loadmodel->brush.entities = (char *)Mem_Alloc(loadmodel->mempool, l->filelen + 1); memcpy(loadmodel->brush.entities, mod_base + l->fileofs, l->filelen); loadmodel->brush.entities[l->filelen] = 0; if (loadmodel->brush.ishlbsp) Mod_Q1BSP_ParseWadsFromEntityLump(loadmodel->brush.entities); } static void Mod_Q1BSP_LoadVertexes(lump_t *l) { dvertex_t *in; mvertex_t *out; int i, count; in = (dvertex_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadVertexes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (mvertex_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out)); loadmodel->brushq1.vertexes = out; loadmodel->brushq1.numvertexes = count; for ( i=0 ; iposition[0] = LittleFloat(in->point[0]); out->position[1] = LittleFloat(in->point[1]); out->position[2] = LittleFloat(in->point[2]); } } // The following two functions should be removed and MSG_* or SZ_* function sets adjusted so they // can be used for this // REMOVEME int SB_ReadInt (unsigned char **buffer) { int i; i = ((*buffer)[0]) + 256*((*buffer)[1]) + 65536*((*buffer)[2]) + 16777216*((*buffer)[3]); (*buffer) += 4; return i; } // REMOVEME float SB_ReadFloat (unsigned char **buffer) { union { int i; float f; } u; u.i = SB_ReadInt (buffer); return u.f; } static void Mod_Q1BSP_LoadSubmodels(lump_t *l, hullinfo_t *hullinfo) { unsigned char *index; dmodel_t *out; int i, j, count; index = (unsigned char *)(mod_base + l->fileofs); if (l->filelen % (48+4*hullinfo->filehulls)) Host_Error ("Mod_Q1BSP_LoadSubmodels: funny lump size in %s", loadmodel->name); count = l->filelen / (48+4*hullinfo->filehulls); out = (dmodel_t *)Mem_Alloc (loadmodel->mempool, count*sizeof(*out)); loadmodel->brushq1.submodels = out; loadmodel->brush.numsubmodels = count; for (i = 0; i < count; i++, out++) { // spread out the mins / maxs by a pixel out->mins[0] = SB_ReadFloat (&index) - 1; out->mins[1] = SB_ReadFloat (&index) - 1; out->mins[2] = SB_ReadFloat (&index) - 1; out->maxs[0] = SB_ReadFloat (&index) + 1; out->maxs[1] = SB_ReadFloat (&index) + 1; out->maxs[2] = SB_ReadFloat (&index) + 1; out->origin[0] = SB_ReadFloat (&index); out->origin[1] = SB_ReadFloat (&index); out->origin[2] = SB_ReadFloat (&index); for (j = 0; j < hullinfo->filehulls; j++) out->headnode[j] = SB_ReadInt (&index); out->visleafs = SB_ReadInt (&index); out->firstface = SB_ReadInt (&index); out->numfaces = SB_ReadInt (&index); } } static void Mod_Q1BSP_LoadEdges(lump_t *l) { dedge_t *in; medge_t *out; int i, count; in = (dedge_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadEdges: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (medge_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brushq1.edges = out; loadmodel->brushq1.numedges = count; for ( i=0 ; iv[0] = (unsigned short)LittleShort(in->v[0]); out->v[1] = (unsigned short)LittleShort(in->v[1]); if (out->v[0] >= loadmodel->brushq1.numvertexes || out->v[1] >= loadmodel->brushq1.numvertexes) { Con_Printf("Mod_Q1BSP_LoadEdges: %s has invalid vertex indices in edge %i (vertices %i %i >= numvertices %i)\n", loadmodel->name, i, out->v[0], out->v[1], loadmodel->brushq1.numvertexes); if(!loadmodel->brushq1.numvertexes) Host_Error("Mod_Q1BSP_LoadEdges: %s has edges but no vertexes, cannot fix\n", loadmodel->name); out->v[0] = 0; out->v[1] = 0; } } } static void Mod_Q1BSP_LoadTexinfo(lump_t *l) { texinfo_t *in; mtexinfo_t *out; int i, j, k, count, miptex; in = (texinfo_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadTexinfo: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (mtexinfo_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brushq1.texinfo = out; loadmodel->brushq1.numtexinfo = count; for (i = 0;i < count;i++, in++, out++) { for (k = 0;k < 2;k++) for (j = 0;j < 4;j++) out->vecs[k][j] = LittleFloat(in->vecs[k][j]); miptex = LittleLong(in->miptex); out->flags = LittleLong(in->flags); out->texture = NULL; if (loadmodel->data_textures) { if ((unsigned int) miptex >= (unsigned int) loadmodel->num_textures) Con_Printf("error in model \"%s\": invalid miptex index %i(of %i)\n", loadmodel->name, miptex, loadmodel->num_textures); else out->texture = loadmodel->data_textures + miptex; } if (out->flags & TEX_SPECIAL) { // if texture chosen is NULL or the shader needs a lightmap, // force to notexture water shader if (out->texture == NULL) out->texture = loadmodel->data_textures + (loadmodel->num_textures - 1); } else { // if texture chosen is NULL, force to notexture if (out->texture == NULL) out->texture = loadmodel->data_textures + (loadmodel->num_textures - 2); } } } #if 0 void BoundPoly(int numverts, float *verts, vec3_t mins, vec3_t maxs) { int i, j; float *v; mins[0] = mins[1] = mins[2] = 9999; maxs[0] = maxs[1] = maxs[2] = -9999; v = verts; for (i = 0;i < numverts;i++) { for (j = 0;j < 3;j++, v++) { if (*v < mins[j]) mins[j] = *v; if (*v > maxs[j]) maxs[j] = *v; } } } #define MAX_SUBDIVPOLYTRIANGLES 4096 #define MAX_SUBDIVPOLYVERTS(MAX_SUBDIVPOLYTRIANGLES * 3) static int subdivpolyverts, subdivpolytriangles; static int subdivpolyindex[MAX_SUBDIVPOLYTRIANGLES][3]; static float subdivpolyvert[MAX_SUBDIVPOLYVERTS][3]; static int subdivpolylookupvert(vec3_t v) { int i; for (i = 0;i < subdivpolyverts;i++) if (subdivpolyvert[i][0] == v[0] && subdivpolyvert[i][1] == v[1] && subdivpolyvert[i][2] == v[2]) return i; if (subdivpolyverts >= MAX_SUBDIVPOLYVERTS) Host_Error("SubDividePolygon: ran out of vertices in buffer, please increase your r_subdivide_size"); VectorCopy(v, subdivpolyvert[subdivpolyverts]); return subdivpolyverts++; } static void SubdividePolygon(int numverts, float *verts) { int i, i1, i2, i3, f, b, c, p; vec3_t mins, maxs, front[256], back[256]; float m, *pv, *cv, dist[256], frac; if (numverts > 250) Host_Error("SubdividePolygon: ran out of verts in buffer"); BoundPoly(numverts, verts, mins, maxs); for (i = 0;i < 3;i++) { m = (mins[i] + maxs[i]) * 0.5; m = r_subdivide_size.value * floor(m/r_subdivide_size.value + 0.5); if (maxs[i] - m < 8) continue; if (m - mins[i] < 8) continue; // cut it for (cv = verts, c = 0;c < numverts;c++, cv += 3) dist[c] = cv[i] - m; f = b = 0; for (p = numverts - 1, c = 0, pv = verts + p * 3, cv = verts;c < numverts;p = c, c++, pv = cv, cv += 3) { if (dist[p] >= 0) { VectorCopy(pv, front[f]); f++; } if (dist[p] <= 0) { VectorCopy(pv, back[b]); b++; } if (dist[p] == 0 || dist[c] == 0) continue; if ((dist[p] > 0) != (dist[c] > 0) ) { // clip point frac = dist[p] / (dist[p] - dist[c]); front[f][0] = back[b][0] = pv[0] + frac * (cv[0] - pv[0]); front[f][1] = back[b][1] = pv[1] + frac * (cv[1] - pv[1]); front[f][2] = back[b][2] = pv[2] + frac * (cv[2] - pv[2]); f++; b++; } } SubdividePolygon(f, front[0]); SubdividePolygon(b, back[0]); return; } i1 = subdivpolylookupvert(verts); i2 = subdivpolylookupvert(verts + 3); for (i = 2;i < numverts;i++) { if (subdivpolytriangles >= MAX_SUBDIVPOLYTRIANGLES) { Con_Print("SubdividePolygon: ran out of triangles in buffer, please increase your r_subdivide_size\n"); return; } i3 = subdivpolylookupvert(verts + i * 3); subdivpolyindex[subdivpolytriangles][0] = i1; subdivpolyindex[subdivpolytriangles][1] = i2; subdivpolyindex[subdivpolytriangles][2] = i3; i2 = i3; subdivpolytriangles++; } } //Breaks a polygon up along axial 64 unit //boundaries so that turbulent and sky warps //can be done reasonably. static void Mod_Q1BSP_GenerateWarpMesh(msurface_t *surface) { int i, j; surfvertex_t *v; surfmesh_t *mesh; subdivpolytriangles = 0; subdivpolyverts = 0; SubdividePolygon(surface->num_vertices, (surface->mesh->data_vertex3f + 3 * surface->num_firstvertex)); if (subdivpolytriangles < 1) Host_Error("Mod_Q1BSP_GenerateWarpMesh: no triangles?"); surface->mesh = mesh = Mem_Alloc(loadmodel->mempool, sizeof(surfmesh_t) + subdivpolytriangles * sizeof(int[3]) + subdivpolyverts * sizeof(surfvertex_t)); mesh->num_vertices = subdivpolyverts; mesh->num_triangles = subdivpolytriangles; mesh->vertex = (surfvertex_t *)(mesh + 1); mesh->index = (int *)(mesh->vertex + mesh->num_vertices); memset(mesh->vertex, 0, mesh->num_vertices * sizeof(surfvertex_t)); for (i = 0;i < mesh->num_triangles;i++) for (j = 0;j < 3;j++) mesh->index[i*3+j] = subdivpolyindex[i][j]; for (i = 0, v = mesh->vertex;i < subdivpolyverts;i++, v++) { VectorCopy(subdivpolyvert[i], v->v); v->st[0] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[0]); v->st[1] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[1]); } } #endif extern cvar_t gl_max_lightmapsize; static void Mod_Q1BSP_LoadFaces(lump_t *l) { dface_t *in; msurface_t *surface; int i, j, count, surfacenum, planenum, smax, tmax, ssize, tsize, firstedge, numedges, totalverts, totaltris, lightmapnumber, lightmapsize, totallightmapsamples; float texmins[2], texmaxs[2], val; rtexture_t *lightmaptexture, *deluxemaptexture; in = (dface_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadFaces: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); loadmodel->data_surfaces = (msurface_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_t)); loadmodel->data_surfaces_lightmapinfo = (msurface_lightmapinfo_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_lightmapinfo_t)); loadmodel->num_surfaces = count; loadmodel->brushq1.firstrender = true; loadmodel->brushq1.lightmapupdateflags = (unsigned char *)Mem_Alloc(loadmodel->mempool, count*sizeof(unsigned char)); totalverts = 0; totaltris = 0; for (surfacenum = 0, in = (dface_t *)(mod_base + l->fileofs);surfacenum < count;surfacenum++, in++) { numedges = (unsigned short)LittleShort(in->numedges); totalverts += numedges; totaltris += numedges - 2; } Mod_AllocSurfMesh(loadmodel->mempool, totalverts, totaltris, true, false, false); lightmaptexture = NULL; deluxemaptexture = r_texture_blanknormalmap; lightmapnumber = 0; lightmapsize = bound(256, gl_max_lightmapsize.integer, (int)vid.maxtexturesize_2d); totallightmapsamples = 0; totalverts = 0; totaltris = 0; for (surfacenum = 0, in = (dface_t *)(mod_base + l->fileofs), surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, in++, surface++) { surface->lightmapinfo = loadmodel->data_surfaces_lightmapinfo + surfacenum; // FIXME: validate edges, texinfo, etc? firstedge = LittleLong(in->firstedge); numedges = (unsigned short)LittleShort(in->numedges); if ((unsigned int) firstedge > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) firstedge + (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges) Host_Error("Mod_Q1BSP_LoadFaces: invalid edge range (firstedge %i, numedges %i, model edges %i)", firstedge, numedges, loadmodel->brushq1.numsurfedges); i = (unsigned short)LittleShort(in->texinfo); if ((unsigned int) i >= (unsigned int) loadmodel->brushq1.numtexinfo) Host_Error("Mod_Q1BSP_LoadFaces: invalid texinfo index %i(model has %i texinfos)", i, loadmodel->brushq1.numtexinfo); surface->lightmapinfo->texinfo = loadmodel->brushq1.texinfo + i; surface->texture = surface->lightmapinfo->texinfo->texture; planenum = (unsigned short)LittleShort(in->planenum); if ((unsigned int) planenum >= (unsigned int) loadmodel->brush.num_planes) Host_Error("Mod_Q1BSP_LoadFaces: invalid plane index %i (model has %i planes)", planenum, loadmodel->brush.num_planes); //surface->flags = surface->texture->flags; //if (LittleShort(in->side)) // surface->flags |= SURF_PLANEBACK; //surface->plane = loadmodel->brush.data_planes + planenum; surface->num_firstvertex = totalverts; surface->num_vertices = numedges; surface->num_firsttriangle = totaltris; surface->num_triangles = numedges - 2; totalverts += numedges; totaltris += numedges - 2; // convert edges back to a normal polygon for (i = 0;i < surface->num_vertices;i++) { int lindex = loadmodel->brushq1.surfedges[firstedge + i]; float s, t; // note: the q1bsp format does not allow a 0 surfedge (it would have no negative counterpart) if (lindex >= 0) VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[lindex].v[0]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3); else VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[-lindex].v[1]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3); s = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3]; t = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3]; (loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 0] = s / surface->texture->width; (loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 1] = t / surface->texture->height; (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = 0; (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = 0; (loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = 0; } for (i = 0;i < surface->num_triangles;i++) { (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 0] = 0 + surface->num_firstvertex; (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 1] = i + 1 + surface->num_firstvertex; (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 2] = i + 2 + surface->num_firstvertex; } // compile additional data about the surface geometry Mod_BuildNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_normal3f, r_smoothnormals_areaweighting.integer != 0); Mod_BuildTextureVectorsFromNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0); BoxFromPoints(surface->mins, surface->maxs, surface->num_vertices, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex)); // generate surface extents information texmins[0] = texmaxs[0] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3]; texmins[1] = texmaxs[1] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3]; for (i = 1;i < surface->num_vertices;i++) { for (j = 0;j < 2;j++) { val = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3, surface->lightmapinfo->texinfo->vecs[j]) + surface->lightmapinfo->texinfo->vecs[j][3]; texmins[j] = min(texmins[j], val); texmaxs[j] = max(texmaxs[j], val); } } for (i = 0;i < 2;i++) { surface->lightmapinfo->texturemins[i] = (int) floor(texmins[i] / 16.0) * 16; surface->lightmapinfo->extents[i] = (int) ceil(texmaxs[i] / 16.0) * 16 - surface->lightmapinfo->texturemins[i]; } smax = surface->lightmapinfo->extents[0] >> 4; tmax = surface->lightmapinfo->extents[1] >> 4; ssize = (surface->lightmapinfo->extents[0] >> 4) + 1; tsize = (surface->lightmapinfo->extents[1] >> 4) + 1; // lighting info for (i = 0;i < MAXLIGHTMAPS;i++) surface->lightmapinfo->styles[i] = in->styles[i]; surface->lightmaptexture = NULL; surface->deluxemaptexture = r_texture_blanknormalmap; i = LittleLong(in->lightofs); if (i == -1) { surface->lightmapinfo->samples = NULL; #if 1 // give non-lightmapped water a 1x white lightmap if (surface->texture->name[0] == '*' && (surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) && ssize <= 256 && tsize <= 256) { surface->lightmapinfo->samples = (unsigned char *)Mem_Alloc(loadmodel->mempool, ssize * tsize * 3); surface->lightmapinfo->styles[0] = 0; memset(surface->lightmapinfo->samples, 128, ssize * tsize * 3); } #endif } else if (loadmodel->brush.ishlbsp) // LordHavoc: HalfLife map (bsp version 30) surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + i; else // LordHavoc: white lighting (bsp version 29) { surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + (i * 3); if (loadmodel->brushq1.nmaplightdata) surface->lightmapinfo->nmapsamples = loadmodel->brushq1.nmaplightdata + (i * 3); } // check if we should apply a lightmap to this if (!(surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) || surface->lightmapinfo->samples) { if (ssize > 256 || tsize > 256) Host_Error("Bad surface extents"); if (lightmapsize < ssize) lightmapsize = ssize; if (lightmapsize < tsize) lightmapsize = tsize; totallightmapsamples += ssize*tsize; // force lightmap upload on first time seeing the surface // // additionally this is used by the later code to see if a // lightmap is needed on this surface (rather than duplicating the // logic above) loadmodel->brushq1.lightmapupdateflags[surfacenum] = true; loadmodel->lit = true; } } // small maps (such as ammo boxes especially) don't need big lightmap // textures, so this code tries to guess a good size based on // totallightmapsamples (size of the lightmaps lump basically), as well as // trying to max out the size if there is a lot of lightmap data to store // additionally, never choose a lightmapsize that is smaller than the // largest surface encountered (as it would fail) i = lightmapsize; for (lightmapsize = 64; (lightmapsize < i) && (lightmapsize < bound(128, gl_max_lightmapsize.integer, (int)vid.maxtexturesize_2d)) && (totallightmapsamples > lightmapsize*lightmapsize); lightmapsize*=2) ; // now that we've decided the lightmap texture size, we can do the rest if (cls.state != ca_dedicated) { int stainmapsize = 0; mod_alloclightmap_state_t allocState; Mod_AllocLightmap_Init(&allocState, lightmapsize, lightmapsize); for (surfacenum = 0, surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, surface++) { int i, iu, iv, lightmapx = 0, lightmapy = 0; float u, v, ubase, vbase, uscale, vscale; if (!loadmodel->brushq1.lightmapupdateflags[surfacenum]) continue; smax = surface->lightmapinfo->extents[0] >> 4; tmax = surface->lightmapinfo->extents[1] >> 4; ssize = (surface->lightmapinfo->extents[0] >> 4) + 1; tsize = (surface->lightmapinfo->extents[1] >> 4) + 1; stainmapsize += ssize * tsize * 3; if (!lightmaptexture || !Mod_AllocLightmap_Block(&allocState, ssize, tsize, &lightmapx, &lightmapy)) { // allocate a texture pool if we need it if (loadmodel->texturepool == NULL) loadmodel->texturepool = R_AllocTexturePool(); // could not find room, make a new lightmap loadmodel->brushq3.num_mergedlightmaps = lightmapnumber + 1; loadmodel->brushq3.data_lightmaps = (rtexture_t **)Mem_Realloc(loadmodel->mempool, loadmodel->brushq3.data_lightmaps, loadmodel->brushq3.num_mergedlightmaps * sizeof(loadmodel->brushq3.data_lightmaps[0])); loadmodel->brushq3.data_deluxemaps = (rtexture_t **)Mem_Realloc(loadmodel->mempool, loadmodel->brushq3.data_deluxemaps, loadmodel->brushq3.num_mergedlightmaps * sizeof(loadmodel->brushq3.data_deluxemaps[0])); loadmodel->brushq3.data_lightmaps[lightmapnumber] = lightmaptexture = R_LoadTexture2D(loadmodel->texturepool, va("lightmap%i", lightmapnumber), lightmapsize, lightmapsize, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_ALLOWUPDATES, -1, NULL); if (loadmodel->brushq1.nmaplightdata) loadmodel->brushq3.data_deluxemaps[lightmapnumber] = deluxemaptexture = R_LoadTexture2D(loadmodel->texturepool, va("deluxemap%i", lightmapnumber), lightmapsize, lightmapsize, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_ALLOWUPDATES, -1, NULL); lightmapnumber++; Mod_AllocLightmap_Reset(&allocState); Mod_AllocLightmap_Block(&allocState, ssize, tsize, &lightmapx, &lightmapy); } surface->lightmaptexture = lightmaptexture; surface->deluxemaptexture = deluxemaptexture; surface->lightmapinfo->lightmaporigin[0] = lightmapx; surface->lightmapinfo->lightmaporigin[1] = lightmapy; uscale = 1.0f / (float)lightmapsize; vscale = 1.0f / (float)lightmapsize; ubase = lightmapx * uscale; vbase = lightmapy * vscale; for (i = 0;i < surface->num_vertices;i++) { u = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3]) + 8 - surface->lightmapinfo->texturemins[0]) * (1.0 / 16.0); v = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3]) + 8 - surface->lightmapinfo->texturemins[1]) * (1.0 / 16.0); (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = u * uscale + ubase; (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = v * vscale + vbase; // LordHavoc: calc lightmap data offset for vertex lighting to use iu = (int) u; iv = (int) v; (loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = (bound(0, iv, tmax) * ssize + bound(0, iu, smax)) * 3; } } if (cl_stainmaps.integer) { // allocate stainmaps for permanent marks on walls and clear white unsigned char *stainsamples = NULL; stainsamples = (unsigned char *)Mem_Alloc(loadmodel->mempool, stainmapsize); memset(stainsamples, 255, stainmapsize); // assign pointers for (surfacenum = 0, surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, surface++) { if (!loadmodel->brushq1.lightmapupdateflags[surfacenum]) continue; ssize = (surface->lightmapinfo->extents[0] >> 4) + 1; tsize = (surface->lightmapinfo->extents[1] >> 4) + 1; surface->lightmapinfo->stainsamples = stainsamples; stainsamples += ssize * tsize * 3; } } } // generate ushort elements array if possible if (loadmodel->surfmesh.data_element3s) for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++) loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i]; } static void Mod_Q1BSP_LoadNodes_RecursiveSetParent(mnode_t *node, mnode_t *parent) { //if (node->parent) // Host_Error("Mod_Q1BSP_LoadNodes_RecursiveSetParent: runaway recursion"); node->parent = parent; if (node->plane) { // this is a node, recurse to children Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[0], node); Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[1], node); // combine supercontents of children node->combinedsupercontents = node->children[0]->combinedsupercontents | node->children[1]->combinedsupercontents; } else { int j; mleaf_t *leaf = (mleaf_t *)node; // if this is a leaf, calculate supercontents mask from all collidable // primitives in the leaf (brushes and collision surfaces) // also flag if the leaf contains any collision surfaces leaf->combinedsupercontents = 0; // combine the supercontents values of all brushes in this leaf for (j = 0;j < leaf->numleafbrushes;j++) leaf->combinedsupercontents |= loadmodel->brush.data_brushes[leaf->firstleafbrush[j]].texture->supercontents; // check if this leaf contains any collision surfaces (q3 patches) for (j = 0;j < leaf->numleafsurfaces;j++) { msurface_t *surface = loadmodel->data_surfaces + leaf->firstleafsurface[j]; if (surface->num_collisiontriangles) { leaf->containscollisionsurfaces = true; leaf->combinedsupercontents |= surface->texture->supercontents; } } } } static void Mod_Q1BSP_LoadNodes(lump_t *l) { int i, j, count, p; dnode_t *in; mnode_t *out; in = (dnode_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadNodes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); if (count == 0) Host_Error("Mod_Q1BSP_LoadNodes: missing BSP tree in %s",loadmodel->name); out = (mnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out)); loadmodel->brush.data_nodes = out; loadmodel->brush.num_nodes = count; for ( i=0 ; imins[j] = LittleShort(in->mins[j]); out->maxs[j] = LittleShort(in->maxs[j]); } p = LittleLong(in->planenum); out->plane = loadmodel->brush.data_planes + p; out->firstsurface = (unsigned short)LittleShort(in->firstface); out->numsurfaces = (unsigned short)LittleShort(in->numfaces); for (j=0 ; j<2 ; j++) { // LordHavoc: this code supports broken bsp files produced by // arguire qbsp which can produce more than 32768 nodes, any value // below count is assumed to be a node number, any other value is // assumed to be a leaf number p = (unsigned short)LittleShort(in->children[j]); if (p < count) { if (p < loadmodel->brush.num_nodes) out->children[j] = loadmodel->brush.data_nodes + p; else { Con_Printf("Mod_Q1BSP_LoadNodes: invalid node index %i (file has only %i nodes)\n", p, loadmodel->brush.num_nodes); // map it to the solid leaf out->children[j] = (mnode_t *)loadmodel->brush.data_leafs; } } else { // note this uses 65535 intentionally, -1 is leaf 0 p = 65535 - p; if (p < loadmodel->brush.num_leafs) out->children[j] = (mnode_t *)(loadmodel->brush.data_leafs + p); else { Con_Printf("Mod_Q1BSP_LoadNodes: invalid leaf index %i (file has only %i leafs)\n", p, loadmodel->brush.num_leafs); // map it to the solid leaf out->children[j] = (mnode_t *)loadmodel->brush.data_leafs; } } } } Mod_Q1BSP_LoadNodes_RecursiveSetParent(loadmodel->brush.data_nodes, NULL); // sets nodes and leafs } static void Mod_Q1BSP_LoadLeafs(lump_t *l) { dleaf_t *in; mleaf_t *out; int i, j, count, p; in = (dleaf_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadLeafs: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (mleaf_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out)); loadmodel->brush.data_leafs = out; loadmodel->brush.num_leafs = count; // get visleafs from the submodel data loadmodel->brush.num_pvsclusters = loadmodel->brushq1.submodels[0].visleafs; loadmodel->brush.num_pvsclusterbytes = (loadmodel->brush.num_pvsclusters+7)>>3; loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes); memset(loadmodel->brush.data_pvsclusters, 0xFF, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes); for ( i=0 ; imins[j] = LittleShort(in->mins[j]); out->maxs[j] = LittleShort(in->maxs[j]); } // FIXME: this function could really benefit from some error checking out->contents = LittleLong(in->contents); out->firstleafsurface = loadmodel->brush.data_leafsurfaces + (unsigned short)LittleShort(in->firstmarksurface); out->numleafsurfaces = (unsigned short)LittleShort(in->nummarksurfaces); if ((unsigned short)LittleShort(in->firstmarksurface) + out->numleafsurfaces > loadmodel->brush.num_leafsurfaces) { Con_Printf("Mod_Q1BSP_LoadLeafs: invalid leafsurface range %i:%i outside range %i:%i\n", (int)(out->firstleafsurface - loadmodel->brush.data_leafsurfaces), (int)(out->firstleafsurface + out->numleafsurfaces - loadmodel->brush.data_leafsurfaces), 0, loadmodel->brush.num_leafsurfaces); out->firstleafsurface = NULL; out->numleafsurfaces = 0; } out->clusterindex = i - 1; if (out->clusterindex >= loadmodel->brush.num_pvsclusters) out->clusterindex = -1; p = LittleLong(in->visofs); // ignore visofs errors on leaf 0 (solid) if (p >= 0 && out->clusterindex >= 0) { if (p >= loadmodel->brushq1.num_compressedpvs) Con_Print("Mod_Q1BSP_LoadLeafs: invalid visofs\n"); else Mod_Q1BSP_DecompressVis(loadmodel->brushq1.data_compressedpvs + p, loadmodel->brushq1.data_compressedpvs + loadmodel->brushq1.num_compressedpvs, loadmodel->brush.data_pvsclusters + out->clusterindex * loadmodel->brush.num_pvsclusterbytes, loadmodel->brush.data_pvsclusters + (out->clusterindex + 1) * loadmodel->brush.num_pvsclusterbytes); } for (j = 0;j < 4;j++) out->ambient_sound_level[j] = in->ambient_level[j]; // FIXME: Insert caustics here } } qboolean Mod_Q1BSP_CheckWaterAlphaSupport(void) { int i, j; mleaf_t *leaf; const unsigned char *pvs; // if there's no vis data, assume supported (because everything is visible all the time) if (!loadmodel->brush.data_pvsclusters) return true; // check all liquid leafs to see if they can see into empty leafs, if any // can we can assume this map supports r_wateralpha for (i = 0, leaf = loadmodel->brush.data_leafs;i < loadmodel->brush.num_leafs;i++, leaf++) { if ((leaf->contents == CONTENTS_WATER || leaf->contents == CONTENTS_SLIME) && leaf->clusterindex >= 0) { pvs = loadmodel->brush.data_pvsclusters + leaf->clusterindex * loadmodel->brush.num_pvsclusterbytes; for (j = 0;j < loadmodel->brush.num_leafs;j++) if (CHECKPVSBIT(pvs, loadmodel->brush.data_leafs[j].clusterindex) && loadmodel->brush.data_leafs[j].contents == CONTENTS_EMPTY) return true; } } return false; } static void Mod_Q1BSP_LoadClipnodes(lump_t *l, hullinfo_t *hullinfo) { dclipnode_t *in; mclipnode_t *out; int i, count; hull_t *hull; in = (dclipnode_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadClipnodes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (mclipnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out)); loadmodel->brushq1.clipnodes = out; loadmodel->brushq1.numclipnodes = count; for (i = 1; i < MAX_MAP_HULLS; i++) { hull = &loadmodel->brushq1.hulls[i]; hull->clipnodes = out; hull->firstclipnode = 0; hull->lastclipnode = count-1; hull->planes = loadmodel->brush.data_planes; hull->clip_mins[0] = hullinfo->hullsizes[i][0][0]; hull->clip_mins[1] = hullinfo->hullsizes[i][0][1]; hull->clip_mins[2] = hullinfo->hullsizes[i][0][2]; hull->clip_maxs[0] = hullinfo->hullsizes[i][1][0]; hull->clip_maxs[1] = hullinfo->hullsizes[i][1][1]; hull->clip_maxs[2] = hullinfo->hullsizes[i][1][2]; VectorSubtract(hull->clip_maxs, hull->clip_mins, hull->clip_size); } for (i=0 ; iplanenum = LittleLong(in->planenum); // LordHavoc: this code supports arguire qbsp's broken clipnodes indices (more than 32768 clipnodes), values above count are assumed to be contents values out->children[0] = (unsigned short)LittleShort(in->children[0]); out->children[1] = (unsigned short)LittleShort(in->children[1]); if (out->children[0] >= count) out->children[0] -= 65536; if (out->children[1] >= count) out->children[1] -= 65536; if (out->planenum < 0 || out->planenum >= loadmodel->brush.num_planes) Host_Error("Corrupt clipping hull(out of range planenum)"); } } //Duplicate the drawing hull structure as a clipping hull static void Mod_Q1BSP_MakeHull0(void) { mnode_t *in; mclipnode_t *out; int i; hull_t *hull; hull = &loadmodel->brushq1.hulls[0]; in = loadmodel->brush.data_nodes; out = (mclipnode_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_nodes * sizeof(*out)); hull->clipnodes = out; hull->firstclipnode = 0; hull->lastclipnode = loadmodel->brush.num_nodes - 1; hull->planes = loadmodel->brush.data_planes; for (i = 0;i < loadmodel->brush.num_nodes;i++, out++, in++) { out->planenum = in->plane - loadmodel->brush.data_planes; out->children[0] = in->children[0]->plane ? in->children[0] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[0])->contents; out->children[1] = in->children[1]->plane ? in->children[1] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[1])->contents; } } static void Mod_Q1BSP_LoadLeaffaces(lump_t *l) { int i, j; short *in; in = (short *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadLeaffaces: funny lump size in %s",loadmodel->name); loadmodel->brush.num_leafsurfaces = l->filelen / sizeof(*in); loadmodel->brush.data_leafsurfaces = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafsurfaces * sizeof(int)); for (i = 0;i < loadmodel->brush.num_leafsurfaces;i++) { j = (unsigned short) LittleShort(in[i]); if (j >= loadmodel->num_surfaces) Host_Error("Mod_Q1BSP_LoadLeaffaces: bad surface number"); loadmodel->brush.data_leafsurfaces[i] = j; } } static void Mod_Q1BSP_LoadSurfedges(lump_t *l) { int i; int *in; in = (int *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadSurfedges: funny lump size in %s",loadmodel->name); loadmodel->brushq1.numsurfedges = l->filelen / sizeof(*in); loadmodel->brushq1.surfedges = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brushq1.numsurfedges * sizeof(int)); for (i = 0;i < loadmodel->brushq1.numsurfedges;i++) loadmodel->brushq1.surfedges[i] = LittleLong(in[i]); } static void Mod_Q1BSP_LoadPlanes(lump_t *l) { int i; mplane_t *out; dplane_t *in; in = (dplane_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q1BSP_LoadPlanes: funny lump size in %s", loadmodel->name); loadmodel->brush.num_planes = l->filelen / sizeof(*in); loadmodel->brush.data_planes = out = (mplane_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_planes * sizeof(*out)); for (i = 0;i < loadmodel->brush.num_planes;i++, in++, out++) { out->normal[0] = LittleFloat(in->normal[0]); out->normal[1] = LittleFloat(in->normal[1]); out->normal[2] = LittleFloat(in->normal[2]); out->dist = LittleFloat(in->dist); PlaneClassify(out); } } static void Mod_Q1BSP_LoadMapBrushes(void) { #if 0 // unfinished int submodel, numbrushes; qboolean firstbrush; char *text, *maptext; char mapfilename[MAX_QPATH]; FS_StripExtension (loadmodel->name, mapfilename, sizeof (mapfilename)); strlcat (mapfilename, ".map", sizeof (mapfilename)); maptext = (unsigned char*) FS_LoadFile(mapfilename, tempmempool, false, NULL); if (!maptext) return; text = maptext; if (!COM_ParseToken_Simple(&data, false, false)) return; // error submodel = 0; for (;;) { if (!COM_ParseToken_Simple(&data, false, false)) break; if (com_token[0] != '{') return; // error // entity firstbrush = true; numbrushes = 0; maxbrushes = 256; brushes = Mem_Alloc(loadmodel->mempool, maxbrushes * sizeof(mbrush_t)); for (;;) { if (!COM_ParseToken_Simple(&data, false, false)) return; // error if (com_token[0] == '}') break; // end of entity if (com_token[0] == '{') { // brush if (firstbrush) { if (submodel) { if (submodel > loadmodel->brush.numsubmodels) { Con_Printf("Mod_Q1BSP_LoadMapBrushes: .map has more submodels than .bsp!\n"); model = NULL; } else model = loadmodel->brush.submodels[submodel]; } else model = loadmodel; } for (;;) { if (!COM_ParseToken_Simple(&data, false, false)) return; // error if (com_token[0] == '}') break; // end of brush // each brush face should be this format: // ( x y z ) ( x y z ) ( x y z ) texture scroll_s scroll_t rotateangle scale_s scale_t // FIXME: support hl .map format for (pointnum = 0;pointnum < 3;pointnum++) { COM_ParseToken_Simple(&data, false, false); for (componentnum = 0;componentnum < 3;componentnum++) { COM_ParseToken_Simple(&data, false, false); point[pointnum][componentnum] = atof(com_token); } COM_ParseToken_Simple(&data, false, false); } COM_ParseToken_Simple(&data, false, false); strlcpy(facetexture, com_token, sizeof(facetexture)); COM_ParseToken_Simple(&data, false, false); //scroll_s = atof(com_token); COM_ParseToken_Simple(&data, false, false); //scroll_t = atof(com_token); COM_ParseToken_Simple(&data, false, false); //rotate = atof(com_token); COM_ParseToken_Simple(&data, false, false); //scale_s = atof(com_token); COM_ParseToken_Simple(&data, false, false); //scale_t = atof(com_token); TriangleNormal(point[0], point[1], point[2], planenormal); VectorNormalizeDouble(planenormal); planedist = DotProduct(point[0], planenormal); //ChooseTexturePlane(planenormal, texturevector[0], texturevector[1]); } continue; } } } #endif } #define MAX_PORTALPOINTS 64 typedef struct portal_s { mplane_t plane; mnode_t *nodes[2]; // [0] = front side of plane struct portal_s *next[2]; int numpoints; double points[3*MAX_PORTALPOINTS]; struct portal_s *chain; // all portals are linked into a list } portal_t; static memexpandablearray_t portalarray; static void Mod_Q1BSP_RecursiveRecalcNodeBBox(mnode_t *node) { // process only nodes (leafs already had their box calculated) if (!node->plane) return; // calculate children first Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[0]); Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[1]); // make combined bounding box from children node->mins[0] = min(node->children[0]->mins[0], node->children[1]->mins[0]); node->mins[1] = min(node->children[0]->mins[1], node->children[1]->mins[1]); node->mins[2] = min(node->children[0]->mins[2], node->children[1]->mins[2]); node->maxs[0] = max(node->children[0]->maxs[0], node->children[1]->maxs[0]); node->maxs[1] = max(node->children[0]->maxs[1], node->children[1]->maxs[1]); node->maxs[2] = max(node->children[0]->maxs[2], node->children[1]->maxs[2]); } static void Mod_Q1BSP_FinalizePortals(void) { int i, j, numportals, numpoints, portalindex, portalrange = Mem_ExpandableArray_IndexRange(&portalarray); portal_t *p; mportal_t *portal; mvertex_t *point; mleaf_t *leaf, *endleaf; // tally up portal and point counts and recalculate bounding boxes for all // leafs (because qbsp is very sloppy) leaf = loadmodel->brush.data_leafs; endleaf = leaf + loadmodel->brush.num_leafs; if (mod_recalculatenodeboxes.integer) { for (;leaf < endleaf;leaf++) { VectorSet(leaf->mins, 2000000000, 2000000000, 2000000000); VectorSet(leaf->maxs, -2000000000, -2000000000, -2000000000); } } numportals = 0; numpoints = 0; for (portalindex = 0;portalindex < portalrange;portalindex++) { p = (portal_t*)Mem_ExpandableArray_RecordAtIndex(&portalarray, portalindex); if (!p) continue; // note: this check must match the one below or it will usually corrupt memory // the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1] && ((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0) { numportals += 2; numpoints += p->numpoints * 2; } } loadmodel->brush.data_portals = (mportal_t *)Mem_Alloc(loadmodel->mempool, numportals * sizeof(mportal_t) + numpoints * sizeof(mvertex_t)); loadmodel->brush.num_portals = numportals; loadmodel->brush.data_portalpoints = (mvertex_t *)((unsigned char *) loadmodel->brush.data_portals + numportals * sizeof(mportal_t)); loadmodel->brush.num_portalpoints = numpoints; // clear all leaf portal chains for (i = 0;i < loadmodel->brush.num_leafs;i++) loadmodel->brush.data_leafs[i].portals = NULL; // process all portals in the global portal chain, while freeing them portal = loadmodel->brush.data_portals; point = loadmodel->brush.data_portalpoints; for (portalindex = 0;portalindex < portalrange;portalindex++) { p = (portal_t*)Mem_ExpandableArray_RecordAtIndex(&portalarray, portalindex); if (!p) continue; if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1]) { // note: this check must match the one above or it will usually corrupt memory // the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides if (((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0) { // first make the back to front portal(forward portal) portal->points = point; portal->numpoints = p->numpoints; portal->plane.dist = p->plane.dist; VectorCopy(p->plane.normal, portal->plane.normal); portal->here = (mleaf_t *)p->nodes[1]; portal->past = (mleaf_t *)p->nodes[0]; // copy points for (j = 0;j < portal->numpoints;j++) { VectorCopy(p->points + j*3, point->position); point++; } BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position); PlaneClassify(&portal->plane); // link into leaf's portal chain portal->next = portal->here->portals; portal->here->portals = portal; // advance to next portal portal++; // then make the front to back portal(backward portal) portal->points = point; portal->numpoints = p->numpoints; portal->plane.dist = -p->plane.dist; VectorNegate(p->plane.normal, portal->plane.normal); portal->here = (mleaf_t *)p->nodes[0]; portal->past = (mleaf_t *)p->nodes[1]; // copy points for (j = portal->numpoints - 1;j >= 0;j--) { VectorCopy(p->points + j*3, point->position); point++; } BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position); PlaneClassify(&portal->plane); // link into leaf's portal chain portal->next = portal->here->portals; portal->here->portals = portal; // advance to next portal portal++; } // add the portal's polygon points to the leaf bounding boxes if (mod_recalculatenodeboxes.integer) { for (i = 0;i < 2;i++) { leaf = (mleaf_t *)p->nodes[i]; for (j = 0;j < p->numpoints;j++) { if (leaf->mins[0] > p->points[j*3+0]) leaf->mins[0] = p->points[j*3+0]; if (leaf->mins[1] > p->points[j*3+1]) leaf->mins[1] = p->points[j*3+1]; if (leaf->mins[2] > p->points[j*3+2]) leaf->mins[2] = p->points[j*3+2]; if (leaf->maxs[0] < p->points[j*3+0]) leaf->maxs[0] = p->points[j*3+0]; if (leaf->maxs[1] < p->points[j*3+1]) leaf->maxs[1] = p->points[j*3+1]; if (leaf->maxs[2] < p->points[j*3+2]) leaf->maxs[2] = p->points[j*3+2]; } } } } } // now recalculate the node bounding boxes from the leafs if (mod_recalculatenodeboxes.integer) Mod_Q1BSP_RecursiveRecalcNodeBBox(loadmodel->brush.data_nodes + loadmodel->brushq1.hulls[0].firstclipnode); } /* ============= AddPortalToNodes ============= */ static void AddPortalToNodes(portal_t *p, mnode_t *front, mnode_t *back) { if (!front) Host_Error("AddPortalToNodes: NULL front node"); if (!back) Host_Error("AddPortalToNodes: NULL back node"); if (p->nodes[0] || p->nodes[1]) Host_Error("AddPortalToNodes: already included"); // note: front == back is handled gracefully, because leaf 0 is the shared solid leaf, it can often have portals with the same leaf on both sides p->nodes[0] = front; p->next[0] = (portal_t *)front->portals; front->portals = (mportal_t *)p; p->nodes[1] = back; p->next[1] = (portal_t *)back->portals; back->portals = (mportal_t *)p; } /* ============= RemovePortalFromNode ============= */ static void RemovePortalFromNodes(portal_t *portal) { int i; mnode_t *node; void **portalpointer; portal_t *t; for (i = 0;i < 2;i++) { node = portal->nodes[i]; portalpointer = (void **) &node->portals; while (1) { t = (portal_t *)*portalpointer; if (!t) Host_Error("RemovePortalFromNodes: portal not in leaf"); if (t == portal) { if (portal->nodes[0] == node) { *portalpointer = portal->next[0]; portal->nodes[0] = NULL; } else if (portal->nodes[1] == node) { *portalpointer = portal->next[1]; portal->nodes[1] = NULL; } else Host_Error("RemovePortalFromNodes: portal not bounding leaf"); break; } if (t->nodes[0] == node) portalpointer = (void **) &t->next[0]; else if (t->nodes[1] == node) portalpointer = (void **) &t->next[1]; else Host_Error("RemovePortalFromNodes: portal not bounding leaf"); } } } #define PORTAL_DIST_EPSILON (1.0 / 32.0) static double *portalpointsbuffer; static int portalpointsbufferoffset; static int portalpointsbuffersize; static void Mod_Q1BSP_RecursiveNodePortals(mnode_t *node) { int i, side; mnode_t *front, *back, *other_node; mplane_t clipplane, *plane; portal_t *portal, *nextportal, *nodeportal, *splitportal, *temp; int numfrontpoints, numbackpoints; double *frontpoints, *backpoints; // if a leaf, we're done if (!node->plane) return; // get some space for our clipping operations to use if (portalpointsbuffersize < portalpointsbufferoffset + 6*MAX_PORTALPOINTS) { portalpointsbuffersize = portalpointsbufferoffset * 2; portalpointsbuffer = (double *)Mem_Realloc(loadmodel->mempool, portalpointsbuffer, portalpointsbuffersize * sizeof(*portalpointsbuffer)); } frontpoints = portalpointsbuffer + portalpointsbufferoffset; portalpointsbufferoffset += 3*MAX_PORTALPOINTS; backpoints = portalpointsbuffer + portalpointsbufferoffset; portalpointsbufferoffset += 3*MAX_PORTALPOINTS; plane = node->plane; front = node->children[0]; back = node->children[1]; if (front == back) Host_Error("Mod_Q1BSP_RecursiveNodePortals: corrupt node hierarchy"); // create the new portal by generating a polygon for the node plane, // and clipping it by all of the other portals(which came from nodes above this one) nodeportal = (portal_t *)Mem_ExpandableArray_AllocRecord(&portalarray); nodeportal->plane = *plane; // TODO: calculate node bounding boxes during recursion and calculate a maximum plane size accordingly to improve precision (as most maps do not need 1 billion unit plane polygons) PolygonD_QuadForPlane(nodeportal->points, nodeportal->plane.normal[0], nodeportal->plane.normal[1], nodeportal->plane.normal[2], nodeportal->plane.dist, 1024.0*1024.0*1024.0); nodeportal->numpoints = 4; side = 0; // shut up compiler warning for (portal = (portal_t *)node->portals;portal;portal = portal->next[side]) { clipplane = portal->plane; if (portal->nodes[0] == portal->nodes[1]) Host_Error("Mod_Q1BSP_RecursiveNodePortals: portal has same node on both sides(1)"); if (portal->nodes[0] == node) side = 0; else if (portal->nodes[1] == node) { clipplane.dist = -clipplane.dist; VectorNegate(clipplane.normal, clipplane.normal); side = 1; } else Host_Error("Mod_Q1BSP_RecursiveNodePortals: mislinked portal"); for (i = 0;i < nodeportal->numpoints*3;i++) frontpoints[i] = nodeportal->points[i]; PolygonD_Divide(nodeportal->numpoints, frontpoints, clipplane.normal[0], clipplane.normal[1], clipplane.normal[2], clipplane.dist, PORTAL_DIST_EPSILON, MAX_PORTALPOINTS, nodeportal->points, &nodeportal->numpoints, 0, NULL, NULL, NULL); if (nodeportal->numpoints <= 0 || nodeportal->numpoints >= MAX_PORTALPOINTS) break; } if (nodeportal->numpoints < 3) { Con_Print("Mod_Q1BSP_RecursiveNodePortals: WARNING: new portal was clipped away\n"); nodeportal->numpoints = 0; } else if (nodeportal->numpoints >= MAX_PORTALPOINTS) { Con_Print("Mod_Q1BSP_RecursiveNodePortals: WARNING: new portal has too many points\n"); nodeportal->numpoints = 0; } AddPortalToNodes(nodeportal, front, back); // split the portals of this node along this node's plane and assign them to the children of this node // (migrating the portals downward through the tree) for (portal = (portal_t *)node->portals;portal;portal = nextportal) { if (portal->nodes[0] == portal->nodes[1]) Host_Error("Mod_Q1BSP_RecursiveNodePortals: portal has same node on both sides(2)"); if (portal->nodes[0] == node) side = 0; else if (portal->nodes[1] == node) side = 1; else Host_Error("Mod_Q1BSP_RecursiveNodePortals: mislinked portal"); nextportal = portal->next[side]; if (!portal->numpoints) continue; other_node = portal->nodes[!side]; RemovePortalFromNodes(portal); // cut the portal into two portals, one on each side of the node plane PolygonD_Divide(portal->numpoints, portal->points, plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, PORTAL_DIST_EPSILON, MAX_PORTALPOINTS, frontpoints, &numfrontpoints, MAX_PORTALPOINTS, backpoints, &numbackpoints, NULL); if (!numfrontpoints) { if (side == 0) AddPortalToNodes(portal, back, other_node); else AddPortalToNodes(portal, other_node, back); continue; } if (!numbackpoints) { if (side == 0) AddPortalToNodes(portal, front, other_node); else AddPortalToNodes(portal, other_node, front); continue; } // the portal is split splitportal = (portal_t *)Mem_ExpandableArray_AllocRecord(&portalarray); temp = splitportal->chain; *splitportal = *portal; splitportal->chain = temp; for (i = 0;i < numbackpoints*3;i++) splitportal->points[i] = backpoints[i]; splitportal->numpoints = numbackpoints; for (i = 0;i < numfrontpoints*3;i++) portal->points[i] = frontpoints[i]; portal->numpoints = numfrontpoints; if (side == 0) { AddPortalToNodes(portal, front, other_node); AddPortalToNodes(splitportal, back, other_node); } else { AddPortalToNodes(portal, other_node, front); AddPortalToNodes(splitportal, other_node, back); } } Mod_Q1BSP_RecursiveNodePortals(front); Mod_Q1BSP_RecursiveNodePortals(back); portalpointsbufferoffset -= 6*MAX_PORTALPOINTS; } static void Mod_Q1BSP_MakePortals(void) { Mem_ExpandableArray_NewArray(&portalarray, loadmodel->mempool, sizeof(portal_t), 1020*1024/sizeof(portal_t)); portalpointsbufferoffset = 0; portalpointsbuffersize = 6*MAX_PORTALPOINTS*128; portalpointsbuffer = (double *)Mem_Alloc(loadmodel->mempool, portalpointsbuffersize * sizeof(*portalpointsbuffer)); Mod_Q1BSP_RecursiveNodePortals(loadmodel->brush.data_nodes + loadmodel->brushq1.hulls[0].firstclipnode); Mem_Free(portalpointsbuffer); portalpointsbuffer = NULL; portalpointsbufferoffset = 0; portalpointsbuffersize = 0; Mod_Q1BSP_FinalizePortals(); Mem_ExpandableArray_FreeArray(&portalarray); } //Returns PVS data for a given point //(note: can return NULL) static unsigned char *Mod_Q1BSP_GetPVS(dp_model_t *model, const vec3_t p) { mnode_t *node; node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode; while (node->plane) node = node->children[(node->plane->type < 3 ? p[node->plane->type] : DotProduct(p,node->plane->normal)) < node->plane->dist]; if (((mleaf_t *)node)->clusterindex >= 0) return model->brush.data_pvsclusters + ((mleaf_t *)node)->clusterindex * model->brush.num_pvsclusterbytes; else return NULL; } static void Mod_Q1BSP_FatPVS_RecursiveBSPNode(dp_model_t *model, const vec3_t org, vec_t radius, unsigned char *pvsbuffer, int pvsbytes, mnode_t *node) { while (node->plane) { float d = PlaneDiff(org, node->plane); if (d > radius) node = node->children[0]; else if (d < -radius) node = node->children[1]; else { // go down both sides Mod_Q1BSP_FatPVS_RecursiveBSPNode(model, org, radius, pvsbuffer, pvsbytes, node->children[0]); node = node->children[1]; } } // if this leaf is in a cluster, accumulate the pvs bits if (((mleaf_t *)node)->clusterindex >= 0) { int i; unsigned char *pvs = model->brush.data_pvsclusters + ((mleaf_t *)node)->clusterindex * model->brush.num_pvsclusterbytes; for (i = 0;i < pvsbytes;i++) pvsbuffer[i] |= pvs[i]; } } //Calculates a PVS that is the inclusive or of all leafs within radius pixels //of the given point. static int Mod_Q1BSP_FatPVS(dp_model_t *model, const vec3_t org, vec_t radius, unsigned char *pvsbuffer, int pvsbufferlength, qboolean merge) { int bytes = model->brush.num_pvsclusterbytes; bytes = min(bytes, pvsbufferlength); if (r_novis.integer || !model->brush.num_pvsclusters || !Mod_Q1BSP_GetPVS(model, org)) { memset(pvsbuffer, 0xFF, bytes); return bytes; } if (!merge) memset(pvsbuffer, 0, bytes); Mod_Q1BSP_FatPVS_RecursiveBSPNode(model, org, radius, pvsbuffer, bytes, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode); return bytes; } static void Mod_Q1BSP_RoundUpToHullSize(dp_model_t *cmodel, const vec3_t inmins, const vec3_t inmaxs, vec3_t outmins, vec3_t outmaxs) { vec3_t size; const hull_t *hull; VectorSubtract(inmaxs, inmins, size); if (cmodel->brush.ishlbsp) { if (size[0] < 3) hull = &cmodel->brushq1.hulls[0]; // 0x0x0 else if (size[0] <= 32) { if (size[2] < 54) // pick the nearest of 36 or 72 hull = &cmodel->brushq1.hulls[3]; // 32x32x36 else hull = &cmodel->brushq1.hulls[1]; // 32x32x72 } else hull = &cmodel->brushq1.hulls[2]; // 64x64x64 } else { if (size[0] < 3) hull = &cmodel->brushq1.hulls[0]; // 0x0x0 else if (size[0] <= 32) hull = &cmodel->brushq1.hulls[1]; // 32x32x56 else hull = &cmodel->brushq1.hulls[2]; // 64x64x88 } VectorCopy(inmins, outmins); VectorAdd(inmins, hull->clip_size, outmaxs); } static int Mod_Q1BSP_CreateShadowMesh(dp_model_t *mod) { int j; int numshadowmeshtriangles = 0; msurface_t *surface; if (cls.state == ca_dedicated) return 0; // make a single combined shadow mesh to allow optimized shadow volume creation for (j = 0, surface = mod->data_surfaces;j < mod->num_surfaces;j++, surface++) { surface->num_firstshadowmeshtriangle = numshadowmeshtriangles; numshadowmeshtriangles += surface->num_triangles; } mod->brush.shadowmesh = Mod_ShadowMesh_Begin(mod->mempool, numshadowmeshtriangles * 3, numshadowmeshtriangles, NULL, NULL, NULL, false, false, true); for (j = 0, surface = mod->data_surfaces;j < mod->num_surfaces;j++, surface++) if (surface->num_triangles > 0) Mod_ShadowMesh_AddMesh(mod->mempool, mod->brush.shadowmesh, NULL, NULL, NULL, mod->surfmesh.data_vertex3f, NULL, NULL, NULL, NULL, surface->num_triangles, (mod->surfmesh.data_element3i + 3 * surface->num_firsttriangle)); mod->brush.shadowmesh = Mod_ShadowMesh_Finish(mod->mempool, mod->brush.shadowmesh, false, r_enableshadowvolumes.integer != 0, false); if (mod->brush.shadowmesh && mod->brush.shadowmesh->neighbor3i) Mod_BuildTriangleNeighbors(mod->brush.shadowmesh->neighbor3i, mod->brush.shadowmesh->element3i, mod->brush.shadowmesh->numtriangles); return numshadowmeshtriangles; } void Mod_CollisionBIH_TraceLineAgainstSurfaces(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask); void Mod_Q1BSP_Load(dp_model_t *mod, void *buffer, void *bufferend) { int i, j, k; dheader_t *header; dmodel_t *bm; float dist, modelyawradius, modelradius; msurface_t *surface; hullinfo_t hullinfo; int totalstylesurfaces, totalstyles, stylecounts[256], remapstyles[256]; model_brush_lightstyleinfo_t styleinfo[256]; unsigned char *datapointer; mod->modeldatatypestring = "Q1BSP"; mod->type = mod_brushq1; header = (dheader_t *)buffer; i = LittleLong(header->version); if (i != BSPVERSION && i != 30) Host_Error("Mod_Q1BSP_Load: %s has wrong version number(%i should be %i(Quake) or 30(HalfLife)", mod->name, i, BSPVERSION); mod->brush.ishlbsp = i == 30; // fill in hull info VectorClear (hullinfo.hullsizes[0][0]); VectorClear (hullinfo.hullsizes[0][1]); if (mod->brush.ishlbsp) { mod->modeldatatypestring = "HLBSP"; hullinfo.filehulls = 4; VectorSet (hullinfo.hullsizes[1][0], -16, -16, -36); VectorSet (hullinfo.hullsizes[1][1], 16, 16, 36); VectorSet (hullinfo.hullsizes[2][0], -32, -32, -32); VectorSet (hullinfo.hullsizes[2][1], 32, 32, 32); VectorSet (hullinfo.hullsizes[3][0], -16, -16, -18); VectorSet (hullinfo.hullsizes[3][1], 16, 16, 18); } else { hullinfo.filehulls = 4; VectorSet (hullinfo.hullsizes[1][0], -16, -16, -24); VectorSet (hullinfo.hullsizes[1][1], 16, 16, 32); VectorSet (hullinfo.hullsizes[2][0], -32, -32, -24); VectorSet (hullinfo.hullsizes[2][1], 32, 32, 64); } // read lumps mod_base = (unsigned char*)buffer; for (i = 0; i < HEADER_LUMPS; i++) { header->lumps[i].fileofs = LittleLong(header->lumps[i].fileofs); header->lumps[i].filelen = LittleLong(header->lumps[i].filelen); } mod->soundfromcenter = true; mod->TraceBox = Mod_Q1BSP_TraceBox; mod->TraceLine = Mod_Q1BSP_TraceLineAgainstSurfaces; // LordHavoc: use the surface-hitting version of TraceLine in all cases mod->TracePoint = Mod_Q1BSP_TracePoint; mod->PointSuperContents = Mod_Q1BSP_PointSuperContents; mod->TraceLineAgainstSurfaces = Mod_Q1BSP_TraceLineAgainstSurfaces; mod->brush.TraceLineOfSight = Mod_Q1BSP_TraceLineOfSight; mod->brush.SuperContentsFromNativeContents = Mod_Q1BSP_SuperContentsFromNativeContents; mod->brush.NativeContentsFromSuperContents = Mod_Q1BSP_NativeContentsFromSuperContents; mod->brush.GetPVS = Mod_Q1BSP_GetPVS; mod->brush.FatPVS = Mod_Q1BSP_FatPVS; mod->brush.BoxTouchingPVS = Mod_Q1BSP_BoxTouchingPVS; mod->brush.BoxTouchingLeafPVS = Mod_Q1BSP_BoxTouchingLeafPVS; mod->brush.BoxTouchingVisibleLeafs = Mod_Q1BSP_BoxTouchingVisibleLeafs; mod->brush.FindBoxClusters = Mod_Q1BSP_FindBoxClusters; mod->brush.LightPoint = Mod_Q1BSP_LightPoint; mod->brush.FindNonSolidLocation = Mod_Q1BSP_FindNonSolidLocation; mod->brush.AmbientSoundLevelsForPoint = Mod_Q1BSP_AmbientSoundLevelsForPoint; mod->brush.RoundUpToHullSize = Mod_Q1BSP_RoundUpToHullSize; mod->brush.PointInLeaf = Mod_Q1BSP_PointInLeaf; mod->Draw = R_Q1BSP_Draw; mod->DrawDepth = R_Q1BSP_DrawDepth; mod->DrawDebug = R_Q1BSP_DrawDebug; mod->DrawPrepass = R_Q1BSP_DrawPrepass; mod->GetLightInfo = R_Q1BSP_GetLightInfo; mod->CompileShadowMap = R_Q1BSP_CompileShadowMap; mod->DrawShadowMap = R_Q1BSP_DrawShadowMap; mod->CompileShadowVolume = R_Q1BSP_CompileShadowVolume; mod->DrawShadowVolume = R_Q1BSP_DrawShadowVolume; mod->DrawLight = R_Q1BSP_DrawLight; // load into heap mod->brush.qw_md4sum = 0; mod->brush.qw_md4sum2 = 0; for (i = 0;i < HEADER_LUMPS;i++) { int temp; if (i == LUMP_ENTITIES) continue; temp = Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen); mod->brush.qw_md4sum ^= LittleLong(temp); if (i == LUMP_VISIBILITY || i == LUMP_LEAFS || i == LUMP_NODES) continue; temp = Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen); mod->brush.qw_md4sum2 ^= LittleLong(temp); } Mod_Q1BSP_LoadEntities(&header->lumps[LUMP_ENTITIES]); Mod_Q1BSP_LoadVertexes(&header->lumps[LUMP_VERTEXES]); Mod_Q1BSP_LoadEdges(&header->lumps[LUMP_EDGES]); Mod_Q1BSP_LoadSurfedges(&header->lumps[LUMP_SURFEDGES]); Mod_Q1BSP_LoadTextures(&header->lumps[LUMP_TEXTURES]); Mod_Q1BSP_LoadLighting(&header->lumps[LUMP_LIGHTING]); Mod_Q1BSP_LoadPlanes(&header->lumps[LUMP_PLANES]); Mod_Q1BSP_LoadTexinfo(&header->lumps[LUMP_TEXINFO]); Mod_Q1BSP_LoadFaces(&header->lumps[LUMP_FACES]); Mod_Q1BSP_LoadLeaffaces(&header->lumps[LUMP_MARKSURFACES]); Mod_Q1BSP_LoadVisibility(&header->lumps[LUMP_VISIBILITY]); // load submodels before leafs because they contain the number of vis leafs Mod_Q1BSP_LoadSubmodels(&header->lumps[LUMP_MODELS], &hullinfo); Mod_Q1BSP_LoadLeafs(&header->lumps[LUMP_LEAFS]); Mod_Q1BSP_LoadNodes(&header->lumps[LUMP_NODES]); Mod_Q1BSP_LoadClipnodes(&header->lumps[LUMP_CLIPNODES], &hullinfo); // check if the map supports transparent water rendering loadmodel->brush.supportwateralpha = Mod_Q1BSP_CheckWaterAlphaSupport(); if (mod->brushq1.data_compressedpvs) Mem_Free(mod->brushq1.data_compressedpvs); mod->brushq1.data_compressedpvs = NULL; mod->brushq1.num_compressedpvs = 0; Mod_Q1BSP_MakeHull0(); if (mod_bsp_portalize.integer) Mod_Q1BSP_MakePortals(); mod->numframes = 2; // regular and alternate animation mod->numskins = 1; // make a single combined shadow mesh to allow optimized shadow volume creation Mod_Q1BSP_CreateShadowMesh(loadmodel); if (loadmodel->brush.numsubmodels) loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *)); // LordHavoc: to clear the fog around the original quake submodel code, I // will explain: // first of all, some background info on the submodels: // model 0 is the map model (the world, named maps/e1m1.bsp for example) // model 1 and higher are submodels (doors and the like, named *1, *2, etc) // now the weird for loop itself: // the loop functions in an odd way, on each iteration it sets up the // current 'mod' model (which despite the confusing code IS the model of // the number i), at the end of the loop it duplicates the model to become // the next submodel, and loops back to set up the new submodel. // LordHavoc: now the explanation of my sane way (which works identically): // set up the world model, then on each submodel copy from the world model // and set up the submodel with the respective model info. totalstylesurfaces = 0; totalstyles = 0; for (i = 0;i < mod->brush.numsubmodels;i++) { memset(stylecounts, 0, sizeof(stylecounts)); for (k = 0;k < mod->brushq1.submodels[i].numfaces;k++) { surface = mod->data_surfaces + mod->brushq1.submodels[i].firstface + k; for (j = 0;j < MAXLIGHTMAPS;j++) stylecounts[surface->lightmapinfo->styles[j]]++; } for (k = 0;k < 255;k++) { totalstyles++; if (stylecounts[k]) totalstylesurfaces += stylecounts[k]; } } datapointer = (unsigned char *)Mem_Alloc(mod->mempool, mod->num_surfaces * sizeof(int) + totalstyles * sizeof(model_brush_lightstyleinfo_t) + totalstylesurfaces * sizeof(int *)); for (i = 0;i < mod->brush.numsubmodels;i++) { // LordHavoc: this code was originally at the end of this loop, but // has been transformed to something more readable at the start here. if (i > 0) { char name[10]; // duplicate the basic information dpsnprintf(name, sizeof(name), "*%i", i); mod = Mod_FindName(name, loadmodel->name); // copy the base model to this one *mod = *loadmodel; // rename the clone back to its proper name strlcpy(mod->name, name, sizeof(mod->name)); mod->brush.parentmodel = loadmodel; // textures and memory belong to the main model mod->texturepool = NULL; mod->mempool = NULL; mod->brush.GetPVS = NULL; mod->brush.FatPVS = NULL; mod->brush.BoxTouchingPVS = NULL; mod->brush.BoxTouchingLeafPVS = NULL; mod->brush.BoxTouchingVisibleLeafs = NULL; mod->brush.FindBoxClusters = NULL; mod->brush.LightPoint = NULL; mod->brush.AmbientSoundLevelsForPoint = NULL; } mod->brush.submodel = i; if (loadmodel->brush.submodels) loadmodel->brush.submodels[i] = mod; bm = &mod->brushq1.submodels[i]; mod->brushq1.hulls[0].firstclipnode = bm->headnode[0]; for (j=1 ; jbrushq1.hulls[j].firstclipnode = bm->headnode[j]; mod->brushq1.hulls[j].lastclipnode = mod->brushq1.numclipnodes - 1; } mod->firstmodelsurface = bm->firstface; mod->nummodelsurfaces = bm->numfaces; // set node/leaf parents for this submodel Mod_Q1BSP_LoadNodes_RecursiveSetParent(mod->brush.data_nodes + mod->brushq1.hulls[0].firstclipnode, NULL); // make the model surface list (used by shadowing/lighting) mod->sortedmodelsurfaces = (int *)datapointer;datapointer += mod->nummodelsurfaces * sizeof(int); Mod_MakeSortedSurfaces(mod); // copy the submodel bounds, then enlarge the yaw and rotated bounds according to radius // (previously this code measured the radius of the vertices of surfaces in the submodel, but that broke submodels that contain only CLIP brushes, which do not produce surfaces) VectorCopy(bm->mins, mod->normalmins); VectorCopy(bm->maxs, mod->normalmaxs); dist = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0])); modelyawradius = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1])); modelyawradius = dist*dist+modelyawradius*modelyawradius; modelradius = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2])); modelradius = modelyawradius + modelradius * modelradius; modelyawradius = sqrt(modelyawradius); modelradius = sqrt(modelradius); mod->yawmins[0] = mod->yawmins[1] = -modelyawradius; mod->yawmins[2] = mod->normalmins[2]; mod->yawmaxs[0] = mod->yawmaxs[1] = modelyawradius; mod->yawmaxs[2] = mod->normalmaxs[2]; mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius; mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius; mod->radius = modelradius; mod->radius2 = modelradius * modelradius; // this gets altered below if sky or water is used mod->DrawSky = NULL; mod->DrawAddWaterPlanes = NULL; // scan surfaces for sky and water and flag the submodel as possessing these features or not // build lightstyle lists for quick marking of dirty lightmaps when lightstyles flicker if (mod->nummodelsurfaces) { for (j = 0, surface = &mod->data_surfaces[mod->firstmodelsurface];j < mod->nummodelsurfaces;j++, surface++) if (surface->texture->basematerialflags & MATERIALFLAG_SKY) break; if (j < mod->nummodelsurfaces) mod->DrawSky = R_Q1BSP_DrawSky; for (j = 0, surface = &mod->data_surfaces[mod->firstmodelsurface];j < mod->nummodelsurfaces;j++, surface++) if (surface->texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)) break; if (j < mod->nummodelsurfaces) mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes; // build lightstyle update chains // (used to rapidly mark lightmapupdateflags on many surfaces // when d_lightstylevalue changes) memset(stylecounts, 0, sizeof(stylecounts)); for (k = 0;k < mod->nummodelsurfaces;k++) { surface = mod->data_surfaces + mod->firstmodelsurface + k; for (j = 0;j < MAXLIGHTMAPS;j++) stylecounts[surface->lightmapinfo->styles[j]]++; } mod->brushq1.num_lightstyles = 0; for (k = 0;k < 255;k++) { if (stylecounts[k]) { styleinfo[mod->brushq1.num_lightstyles].style = k; styleinfo[mod->brushq1.num_lightstyles].value = 0; styleinfo[mod->brushq1.num_lightstyles].numsurfaces = 0; styleinfo[mod->brushq1.num_lightstyles].surfacelist = (int *)datapointer;datapointer += stylecounts[k] * sizeof(int); remapstyles[k] = mod->brushq1.num_lightstyles; mod->brushq1.num_lightstyles++; } } for (k = 0;k < mod->nummodelsurfaces;k++) { surface = mod->data_surfaces + mod->firstmodelsurface + k; for (j = 0;j < MAXLIGHTMAPS;j++) { if (surface->lightmapinfo->styles[j] != 255) { int r = remapstyles[surface->lightmapinfo->styles[j]]; styleinfo[r].surfacelist[styleinfo[r].numsurfaces++] = mod->firstmodelsurface + k; } } } mod->brushq1.data_lightstyleinfo = (model_brush_lightstyleinfo_t *)datapointer;datapointer += mod->brushq1.num_lightstyles * sizeof(model_brush_lightstyleinfo_t); memcpy(mod->brushq1.data_lightstyleinfo, styleinfo, mod->brushq1.num_lightstyles * sizeof(model_brush_lightstyleinfo_t)); } else { // LordHavoc: empty submodel(lacrima.bsp has such a glitch) Con_Printf("warning: empty submodel *%i in %s\n", i+1, loadmodel->name); } //mod->brushq1.num_visleafs = bm->visleafs; // build a Bounding Interval Hierarchy for culling triangles in light rendering Mod_MakeCollisionBIH(mod, true, &mod->render_bih); if (mod_q1bsp_polygoncollisions.integer) { mod->collision_bih = mod->render_bih; // point traces and contents checks still use the bsp tree mod->TraceLine = Mod_CollisionBIH_TraceLine; mod->TraceBox = Mod_CollisionBIH_TraceBox; mod->TraceBrush = Mod_CollisionBIH_TraceBrush; mod->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLineAgainstSurfaces; } // generate VBOs and other shared data before cloning submodels if (i == 0) { Mod_BuildVBOs(); Mod_Q1BSP_LoadMapBrushes(); //Mod_Q1BSP_ProcessLightList(); } } Con_DPrintf("Stats for q1bsp model \"%s\": %i faces, %i nodes, %i leafs, %i visleafs, %i visleafportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces); } static void Mod_Q2BSP_LoadEntities(lump_t *l) { } static void Mod_Q2BSP_LoadPlanes(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadPlanes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadVertices(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadVertices: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadVisibility(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadVisibility: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadNodes(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadNodes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadTexInfo(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadTexInfo: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadFaces(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadFaces: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadLighting(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadLighting: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadLeafs(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadLeafs: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadLeafFaces(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadLeafFaces: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadLeafBrushes(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadLeafBrushes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadEdges(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadEdges: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadSurfEdges(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadSurfEdges: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadBrushes(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadBrushes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadBrushSides(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadBrushSides: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadAreas(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadAreas: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadAreaPortals(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadAreaPortals: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } static void Mod_Q2BSP_LoadModels(lump_t *l) { /* d_t *in; m_t *out; int i, count; in = (void *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q2BSP_LoadModels: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel-> = out; loadmodel->num = count; for (i = 0;i < count;i++, in++, out++) { } */ } void static Mod_Q2BSP_Load(dp_model_t *mod, void *buffer, void *bufferend) { int i; q2dheader_t *header; Host_Error("Mod_Q2BSP_Load: not yet implemented"); mod->modeldatatypestring = "Q2BSP"; mod->type = mod_brushq2; header = (q2dheader_t *)buffer; i = LittleLong(header->version); if (i != Q2BSPVERSION) Host_Error("Mod_Q2BSP_Load: %s has wrong version number (%i, should be %i)", mod->name, i, Q2BSPVERSION); mod_base = (unsigned char *)header; // swap all the lumps for (i = 0;i < (int) sizeof(*header) / 4;i++) ((int *)header)[i] = LittleLong(((int *)header)[i]); mod->brush.qw_md4sum = 0; mod->brush.qw_md4sum2 = 0; for (i = 0;i < Q2HEADER_LUMPS;i++) { if (i == Q2LUMP_ENTITIES) continue; mod->brush.qw_md4sum ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen); if (i == Q2LUMP_VISIBILITY || i == Q2LUMP_LEAFS || i == Q2LUMP_NODES) continue; mod->brush.qw_md4sum2 ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen); } Mod_Q2BSP_LoadEntities(&header->lumps[Q2LUMP_ENTITIES]); Mod_Q2BSP_LoadPlanes(&header->lumps[Q2LUMP_PLANES]); Mod_Q2BSP_LoadVertices(&header->lumps[Q2LUMP_VERTEXES]); Mod_Q2BSP_LoadVisibility(&header->lumps[Q2LUMP_VISIBILITY]); Mod_Q2BSP_LoadNodes(&header->lumps[Q2LUMP_NODES]); Mod_Q2BSP_LoadTexInfo(&header->lumps[Q2LUMP_TEXINFO]); Mod_Q2BSP_LoadFaces(&header->lumps[Q2LUMP_FACES]); Mod_Q2BSP_LoadLighting(&header->lumps[Q2LUMP_LIGHTING]); Mod_Q2BSP_LoadLeafs(&header->lumps[Q2LUMP_LEAFS]); Mod_Q2BSP_LoadLeafFaces(&header->lumps[Q2LUMP_LEAFFACES]); Mod_Q2BSP_LoadLeafBrushes(&header->lumps[Q2LUMP_LEAFBRUSHES]); Mod_Q2BSP_LoadEdges(&header->lumps[Q2LUMP_EDGES]); Mod_Q2BSP_LoadSurfEdges(&header->lumps[Q2LUMP_SURFEDGES]); Mod_Q2BSP_LoadBrushes(&header->lumps[Q2LUMP_BRUSHES]); Mod_Q2BSP_LoadBrushSides(&header->lumps[Q2LUMP_BRUSHSIDES]); Mod_Q2BSP_LoadAreas(&header->lumps[Q2LUMP_AREAS]); Mod_Q2BSP_LoadAreaPortals(&header->lumps[Q2LUMP_AREAPORTALS]); // LordHavoc: must go last because this makes the submodels Mod_Q2BSP_LoadModels(&header->lumps[Q2LUMP_MODELS]); } static int Mod_Q3BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents); static int Mod_Q3BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents); static void Mod_Q3BSP_LoadEntities(lump_t *l) { const char *data; char key[128], value[MAX_INPUTLINE]; float v[3]; loadmodel->brushq3.num_lightgrid_cellsize[0] = 64; loadmodel->brushq3.num_lightgrid_cellsize[1] = 64; loadmodel->brushq3.num_lightgrid_cellsize[2] = 128; if (!l->filelen) return; loadmodel->brush.entities = (char *)Mem_Alloc(loadmodel->mempool, l->filelen + 1); memcpy(loadmodel->brush.entities, mod_base + l->fileofs, l->filelen); loadmodel->brush.entities[l->filelen] = 0; data = loadmodel->brush.entities; // some Q3 maps override the lightgrid_cellsize with a worldspawn key // VorteX: q3map2 FS-R generates tangentspace deluxemaps for q3bsp and sets 'deluxeMaps' key loadmodel->brushq3.deluxemapping = false; if (data && COM_ParseToken_Simple(&data, false, false) && com_token[0] == '{') { while (1) { if (!COM_ParseToken_Simple(&data, false, false)) break; // error if (com_token[0] == '}') break; // end of worldspawn if (com_token[0] == '_') strlcpy(key, com_token + 1, sizeof(key)); else strlcpy(key, com_token, sizeof(key)); while (key[strlen(key)-1] == ' ') // remove trailing spaces key[strlen(key)-1] = 0; if (!COM_ParseToken_Simple(&data, false, false)) break; // error strlcpy(value, com_token, sizeof(value)); if (!strcasecmp("gridsize", key)) // this one is case insensitive to 100% match q3map2 { #if _MSC_VER >= 1400 #define sscanf sscanf_s #endif #if 0 if (sscanf(value, "%f %f %f", &v[0], &v[1], &v[2]) == 3 && v[0] != 0 && v[1] != 0 && v[2] != 0) VectorCopy(v, loadmodel->brushq3.num_lightgrid_cellsize); #else VectorSet(v, 64, 64, 128); if(sscanf(value, "%f %f %f", &v[0], &v[1], &v[2]) != 3) Con_Printf("Mod_Q3BSP_LoadEntities: funny gridsize \"%s\" in %s, interpreting as \"%f %f %f\" to match q3map2's parsing\n", value, loadmodel->name, v[0], v[1], v[2]); if (v[0] != 0 && v[1] != 0 && v[2] != 0) VectorCopy(v, loadmodel->brushq3.num_lightgrid_cellsize); #endif } else if (!strcmp("deluxeMaps", key)) { if (!strcmp(com_token, "1")) { loadmodel->brushq3.deluxemapping = true; loadmodel->brushq3.deluxemapping_modelspace = true; } else if (!strcmp(com_token, "2")) { loadmodel->brushq3.deluxemapping = true; loadmodel->brushq3.deluxemapping_modelspace = false; } } } } } static void Mod_Q3BSP_LoadTextures(lump_t *l) { q3dtexture_t *in; texture_t *out; int i, count; in = (q3dtexture_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadTextures: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (texture_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->data_textures = out; loadmodel->num_textures = count; loadmodel->num_texturesperskin = loadmodel->num_textures; for (i = 0;i < count;i++) { strlcpy (out[i].name, in[i].name, sizeof (out[i].name)); out[i].surfaceflags = LittleLong(in[i].surfaceflags); out[i].supercontents = Mod_Q3BSP_SuperContentsFromNativeContents(loadmodel, LittleLong(in[i].contents)); Mod_LoadTextureFromQ3Shader(out + i, out[i].name, true, true, TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS); // restore the surfaceflags and supercontents out[i].surfaceflags = LittleLong(in[i].surfaceflags); out[i].supercontents = Mod_Q3BSP_SuperContentsFromNativeContents(loadmodel, LittleLong(in[i].contents)); } } static void Mod_Q3BSP_LoadPlanes(lump_t *l) { q3dplane_t *in; mplane_t *out; int i, count; in = (q3dplane_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadPlanes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (mplane_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_planes = out; loadmodel->brush.num_planes = count; for (i = 0;i < count;i++, in++, out++) { out->normal[0] = LittleFloat(in->normal[0]); out->normal[1] = LittleFloat(in->normal[1]); out->normal[2] = LittleFloat(in->normal[2]); out->dist = LittleFloat(in->dist); PlaneClassify(out); } } static void Mod_Q3BSP_LoadBrushSides(lump_t *l) { q3dbrushside_t *in; q3mbrushside_t *out; int i, n, count; in = (q3dbrushside_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadBrushSides: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (q3mbrushside_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_brushsides = out; loadmodel->brush.num_brushsides = count; for (i = 0;i < count;i++, in++, out++) { n = LittleLong(in->planeindex); if (n < 0 || n >= loadmodel->brush.num_planes) Host_Error("Mod_Q3BSP_LoadBrushSides: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes); out->plane = loadmodel->brush.data_planes + n; n = LittleLong(in->textureindex); if (n < 0 || n >= loadmodel->num_textures) Host_Error("Mod_Q3BSP_LoadBrushSides: invalid textureindex %i (%i textures)", n, loadmodel->num_textures); out->texture = loadmodel->data_textures + n; } } static void Mod_Q3BSP_LoadBrushSides_IG(lump_t *l) { q3dbrushside_ig_t *in; q3mbrushside_t *out; int i, n, count; in = (q3dbrushside_ig_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadBrushSides: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (q3mbrushside_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_brushsides = out; loadmodel->brush.num_brushsides = count; for (i = 0;i < count;i++, in++, out++) { n = LittleLong(in->planeindex); if (n < 0 || n >= loadmodel->brush.num_planes) Host_Error("Mod_Q3BSP_LoadBrushSides: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes); out->plane = loadmodel->brush.data_planes + n; n = LittleLong(in->textureindex); if (n < 0 || n >= loadmodel->num_textures) Host_Error("Mod_Q3BSP_LoadBrushSides: invalid textureindex %i (%i textures)", n, loadmodel->num_textures); out->texture = loadmodel->data_textures + n; } } static void Mod_Q3BSP_LoadBrushes(lump_t *l) { q3dbrush_t *in; q3mbrush_t *out; int i, j, n, c, count, maxplanes, q3surfaceflags; colplanef_t *planes; in = (q3dbrush_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadBrushes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (q3mbrush_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_brushes = out; loadmodel->brush.num_brushes = count; maxplanes = 0; planes = NULL; for (i = 0;i < count;i++, in++, out++) { n = LittleLong(in->firstbrushside); c = LittleLong(in->numbrushsides); if (n < 0 || n + c > loadmodel->brush.num_brushsides) Host_Error("Mod_Q3BSP_LoadBrushes: invalid brushside range %i : %i (%i brushsides)", n, n + c, loadmodel->brush.num_brushsides); out->firstbrushside = loadmodel->brush.data_brushsides + n; out->numbrushsides = c; n = LittleLong(in->textureindex); if (n < 0 || n >= loadmodel->num_textures) Host_Error("Mod_Q3BSP_LoadBrushes: invalid textureindex %i (%i textures)", n, loadmodel->num_textures); out->texture = loadmodel->data_textures + n; // make a list of mplane_t structs to construct a colbrush from if (maxplanes < out->numbrushsides) { maxplanes = out->numbrushsides; if (planes) Mem_Free(planes); planes = (colplanef_t *)Mem_Alloc(tempmempool, sizeof(colplanef_t) * maxplanes); } q3surfaceflags = 0; for (j = 0;j < out->numbrushsides;j++) { VectorCopy(out->firstbrushside[j].plane->normal, planes[j].normal); planes[j].dist = out->firstbrushside[j].plane->dist; planes[j].q3surfaceflags = out->firstbrushside[j].texture->surfaceflags; planes[j].texture = out->firstbrushside[j].texture; q3surfaceflags |= planes[j].q3surfaceflags; } // make the colbrush from the planes out->colbrushf = Collision_NewBrushFromPlanes(loadmodel->mempool, out->numbrushsides, planes, out->texture->supercontents, q3surfaceflags, out->texture, true); // this whole loop can take a while (e.g. on redstarrepublic4) CL_KeepaliveMessage(false); } if (planes) Mem_Free(planes); } static void Mod_Q3BSP_LoadEffects(lump_t *l) { q3deffect_t *in; q3deffect_t *out; int i, n, count; in = (q3deffect_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadEffects: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (q3deffect_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brushq3.data_effects = out; loadmodel->brushq3.num_effects = count; for (i = 0;i < count;i++, in++, out++) { strlcpy (out->shadername, in->shadername, sizeof (out->shadername)); n = LittleLong(in->brushindex); if (n >= loadmodel->brush.num_brushes) { Con_Printf("Mod_Q3BSP_LoadEffects: invalid brushindex %i (%i brushes), setting to -1\n", n, loadmodel->brush.num_brushes); n = -1; } out->brushindex = n; out->unknown = LittleLong(in->unknown); } } static void Mod_Q3BSP_LoadVertices(lump_t *l) { q3dvertex_t *in; int i, count; in = (q3dvertex_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadVertices: funny lump size in %s",loadmodel->name); loadmodel->brushq3.num_vertices = count = l->filelen / sizeof(*in); loadmodel->brushq3.data_vertex3f = (float *)Mem_Alloc(loadmodel->mempool, count * (sizeof(float) * (3 + 3 + 2 + 2 + 4))); loadmodel->brushq3.data_normal3f = loadmodel->brushq3.data_vertex3f + count * 3; loadmodel->brushq3.data_texcoordtexture2f = loadmodel->brushq3.data_normal3f + count * 3; loadmodel->brushq3.data_texcoordlightmap2f = loadmodel->brushq3.data_texcoordtexture2f + count * 2; loadmodel->brushq3.data_color4f = loadmodel->brushq3.data_texcoordlightmap2f + count * 2; for (i = 0;i < count;i++, in++) { loadmodel->brushq3.data_vertex3f[i * 3 + 0] = LittleFloat(in->origin3f[0]); loadmodel->brushq3.data_vertex3f[i * 3 + 1] = LittleFloat(in->origin3f[1]); loadmodel->brushq3.data_vertex3f[i * 3 + 2] = LittleFloat(in->origin3f[2]); loadmodel->brushq3.data_normal3f[i * 3 + 0] = LittleFloat(in->normal3f[0]); loadmodel->brushq3.data_normal3f[i * 3 + 1] = LittleFloat(in->normal3f[1]); loadmodel->brushq3.data_normal3f[i * 3 + 2] = LittleFloat(in->normal3f[2]); loadmodel->brushq3.data_texcoordtexture2f[i * 2 + 0] = LittleFloat(in->texcoord2f[0]); loadmodel->brushq3.data_texcoordtexture2f[i * 2 + 1] = LittleFloat(in->texcoord2f[1]); loadmodel->brushq3.data_texcoordlightmap2f[i * 2 + 0] = LittleFloat(in->lightmap2f[0]); loadmodel->brushq3.data_texcoordlightmap2f[i * 2 + 1] = LittleFloat(in->lightmap2f[1]); // svector/tvector are calculated later in face loading loadmodel->brushq3.data_color4f[i * 4 + 0] = in->color4ub[0] * (1.0f / 255.0f); loadmodel->brushq3.data_color4f[i * 4 + 1] = in->color4ub[1] * (1.0f / 255.0f); loadmodel->brushq3.data_color4f[i * 4 + 2] = in->color4ub[2] * (1.0f / 255.0f); loadmodel->brushq3.data_color4f[i * 4 + 3] = in->color4ub[3] * (1.0f / 255.0f); if(in->color4ub[0] != 255 || in->color4ub[1] != 255 || in->color4ub[2] != 255) loadmodel->lit = true; } } static void Mod_Q3BSP_LoadTriangles(lump_t *l) { int *in; int *out; int i, count; in = (int *)(mod_base + l->fileofs); if (l->filelen % sizeof(int[3])) Host_Error("Mod_Q3BSP_LoadTriangles: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); if(!loadmodel->brushq3.num_vertices) { if (count) Con_Printf("Mod_Q3BSP_LoadTriangles: %s has triangles but no vertexes, broken compiler, ignoring problem\n", loadmodel->name); loadmodel->brushq3.num_triangles = 0; return; } out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brushq3.num_triangles = count / 3; loadmodel->brushq3.data_element3i = out; for (i = 0;i < count;i++, in++, out++) { *out = LittleLong(*in); if (*out < 0 || *out >= loadmodel->brushq3.num_vertices) { Con_Printf("Mod_Q3BSP_LoadTriangles: invalid vertexindex %i (%i vertices), setting to 0\n", *out, loadmodel->brushq3.num_vertices); *out = 0; } } } static void Mod_Q3BSP_LoadLightmaps(lump_t *l, lump_t *faceslump) { q3dlightmap_t *input_pointer; int i; int j; int k; int count; int powerx; int powery; int powerxy; int powerdxy; int endlightmap; int mergegoal; int lightmapindex; int realcount; int realindex; int mergedwidth; int mergedheight; int mergedcolumns; int mergedrows; int mergedrowsxcolumns; int size; int bytesperpixel; int rgbmap[3]; unsigned char *c; unsigned char *mergedpixels; unsigned char *mergeddeluxepixels; unsigned char *mergebuf; char mapname[MAX_QPATH]; qboolean external; unsigned char *inpixels[10000]; // max count q3map2 can output (it uses 4 digits) // defaults for q3bsp size = 128; bytesperpixel = 3; rgbmap[0] = 2; rgbmap[1] = 1; rgbmap[2] = 0; external = false; loadmodel->brushq3.lightmapsize = 128; if (cls.state == ca_dedicated) return; if(mod_q3bsp_nolightmaps.integer) { return; } else if(l->filelen) { // prefer internal LMs for compatibility (a BSP contains no info on whether external LMs exist) if (developer_loading.integer) Con_Printf("Using internal lightmaps\n"); input_pointer = (q3dlightmap_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*input_pointer)) Host_Error("Mod_Q3BSP_LoadLightmaps: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*input_pointer); for(i = 0; i < count; ++i) inpixels[i] = input_pointer[i].rgb; } else { // no internal lightmaps // try external lightmaps if (developer_loading.integer) Con_Printf("Using external lightmaps\n"); FS_StripExtension(loadmodel->name, mapname, sizeof(mapname)); inpixels[0] = loadimagepixelsbgra(va("%s/lm_%04d", mapname, 0), false, false, false, NULL); if(!inpixels[0]) return; // using EXTERNAL lightmaps instead if(image_width != (int) CeilPowerOf2(image_width) || image_width != image_height) { Mem_Free(inpixels[0]); Host_Error("Mod_Q3BSP_LoadLightmaps: invalid external lightmap size in %s",loadmodel->name); } size = image_width; bytesperpixel = 4; rgbmap[0] = 0; rgbmap[1] = 1; rgbmap[2] = 2; external = true; for(count = 1; ; ++count) { inpixels[count] = loadimagepixelsbgra(va("%s/lm_%04d", mapname, count), false, false, false, NULL); if(!inpixels[count]) break; // we got all of them if(image_width != size || image_height != size) { Mem_Free(inpixels[count]); inpixels[count] = NULL; Con_Printf("Mod_Q3BSP_LoadLightmaps: mismatched lightmap size in %s - external lightmap %s/lm_%04d does not match earlier ones\n", loadmodel->name, mapname, count); break; } } } loadmodel->brushq3.lightmapsize = size; loadmodel->brushq3.num_originallightmaps = count; // now check the surfaces to see if any of them index an odd numbered // lightmap, if so this is not a deluxemapped bsp file // // also check what lightmaps are actually used, because q3map2 sometimes // (always?) makes an unused one at the end, which // q3map2 sometimes (or always?) makes a second blank lightmap for no // reason when only one lightmap is used, which can throw off the // deluxemapping detection method, so check 2-lightmap bsp's specifically // to see if the second lightmap is blank, if so it is not deluxemapped. // VorteX: autodetect only if previous attempt to find "deluxeMaps" key // in Mod_Q3BSP_LoadEntities was failed if (!loadmodel->brushq3.deluxemapping) { loadmodel->brushq3.deluxemapping = !(count & 1); loadmodel->brushq3.deluxemapping_modelspace = true; endlightmap = 0; if (loadmodel->brushq3.deluxemapping) { int facecount = faceslump->filelen / sizeof(q3dface_t); q3dface_t *faces = (q3dface_t *)(mod_base + faceslump->fileofs); for (i = 0;i < facecount;i++) { j = LittleLong(faces[i].lightmapindex); if (j >= 0) { endlightmap = max(endlightmap, j + 1); if ((j & 1) || j + 1 >= count) { loadmodel->brushq3.deluxemapping = false; break; } } } } // q3map2 sometimes (or always?) makes a second blank lightmap for no // reason when only one lightmap is used, which can throw off the // deluxemapping detection method, so check 2-lightmap bsp's specifically // to see if the second lightmap is blank, if so it is not deluxemapped. // // further research has shown q3map2 sometimes creates a deluxemap and two // blank lightmaps, which must be handled properly as well if (endlightmap == 1 && count > 1) { c = inpixels[1]; for (i = 0;i < size*size;i++) { if (c[bytesperpixel*i + rgbmap[0]]) break; if (c[bytesperpixel*i + rgbmap[1]]) break; if (c[bytesperpixel*i + rgbmap[2]]) break; } if (i == size*size) { // all pixels in the unused lightmap were black... loadmodel->brushq3.deluxemapping = false; } } } Con_DPrintf("%s is %sdeluxemapped\n", loadmodel->name, loadmodel->brushq3.deluxemapping ? "" : "not "); // figure out what the most reasonable merge power is within limits // find the appropriate NxN dimensions to merge to, to avoid wasted space realcount = count >> (int)loadmodel->brushq3.deluxemapping; // figure out how big the merged texture has to be mergegoal = 128< size && mergegoal * mergegoal / 4 >= size * size * realcount) mergegoal /= 2; mergedwidth = mergegoal; mergedheight = mergegoal; // choose non-square size (2x1 aspect) if only half the space is used; // this really only happens when the entire set fits in one texture, if // there are multiple textures, we don't worry about shrinking the last // one to fit, because the driver prefers the same texture size on // consecutive draw calls... if (mergedwidth * mergedheight / 2 >= size*size*realcount) mergedheight /= 2; loadmodel->brushq3.num_lightmapmergedwidthpower = 0; loadmodel->brushq3.num_lightmapmergedheightpower = 0; while (mergedwidth > size<brushq3.num_lightmapmergedwidthpower) loadmodel->brushq3.num_lightmapmergedwidthpower++; while (mergedheight > size<brushq3.num_lightmapmergedheightpower) loadmodel->brushq3.num_lightmapmergedheightpower++; loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower = loadmodel->brushq3.num_lightmapmergedwidthpower + loadmodel->brushq3.num_lightmapmergedheightpower + (loadmodel->brushq3.deluxemapping ? 1 : 0); powerx = loadmodel->brushq3.num_lightmapmergedwidthpower; powery = loadmodel->brushq3.num_lightmapmergedheightpower; powerxy = powerx+powery; powerdxy = loadmodel->brushq3.deluxemapping + powerxy; mergedcolumns = 1 << powerx; mergedrows = 1 << powery; mergedrowsxcolumns = 1 << powerxy; loadmodel->brushq3.num_mergedlightmaps = (realcount + (1 << powerxy) - 1) >> powerxy; loadmodel->brushq3.data_lightmaps = (rtexture_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brushq3.num_mergedlightmaps * sizeof(rtexture_t *)); if (loadmodel->brushq3.deluxemapping) loadmodel->brushq3.data_deluxemaps = (rtexture_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brushq3.num_mergedlightmaps * sizeof(rtexture_t *)); // allocate a texture pool if we need it if (loadmodel->texturepool == NULL && cls.state != ca_dedicated) loadmodel->texturepool = R_AllocTexturePool(); mergedpixels = (unsigned char *) Mem_Alloc(tempmempool, mergedwidth * mergedheight * 4); mergeddeluxepixels = loadmodel->brushq3.deluxemapping ? (unsigned char *) Mem_Alloc(tempmempool, mergedwidth * mergedheight * 4) : NULL; for (i = 0;i < count;i++) { // figure out which merged lightmap texture this fits into realindex = i >> (int)loadmodel->brushq3.deluxemapping; lightmapindex = i >> powerdxy; // choose the destination address mergebuf = (loadmodel->brushq3.deluxemapping && (i & 1)) ? mergeddeluxepixels : mergedpixels; mergebuf += 4 * (realindex & (mergedcolumns-1))*size + 4 * ((realindex >> powerx) & (mergedrows-1))*mergedwidth*size; if ((i & 1) == 0 || !loadmodel->brushq3.deluxemapping) Con_Printf("copying original lightmap %i (%ix%i) to %i (at %i,%i)\n", i, size, size, lightmapindex, (realindex & (mergedcolumns-1))*size, ((realindex >> powerx) & (mergedrows-1))*size); // convert pixels from RGB or BGRA while copying them into the destination rectangle for (j = 0;j < size;j++) for (k = 0;k < size;k++) { mergebuf[(j*mergedwidth+k)*4+0] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[0]]; mergebuf[(j*mergedwidth+k)*4+1] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[1]]; mergebuf[(j*mergedwidth+k)*4+2] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[2]]; mergebuf[(j*mergedwidth+k)*4+3] = 255; } // upload texture if this was the last tile being written to the texture if (((realindex + 1) & (mergedrowsxcolumns - 1)) == 0 || (realindex + 1) == realcount) { if (loadmodel->brushq3.deluxemapping && (i & 1)) loadmodel->brushq3.data_deluxemaps[lightmapindex] = R_LoadTexture2D(loadmodel->texturepool, va("deluxemap%04i", lightmapindex), mergedwidth, mergedheight, mergeddeluxepixels, TEXTYPE_BGRA, TEXF_FORCELINEAR | (gl_texturecompression_q3bspdeluxemaps.integer ? TEXF_COMPRESS : 0), -1, NULL); else loadmodel->brushq3.data_lightmaps [lightmapindex] = R_LoadTexture2D(loadmodel->texturepool, va("lightmap%04i", lightmapindex), mergedwidth, mergedheight, mergedpixels, TEXTYPE_BGRA, TEXF_FORCELINEAR | (gl_texturecompression_q3bsplightmaps.integer ? TEXF_COMPRESS : 0), -1, NULL); } } if (mergeddeluxepixels) Mem_Free(mergeddeluxepixels); Mem_Free(mergedpixels); if(external) { for(i = 0; i < count; ++i) Mem_Free(inpixels[i]); } } static void Mod_Q3BSP_BuildBBoxes(const int *element3i, int num_triangles, const float *vertex3f, float **collisionbbox6f, int *collisionstride, int stride) { int j, k, cnt, tri; float *mins, *maxs; const float *vert; *collisionstride = stride; if(stride > 0) { cnt = (num_triangles + stride - 1) / stride; *collisionbbox6f = (float *) Mem_Alloc(loadmodel->mempool, sizeof(float[6]) * cnt); for(j = 0; j < cnt; ++j) { mins = &((*collisionbbox6f)[6 * j + 0]); maxs = &((*collisionbbox6f)[6 * j + 3]); for(k = 0; k < stride; ++k) { tri = j * stride + k; if(tri >= num_triangles) break; vert = &(vertex3f[element3i[3 * tri + 0] * 3]); if(!k || vert[0] < mins[0]) mins[0] = vert[0]; if(!k || vert[1] < mins[1]) mins[1] = vert[1]; if(!k || vert[2] < mins[2]) mins[2] = vert[2]; if(!k || vert[0] > maxs[0]) maxs[0] = vert[0]; if(!k || vert[1] > maxs[1]) maxs[1] = vert[1]; if(!k || vert[2] > maxs[2]) maxs[2] = vert[2]; vert = &(vertex3f[element3i[3 * tri + 1] * 3]); if(vert[0] < mins[0]) mins[0] = vert[0]; if(vert[1] < mins[1]) mins[1] = vert[1]; if(vert[2] < mins[2]) mins[2] = vert[2]; if(vert[0] > maxs[0]) maxs[0] = vert[0]; if(vert[1] > maxs[1]) maxs[1] = vert[1]; if(vert[2] > maxs[2]) maxs[2] = vert[2]; vert = &(vertex3f[element3i[3 * tri + 2] * 3]); if(vert[0] < mins[0]) mins[0] = vert[0]; if(vert[1] < mins[1]) mins[1] = vert[1]; if(vert[2] < mins[2]) mins[2] = vert[2]; if(vert[0] > maxs[0]) maxs[0] = vert[0]; if(vert[1] > maxs[1]) maxs[1] = vert[1]; if(vert[2] > maxs[2]) maxs[2] = vert[2]; } } } else *collisionbbox6f = NULL; } typedef struct patchtess_s { patchinfo_t info; // Auxiliary data used only by patch loading code in Mod_Q3BSP_LoadFaces int surface_id; float lodgroup[6]; float *originalvertex3f; } patchtess_t; #define PATCHTESS_SAME_LODGROUP(a,b) \ ( \ (a).lodgroup[0] == (b).lodgroup[0] && \ (a).lodgroup[1] == (b).lodgroup[1] && \ (a).lodgroup[2] == (b).lodgroup[2] && \ (a).lodgroup[3] == (b).lodgroup[3] && \ (a).lodgroup[4] == (b).lodgroup[4] && \ (a).lodgroup[5] == (b).lodgroup[5] \ ) static void Mod_Q3BSP_LoadFaces(lump_t *l) { q3dface_t *in, *oldin; msurface_t *out, *oldout; int i, oldi, j, n, count, invalidelements, patchsize[2], finalwidth, finalheight, xtess, ytess, finalvertices, finaltriangles, firstvertex, firstelement, type, oldnumtriangles, oldnumtriangles2, meshvertices, meshtriangles, collisionvertices, collisiontriangles, numvertices, numtriangles, cxtess, cytess; float lightmaptcbase[2], lightmaptcscale[2]; //int *originalelement3i; //int *originalneighbor3i; float *originalvertex3f; //float *originalsvector3f; //float *originaltvector3f; float *originalnormal3f; float *originalcolor4f; float *originaltexcoordtexture2f; float *originaltexcoordlightmap2f; float *surfacecollisionvertex3f; int *surfacecollisionelement3i; float *v; patchtess_t *patchtess = NULL; int patchtesscount = 0; qboolean again; in = (q3dface_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadFaces: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (msurface_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->data_surfaces = out; loadmodel->num_surfaces = count; if(count > 0) patchtess = (patchtess_t*) Mem_Alloc(tempmempool, count * sizeof(*patchtess)); i = 0; oldi = i; oldin = in; oldout = out; meshvertices = 0; meshtriangles = 0; for (;i < count;i++, in++, out++) { // check face type first type = LittleLong(in->type); if (type != Q3FACETYPE_FLAT && type != Q3FACETYPE_PATCH && type != Q3FACETYPE_MESH && type != Q3FACETYPE_FLARE) { Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i: unknown face type %i\n", i, type); continue; } n = LittleLong(in->textureindex); if (n < 0 || n >= loadmodel->num_textures) { Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i: invalid textureindex %i (%i textures)\n", i, n, loadmodel->num_textures); continue; } out->texture = loadmodel->data_textures + n; n = LittleLong(in->effectindex); if (n < -1 || n >= loadmodel->brushq3.num_effects) { if (developer_extra.integer) Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid effectindex %i (%i effects)\n", i, out->texture->name, n, loadmodel->brushq3.num_effects); n = -1; } if (n == -1) out->effect = NULL; else out->effect = loadmodel->brushq3.data_effects + n; if (cls.state != ca_dedicated) { out->lightmaptexture = NULL; out->deluxemaptexture = r_texture_blanknormalmap; n = LittleLong(in->lightmapindex); if (n < 0) n = -1; else if (n >= loadmodel->brushq3.num_originallightmaps) { if(loadmodel->brushq3.num_originallightmaps != 0) Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid lightmapindex %i (%i lightmaps)\n", i, out->texture->name, n, loadmodel->brushq3.num_originallightmaps); n = -1; } else { out->lightmaptexture = loadmodel->brushq3.data_lightmaps[n >> loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower]; if (loadmodel->brushq3.deluxemapping) out->deluxemaptexture = loadmodel->brushq3.data_deluxemaps[n >> loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower]; loadmodel->lit = true; } } firstvertex = LittleLong(in->firstvertex); numvertices = LittleLong(in->numvertices); firstelement = LittleLong(in->firstelement); numtriangles = LittleLong(in->numelements) / 3; if (numtriangles * 3 != LittleLong(in->numelements)) { Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): numelements %i is not a multiple of 3\n", i, out->texture->name, LittleLong(in->numelements)); continue; } if (firstvertex < 0 || firstvertex + numvertices > loadmodel->brushq3.num_vertices) { Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid vertex range %i : %i (%i vertices)\n", i, out->texture->name, firstvertex, firstvertex + numvertices, loadmodel->brushq3.num_vertices); continue; } if (firstelement < 0 || firstelement + numtriangles * 3 > loadmodel->brushq3.num_triangles * 3) { Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid element range %i : %i (%i elements)\n", i, out->texture->name, firstelement, firstelement + numtriangles * 3, loadmodel->brushq3.num_triangles * 3); continue; } switch(type) { case Q3FACETYPE_FLAT: case Q3FACETYPE_MESH: // no processing necessary break; case Q3FACETYPE_PATCH: patchsize[0] = LittleLong(in->specific.patch.patchsize[0]); patchsize[1] = LittleLong(in->specific.patch.patchsize[1]); if (numvertices != (patchsize[0] * patchsize[1]) || patchsize[0] < 3 || patchsize[1] < 3 || !(patchsize[0] & 1) || !(patchsize[1] & 1) || patchsize[0] * patchsize[1] >= min(r_subdivisions_maxvertices.integer, r_subdivisions_collision_maxvertices.integer)) { Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid patchsize %ix%i\n", i, out->texture->name, patchsize[0], patchsize[1]); continue; } originalvertex3f = loadmodel->brushq3.data_vertex3f + firstvertex * 3; // convert patch to Q3FACETYPE_MESH xtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value); ytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value); // bound to user settings xtess = bound(r_subdivisions_mintess.integer, xtess, r_subdivisions_maxtess.integer); ytess = bound(r_subdivisions_mintess.integer, ytess, r_subdivisions_maxtess.integer); // bound to sanity settings xtess = bound(0, xtess, 1024); ytess = bound(0, ytess, 1024); // lower quality collision patches! Same procedure as before, but different cvars // convert patch to Q3FACETYPE_MESH cxtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value); cytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value); // bound to user settings cxtess = bound(r_subdivisions_collision_mintess.integer, cxtess, r_subdivisions_collision_maxtess.integer); cytess = bound(r_subdivisions_collision_mintess.integer, cytess, r_subdivisions_collision_maxtess.integer); // bound to sanity settings cxtess = bound(0, cxtess, 1024); cytess = bound(0, cytess, 1024); // store it for the LOD grouping step patchtess[patchtesscount].info.xsize = patchsize[0]; patchtess[patchtesscount].info.ysize = patchsize[1]; patchtess[patchtesscount].info.lods[PATCH_LOD_VISUAL].xtess = xtess; patchtess[patchtesscount].info.lods[PATCH_LOD_VISUAL].ytess = ytess; patchtess[patchtesscount].info.lods[PATCH_LOD_COLLISION].xtess = cxtess; patchtess[patchtesscount].info.lods[PATCH_LOD_COLLISION].ytess = cytess; patchtess[patchtesscount].surface_id = i; patchtess[patchtesscount].lodgroup[0] = LittleFloat(in->specific.patch.mins[0]); patchtess[patchtesscount].lodgroup[1] = LittleFloat(in->specific.patch.mins[1]); patchtess[patchtesscount].lodgroup[2] = LittleFloat(in->specific.patch.mins[2]); patchtess[patchtesscount].lodgroup[3] = LittleFloat(in->specific.patch.maxs[0]); patchtess[patchtesscount].lodgroup[4] = LittleFloat(in->specific.patch.maxs[1]); patchtess[patchtesscount].lodgroup[5] = LittleFloat(in->specific.patch.maxs[2]); patchtess[patchtesscount].originalvertex3f = originalvertex3f; ++patchtesscount; break; case Q3FACETYPE_FLARE: if (developer_extra.integer) Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): Q3FACETYPE_FLARE not supported (yet)\n", i, out->texture->name); // don't render it continue; } out->num_vertices = numvertices; out->num_triangles = numtriangles; meshvertices += out->num_vertices; meshtriangles += out->num_triangles; } // Fix patches tesselations so that they make no seams do { again = false; for(i = 0; i < patchtesscount; ++i) { for(j = i+1; j < patchtesscount; ++j) { if (!PATCHTESS_SAME_LODGROUP(patchtess[i], patchtess[j])) continue; if (Q3PatchAdjustTesselation(3, &patchtess[i].info, patchtess[i].originalvertex3f, &patchtess[j].info, patchtess[j].originalvertex3f) ) again = true; } } } while (again); // Calculate resulting number of triangles collisionvertices = 0; collisiontriangles = 0; for(i = 0; i < patchtesscount; ++i) { finalwidth = Q3PatchDimForTess(patchtess[i].info.xsize, patchtess[i].info.lods[PATCH_LOD_VISUAL].xtess); finalheight = Q3PatchDimForTess(patchtess[i].info.ysize,patchtess[i].info.lods[PATCH_LOD_VISUAL].ytess); numvertices = finalwidth * finalheight; numtriangles = (finalwidth - 1) * (finalheight - 1) * 2; oldout[patchtess[i].surface_id].num_vertices = numvertices; oldout[patchtess[i].surface_id].num_triangles = numtriangles; meshvertices += oldout[patchtess[i].surface_id].num_vertices; meshtriangles += oldout[patchtess[i].surface_id].num_triangles; finalwidth = Q3PatchDimForTess(patchtess[i].info.xsize, patchtess[i].info.lods[PATCH_LOD_COLLISION].xtess); finalheight = Q3PatchDimForTess(patchtess[i].info.ysize,patchtess[i].info.lods[PATCH_LOD_COLLISION].ytess); numvertices = finalwidth * finalheight; numtriangles = (finalwidth - 1) * (finalheight - 1) * 2; oldout[patchtess[i].surface_id].num_collisionvertices = numvertices; oldout[patchtess[i].surface_id].num_collisiontriangles = numtriangles; collisionvertices += oldout[patchtess[i].surface_id].num_collisionvertices; collisiontriangles += oldout[patchtess[i].surface_id].num_collisiontriangles; } i = oldi; in = oldin; out = oldout; Mod_AllocSurfMesh(loadmodel->mempool, meshvertices, meshtriangles, false, true, false); if (collisiontriangles) { loadmodel->brush.data_collisionvertex3f = (float *)Mem_Alloc(loadmodel->mempool, collisionvertices * sizeof(float[3])); loadmodel->brush.data_collisionelement3i = (int *)Mem_Alloc(loadmodel->mempool, collisiontriangles * sizeof(int[3])); } meshvertices = 0; meshtriangles = 0; collisionvertices = 0; collisiontriangles = 0; for (;i < count && meshvertices + out->num_vertices <= loadmodel->surfmesh.num_vertices;i++, in++, out++) { if (out->num_vertices < 3 || out->num_triangles < 1) continue; type = LittleLong(in->type); firstvertex = LittleLong(in->firstvertex); firstelement = LittleLong(in->firstelement); out->num_firstvertex = meshvertices; out->num_firsttriangle = meshtriangles; out->num_firstcollisiontriangle = collisiontriangles; switch(type) { case Q3FACETYPE_FLAT: case Q3FACETYPE_MESH: // no processing necessary, except for lightmap merging for (j = 0;j < out->num_vertices;j++) { (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 0] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 0]; (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 1] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 1]; (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 2] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 2]; (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 0] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 0]; (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 1] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 1]; (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 2] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 2]; (loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex)[j * 2 + 0] = loadmodel->brushq3.data_texcoordtexture2f[(firstvertex + j) * 2 + 0]; (loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex)[j * 2 + 1] = loadmodel->brushq3.data_texcoordtexture2f[(firstvertex + j) * 2 + 1]; (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex)[j * 2 + 0] = loadmodel->brushq3.data_texcoordlightmap2f[(firstvertex + j) * 2 + 0]; (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex)[j * 2 + 1] = loadmodel->brushq3.data_texcoordlightmap2f[(firstvertex + j) * 2 + 1]; (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 0] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 0]; (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 1] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 1]; (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 2] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 2]; (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 3] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 3]; } for (j = 0;j < out->num_triangles*3;j++) (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] = loadmodel->brushq3.data_element3i[firstelement + j] + out->num_firstvertex; break; case Q3FACETYPE_PATCH: patchsize[0] = LittleLong(in->specific.patch.patchsize[0]); patchsize[1] = LittleLong(in->specific.patch.patchsize[1]); originalvertex3f = loadmodel->brushq3.data_vertex3f + firstvertex * 3; originalnormal3f = loadmodel->brushq3.data_normal3f + firstvertex * 3; originaltexcoordtexture2f = loadmodel->brushq3.data_texcoordtexture2f + firstvertex * 2; originaltexcoordlightmap2f = loadmodel->brushq3.data_texcoordlightmap2f + firstvertex * 2; originalcolor4f = loadmodel->brushq3.data_color4f + firstvertex * 4; xtess = ytess = cxtess = cytess = -1; for(j = 0; j < patchtesscount; ++j) if(patchtess[j].surface_id == i) { xtess = patchtess[j].info.lods[PATCH_LOD_VISUAL].xtess; ytess = patchtess[j].info.lods[PATCH_LOD_VISUAL].ytess; cxtess = patchtess[j].info.lods[PATCH_LOD_COLLISION].xtess; cytess = patchtess[j].info.lods[PATCH_LOD_COLLISION].ytess; break; } if(xtess == -1) { Con_Printf("ERROR: patch %d isn't preprocessed?!?\n", i); xtess = ytess = cxtess = cytess = 0; } finalwidth = Q3PatchDimForTess(patchsize[0],xtess); //((patchsize[0] - 1) * xtess) + 1; finalheight = Q3PatchDimForTess(patchsize[1],ytess); //((patchsize[1] - 1) * ytess) + 1; finalvertices = finalwidth * finalheight; oldnumtriangles = finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2; type = Q3FACETYPE_MESH; // generate geometry // (note: normals are skipped because they get recalculated) Q3PatchTesselateFloat(3, sizeof(float[3]), (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, xtess, ytess); Q3PatchTesselateFloat(3, sizeof(float[3]), (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[3]), originalnormal3f, xtess, ytess); Q3PatchTesselateFloat(2, sizeof(float[2]), (loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordtexture2f, xtess, ytess); Q3PatchTesselateFloat(2, sizeof(float[2]), (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordlightmap2f, xtess, ytess); Q3PatchTesselateFloat(4, sizeof(float[4]), (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[4]), originalcolor4f, xtess, ytess); Q3PatchTriangleElements((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), finalwidth, finalheight, out->num_firstvertex); out->num_triangles = Mod_RemoveDegenerateTriangles(out->num_triangles, (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), loadmodel->surfmesh.data_vertex3f); if (developer_extra.integer) { if (out->num_triangles < finaltriangles) Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided to %i vertices / %i triangles, %i degenerate triangles removed (leaving %i)\n", patchsize[0], patchsize[1], out->num_vertices, finaltriangles, finaltriangles - out->num_triangles, out->num_triangles); else Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided to %i vertices / %i triangles\n", patchsize[0], patchsize[1], out->num_vertices, out->num_triangles); } // q3map does not put in collision brushes for curves... ugh // build the lower quality collision geometry finalwidth = Q3PatchDimForTess(patchsize[0],cxtess); //((patchsize[0] - 1) * cxtess) + 1; finalheight = Q3PatchDimForTess(patchsize[1],cytess); //((patchsize[1] - 1) * cytess) + 1; finalvertices = finalwidth * finalheight; oldnumtriangles2 = finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2; // legacy collision geometry implementation out->deprecatedq3data_collisionvertex3f = (float *)Mem_Alloc(loadmodel->mempool, sizeof(float[3]) * finalvertices); out->deprecatedq3data_collisionelement3i = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int[3]) * finaltriangles); out->num_collisionvertices = finalvertices; out->num_collisiontriangles = finaltriangles; Q3PatchTesselateFloat(3, sizeof(float[3]), out->deprecatedq3data_collisionvertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, cxtess, cytess); Q3PatchTriangleElements(out->deprecatedq3data_collisionelement3i, finalwidth, finalheight, 0); //Mod_SnapVertices(3, out->num_vertices, (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), 0.25); Mod_SnapVertices(3, finalvertices, out->deprecatedq3data_collisionvertex3f, 1); out->num_collisiontriangles = Mod_RemoveDegenerateTriangles(finaltriangles, out->deprecatedq3data_collisionelement3i, out->deprecatedq3data_collisionelement3i, out->deprecatedq3data_collisionvertex3f); // now optimize the collision mesh by finding triangle bboxes... Mod_Q3BSP_BuildBBoxes(out->deprecatedq3data_collisionelement3i, out->num_collisiontriangles, out->deprecatedq3data_collisionvertex3f, &out->deprecatedq3data_collisionbbox6f, &out->deprecatedq3num_collisionbboxstride, mod_q3bsp_curves_collisions_stride.integer); Mod_Q3BSP_BuildBBoxes(loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle, out->num_triangles, loadmodel->surfmesh.data_vertex3f, &out->deprecatedq3data_bbox6f, &out->deprecatedq3num_bboxstride, mod_q3bsp_curves_stride.integer); // store collision geometry for BIH collision tree surfacecollisionvertex3f = loadmodel->brush.data_collisionvertex3f + collisionvertices * 3; surfacecollisionelement3i = loadmodel->brush.data_collisionelement3i + collisiontriangles * 3; Q3PatchTesselateFloat(3, sizeof(float[3]), surfacecollisionvertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, cxtess, cytess); Q3PatchTriangleElements(surfacecollisionelement3i, finalwidth, finalheight, collisionvertices); Mod_SnapVertices(3, finalvertices, surfacecollisionvertex3f, 1); #if 1 // remove this once the legacy code is removed { int nc = out->num_collisiontriangles; #endif out->num_collisiontriangles = Mod_RemoveDegenerateTriangles(finaltriangles, surfacecollisionelement3i, surfacecollisionelement3i, loadmodel->brush.data_collisionvertex3f); #if 1 if(nc != out->num_collisiontriangles) { Con_Printf("number of collision triangles differs between BIH and BSP. FAIL.\n"); } } #endif if (developer_extra.integer) Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve became %i:%i vertices / %i:%i triangles (%i:%i degenerate)\n", patchsize[0], patchsize[1], out->num_vertices, out->num_collisionvertices, oldnumtriangles, oldnumtriangles2, oldnumtriangles - out->num_triangles, oldnumtriangles2 - out->num_collisiontriangles); collisionvertices += finalvertices; collisiontriangles += out->num_collisiontriangles; break; default: break; } meshvertices += out->num_vertices; meshtriangles += out->num_triangles; for (j = 0, invalidelements = 0;j < out->num_triangles * 3;j++) if ((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] < out->num_firstvertex || (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] >= out->num_firstvertex + out->num_vertices) invalidelements++; if (invalidelements) { Con_Printf("Mod_Q3BSP_LoadFaces: Warning: face #%i has %i invalid elements, type = %i, texture->name = \"%s\", texture->surfaceflags = %i, firstvertex = %i, numvertices = %i, firstelement = %i, numelements = %i, elements list:\n", i, invalidelements, type, out->texture->name, out->texture->surfaceflags, firstvertex, out->num_vertices, firstelement, out->num_triangles * 3); for (j = 0;j < out->num_triangles * 3;j++) { Con_Printf(" %i", (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] - out->num_firstvertex); if ((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] < out->num_firstvertex || (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] >= out->num_firstvertex + out->num_vertices) (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] = out->num_firstvertex; } Con_Print("\n"); } // calculate a bounding box VectorClear(out->mins); VectorClear(out->maxs); if (out->num_vertices) { if (cls.state != ca_dedicated && out->lightmaptexture) { // figure out which part of the merged lightmap this fits into int lightmapindex = LittleLong(in->lightmapindex) >> (loadmodel->brushq3.deluxemapping ? 1 : 0); int mergewidth = R_TextureWidth(out->lightmaptexture) / loadmodel->brushq3.lightmapsize; int mergeheight = R_TextureHeight(out->lightmaptexture) / loadmodel->brushq3.lightmapsize; lightmapindex &= mergewidth * mergeheight - 1; lightmaptcscale[0] = 1.0f / mergewidth; lightmaptcscale[1] = 1.0f / mergeheight; lightmaptcbase[0] = (lightmapindex % mergewidth) * lightmaptcscale[0]; lightmaptcbase[1] = (lightmapindex / mergewidth) * lightmaptcscale[1]; // modify the lightmap texcoords to match this region of the merged lightmap for (j = 0, v = loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex;j < out->num_vertices;j++, v += 2) { v[0] = v[0] * lightmaptcscale[0] + lightmaptcbase[0]; v[1] = v[1] * lightmaptcscale[1] + lightmaptcbase[1]; } } VectorCopy((loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), out->mins); VectorCopy((loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), out->maxs); for (j = 1, v = (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex) + 3;j < out->num_vertices;j++, v += 3) { out->mins[0] = min(out->mins[0], v[0]); out->maxs[0] = max(out->maxs[0], v[0]); out->mins[1] = min(out->mins[1], v[1]); out->maxs[1] = max(out->maxs[1], v[1]); out->mins[2] = min(out->mins[2], v[2]); out->maxs[2] = max(out->maxs[2], v[2]); } out->mins[0] -= 1.0f; out->mins[1] -= 1.0f; out->mins[2] -= 1.0f; out->maxs[0] += 1.0f; out->maxs[1] += 1.0f; out->maxs[2] += 1.0f; } // set lightmap styles for consistency with q1bsp //out->lightmapinfo->styles[0] = 0; //out->lightmapinfo->styles[1] = 255; //out->lightmapinfo->styles[2] = 255; //out->lightmapinfo->styles[3] = 255; } i = oldi; out = oldout; for (;i < count;i++, out++) { if(out->num_vertices && out->num_triangles) continue; if(out->num_vertices == 0) { Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s) has no vertices, ignoring\n", i, out->texture ? out->texture->name : "(none)"); if(out->num_triangles == 0) Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s) has no triangles, ignoring\n", i, out->texture ? out->texture->name : "(none)"); } else if(out->num_triangles == 0) Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s, near %f %f %f) has no triangles, ignoring\n", i, out->texture ? out->texture->name : "(none)", (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[0 * 3 + 0], (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[1 * 3 + 0], (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[2 * 3 + 0]); } // for per pixel lighting Mod_BuildTextureVectorsFromNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0); // generate ushort elements array if possible if (loadmodel->surfmesh.data_element3s) for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++) loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i]; // free the no longer needed vertex data loadmodel->brushq3.num_vertices = 0; if (loadmodel->brushq3.data_vertex3f) Mem_Free(loadmodel->brushq3.data_vertex3f); loadmodel->brushq3.data_vertex3f = NULL; loadmodel->brushq3.data_normal3f = NULL; loadmodel->brushq3.data_texcoordtexture2f = NULL; loadmodel->brushq3.data_texcoordlightmap2f = NULL; loadmodel->brushq3.data_color4f = NULL; // free the no longer needed triangle data loadmodel->brushq3.num_triangles = 0; if (loadmodel->brushq3.data_element3i) Mem_Free(loadmodel->brushq3.data_element3i); loadmodel->brushq3.data_element3i = NULL; if(patchtess) Mem_Free(patchtess); } static void Mod_Q3BSP_LoadModels(lump_t *l) { q3dmodel_t *in; q3dmodel_t *out; int i, j, n, c, count; in = (q3dmodel_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadModels: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (q3dmodel_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brushq3.data_models = out; loadmodel->brushq3.num_models = count; for (i = 0;i < count;i++, in++, out++) { for (j = 0;j < 3;j++) { out->mins[j] = LittleFloat(in->mins[j]); out->maxs[j] = LittleFloat(in->maxs[j]); } n = LittleLong(in->firstface); c = LittleLong(in->numfaces); if (n < 0 || n + c > loadmodel->num_surfaces) Host_Error("Mod_Q3BSP_LoadModels: invalid face range %i : %i (%i faces)", n, n + c, loadmodel->num_surfaces); out->firstface = n; out->numfaces = c; n = LittleLong(in->firstbrush); c = LittleLong(in->numbrushes); if (n < 0 || n + c > loadmodel->brush.num_brushes) Host_Error("Mod_Q3BSP_LoadModels: invalid brush range %i : %i (%i brushes)", n, n + c, loadmodel->brush.num_brushes); out->firstbrush = n; out->numbrushes = c; } } static void Mod_Q3BSP_LoadLeafBrushes(lump_t *l) { int *in; int *out; int i, n, count; in = (int *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadLeafBrushes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_leafbrushes = out; loadmodel->brush.num_leafbrushes = count; for (i = 0;i < count;i++, in++, out++) { n = LittleLong(*in); if (n < 0 || n >= loadmodel->brush.num_brushes) Host_Error("Mod_Q3BSP_LoadLeafBrushes: invalid brush index %i (%i brushes)", n, loadmodel->brush.num_brushes); *out = n; } } static void Mod_Q3BSP_LoadLeafFaces(lump_t *l) { int *in; int *out; int i, n, count; in = (int *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadLeafFaces: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_leafsurfaces = out; loadmodel->brush.num_leafsurfaces = count; for (i = 0;i < count;i++, in++, out++) { n = LittleLong(*in); if (n < 0 || n >= loadmodel->num_surfaces) Host_Error("Mod_Q3BSP_LoadLeafFaces: invalid face index %i (%i faces)", n, loadmodel->num_surfaces); *out = n; } } static void Mod_Q3BSP_LoadLeafs(lump_t *l) { q3dleaf_t *in; mleaf_t *out; int i, j, n, c, count; in = (q3dleaf_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadLeafs: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); out = (mleaf_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_leafs = out; loadmodel->brush.num_leafs = count; for (i = 0;i < count;i++, in++, out++) { out->parent = NULL; out->plane = NULL; out->clusterindex = LittleLong(in->clusterindex); out->areaindex = LittleLong(in->areaindex); for (j = 0;j < 3;j++) { // yes the mins/maxs are ints out->mins[j] = LittleLong(in->mins[j]) - 1; out->maxs[j] = LittleLong(in->maxs[j]) + 1; } n = LittleLong(in->firstleafface); c = LittleLong(in->numleaffaces); if (n < 0 || n + c > loadmodel->brush.num_leafsurfaces) Host_Error("Mod_Q3BSP_LoadLeafs: invalid leafsurface range %i : %i (%i leafsurfaces)", n, n + c, loadmodel->brush.num_leafsurfaces); out->firstleafsurface = loadmodel->brush.data_leafsurfaces + n; out->numleafsurfaces = c; n = LittleLong(in->firstleafbrush); c = LittleLong(in->numleafbrushes); if (n < 0 || n + c > loadmodel->brush.num_leafbrushes) Host_Error("Mod_Q3BSP_LoadLeafs: invalid leafbrush range %i : %i (%i leafbrushes)", n, n + c, loadmodel->brush.num_leafbrushes); out->firstleafbrush = loadmodel->brush.data_leafbrushes + n; out->numleafbrushes = c; } } static void Mod_Q3BSP_LoadNodes(lump_t *l) { q3dnode_t *in; mnode_t *out; int i, j, n, count; in = (q3dnode_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadNodes: funny lump size in %s",loadmodel->name); count = l->filelen / sizeof(*in); if (count == 0) Host_Error("Mod_Q3BSP_LoadNodes: missing BSP tree in %s",loadmodel->name); out = (mnode_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brush.data_nodes = out; loadmodel->brush.num_nodes = count; for (i = 0;i < count;i++, in++, out++) { out->parent = NULL; n = LittleLong(in->planeindex); if (n < 0 || n >= loadmodel->brush.num_planes) Host_Error("Mod_Q3BSP_LoadNodes: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes); out->plane = loadmodel->brush.data_planes + n; for (j = 0;j < 2;j++) { n = LittleLong(in->childrenindex[j]); if (n >= 0) { if (n >= loadmodel->brush.num_nodes) Host_Error("Mod_Q3BSP_LoadNodes: invalid child node index %i (%i nodes)", n, loadmodel->brush.num_nodes); out->children[j] = loadmodel->brush.data_nodes + n; } else { n = -1 - n; if (n >= loadmodel->brush.num_leafs) Host_Error("Mod_Q3BSP_LoadNodes: invalid child leaf index %i (%i leafs)", n, loadmodel->brush.num_leafs); out->children[j] = (mnode_t *)(loadmodel->brush.data_leafs + n); } } for (j = 0;j < 3;j++) { // yes the mins/maxs are ints out->mins[j] = LittleLong(in->mins[j]) - 1; out->maxs[j] = LittleLong(in->maxs[j]) + 1; } } // set the parent pointers Mod_Q1BSP_LoadNodes_RecursiveSetParent(loadmodel->brush.data_nodes, NULL); } static void Mod_Q3BSP_LoadLightGrid(lump_t *l) { q3dlightgrid_t *in; q3dlightgrid_t *out; int count; in = (q3dlightgrid_t *)(mod_base + l->fileofs); if (l->filelen % sizeof(*in)) Host_Error("Mod_Q3BSP_LoadLightGrid: funny lump size in %s",loadmodel->name); loadmodel->brushq3.num_lightgrid_scale[0] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[0]; loadmodel->brushq3.num_lightgrid_scale[1] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[1]; loadmodel->brushq3.num_lightgrid_scale[2] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[2]; loadmodel->brushq3.num_lightgrid_imins[0] = (int)ceil(loadmodel->brushq3.data_models->mins[0] * loadmodel->brushq3.num_lightgrid_scale[0]); loadmodel->brushq3.num_lightgrid_imins[1] = (int)ceil(loadmodel->brushq3.data_models->mins[1] * loadmodel->brushq3.num_lightgrid_scale[1]); loadmodel->brushq3.num_lightgrid_imins[2] = (int)ceil(loadmodel->brushq3.data_models->mins[2] * loadmodel->brushq3.num_lightgrid_scale[2]); loadmodel->brushq3.num_lightgrid_imaxs[0] = (int)floor(loadmodel->brushq3.data_models->maxs[0] * loadmodel->brushq3.num_lightgrid_scale[0]); loadmodel->brushq3.num_lightgrid_imaxs[1] = (int)floor(loadmodel->brushq3.data_models->maxs[1] * loadmodel->brushq3.num_lightgrid_scale[1]); loadmodel->brushq3.num_lightgrid_imaxs[2] = (int)floor(loadmodel->brushq3.data_models->maxs[2] * loadmodel->brushq3.num_lightgrid_scale[2]); loadmodel->brushq3.num_lightgrid_isize[0] = loadmodel->brushq3.num_lightgrid_imaxs[0] - loadmodel->brushq3.num_lightgrid_imins[0] + 1; loadmodel->brushq3.num_lightgrid_isize[1] = loadmodel->brushq3.num_lightgrid_imaxs[1] - loadmodel->brushq3.num_lightgrid_imins[1] + 1; loadmodel->brushq3.num_lightgrid_isize[2] = loadmodel->brushq3.num_lightgrid_imaxs[2] - loadmodel->brushq3.num_lightgrid_imins[2] + 1; count = loadmodel->brushq3.num_lightgrid_isize[0] * loadmodel->brushq3.num_lightgrid_isize[1] * loadmodel->brushq3.num_lightgrid_isize[2]; Matrix4x4_CreateScale3(&loadmodel->brushq3.num_lightgrid_indexfromworld, loadmodel->brushq3.num_lightgrid_scale[0], loadmodel->brushq3.num_lightgrid_scale[1], loadmodel->brushq3.num_lightgrid_scale[2]); Matrix4x4_ConcatTranslate(&loadmodel->brushq3.num_lightgrid_indexfromworld, -loadmodel->brushq3.num_lightgrid_imins[0] * loadmodel->brushq3.num_lightgrid_cellsize[0], -loadmodel->brushq3.num_lightgrid_imins[1] * loadmodel->brushq3.num_lightgrid_cellsize[1], -loadmodel->brushq3.num_lightgrid_imins[2] * loadmodel->brushq3.num_lightgrid_cellsize[2]); // if lump is empty there is nothing to load, we can deal with that in the LightPoint code if (l->filelen) { if (l->filelen < count * (int)sizeof(*in)) { Con_Printf("Mod_Q3BSP_LoadLightGrid: invalid lightgrid lump size %i bytes, should be %i bytes (%ix%ix%i)", l->filelen, (int)(count * sizeof(*in)), loadmodel->brushq3.num_lightgrid_isize[0], loadmodel->brushq3.num_lightgrid_isize[1], loadmodel->brushq3.num_lightgrid_isize[2]); return; // ignore the grid if we cannot understand it } if (l->filelen != count * (int)sizeof(*in)) Con_Printf("Mod_Q3BSP_LoadLightGrid: Warning: calculated lightgrid size %i bytes does not match lump size %i\n", (int)(count * sizeof(*in)), l->filelen); out = (q3dlightgrid_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out)); loadmodel->brushq3.data_lightgrid = out; loadmodel->brushq3.num_lightgrid = count; // no swapping or validation necessary memcpy(out, in, count * (int)sizeof(*out)); } } static void Mod_Q3BSP_LoadPVS(lump_t *l) { q3dpvs_t *in; int totalchains; if (l->filelen == 0) { int i; // unvised maps often have cluster indices even without pvs, so check // leafs to find real number of clusters loadmodel->brush.num_pvsclusters = 1; for (i = 0;i < loadmodel->brush.num_leafs;i++) loadmodel->brush.num_pvsclusters = max(loadmodel->brush.num_pvsclusters, loadmodel->brush.data_leafs[i].clusterindex + 1); // create clusters loadmodel->brush.num_pvsclusterbytes = (loadmodel->brush.num_pvsclusters + 7) / 8; totalchains = loadmodel->brush.num_pvsclusterbytes * loadmodel->brush.num_pvsclusters; loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, totalchains); memset(loadmodel->brush.data_pvsclusters, 0xFF, totalchains); return; } in = (q3dpvs_t *)(mod_base + l->fileofs); if (l->filelen < 9) Host_Error("Mod_Q3BSP_LoadPVS: funny lump size in %s",loadmodel->name); loadmodel->brush.num_pvsclusters = LittleLong(in->numclusters); loadmodel->brush.num_pvsclusterbytes = LittleLong(in->chainlength); if (loadmodel->brush.num_pvsclusterbytes < ((loadmodel->brush.num_pvsclusters + 7) / 8)) Host_Error("Mod_Q3BSP_LoadPVS: (chainlength = %i) < ((numclusters = %i) + 7) / 8", loadmodel->brush.num_pvsclusterbytes, loadmodel->brush.num_pvsclusters); totalchains = loadmodel->brush.num_pvsclusterbytes * loadmodel->brush.num_pvsclusters; if (l->filelen < totalchains + (int)sizeof(*in)) Host_Error("Mod_Q3BSP_LoadPVS: lump too small ((numclusters = %i) * (chainlength = %i) + sizeof(q3dpvs_t) == %i bytes, lump is %i bytes)", loadmodel->brush.num_pvsclusters, loadmodel->brush.num_pvsclusterbytes, (int)(totalchains + sizeof(*in)), l->filelen); loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, totalchains); memcpy(loadmodel->brush.data_pvsclusters, (unsigned char *)(in + 1), totalchains); } static void Mod_Q3BSP_LightPoint(dp_model_t *model, const vec3_t p, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal) { int i, j, k, index[3]; float transformed[3], blend1, blend2, blend, stylescale = 1; q3dlightgrid_t *a, *s; // scale lighting by lightstyle[0] so that darkmode in dpmod works properly switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: case RENDERPATH_SOFT: case RENDERPATH_GLES2: // LordHavoc: FIXME: is this true? stylescale = 1; // added while render break; case RENDERPATH_GL11: case RENDERPATH_GL13: stylescale = r_refdef.scene.rtlightstylevalue[0]; break; } if (!model->brushq3.num_lightgrid) { ambientcolor[0] = stylescale; ambientcolor[1] = stylescale; ambientcolor[2] = stylescale; return; } Matrix4x4_Transform(&model->brushq3.num_lightgrid_indexfromworld, p, transformed); //Matrix4x4_Print(&model->brushq3.num_lightgrid_indexfromworld); //Con_Printf("%f %f %f transformed %f %f %f clamped ", p[0], p[1], p[2], transformed[0], transformed[1], transformed[2]); transformed[0] = bound(0, transformed[0], model->brushq3.num_lightgrid_isize[0] - 1); transformed[1] = bound(0, transformed[1], model->brushq3.num_lightgrid_isize[1] - 1); transformed[2] = bound(0, transformed[2], model->brushq3.num_lightgrid_isize[2] - 1); index[0] = (int)floor(transformed[0]); index[1] = (int)floor(transformed[1]); index[2] = (int)floor(transformed[2]); //Con_Printf("%f %f %f index %i %i %i:\n", transformed[0], transformed[1], transformed[2], index[0], index[1], index[2]); // now lerp the values VectorClear(diffusenormal); a = &model->brushq3.data_lightgrid[(index[2] * model->brushq3.num_lightgrid_isize[1] + index[1]) * model->brushq3.num_lightgrid_isize[0] + index[0]]; for (k = 0;k < 2;k++) { blend1 = (k ? (transformed[2] - index[2]) : (1 - (transformed[2] - index[2]))); if (blend1 < 0.001f || index[2] + k >= model->brushq3.num_lightgrid_isize[2]) continue; for (j = 0;j < 2;j++) { blend2 = blend1 * (j ? (transformed[1] - index[1]) : (1 - (transformed[1] - index[1]))); if (blend2 < 0.001f || index[1] + j >= model->brushq3.num_lightgrid_isize[1]) continue; for (i = 0;i < 2;i++) { blend = blend2 * (i ? (transformed[0] - index[0]) : (1 - (transformed[0] - index[0]))) * stylescale; if (blend < 0.001f || index[0] + i >= model->brushq3.num_lightgrid_isize[0]) continue; s = a + (k * model->brushq3.num_lightgrid_isize[1] + j) * model->brushq3.num_lightgrid_isize[0] + i; VectorMA(ambientcolor, blend * (1.0f / 128.0f), s->ambientrgb, ambientcolor); VectorMA(diffusecolor, blend * (1.0f / 128.0f), s->diffusergb, diffusecolor); // this uses the mod_md3_sin table because the values are // already in the 0-255 range, the 64+ bias fetches a cosine // instead of a sine value diffusenormal[0] += blend * (mod_md3_sin[64 + s->diffuseyaw] * mod_md3_sin[s->diffusepitch]); diffusenormal[1] += blend * (mod_md3_sin[ s->diffuseyaw] * mod_md3_sin[s->diffusepitch]); diffusenormal[2] += blend * (mod_md3_sin[64 + s->diffusepitch]); //Con_Printf("blend %f: ambient %i %i %i, diffuse %i %i %i, diffusepitch %i diffuseyaw %i (%f %f, normal %f %f %f)\n", blend, s->ambientrgb[0], s->ambientrgb[1], s->ambientrgb[2], s->diffusergb[0], s->diffusergb[1], s->diffusergb[2], s->diffusepitch, s->diffuseyaw, pitch, yaw, (cos(yaw) * cospitch), (sin(yaw) * cospitch), (-sin(pitch))); } } } // normalize the light direction before turning VectorNormalize(diffusenormal); //Con_Printf("result: ambient %f %f %f diffuse %f %f %f diffusenormal %f %f %f\n", ambientcolor[0], ambientcolor[1], ambientcolor[2], diffusecolor[0], diffusecolor[1], diffusecolor[2], diffusenormal[0], diffusenormal[1], diffusenormal[2]); } static int Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(mnode_t *node, double p1[3], double p2[3]) { double t1, t2; double midf, mid[3]; int ret, side; // check for empty while (node->plane) { // find the point distances mplane_t *plane = node->plane; if (plane->type < 3) { t1 = p1[plane->type] - plane->dist; t2 = p2[plane->type] - plane->dist; } else { t1 = DotProduct (plane->normal, p1) - plane->dist; t2 = DotProduct (plane->normal, p2) - plane->dist; } if (t1 < 0) { if (t2 < 0) { node = node->children[1]; continue; } side = 1; } else { if (t2 >= 0) { node = node->children[0]; continue; } side = 0; } midf = t1 / (t1 - t2); VectorLerp(p1, midf, p2, mid); // recurse both sides, front side first // return 2 if empty is followed by solid (hit something) // do not return 2 if both are solid or both empty, // or if start is solid and end is empty // as these degenerate cases usually indicate the eye is in solid and // should see the target point anyway ret = Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side ], p1, mid); if (ret != 0) return ret; ret = Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side ^ 1], mid, p2); if (ret != 1) return ret; return 2; } return ((mleaf_t *)node)->clusterindex < 0; } static qboolean Mod_Q3BSP_TraceLineOfSight(struct model_s *model, const vec3_t start, const vec3_t end) { if (model->brush.submodel || mod_q3bsp_tracelineofsight_brushes.integer) { trace_t trace; model->TraceLine(model, NULL, NULL, &trace, start, end, SUPERCONTENTS_VISBLOCKERMASK); return trace.fraction == 1; } else { double tracestart[3], traceend[3]; VectorCopy(start, tracestart); VectorCopy(end, traceend); return !Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(model->brush.data_nodes, tracestart, traceend); } } static void Mod_CollisionBIH_TracePoint_RecursiveBIHNode(trace_t *trace, dp_model_t *model, int nodenum, const vec3_t point) { const bih_leaf_t *leaf; const bih_node_t *node; const colbrushf_t *brush; int axis; for(;;) { node = model->collision_bih.nodes + nodenum; #if 1 if (!BoxesOverlap(point, point, node->mins, node->maxs)) return; #endif if (node->type == BIH_UNORDERED) { for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++) { leaf = model->collision_bih.leafs + node->children[axis]; #if 1 if (!BoxesOverlap(point, point, leaf->mins, leaf->maxs)) continue; #endif switch(leaf->type) { case BIH_BRUSH: brush = model->brush.data_brushes[leaf->itemindex].colbrushf; Collision_TracePointBrushFloat(trace, point, brush); break; case BIH_COLLISIONTRIANGLE: // collision triangle - skipped because they have no volume break; case BIH_RENDERTRIANGLE: // render triangle - skipped because they have no volume break; } } return; } axis = node->type - BIH_SPLITX; if (point[axis] <= node->backmax) { if (point[axis] >= node->frontmin) Mod_CollisionBIH_TracePoint_RecursiveBIHNode(trace, model, node->front, point); nodenum = node->back; } else if (point[axis] >= node->frontmin) nodenum = node->front; else // no overlap with either child? just return return; } } static void Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace_t *trace, dp_model_t *model, bih_t *bih, int nodenum, const vec3_t start, const vec3_t end, const vec3_t linestart, const vec3_t lineend) { const bih_leaf_t *leaf; const bih_node_t *node; const colbrushf_t *brush; const int *e; const texture_t *texture; int axis; #define BIHLINECLIP #ifdef BIHLINECLIP int sideflags; vec_t frontdist1; vec_t frontdist2; vec_t frontfrac; vec_t backdist1; vec_t backdist2; vec_t backfrac; vec3_t clipped, newstart, newend; #endif vec3_t segmentmins; vec3_t segmentmaxs; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); for (;;) { node = bih->nodes + nodenum; #if 1 if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs)) return; #endif if (node->type == BIH_UNORDERED) { for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++) { leaf = model->collision_bih.leafs + node->children[axis]; #if 1 if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs)) continue; #endif switch(leaf->type) { case BIH_BRUSH: brush = model->brush.data_brushes[leaf->itemindex].colbrushf; Collision_TraceLineBrushFloat(trace, linestart, lineend, brush, brush); break; case BIH_COLLISIONTRIANGLE: if (!mod_q3bsp_curves_collisions.integer) continue; e = model->brush.data_collisionelement3i + 3*leaf->itemindex; texture = model->data_textures + leaf->textureindex; Collision_TraceLineTriangleFloat(trace, linestart, lineend, model->brush.data_collisionvertex3f + e[0] * 3, model->brush.data_collisionvertex3f + e[1] * 3, model->brush.data_collisionvertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture); break; case BIH_RENDERTRIANGLE: e = model->surfmesh.data_element3i + 3*leaf->itemindex; texture = model->data_textures + leaf->textureindex; Collision_TraceLineTriangleFloat(trace, linestart, lineend, model->surfmesh.data_vertex3f + e[0] * 3, model->surfmesh.data_vertex3f + e[1] * 3, model->surfmesh.data_vertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture); break; } } return; } axis = node->type - BIH_SPLITX; #if 0 if (segmentmins[axis] <= node->backmax) { if (segmentmaxs[axis] >= node->frontmin) Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); nodenum = node->back; } else if (segmentmaxs[axis] >= node->frontmin) nodenum = node->front; else return; // trace falls between children #else frontdist1 = start[axis] - node->frontmin; frontdist2 = end[axis] - node->frontmin; backdist1 = start[axis] - node->backmax; backdist2 = end[axis] - node->backmax; sideflags = 0; if (frontdist1 < 0) sideflags |= 1; if (frontdist2 < 0) sideflags |= 2; if (backdist1 < 0) sideflags |= 4; if (backdist2 < 0) sideflags |= 8; #if 0 if (sideflags & 12) { if ((sideflags & 3) != 3) Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); nodenum = node->back; } else if ((sideflags & 3) != 3) nodenum = node->front; else return; // trace falls between children #else switch(sideflags) { case 0: // start end START END nodenum = node->front; continue; case 1: // START end START END #ifdef BIHLINECLIP frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, newstart); start = newstart; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #endif nodenum = node->front; break; case 2: #ifdef BIHLINECLIP // start END START END frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, newend); end = newend; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #endif nodenum = node->front; break; case 3: // START END START END return; // line falls in gap between children case 4: // start end start END Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #ifdef BIHLINECLIP backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newend); end = newend; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #endif nodenum = node->back; break; case 5: // START end start END #ifdef BIHLINECLIP frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, clipped); Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, clipped, end, linestart, lineend); backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newend); end = newend; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #else Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #endif nodenum = node->back; break; case 6: // start END start END #ifdef BIHLINECLIP frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, clipped); Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, clipped, linestart, lineend); backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newend); end = newend; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #else Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #endif nodenum = node->back; break; case 7: // START END start END #ifdef BIHLINECLIP backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newend); end = newend; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #endif nodenum = node->back; break; case 8: // start end START end Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #ifdef BIHLINECLIP backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newstart); start = newstart; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #endif nodenum = node->back; break; case 9: // START end START end #ifdef BIHLINECLIP frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, clipped); Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, clipped, end, linestart, lineend); backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newstart); start = newstart; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #else Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #endif nodenum = node->back; break; case 10: // start END START end #ifdef BIHLINECLIP frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, clipped); Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, clipped, linestart, lineend); backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newstart); start = newstart; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #else Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #endif nodenum = node->back; break; case 11: // START END START end #ifdef BIHLINECLIP backfrac = backdist1 / (backdist1 - backdist2); VectorLerp(start, backfrac, end, newstart); start = newstart; segmentmins[0] = min(start[0], end[0]); segmentmins[1] = min(start[1], end[1]); segmentmins[2] = min(start[2], end[2]); segmentmaxs[0] = max(start[0], end[0]); segmentmaxs[1] = max(start[1], end[1]); segmentmaxs[2] = max(start[2], end[2]); #endif nodenum = node->back; break; case 12: // start end start end Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); nodenum = node->back; break; case 13: // START end start end #ifdef BIHLINECLIP frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, clipped); Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, clipped, end, linestart, lineend); #else Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #endif nodenum = node->back; break; case 14: // start END start end #ifdef BIHLINECLIP frontfrac = frontdist1 / (frontdist1 - frontdist2); VectorLerp(start, frontfrac, end, clipped); Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, clipped, linestart, lineend); #else Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, bih, node->front, start, end, linestart, lineend); #endif nodenum = node->back; break; case 15: // START END start end nodenum = node->back; continue; } #endif #endif } } static void Mod_CollisionBIH_TraceBrush_RecursiveBIHNode(trace_t *trace, dp_model_t *model, int nodenum, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, const vec3_t segmentmins, const vec3_t segmentmaxs) { const bih_leaf_t *leaf; const bih_node_t *node; const colbrushf_t *brush; const int *e; const texture_t *texture; int axis; for(;;) { node = model->collision_bih.nodes + nodenum; if (node->type == BIH_UNORDERED) { for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++) { leaf = model->collision_bih.leafs + node->children[axis]; #if 1 if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs)) continue; #endif switch(leaf->type) { case BIH_BRUSH: brush = model->brush.data_brushes[leaf->itemindex].colbrushf; Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, brush, brush); break; case BIH_COLLISIONTRIANGLE: if (!mod_q3bsp_curves_collisions.integer) continue; e = model->brush.data_collisionelement3i + 3*leaf->itemindex; texture = model->data_textures + leaf->textureindex; Collision_TraceBrushTriangleFloat(trace, thisbrush_start, thisbrush_end, model->brush.data_collisionvertex3f + e[0] * 3, model->brush.data_collisionvertex3f + e[1] * 3, model->brush.data_collisionvertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture); break; case BIH_RENDERTRIANGLE: e = model->surfmesh.data_element3i + 3*leaf->itemindex; texture = model->data_textures + leaf->textureindex; Collision_TraceBrushTriangleFloat(trace, thisbrush_start, thisbrush_end, model->surfmesh.data_vertex3f + e[0] * 3, model->surfmesh.data_vertex3f + e[1] * 3, model->surfmesh.data_vertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture); break; } } return; } axis = node->type - BIH_SPLITX; #if 1 if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs)) return; #endif #if 0 Mod_CollisionBIH_TraceBrush_RecursiveBIHNode(trace, model, node->front, thisbrush_start, thisbrush_end, segmentmins, segmentmaxs); nodenum = node->back; continue; #endif if (segmentmins[axis] <= node->backmax) { if (segmentmaxs[axis] >= node->frontmin) Mod_CollisionBIH_TraceBrush_RecursiveBIHNode(trace, model, node->front, thisbrush_start, thisbrush_end, segmentmins, segmentmaxs); nodenum = node->back; } else if (segmentmaxs[axis] >= node->frontmin) nodenum = node->front; else return; // trace falls between children } } void Mod_CollisionBIH_TracePoint(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask) { memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; Mod_CollisionBIH_TracePoint_RecursiveBIHNode(trace, model, model->collision_bih.rootnode, start); } void Mod_CollisionBIH_TraceLine(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask) { if (VectorCompare(start, end)) { Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask); return; } memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, &model->collision_bih, model->collision_bih.rootnode, start, end, start, end); } void Mod_CollisionBIH_TraceBox(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask) { float segmentmins[3], segmentmaxs[3]; colboxbrushf_t thisbrush_start, thisbrush_end; vec3_t boxstartmins, boxstartmaxs, boxendmins, boxendmaxs; if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(boxmins, boxmaxs)) { vec3_t shiftstart, shiftend; VectorAdd(start, boxmins, shiftstart); VectorAdd(end, boxmins, shiftend); if (VectorCompare(start, end)) Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, shiftstart, hitsupercontentsmask); else Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, shiftstart, shiftend, hitsupercontentsmask); return; } // box trace, performed as brush trace memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; segmentmins[0] = min(start[0], end[0]) + boxmins[0] - 1; segmentmins[1] = min(start[1], end[1]) + boxmins[1] - 1; segmentmins[2] = min(start[2], end[2]) + boxmins[2] - 1; segmentmaxs[0] = max(start[0], end[0]) + boxmaxs[0] + 1; segmentmaxs[1] = max(start[1], end[1]) + boxmaxs[1] + 1; segmentmaxs[2] = max(start[2], end[2]) + boxmaxs[2] + 1; VectorAdd(start, boxmins, boxstartmins); VectorAdd(start, boxmaxs, boxstartmaxs); VectorAdd(end, boxmins, boxendmins); VectorAdd(end, boxmaxs, boxendmaxs); Collision_BrushForBox(&thisbrush_start, boxstartmins, boxstartmaxs, 0, 0, NULL); Collision_BrushForBox(&thisbrush_end, boxendmins, boxendmaxs, 0, 0, NULL); Mod_CollisionBIH_TraceBrush_RecursiveBIHNode(trace, model, model->collision_bih.rootnode, &thisbrush_start.brush, &thisbrush_end.brush, segmentmins, segmentmaxs); } void Mod_CollisionBIH_TraceBrush(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, colbrushf_t *start, colbrushf_t *end, int hitsupercontentsmask) { float segmentmins[3], segmentmaxs[3]; if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(start->mins, start->maxs) && VectorCompare(end->mins, end->maxs)) { if (VectorCompare(start->mins, end->mins)) Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start->mins, hitsupercontentsmask); else Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, start->mins, end->mins, hitsupercontentsmask); return; } // box trace, performed as brush trace memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; segmentmins[0] = min(start->mins[0], end->mins[0]); segmentmins[1] = min(start->mins[1], end->mins[1]); segmentmins[2] = min(start->mins[2], end->mins[2]); segmentmaxs[0] = max(start->maxs[0], end->maxs[0]); segmentmaxs[1] = max(start->maxs[1], end->maxs[1]); segmentmaxs[2] = max(start->maxs[2], end->maxs[2]); Mod_CollisionBIH_TraceBrush_RecursiveBIHNode(trace, model, model->collision_bih.rootnode, start, end, segmentmins, segmentmaxs); } int Mod_CollisionBIH_PointSuperContents(struct model_s *model, int frame, const vec3_t point) { trace_t trace; Mod_CollisionBIH_TracePoint(model, NULL, NULL, &trace, point, 0); return trace.startsupercontents; } void Mod_CollisionBIH_TracePoint_Mesh(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask) { #if 0 // broken - needs to be modified to count front faces and backfaces to figure out if it is in solid vec3_t end; int hitsupercontents; VectorSet(end, start[0], start[1], model->normalmins[2]); #endif memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; #if 0 Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, model->collision_bih.rootnode, start, end, start, end); hitsupercontents = trace->hitsupercontents; memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; trace->startsupercontents = hitsupercontents; #endif } int Mod_CollisionBIH_PointSuperContents_Mesh(struct model_s *model, int frame, const vec3_t start) { #if 0 // broken - needs to be modified to count front faces and backfaces to figure out if it is in solid trace_t trace; vec3_t end; VectorSet(end, start[0], start[1], model->normalmins[2]); memset(&trace, 0, sizeof(trace)); trace.fraction = 1; trace.realfraction = 1; trace.hitsupercontentsmask = 0; Mod_CollisionBIH_TraceLine_RecursiveBIHNode(&trace, model, model->collision_bih.rootnode, start, end, start, end); return trace.hitsupercontents; #else return 0; #endif } static void Mod_Q3BSP_TracePoint_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const vec3_t point, int markframe) { int i; mleaf_t *leaf; colbrushf_t *brush; // find which leaf the point is in while (node->plane) node = node->children[(node->plane->type < 3 ? point[node->plane->type] : DotProduct(point, node->plane->normal)) < node->plane->dist]; // point trace the brushes leaf = (mleaf_t *)node; for (i = 0;i < leaf->numleafbrushes;i++) { brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf; if (brush && brush->markframe != markframe && BoxesOverlap(point, point, brush->mins, brush->maxs)) { brush->markframe = markframe; Collision_TracePointBrushFloat(trace, point, brush); } } // can't do point traces on curves (they have no thickness) } static void Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const vec3_t start, const vec3_t end, vec_t startfrac, vec_t endfrac, const vec3_t linestart, const vec3_t lineend, int markframe, const vec3_t segmentmins, const vec3_t segmentmaxs) { int i, startside, endside; float dist1, dist2, midfrac, mid[3], nodesegmentmins[3], nodesegmentmaxs[3]; mleaf_t *leaf; msurface_t *surface; mplane_t *plane; colbrushf_t *brush; // walk the tree until we hit a leaf, recursing for any split cases while (node->plane) { #if 0 if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs)) return; Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[0], start, end, startfrac, endfrac, linestart, lineend, markframe, segmentmins, segmentmaxs); node = node->children[1]; #else // abort if this part of the bsp tree can not be hit by this trace // if (!(node->combinedsupercontents & trace->hitsupercontentsmask)) // return; plane = node->plane; // axial planes are much more common than non-axial, so an optimized // axial case pays off here if (plane->type < 3) { dist1 = start[plane->type] - plane->dist; dist2 = end[plane->type] - plane->dist; } else { dist1 = DotProduct(start, plane->normal) - plane->dist; dist2 = DotProduct(end, plane->normal) - plane->dist; } startside = dist1 < 0; endside = dist2 < 0; if (startside == endside) { // most of the time the line fragment is on one side of the plane node = node->children[startside]; } else { // line crosses node plane, split the line dist1 = PlaneDiff(linestart, plane); dist2 = PlaneDiff(lineend, plane); midfrac = dist1 / (dist1 - dist2); VectorLerp(linestart, midfrac, lineend, mid); // take the near side first Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[startside], start, mid, startfrac, midfrac, linestart, lineend, markframe, segmentmins, segmentmaxs); // if we found an impact on the front side, don't waste time // exploring the far side if (midfrac <= trace->realfraction) Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[endside], mid, end, midfrac, endfrac, linestart, lineend, markframe, segmentmins, segmentmaxs); return; } #endif } // abort if this part of the bsp tree can not be hit by this trace // if (!(node->combinedsupercontents & trace->hitsupercontentsmask)) // return; // hit a leaf nodesegmentmins[0] = min(start[0], end[0]) - 1; nodesegmentmins[1] = min(start[1], end[1]) - 1; nodesegmentmins[2] = min(start[2], end[2]) - 1; nodesegmentmaxs[0] = max(start[0], end[0]) + 1; nodesegmentmaxs[1] = max(start[1], end[1]) + 1; nodesegmentmaxs[2] = max(start[2], end[2]) + 1; // line trace the brushes leaf = (mleaf_t *)node; #if 0 if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs)) return; #endif for (i = 0;i < leaf->numleafbrushes;i++) { brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf; if (brush && brush->markframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, brush->mins, brush->maxs)) { brush->markframe = markframe; Collision_TraceLineBrushFloat(trace, linestart, lineend, brush, brush); } } // can't do point traces on curves (they have no thickness) if (leaf->containscollisionsurfaces && mod_q3bsp_curves_collisions.integer && !VectorCompare(start, end)) { // line trace the curves for (i = 0;i < leaf->numleafsurfaces;i++) { surface = model->data_surfaces + leaf->firstleafsurface[i]; if (surface->num_collisiontriangles && surface->deprecatedq3collisionmarkframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, surface->mins, surface->maxs)) { surface->deprecatedq3collisionmarkframe = markframe; Collision_TraceLineTriangleMeshFloat(trace, linestart, lineend, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs); } } } } static void Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int markframe, const vec3_t segmentmins, const vec3_t segmentmaxs) { int i; int sides; mleaf_t *leaf; colbrushf_t *brush; msurface_t *surface; mplane_t *plane; float nodesegmentmins[3], nodesegmentmaxs[3]; // walk the tree until we hit a leaf, recursing for any split cases while (node->plane) { #if 0 if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs)) return; Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, node->children[0], thisbrush_start, thisbrush_end, markframe, segmentmins, segmentmaxs); node = node->children[1]; #else // abort if this part of the bsp tree can not be hit by this trace // if (!(node->combinedsupercontents & trace->hitsupercontentsmask)) // return; plane = node->plane; // axial planes are much more common than non-axial, so an optimized // axial case pays off here if (plane->type < 3) { // this is an axial plane, compare bounding box directly to it and // recurse sides accordingly // recurse down node sides // use an inlined axial BoxOnPlaneSide to slightly reduce overhead //sides = BoxOnPlaneSide(nodesegmentmins, nodesegmentmaxs, plane); //sides = ((segmentmaxs[plane->type] >= plane->dist) | ((segmentmins[plane->type] < plane->dist) << 1)); sides = ((segmentmaxs[plane->type] >= plane->dist) + ((segmentmins[plane->type] < plane->dist) * 2)); } else { // this is a non-axial plane, so check if the start and end boxes // are both on one side of the plane to handle 'diagonal' cases sides = BoxOnPlaneSide(thisbrush_start->mins, thisbrush_start->maxs, plane) | BoxOnPlaneSide(thisbrush_end->mins, thisbrush_end->maxs, plane); } if (sides == 3) { // segment crosses plane Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, node->children[0], thisbrush_start, thisbrush_end, markframe, segmentmins, segmentmaxs); sides = 2; } // if sides == 0 then the trace itself is bogus (Not A Number values), // in this case we simply pretend the trace hit nothing if (sides == 0) return; // ERROR: NAN bounding box! // take whichever side the segment box is on node = node->children[sides - 1]; #endif } // abort if this part of the bsp tree can not be hit by this trace // if (!(node->combinedsupercontents & trace->hitsupercontentsmask)) // return; nodesegmentmins[0] = max(segmentmins[0], node->mins[0] - 1); nodesegmentmins[1] = max(segmentmins[1], node->mins[1] - 1); nodesegmentmins[2] = max(segmentmins[2], node->mins[2] - 1); nodesegmentmaxs[0] = min(segmentmaxs[0], node->maxs[0] + 1); nodesegmentmaxs[1] = min(segmentmaxs[1], node->maxs[1] + 1); nodesegmentmaxs[2] = min(segmentmaxs[2], node->maxs[2] + 1); // hit a leaf leaf = (mleaf_t *)node; #if 0 if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs)) return; #endif for (i = 0;i < leaf->numleafbrushes;i++) { brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf; if (brush && brush->markframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, brush->mins, brush->maxs)) { brush->markframe = markframe; Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, brush, brush); } } if (leaf->containscollisionsurfaces && mod_q3bsp_curves_collisions.integer) { for (i = 0;i < leaf->numleafsurfaces;i++) { surface = model->data_surfaces + leaf->firstleafsurface[i]; if (surface->num_collisiontriangles && surface->deprecatedq3collisionmarkframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, surface->mins, surface->maxs)) { surface->deprecatedq3collisionmarkframe = markframe; Collision_TraceBrushTriangleMeshFloat(trace, thisbrush_start, thisbrush_end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs); } } } } static int markframe = 0; static void Mod_Q3BSP_TracePoint(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask) { int i; q3mbrush_t *brush; memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; if (mod_collision_bih.integer) Mod_CollisionBIH_TracePoint_RecursiveBIHNode(trace, model, model->collision_bih.rootnode, start); else if (model->brush.submodel) { for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++) if (brush->colbrushf) Collision_TracePointBrushFloat(trace, start, brush->colbrushf); } else Mod_Q3BSP_TracePoint_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, ++markframe); } static void Mod_Q3BSP_TraceLine(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask) { int i; float segmentmins[3], segmentmaxs[3]; msurface_t *surface; q3mbrush_t *brush; if (VectorCompare(start, end)) { Mod_Q3BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask); return; } memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; segmentmins[0] = min(start[0], end[0]) - 1; segmentmins[1] = min(start[1], end[1]) - 1; segmentmins[2] = min(start[2], end[2]) - 1; segmentmaxs[0] = max(start[0], end[0]) + 1; segmentmaxs[1] = max(start[1], end[1]) + 1; segmentmaxs[2] = max(start[2], end[2]) + 1; if (mod_collision_bih.integer) Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, &model->collision_bih, model->collision_bih.rootnode, start, end, start, end); else if (model->brush.submodel) { for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++) if (brush->colbrushf && BoxesOverlap(segmentmins, segmentmaxs, brush->colbrushf->mins, brush->colbrushf->maxs)) Collision_TraceLineBrushFloat(trace, start, end, brush->colbrushf, brush->colbrushf); if (mod_q3bsp_curves_collisions.integer) for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++) if (surface->num_collisiontriangles && BoxesOverlap(segmentmins, segmentmaxs, surface->mins, surface->maxs)) Collision_TraceLineTriangleMeshFloat(trace, start, end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs); } else Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, end, 0, 1, start, end, ++markframe, segmentmins, segmentmaxs); } static void Mod_Q3BSP_TraceBox(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask) { int i; float segmentmins[3], segmentmaxs[3]; msurface_t *surface; q3mbrush_t *brush; colboxbrushf_t thisbrush_start, thisbrush_end; vec3_t boxstartmins, boxstartmaxs, boxendmins, boxendmaxs; if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(boxmins, boxmaxs)) { vec3_t shiftstart, shiftend; VectorAdd(start, boxmins, shiftstart); VectorAdd(end, boxmins, shiftend); if (VectorCompare(start, end)) Mod_Q3BSP_TracePoint(model, frameblend, skeleton, trace, shiftstart, hitsupercontentsmask); else Mod_Q3BSP_TraceLine(model, frameblend, skeleton, trace, shiftstart, shiftend, hitsupercontentsmask); return; } // box trace, performed as brush trace memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; segmentmins[0] = min(start[0], end[0]) + boxmins[0] - 1; segmentmins[1] = min(start[1], end[1]) + boxmins[1] - 1; segmentmins[2] = min(start[2], end[2]) + boxmins[2] - 1; segmentmaxs[0] = max(start[0], end[0]) + boxmaxs[0] + 1; segmentmaxs[1] = max(start[1], end[1]) + boxmaxs[1] + 1; segmentmaxs[2] = max(start[2], end[2]) + boxmaxs[2] + 1; VectorAdd(start, boxmins, boxstartmins); VectorAdd(start, boxmaxs, boxstartmaxs); VectorAdd(end, boxmins, boxendmins); VectorAdd(end, boxmaxs, boxendmaxs); Collision_BrushForBox(&thisbrush_start, boxstartmins, boxstartmaxs, 0, 0, NULL); Collision_BrushForBox(&thisbrush_end, boxendmins, boxendmaxs, 0, 0, NULL); if (mod_collision_bih.integer) Mod_CollisionBIH_TraceBrush_RecursiveBIHNode(trace, model, model->collision_bih.rootnode, &thisbrush_start.brush, &thisbrush_end.brush, segmentmins, segmentmaxs); else if (model->brush.submodel) { for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++) if (brush->colbrushf && BoxesOverlap(segmentmins, segmentmaxs, brush->colbrushf->mins, brush->colbrushf->maxs)) Collision_TraceBrushBrushFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, brush->colbrushf, brush->colbrushf); if (mod_q3bsp_curves_collisions.integer) for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++) if (surface->num_collisiontriangles && BoxesOverlap(segmentmins, segmentmaxs, surface->mins, surface->maxs)) Collision_TraceBrushTriangleMeshFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs); } else Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, model->brush.data_nodes, &thisbrush_start.brush, &thisbrush_end.brush, ++markframe, segmentmins, segmentmaxs); } void Mod_Q3BSP_TraceBrush(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, colbrushf_t *start, colbrushf_t *end, int hitsupercontentsmask) { float segmentmins[3], segmentmaxs[3]; int i; msurface_t *surface; q3mbrush_t *brush; if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(start->mins, start->maxs) && VectorCompare(end->mins, end->maxs)) { if (VectorCompare(start->mins, end->mins)) Mod_Q3BSP_TracePoint(model, frameblend, skeleton, trace, start->mins, hitsupercontentsmask); else Mod_Q3BSP_TraceLine(model, frameblend, skeleton, trace, start->mins, end->mins, hitsupercontentsmask); return; } // box trace, performed as brush trace memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; segmentmins[0] = min(start->mins[0], end->mins[0]); segmentmins[1] = min(start->mins[1], end->mins[1]); segmentmins[2] = min(start->mins[2], end->mins[2]); segmentmaxs[0] = max(start->maxs[0], end->maxs[0]); segmentmaxs[1] = max(start->maxs[1], end->maxs[1]); segmentmaxs[2] = max(start->maxs[2], end->maxs[2]); if (mod_collision_bih.integer) Mod_CollisionBIH_TraceBrush_RecursiveBIHNode(trace, model, model->collision_bih.rootnode, start, end, segmentmins, segmentmaxs); else if (model->brush.submodel) { for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++) if (brush->colbrushf && BoxesOverlap(segmentmins, segmentmaxs, brush->colbrushf->mins, brush->colbrushf->maxs)) Collision_TraceBrushBrushFloat(trace, start, end, brush->colbrushf, brush->colbrushf); if (mod_q3bsp_curves_collisions.integer) for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++) if (surface->num_collisiontriangles && BoxesOverlap(segmentmins, segmentmaxs, surface->mins, surface->maxs)) Collision_TraceBrushTriangleMeshFloat(trace, start, end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs); } else Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, end, ++markframe, segmentmins, segmentmaxs); } static int Mod_Q3BSP_PointSuperContents(struct model_s *model, int frame, const vec3_t point) { int i; int supercontents = 0; q3mbrush_t *brush; if (mod_collision_bih.integer) { trace_t trace; Mod_Q3BSP_TracePoint(model, NULL, NULL, &trace, point, 0); supercontents = trace.startsupercontents; } // test if the point is inside each brush else if (model->brush.submodel) { // submodels are effectively one leaf for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++) if (brush->colbrushf && Collision_PointInsideBrushFloat(point, brush->colbrushf)) supercontents |= brush->colbrushf->supercontents; } else { mnode_t *node = model->brush.data_nodes; mleaf_t *leaf; // find which leaf the point is in while (node->plane) node = node->children[(node->plane->type < 3 ? point[node->plane->type] : DotProduct(point, node->plane->normal)) < node->plane->dist]; leaf = (mleaf_t *)node; // now check the brushes in the leaf for (i = 0;i < leaf->numleafbrushes;i++) { brush = model->brush.data_brushes + leaf->firstleafbrush[i]; if (brush->colbrushf && Collision_PointInsideBrushFloat(point, brush->colbrushf)) supercontents |= brush->colbrushf->supercontents; } } return supercontents; } void Mod_CollisionBIH_TraceLineAgainstSurfaces(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask) { memset(trace, 0, sizeof(*trace)); trace->fraction = 1; trace->realfraction = 1; trace->hitsupercontentsmask = hitsupercontentsmask; Mod_CollisionBIH_TraceLine_RecursiveBIHNode(trace, model, &model->render_bih, model->render_bih.rootnode, start, end, start, end); } bih_t *Mod_MakeCollisionBIH(dp_model_t *model, qboolean userendersurfaces, bih_t *out) { int j; int bihnumleafs; int bihmaxnodes; int brushindex; int triangleindex; int bihleafindex; int nummodelbrushes = model->nummodelbrushes; int nummodelsurfaces = model->nummodelsurfaces; const int *e; const int *collisionelement3i; const float *collisionvertex3f; const int *renderelement3i; const float *rendervertex3f; bih_leaf_t *bihleafs; bih_node_t *bihnodes; int *temp_leafsort; int *temp_leafsortscratch; const msurface_t *surface; const q3mbrush_t *brush; // find out how many BIH leaf nodes we need bihnumleafs = 0; if (userendersurfaces) { for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++) bihnumleafs += surface->num_triangles; } else { for (brushindex = 0, brush = model->brush.data_brushes + brushindex+model->firstmodelbrush;brushindex < nummodelbrushes;brushindex++, brush++) if (brush->colbrushf) bihnumleafs++; for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++) { if (surface->texture->basematerialflags & MATERIALFLAG_MESHCOLLISIONS) bihnumleafs += surface->num_triangles + surface->num_collisiontriangles; else bihnumleafs += surface->num_collisiontriangles; } } if (!bihnumleafs) return NULL; // allocate the memory for the BIH leaf nodes bihleafs = (bih_leaf_t *)Mem_Alloc(loadmodel->mempool, sizeof(bih_leaf_t) * bihnumleafs); // now populate the BIH leaf nodes bihleafindex = 0; // add render surfaces renderelement3i = model->surfmesh.data_element3i; rendervertex3f = model->surfmesh.data_vertex3f; for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++) { for (triangleindex = 0, e = renderelement3i + 3*surface->num_firsttriangle;triangleindex < surface->num_triangles;triangleindex++, e += 3) { if (!userendersurfaces && !(surface->texture->basematerialflags & MATERIALFLAG_MESHCOLLISIONS)) continue; bihleafs[bihleafindex].type = BIH_RENDERTRIANGLE; bihleafs[bihleafindex].textureindex = surface->texture - model->data_textures; bihleafs[bihleafindex].surfaceindex = surface - model->data_surfaces; bihleafs[bihleafindex].itemindex = triangleindex+surface->num_firsttriangle; bihleafs[bihleafindex].mins[0] = min(rendervertex3f[3*e[0]+0], min(rendervertex3f[3*e[1]+0], rendervertex3f[3*e[2]+0])) - 1; bihleafs[bihleafindex].mins[1] = min(rendervertex3f[3*e[0]+1], min(rendervertex3f[3*e[1]+1], rendervertex3f[3*e[2]+1])) - 1; bihleafs[bihleafindex].mins[2] = min(rendervertex3f[3*e[0]+2], min(rendervertex3f[3*e[1]+2], rendervertex3f[3*e[2]+2])) - 1; bihleafs[bihleafindex].maxs[0] = max(rendervertex3f[3*e[0]+0], max(rendervertex3f[3*e[1]+0], rendervertex3f[3*e[2]+0])) + 1; bihleafs[bihleafindex].maxs[1] = max(rendervertex3f[3*e[0]+1], max(rendervertex3f[3*e[1]+1], rendervertex3f[3*e[2]+1])) + 1; bihleafs[bihleafindex].maxs[2] = max(rendervertex3f[3*e[0]+2], max(rendervertex3f[3*e[1]+2], rendervertex3f[3*e[2]+2])) + 1; bihleafindex++; } } if (!userendersurfaces) { // add collision brushes for (brushindex = 0, brush = model->brush.data_brushes + brushindex+model->firstmodelbrush;brushindex < nummodelbrushes;brushindex++, brush++) { if (!brush->colbrushf) continue; bihleafs[bihleafindex].type = BIH_BRUSH; bihleafs[bihleafindex].textureindex = brush->texture - model->data_textures; bihleafs[bihleafindex].surfaceindex = -1; bihleafs[bihleafindex].itemindex = brushindex+model->firstmodelbrush; VectorCopy(brush->colbrushf->mins, bihleafs[bihleafindex].mins); VectorCopy(brush->colbrushf->maxs, bihleafs[bihleafindex].maxs); bihleafindex++; } // add collision surfaces collisionelement3i = model->brush.data_collisionelement3i; collisionvertex3f = model->brush.data_collisionvertex3f; for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++) { for (triangleindex = 0, e = collisionelement3i + 3*surface->num_firstcollisiontriangle;triangleindex < surface->num_collisiontriangles;triangleindex++, e += 3) { bihleafs[bihleafindex].type = BIH_COLLISIONTRIANGLE; bihleafs[bihleafindex].textureindex = surface->texture - model->data_textures; bihleafs[bihleafindex].surfaceindex = surface - model->data_surfaces; bihleafs[bihleafindex].itemindex = triangleindex+surface->num_firstcollisiontriangle; bihleafs[bihleafindex].mins[0] = min(collisionvertex3f[3*e[0]+0], min(collisionvertex3f[3*e[1]+0], collisionvertex3f[3*e[2]+0])) - 1; bihleafs[bihleafindex].mins[1] = min(collisionvertex3f[3*e[0]+1], min(collisionvertex3f[3*e[1]+1], collisionvertex3f[3*e[2]+1])) - 1; bihleafs[bihleafindex].mins[2] = min(collisionvertex3f[3*e[0]+2], min(collisionvertex3f[3*e[1]+2], collisionvertex3f[3*e[2]+2])) - 1; bihleafs[bihleafindex].maxs[0] = max(collisionvertex3f[3*e[0]+0], max(collisionvertex3f[3*e[1]+0], collisionvertex3f[3*e[2]+0])) + 1; bihleafs[bihleafindex].maxs[1] = max(collisionvertex3f[3*e[0]+1], max(collisionvertex3f[3*e[1]+1], collisionvertex3f[3*e[2]+1])) + 1; bihleafs[bihleafindex].maxs[2] = max(collisionvertex3f[3*e[0]+2], max(collisionvertex3f[3*e[1]+2], collisionvertex3f[3*e[2]+2])) + 1; bihleafindex++; } } } // allocate buffers for the produced and temporary data bihmaxnodes = bihnumleafs + 1; bihnodes = (bih_node_t *)Mem_Alloc(loadmodel->mempool, sizeof(bih_node_t) * bihmaxnodes); temp_leafsort = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int) * bihnumleafs * 2); temp_leafsortscratch = temp_leafsort + bihnumleafs; // now build it BIH_Build(out, bihnumleafs, bihleafs, bihmaxnodes, bihnodes, temp_leafsort, temp_leafsortscratch); // we're done with the temporary data Mem_Free(temp_leafsort); // resize the BIH nodes array if it over-allocated if (out->maxnodes > out->numnodes) { out->maxnodes = out->numnodes; out->nodes = (bih_node_t *)Mem_Realloc(loadmodel->mempool, out->nodes, out->numnodes * sizeof(bih_node_t)); } return out; } static int Mod_Q3BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents) { int supercontents = 0; if (nativecontents & CONTENTSQ3_SOLID) supercontents |= SUPERCONTENTS_SOLID; if (nativecontents & CONTENTSQ3_WATER) supercontents |= SUPERCONTENTS_WATER; if (nativecontents & CONTENTSQ3_SLIME) supercontents |= SUPERCONTENTS_SLIME; if (nativecontents & CONTENTSQ3_LAVA) supercontents |= SUPERCONTENTS_LAVA; if (nativecontents & CONTENTSQ3_BODY) supercontents |= SUPERCONTENTS_BODY; if (nativecontents & CONTENTSQ3_CORPSE) supercontents |= SUPERCONTENTS_CORPSE; if (nativecontents & CONTENTSQ3_NODROP) supercontents |= SUPERCONTENTS_NODROP; if (nativecontents & CONTENTSQ3_PLAYERCLIP) supercontents |= SUPERCONTENTS_PLAYERCLIP; if (nativecontents & CONTENTSQ3_MONSTERCLIP) supercontents |= SUPERCONTENTS_MONSTERCLIP; if (nativecontents & CONTENTSQ3_DONOTENTER) supercontents |= SUPERCONTENTS_DONOTENTER; if (nativecontents & CONTENTSQ3_BOTCLIP) supercontents |= SUPERCONTENTS_BOTCLIP; if (!(nativecontents & CONTENTSQ3_TRANSLUCENT)) supercontents |= SUPERCONTENTS_OPAQUE; return supercontents; } static int Mod_Q3BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents) { int nativecontents = 0; if (supercontents & SUPERCONTENTS_SOLID) nativecontents |= CONTENTSQ3_SOLID; if (supercontents & SUPERCONTENTS_WATER) nativecontents |= CONTENTSQ3_WATER; if (supercontents & SUPERCONTENTS_SLIME) nativecontents |= CONTENTSQ3_SLIME; if (supercontents & SUPERCONTENTS_LAVA) nativecontents |= CONTENTSQ3_LAVA; if (supercontents & SUPERCONTENTS_BODY) nativecontents |= CONTENTSQ3_BODY; if (supercontents & SUPERCONTENTS_CORPSE) nativecontents |= CONTENTSQ3_CORPSE; if (supercontents & SUPERCONTENTS_NODROP) nativecontents |= CONTENTSQ3_NODROP; if (supercontents & SUPERCONTENTS_PLAYERCLIP) nativecontents |= CONTENTSQ3_PLAYERCLIP; if (supercontents & SUPERCONTENTS_MONSTERCLIP) nativecontents |= CONTENTSQ3_MONSTERCLIP; if (supercontents & SUPERCONTENTS_DONOTENTER) nativecontents |= CONTENTSQ3_DONOTENTER; if (supercontents & SUPERCONTENTS_BOTCLIP) nativecontents |= CONTENTSQ3_BOTCLIP; if (!(supercontents & SUPERCONTENTS_OPAQUE)) nativecontents |= CONTENTSQ3_TRANSLUCENT; return nativecontents; } void Mod_Q3BSP_RecursiveFindNumLeafs(mnode_t *node) { int numleafs; while (node->plane) { Mod_Q3BSP_RecursiveFindNumLeafs(node->children[0]); node = node->children[1]; } numleafs = ((mleaf_t *)node - loadmodel->brush.data_leafs) + 1; if (loadmodel->brush.num_leafs < numleafs) loadmodel->brush.num_leafs = numleafs; } void Mod_Q3BSP_Load(dp_model_t *mod, void *buffer, void *bufferend) { int i, j, lumps; q3dheader_t *header; float corner[3], yawradius, modelradius; mod->modeldatatypestring = "Q3BSP"; mod->type = mod_brushq3; mod->numframes = 2; // although alternate textures are not supported it is annoying to complain about no such frame 1 mod->numskins = 1; header = (q3dheader_t *)buffer; if((char *) bufferend < (char *) buffer + sizeof(q3dheader_t)) Host_Error("Mod_Q3BSP_Load: %s is smaller than its header", mod->name); i = LittleLong(header->version); if (i != Q3BSPVERSION && i != Q3BSPVERSION_IG && i != Q3BSPVERSION_LIVE) Host_Error("Mod_Q3BSP_Load: %s has wrong version number (%i, should be %i)", mod->name, i, Q3BSPVERSION); mod->soundfromcenter = true; mod->TraceBox = Mod_Q3BSP_TraceBox; mod->TraceBrush = Mod_Q3BSP_TraceBrush; mod->TraceLine = Mod_Q3BSP_TraceLine; mod->TracePoint = Mod_Q3BSP_TracePoint; mod->PointSuperContents = Mod_Q3BSP_PointSuperContents; mod->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLine; mod->brush.TraceLineOfSight = Mod_Q3BSP_TraceLineOfSight; mod->brush.SuperContentsFromNativeContents = Mod_Q3BSP_SuperContentsFromNativeContents; mod->brush.NativeContentsFromSuperContents = Mod_Q3BSP_NativeContentsFromSuperContents; mod->brush.GetPVS = Mod_Q1BSP_GetPVS; mod->brush.FatPVS = Mod_Q1BSP_FatPVS; mod->brush.BoxTouchingPVS = Mod_Q1BSP_BoxTouchingPVS; mod->brush.BoxTouchingLeafPVS = Mod_Q1BSP_BoxTouchingLeafPVS; mod->brush.BoxTouchingVisibleLeafs = Mod_Q1BSP_BoxTouchingVisibleLeafs; mod->brush.FindBoxClusters = Mod_Q1BSP_FindBoxClusters; mod->brush.LightPoint = Mod_Q3BSP_LightPoint; mod->brush.FindNonSolidLocation = Mod_Q1BSP_FindNonSolidLocation; mod->brush.AmbientSoundLevelsForPoint = NULL; mod->brush.RoundUpToHullSize = NULL; mod->brush.PointInLeaf = Mod_Q1BSP_PointInLeaf; mod->Draw = R_Q1BSP_Draw; mod->DrawDepth = R_Q1BSP_DrawDepth; mod->DrawDebug = R_Q1BSP_DrawDebug; mod->DrawPrepass = R_Q1BSP_DrawPrepass; mod->GetLightInfo = R_Q1BSP_GetLightInfo; mod->CompileShadowMap = R_Q1BSP_CompileShadowMap; mod->DrawShadowMap = R_Q1BSP_DrawShadowMap; mod->CompileShadowVolume = R_Q1BSP_CompileShadowVolume; mod->DrawShadowVolume = R_Q1BSP_DrawShadowVolume; mod->DrawLight = R_Q1BSP_DrawLight; mod_base = (unsigned char *)header; // swap all the lumps header->ident = LittleLong(header->ident); header->version = LittleLong(header->version); lumps = (header->version == Q3BSPVERSION_LIVE) ? Q3HEADER_LUMPS_LIVE : Q3HEADER_LUMPS; for (i = 0;i < lumps;i++) { j = (header->lumps[i].fileofs = LittleLong(header->lumps[i].fileofs)); if((char *) bufferend < (char *) buffer + j) Host_Error("Mod_Q3BSP_Load: %s has a lump that starts outside the file!", mod->name); j += (header->lumps[i].filelen = LittleLong(header->lumps[i].filelen)); if((char *) bufferend < (char *) buffer + j) Host_Error("Mod_Q3BSP_Load: %s has a lump that ends outside the file!", mod->name); } /* * NO, do NOT clear them! * they contain actual data referenced by other stuff. * Instead, before using the advertisements lump, check header->versio * again! * Sorry, but otherwise it breaks memory of the first lump. for (i = lumps;i < Q3HEADER_LUMPS_MAX;i++) { header->lumps[i].fileofs = 0; header->lumps[i].filelen = 0; } */ mod->brush.qw_md4sum = 0; mod->brush.qw_md4sum2 = 0; for (i = 0;i < lumps;i++) { if (i == Q3LUMP_ENTITIES) continue; mod->brush.qw_md4sum ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen); if (i == Q3LUMP_PVS || i == Q3LUMP_LEAFS || i == Q3LUMP_NODES) continue; mod->brush.qw_md4sum2 ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen); // all this checksumming can take a while, so let's send keepalives here too CL_KeepaliveMessage(false); } Mod_Q3BSP_LoadEntities(&header->lumps[Q3LUMP_ENTITIES]); Mod_Q3BSP_LoadTextures(&header->lumps[Q3LUMP_TEXTURES]); Mod_Q3BSP_LoadPlanes(&header->lumps[Q3LUMP_PLANES]); if (header->version == Q3BSPVERSION_IG) Mod_Q3BSP_LoadBrushSides_IG(&header->lumps[Q3LUMP_BRUSHSIDES]); else Mod_Q3BSP_LoadBrushSides(&header->lumps[Q3LUMP_BRUSHSIDES]); Mod_Q3BSP_LoadBrushes(&header->lumps[Q3LUMP_BRUSHES]); Mod_Q3BSP_LoadEffects(&header->lumps[Q3LUMP_EFFECTS]); Mod_Q3BSP_LoadVertices(&header->lumps[Q3LUMP_VERTICES]); Mod_Q3BSP_LoadTriangles(&header->lumps[Q3LUMP_TRIANGLES]); Mod_Q3BSP_LoadLightmaps(&header->lumps[Q3LUMP_LIGHTMAPS], &header->lumps[Q3LUMP_FACES]); Mod_Q3BSP_LoadFaces(&header->lumps[Q3LUMP_FACES]); Mod_Q3BSP_LoadModels(&header->lumps[Q3LUMP_MODELS]); Mod_Q3BSP_LoadLeafBrushes(&header->lumps[Q3LUMP_LEAFBRUSHES]); Mod_Q3BSP_LoadLeafFaces(&header->lumps[Q3LUMP_LEAFFACES]); Mod_Q3BSP_LoadLeafs(&header->lumps[Q3LUMP_LEAFS]); Mod_Q3BSP_LoadNodes(&header->lumps[Q3LUMP_NODES]); Mod_Q3BSP_LoadLightGrid(&header->lumps[Q3LUMP_LIGHTGRID]); Mod_Q3BSP_LoadPVS(&header->lumps[Q3LUMP_PVS]); loadmodel->brush.numsubmodels = loadmodel->brushq3.num_models; // the MakePortals code works fine on the q3bsp data as well if (mod_bsp_portalize.integer) Mod_Q1BSP_MakePortals(); // FIXME: shader alpha should replace r_wateralpha support in q3bsp loadmodel->brush.supportwateralpha = true; // make a single combined shadow mesh to allow optimized shadow volume creation Mod_Q1BSP_CreateShadowMesh(loadmodel); loadmodel->brush.num_leafs = 0; Mod_Q3BSP_RecursiveFindNumLeafs(loadmodel->brush.data_nodes); if (loadmodel->brush.numsubmodels) loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *)); mod = loadmodel; for (i = 0;i < loadmodel->brush.numsubmodels;i++) { if (i > 0) { char name[10]; // duplicate the basic information dpsnprintf(name, sizeof(name), "*%i", i); mod = Mod_FindName(name, loadmodel->name); // copy the base model to this one *mod = *loadmodel; // rename the clone back to its proper name strlcpy(mod->name, name, sizeof(mod->name)); mod->brush.parentmodel = loadmodel; // textures and memory belong to the main model mod->texturepool = NULL; mod->mempool = NULL; mod->brush.GetPVS = NULL; mod->brush.FatPVS = NULL; mod->brush.BoxTouchingPVS = NULL; mod->brush.BoxTouchingLeafPVS = NULL; mod->brush.BoxTouchingVisibleLeafs = NULL; mod->brush.FindBoxClusters = NULL; mod->brush.LightPoint = NULL; mod->brush.AmbientSoundLevelsForPoint = NULL; } mod->brush.submodel = i; if (loadmodel->brush.submodels) loadmodel->brush.submodels[i] = mod; // make the model surface list (used by shadowing/lighting) mod->firstmodelsurface = mod->brushq3.data_models[i].firstface; mod->nummodelsurfaces = mod->brushq3.data_models[i].numfaces; mod->firstmodelbrush = mod->brushq3.data_models[i].firstbrush; mod->nummodelbrushes = mod->brushq3.data_models[i].numbrushes; mod->sortedmodelsurfaces = (int *)Mem_Alloc(loadmodel->mempool, mod->nummodelsurfaces * sizeof(*mod->sortedmodelsurfaces)); Mod_MakeSortedSurfaces(mod); VectorCopy(mod->brushq3.data_models[i].mins, mod->normalmins); VectorCopy(mod->brushq3.data_models[i].maxs, mod->normalmaxs); // enlarge the bounding box to enclose all geometry of this model, // because q3map2 sometimes lies (mostly to affect the lightgrid), // which can in turn mess up the farclip (as well as culling when // outside the level - an unimportant concern) //printf("Editing model %d... BEFORE re-bounding: %f %f %f - %f %f %f\n", i, mod->normalmins[0], mod->normalmins[1], mod->normalmins[2], mod->normalmaxs[0], mod->normalmaxs[1], mod->normalmaxs[2]); for (j = 0;j < mod->nummodelsurfaces;j++) { const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface; const float *v = mod->surfmesh.data_vertex3f + 3 * surface->num_firstvertex; int k; if (!surface->num_vertices) continue; for (k = 0;k < surface->num_vertices;k++, v += 3) { mod->normalmins[0] = min(mod->normalmins[0], v[0]); mod->normalmins[1] = min(mod->normalmins[1], v[1]); mod->normalmins[2] = min(mod->normalmins[2], v[2]); mod->normalmaxs[0] = max(mod->normalmaxs[0], v[0]); mod->normalmaxs[1] = max(mod->normalmaxs[1], v[1]); mod->normalmaxs[2] = max(mod->normalmaxs[2], v[2]); } } //printf("Editing model %d... AFTER re-bounding: %f %f %f - %f %f %f\n", i, mod->normalmins[0], mod->normalmins[1], mod->normalmins[2], mod->normalmaxs[0], mod->normalmaxs[1], mod->normalmaxs[2]); corner[0] = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0])); corner[1] = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1])); corner[2] = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2])); modelradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]+corner[2]*corner[2]); yawradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]); mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius; mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius; mod->yawmaxs[0] = mod->yawmaxs[1] = yawradius; mod->yawmins[0] = mod->yawmins[1] = -yawradius; mod->yawmins[2] = mod->normalmins[2]; mod->yawmaxs[2] = mod->normalmaxs[2]; mod->radius = modelradius; mod->radius2 = modelradius * modelradius; // this gets altered below if sky or water is used mod->DrawSky = NULL; mod->DrawAddWaterPlanes = NULL; for (j = 0;j < mod->nummodelsurfaces;j++) if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & MATERIALFLAG_SKY) break; if (j < mod->nummodelsurfaces) mod->DrawSky = R_Q1BSP_DrawSky; for (j = 0;j < mod->nummodelsurfaces;j++) if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)) break; if (j < mod->nummodelsurfaces) mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes; Mod_MakeCollisionBIH(mod, false, &mod->collision_bih); Mod_MakeCollisionBIH(mod, true, &mod->render_bih); // generate VBOs and other shared data before cloning submodels if (i == 0) Mod_BuildVBOs(); } Con_DPrintf("Stats for q3bsp model \"%s\": %i faces, %i nodes, %i leafs, %i clusters, %i clusterportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces); } void Mod_IBSP_Load(dp_model_t *mod, void *buffer, void *bufferend) { int i = LittleLong(((int *)buffer)[1]); if (i == Q3BSPVERSION || i == Q3BSPVERSION_IG || i == Q3BSPVERSION_LIVE) Mod_Q3BSP_Load(mod,buffer, bufferend); else if (i == Q2BSPVERSION) Mod_Q2BSP_Load(mod,buffer, bufferend); else Host_Error("Mod_IBSP_Load: unknown/unsupported version %i", i); } void Mod_MAP_Load(dp_model_t *mod, void *buffer, void *bufferend) { Host_Error("Mod_MAP_Load: not yet implemented"); } #define OBJASMODEL #ifdef OBJASMODEL typedef struct objvertex_s { int nextindex; int submodelindex; int textureindex; float v[3]; float vt[2]; float vn[3]; } objvertex_t; static unsigned char nobsp_pvs[1] = {1}; void Mod_OBJ_Load(dp_model_t *mod, void *buffer, void *bufferend) { const char *textbase = (char *)buffer, *text = textbase; char *s; char *argv[512]; char line[1024]; char materialname[MAX_QPATH]; int i, j, l, numvertices, firstvertex, firsttriangle, elementindex, vertexindex, surfacevertices, surfacetriangles, surfaceelements, submodelindex = 0; int index1, index2, index3; objvertex_t vfirst, vprev, vcurrent; int argc; int linelen; int numtriangles = 0; int maxtriangles = 0; objvertex_t *vertices = NULL; int linenumber = 0; int maxtextures = 0, numtextures = 0, textureindex = 0; int maxv = 0, numv = 1; int maxvt = 0, numvt = 1; int maxvn = 0, numvn = 1; char *texturenames = NULL; float dist, modelradius, modelyawradius, yawradius; float *v = NULL; float *vt = NULL; float *vn = NULL; float mins[3]; float maxs[3]; float corner[3]; objvertex_t *thisvertex = NULL; int vertexhashindex; int *vertexhashtable = NULL; objvertex_t *vertexhashdata = NULL; objvertex_t *vdata = NULL; int vertexhashsize = 0; int vertexhashcount = 0; skinfile_t *skinfiles = NULL; unsigned char *data = NULL; int *submodelfirstsurface; msurface_t *surface; msurface_t *tempsurfaces; memset(&vfirst, 0, sizeof(vfirst)); memset(&vprev, 0, sizeof(vprev)); memset(&vcurrent, 0, sizeof(vcurrent)); dpsnprintf(materialname, sizeof(materialname), "%s", loadmodel->name); loadmodel->modeldatatypestring = "OBJ"; loadmodel->type = mod_obj; loadmodel->soundfromcenter = true; loadmodel->TraceBox = Mod_CollisionBIH_TraceBox; loadmodel->TraceBrush = Mod_CollisionBIH_TraceBrush; loadmodel->TraceLine = Mod_CollisionBIH_TraceLine; loadmodel->TracePoint = Mod_CollisionBIH_TracePoint_Mesh; loadmodel->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLine; loadmodel->PointSuperContents = Mod_CollisionBIH_PointSuperContents_Mesh; loadmodel->brush.TraceLineOfSight = NULL; loadmodel->brush.SuperContentsFromNativeContents = NULL; loadmodel->brush.NativeContentsFromSuperContents = NULL; loadmodel->brush.GetPVS = NULL; loadmodel->brush.FatPVS = NULL; loadmodel->brush.BoxTouchingPVS = NULL; loadmodel->brush.BoxTouchingLeafPVS = NULL; loadmodel->brush.BoxTouchingVisibleLeafs = NULL; loadmodel->brush.FindBoxClusters = NULL; loadmodel->brush.LightPoint = NULL; loadmodel->brush.FindNonSolidLocation = NULL; loadmodel->brush.AmbientSoundLevelsForPoint = NULL; loadmodel->brush.RoundUpToHullSize = NULL; loadmodel->brush.PointInLeaf = NULL; loadmodel->Draw = R_Q1BSP_Draw; loadmodel->DrawDepth = R_Q1BSP_DrawDepth; loadmodel->DrawDebug = R_Q1BSP_DrawDebug; loadmodel->DrawPrepass = R_Q1BSP_DrawPrepass; loadmodel->GetLightInfo = R_Q1BSP_GetLightInfo; loadmodel->CompileShadowMap = R_Q1BSP_CompileShadowMap; loadmodel->DrawShadowMap = R_Q1BSP_DrawShadowMap; loadmodel->CompileShadowVolume = R_Q1BSP_CompileShadowVolume; loadmodel->DrawShadowVolume = R_Q1BSP_DrawShadowVolume; loadmodel->DrawLight = R_Q1BSP_DrawLight; skinfiles = Mod_LoadSkinFiles(); if (loadmodel->numskins < 1) loadmodel->numskins = 1; // make skinscenes for the skins (no groups) loadmodel->skinscenes = (animscene_t *)Mem_Alloc(loadmodel->mempool, sizeof(animscene_t) * loadmodel->numskins); for (i = 0;i < loadmodel->numskins;i++) { loadmodel->skinscenes[i].firstframe = i; loadmodel->skinscenes[i].framecount = 1; loadmodel->skinscenes[i].loop = true; loadmodel->skinscenes[i].framerate = 10; } VectorClear(mins); VectorClear(maxs); // parse the OBJ text now for(;;) { static char emptyarg[1] = ""; if (!*text) break; linenumber++; linelen = 0; for (linelen = 0;text[linelen] && text[linelen] != '\r' && text[linelen] != '\n';linelen++) line[linelen] = text[linelen]; line[linelen] = 0; for (argc = 0;argc < 4;argc++) argv[argc] = emptyarg; argc = 0; s = line; while (*s == ' ' || *s == '\t') s++; while (*s) { argv[argc++] = s; while (*s > ' ') s++; if (!*s) break; *s++ = 0; while (*s == ' ' || *s == '\t') s++; } text += linelen; if (*text == '\r') text++; if (*text == '\n') text++; if (!argc) continue; if (argv[0][0] == '#') continue; if (!strcmp(argv[0], "v")) { if (maxv <= numv) { maxv = max(maxv * 2, 1024); v = (float *)Mem_Realloc(tempmempool, v, maxv * sizeof(float[3])); } v[numv*3+0] = atof(argv[1]); v[numv*3+2] = atof(argv[2]); v[numv*3+1] = atof(argv[3]); numv++; } else if (!strcmp(argv[0], "vt")) { if (maxvt <= numvt) { maxvt = max(maxvt * 2, 1024); vt = (float *)Mem_Realloc(tempmempool, vt, maxvt * sizeof(float[2])); } vt[numvt*2+0] = atof(argv[1]); vt[numvt*2+1] = 1-atof(argv[2]); numvt++; } else if (!strcmp(argv[0], "vn")) { if (maxvn <= numvn) { maxvn = max(maxvn * 2, 1024); vn = (float *)Mem_Realloc(tempmempool, vn, maxvn * sizeof(float[3])); } vn[numvn*3+0] = atof(argv[1]); vn[numvn*3+2] = atof(argv[2]); vn[numvn*3+1] = atof(argv[3]); numvn++; } else if (!strcmp(argv[0], "f")) { if (!numtextures) { if (maxtextures <= numtextures) { maxtextures = max(maxtextures * 2, 256); texturenames = (char *)Mem_Realloc(loadmodel->mempool, texturenames, maxtextures * MAX_QPATH); } textureindex = numtextures++; strlcpy(texturenames + textureindex*MAX_QPATH, loadmodel->name, MAX_QPATH); } for (j = 1;j < argc;j++) { index1 = atoi(argv[j]); while(argv[j][0] && argv[j][0] != '/') argv[j]++; if (argv[j][0]) argv[j]++; index2 = atoi(argv[j]); while(argv[j][0] && argv[j][0] != '/') argv[j]++; if (argv[j][0]) argv[j]++; index3 = atoi(argv[j]); // negative refers to a recent vertex // zero means not specified // positive means an absolute vertex index if (index1 < 0) index1 = numv - index1; if (index2 < 0) index2 = numvt - index2; if (index3 < 0) index3 = numvn - index3; vcurrent.nextindex = -1; vcurrent.textureindex = textureindex; vcurrent.submodelindex = submodelindex; if (v && index1 >= 0 && index1 < numv) VectorCopy(v + 3*index1, vcurrent.v); if (vt && index2 >= 0 && index2 < numvt) Vector2Copy(vt + 2*index2, vcurrent.vt); if (vn && index3 >= 0 && index3 < numvn) VectorCopy(vn + 3*index3, vcurrent.vn); if (numtriangles == 0) { VectorCopy(vcurrent.v, mins); VectorCopy(vcurrent.v, maxs); } else { mins[0] = min(mins[0], vcurrent.v[0]); mins[1] = min(mins[1], vcurrent.v[1]); mins[2] = min(mins[2], vcurrent.v[2]); maxs[0] = max(maxs[0], vcurrent.v[0]); maxs[1] = max(maxs[1], vcurrent.v[1]); maxs[2] = max(maxs[2], vcurrent.v[2]); } if (j == 1) vfirst = vcurrent; else if (j >= 3) { if (maxtriangles <= numtriangles) { maxtriangles = max(maxtriangles * 2, 32768); vertices = (objvertex_t*)Mem_Realloc(loadmodel->mempool, vertices, maxtriangles * sizeof(objvertex_t[3])); } vertices[numtriangles*3+0] = vfirst; vertices[numtriangles*3+1] = vprev; vertices[numtriangles*3+2] = vcurrent; numtriangles++; } vprev = vcurrent; } } else if (!strcmp(argv[0], "o") || !strcmp(argv[0], "g")) { submodelindex = atof(argv[1]); loadmodel->brush.numsubmodels = max(submodelindex + 1, loadmodel->brush.numsubmodels); } else if (!strcmp(argv[0], "usemtl")) { for (i = 0;i < numtextures;i++) if (!strcmp(texturenames+i*MAX_QPATH, argv[1])) break; if (i < numtextures) textureindex = i; else { if (maxtextures <= numtextures) { maxtextures = max(maxtextures * 2, 256); texturenames = (char *)Mem_Realloc(loadmodel->mempool, texturenames, maxtextures * MAX_QPATH); } textureindex = numtextures++; strlcpy(texturenames + textureindex*MAX_QPATH, argv[1], MAX_QPATH); } } } // now that we have the OBJ data loaded as-is, we can convert it // copy the model bounds, then enlarge the yaw and rotated bounds according to radius VectorCopy(mins, loadmodel->normalmins); VectorCopy(maxs, loadmodel->normalmaxs); dist = max(fabs(loadmodel->normalmins[0]), fabs(loadmodel->normalmaxs[0])); modelyawradius = max(fabs(loadmodel->normalmins[1]), fabs(loadmodel->normalmaxs[1])); modelyawradius = dist*dist+modelyawradius*modelyawradius; modelradius = max(fabs(loadmodel->normalmins[2]), fabs(loadmodel->normalmaxs[2])); modelradius = modelyawradius + modelradius * modelradius; modelyawradius = sqrt(modelyawradius); modelradius = sqrt(modelradius); loadmodel->yawmins[0] = loadmodel->yawmins[1] = -modelyawradius; loadmodel->yawmins[2] = loadmodel->normalmins[2]; loadmodel->yawmaxs[0] = loadmodel->yawmaxs[1] = modelyawradius; loadmodel->yawmaxs[2] = loadmodel->normalmaxs[2]; loadmodel->rotatedmins[0] = loadmodel->rotatedmins[1] = loadmodel->rotatedmins[2] = -modelradius; loadmodel->rotatedmaxs[0] = loadmodel->rotatedmaxs[1] = loadmodel->rotatedmaxs[2] = modelradius; loadmodel->radius = modelradius; loadmodel->radius2 = modelradius * modelradius; // allocate storage for triangles loadmodel->surfmesh.data_element3i = (int *)Mem_Alloc(loadmodel->mempool, numtriangles * sizeof(int[3])); // allocate vertex hash structures to build an optimal vertex subset vertexhashsize = numtriangles*2; vertexhashtable = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int) * vertexhashsize); memset(vertexhashtable, 0xFF, sizeof(int) * vertexhashsize); vertexhashdata = (objvertex_t *)Mem_Alloc(loadmodel->mempool, sizeof(*vertexhashdata) * numtriangles*3); vertexhashcount = 0; // gather surface stats for assigning vertex/triangle ranges firstvertex = 0; firsttriangle = 0; elementindex = 0; loadmodel->num_surfaces = 0; // allocate storage for the worst case number of surfaces, later we resize tempsurfaces = (msurface_t *)Mem_Alloc(loadmodel->mempool, numtextures * loadmodel->brush.numsubmodels * sizeof(msurface_t)); submodelfirstsurface = (int *)Mem_Alloc(loadmodel->mempool, (loadmodel->brush.numsubmodels+1) * sizeof(int)); surface = tempsurfaces; for (submodelindex = 0;submodelindex < loadmodel->brush.numsubmodels;submodelindex++) { submodelfirstsurface[submodelindex] = loadmodel->num_surfaces; for (textureindex = 0;textureindex < numtextures;textureindex++) { for (vertexindex = 0;vertexindex < numtriangles*3;vertexindex++) { thisvertex = vertices + vertexindex; if (thisvertex->submodelindex == submodelindex && thisvertex->textureindex == textureindex) break; } // skip the surface creation if there are no triangles for it if (vertexindex == numtriangles*3) continue; // create a surface for these vertices surfacevertices = 0; surfaceelements = 0; // we hack in a texture index in the surface to be fixed up later... surface->texture = (texture_t *)((size_t)textureindex); // calculate bounds as we go VectorCopy(thisvertex->v, surface->mins); VectorCopy(thisvertex->v, surface->maxs); for (;vertexindex < numtriangles*3;vertexindex++) { thisvertex = vertices + vertexindex; if (thisvertex->submodelindex != submodelindex) continue; if (thisvertex->textureindex != textureindex) continue; // add vertex to surface bounds surface->mins[0] = min(surface->mins[0], thisvertex->v[0]); surface->mins[1] = min(surface->mins[1], thisvertex->v[1]); surface->mins[2] = min(surface->mins[2], thisvertex->v[2]); surface->maxs[0] = max(surface->maxs[0], thisvertex->v[0]); surface->maxs[1] = max(surface->maxs[1], thisvertex->v[1]); surface->maxs[2] = max(surface->maxs[2], thisvertex->v[2]); // add the vertex if it is not found in the merged set, and // get its index (triangle element) for the surface vertexhashindex = (unsigned int)(thisvertex->v[0] * 3571 + thisvertex->v[0] * 1777 + thisvertex->v[0] * 457) % (unsigned int)vertexhashsize; for (i = vertexhashtable[vertexhashindex];i >= 0;i = vertexhashdata[i].nextindex) { vdata = vertexhashdata + i; if (vdata->submodelindex == thisvertex->submodelindex && vdata->textureindex == thisvertex->textureindex && VectorCompare(thisvertex->v, vdata->v) && VectorCompare(thisvertex->vn, vdata->vn) && Vector2Compare(thisvertex->vt, vdata->vt)) break; } if (i < 0) { i = vertexhashcount++; vdata = vertexhashdata + i; *vdata = *thisvertex; vdata->nextindex = vertexhashtable[vertexhashindex]; vertexhashtable[vertexhashindex] = i; surfacevertices++; } loadmodel->surfmesh.data_element3i[elementindex++] = i; surfaceelements++; } surfacetriangles = surfaceelements / 3; surface->num_vertices = surfacevertices; surface->num_triangles = surfacetriangles; surface->num_firstvertex = firstvertex; surface->num_firsttriangle = firsttriangle; firstvertex += surface->num_vertices; firsttriangle += surface->num_triangles; surface++; loadmodel->num_surfaces++; } } submodelfirstsurface[submodelindex] = loadmodel->num_surfaces; numvertices = firstvertex; loadmodel->data_surfaces = (msurface_t *)Mem_Realloc(loadmodel->mempool, tempsurfaces, loadmodel->num_surfaces * sizeof(msurface_t)); tempsurfaces = NULL; // allocate storage for final mesh data loadmodel->num_textures = numtextures * loadmodel->numskins; loadmodel->num_texturesperskin = numtextures; data = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->num_surfaces * sizeof(int) + loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t) + numtriangles * sizeof(int[3]) + (numvertices <= 65536 ? numtriangles * sizeof(unsigned short[3]) : 0) + (r_enableshadowvolumes.integer ? numtriangles * sizeof(int[3]) : 0) + numvertices * sizeof(float[14]) + loadmodel->brush.numsubmodels * sizeof(dp_model_t *)); loadmodel->brush.submodels = (dp_model_t **)data;data += loadmodel->brush.numsubmodels * sizeof(dp_model_t *); loadmodel->sortedmodelsurfaces = (int *)data;data += loadmodel->num_surfaces * sizeof(int); loadmodel->data_textures = (texture_t *)data;data += loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t); loadmodel->surfmesh.num_vertices = numvertices; loadmodel->surfmesh.num_triangles = numtriangles; if (r_enableshadowvolumes.integer) loadmodel->surfmesh.data_neighbor3i = (int *)data;data += numtriangles * sizeof(int[3]); loadmodel->surfmesh.data_vertex3f = (float *)data;data += numvertices * sizeof(float[3]); loadmodel->surfmesh.data_svector3f = (float *)data;data += numvertices * sizeof(float[3]); loadmodel->surfmesh.data_tvector3f = (float *)data;data += numvertices * sizeof(float[3]); loadmodel->surfmesh.data_normal3f = (float *)data;data += numvertices * sizeof(float[3]); loadmodel->surfmesh.data_texcoordtexture2f = (float *)data;data += numvertices * sizeof(float[2]); if (loadmodel->surfmesh.num_vertices <= 65536) loadmodel->surfmesh.data_element3s = (unsigned short *)data;data += loadmodel->surfmesh.num_triangles * sizeof(unsigned short[3]); for (j = 0;j < loadmodel->surfmesh.num_vertices;j++) { VectorCopy(vertexhashdata[j].v, loadmodel->surfmesh.data_vertex3f + 3*j); VectorCopy(vertexhashdata[j].vn, loadmodel->surfmesh.data_normal3f + 3*j); Vector2Copy(vertexhashdata[j].vt, loadmodel->surfmesh.data_texcoordtexture2f + 2*j); } // load the textures for (textureindex = 0;textureindex < numtextures;textureindex++) Mod_BuildAliasSkinsFromSkinFiles(loadmodel->data_textures + textureindex, skinfiles, texturenames + textureindex*MAX_QPATH, texturenames + textureindex*MAX_QPATH); Mod_FreeSkinFiles(skinfiles); // set the surface textures to their real values now that we loaded them... for (i = 0;i < loadmodel->num_surfaces;i++) loadmodel->data_surfaces[i].texture = loadmodel->data_textures + (size_t)loadmodel->data_surfaces[i].texture; // free data Mem_Free(vertices); Mem_Free(texturenames); Mem_Free(v); Mem_Free(vt); Mem_Free(vn); Mem_Free(vertexhashtable); Mem_Free(vertexhashdata); // make a single combined shadow mesh to allow optimized shadow volume creation Mod_Q1BSP_CreateShadowMesh(loadmodel); // compute all the mesh information that was not loaded from the file if (loadmodel->surfmesh.data_element3s) for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++) loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i]; Mod_ValidateElements(loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles, 0, loadmodel->surfmesh.num_vertices, __FILE__, __LINE__); // generate normals if the file did not have them if (!VectorLength2(loadmodel->surfmesh.data_normal3f)) Mod_BuildNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_normal3f, r_smoothnormals_areaweighting.integer != 0); Mod_BuildTextureVectorsFromNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0); if (loadmodel->surfmesh.data_neighbor3i) Mod_BuildTriangleNeighbors(loadmodel->surfmesh.data_neighbor3i, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles); // if this is a worldmodel and has no BSP tree, create a fake one for the purpose loadmodel->brush.num_visleafs = 1; loadmodel->brush.num_leafs = 1; loadmodel->brush.num_nodes = 0; loadmodel->brush.num_leafsurfaces = loadmodel->num_surfaces; loadmodel->brush.data_leafs = (mleaf_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafs * sizeof(mleaf_t)); loadmodel->brush.data_nodes = (mnode_t *)loadmodel->brush.data_leafs; loadmodel->brush.num_pvsclusters = 1; loadmodel->brush.num_pvsclusterbytes = 1; loadmodel->brush.data_pvsclusters = nobsp_pvs; //if (loadmodel->num_nodes) loadmodel->data_nodes = (mnode_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_nodes * sizeof(mnode_t)); //loadmodel->data_leafsurfaces = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->num_leafsurfaces * sizeof(int)); loadmodel->brush.data_leafsurfaces = loadmodel->sortedmodelsurfaces; VectorCopy(loadmodel->normalmins, loadmodel->brush.data_leafs->mins); VectorCopy(loadmodel->normalmaxs, loadmodel->brush.data_leafs->maxs); loadmodel->brush.data_leafs->combinedsupercontents = 0; // FIXME? loadmodel->brush.data_leafs->clusterindex = 0; loadmodel->brush.data_leafs->areaindex = 0; loadmodel->brush.data_leafs->numleafsurfaces = loadmodel->brush.num_leafsurfaces; loadmodel->brush.data_leafs->firstleafsurface = loadmodel->brush.data_leafsurfaces; loadmodel->brush.data_leafs->numleafbrushes = 0; loadmodel->brush.data_leafs->firstleafbrush = NULL; loadmodel->brush.supportwateralpha = true; if (loadmodel->brush.numsubmodels) loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *)); mod = loadmodel; for (i = 0;i < loadmodel->brush.numsubmodels;i++) { if (i > 0) { char name[10]; // duplicate the basic information dpsnprintf(name, sizeof(name), "*%i", i); mod = Mod_FindName(name, loadmodel->name); // copy the base model to this one *mod = *loadmodel; // rename the clone back to its proper name strlcpy(mod->name, name, sizeof(mod->name)); mod->brush.parentmodel = loadmodel; // textures and memory belong to the main model mod->texturepool = NULL; mod->mempool = NULL; mod->brush.GetPVS = NULL; mod->brush.FatPVS = NULL; mod->brush.BoxTouchingPVS = NULL; mod->brush.BoxTouchingLeafPVS = NULL; mod->brush.BoxTouchingVisibleLeafs = NULL; mod->brush.FindBoxClusters = NULL; mod->brush.LightPoint = NULL; mod->brush.AmbientSoundLevelsForPoint = NULL; } mod->brush.submodel = i; if (loadmodel->brush.submodels) loadmodel->brush.submodels[i] = mod; // make the model surface list (used by shadowing/lighting) mod->firstmodelsurface = submodelfirstsurface[i]; mod->nummodelsurfaces = submodelfirstsurface[i+1] - submodelfirstsurface[i]; mod->firstmodelbrush = 0; mod->nummodelbrushes = 0; mod->sortedmodelsurfaces = loadmodel->sortedmodelsurfaces + mod->firstmodelsurface; Mod_MakeSortedSurfaces(mod); VectorClear(mod->normalmins); VectorClear(mod->normalmaxs); l = false; for (j = 0;j < mod->nummodelsurfaces;j++) { const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface; const float *v = mod->surfmesh.data_vertex3f + 3 * surface->num_firstvertex; int k; if (!surface->num_vertices) continue; if (!l) { l = true; VectorCopy(v, mod->normalmins); VectorCopy(v, mod->normalmaxs); } for (k = 0;k < surface->num_vertices;k++, v += 3) { mod->normalmins[0] = min(mod->normalmins[0], v[0]); mod->normalmins[1] = min(mod->normalmins[1], v[1]); mod->normalmins[2] = min(mod->normalmins[2], v[2]); mod->normalmaxs[0] = max(mod->normalmaxs[0], v[0]); mod->normalmaxs[1] = max(mod->normalmaxs[1], v[1]); mod->normalmaxs[2] = max(mod->normalmaxs[2], v[2]); } } corner[0] = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0])); corner[1] = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1])); corner[2] = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2])); modelradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]+corner[2]*corner[2]); yawradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]); mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius; mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius; mod->yawmaxs[0] = mod->yawmaxs[1] = yawradius; mod->yawmins[0] = mod->yawmins[1] = -yawradius; mod->yawmins[2] = mod->normalmins[2]; mod->yawmaxs[2] = mod->normalmaxs[2]; mod->radius = modelradius; mod->radius2 = modelradius * modelradius; // this gets altered below if sky or water is used mod->DrawSky = NULL; mod->DrawAddWaterPlanes = NULL; for (j = 0;j < mod->nummodelsurfaces;j++) if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & MATERIALFLAG_SKY) break; if (j < mod->nummodelsurfaces) mod->DrawSky = R_Q1BSP_DrawSky; for (j = 0;j < mod->nummodelsurfaces;j++) if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)) break; if (j < mod->nummodelsurfaces) mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes; Mod_MakeCollisionBIH(mod, true, &mod->collision_bih); mod->render_bih = mod->collision_bih; // generate VBOs and other shared data before cloning submodels if (i == 0) Mod_BuildVBOs(); } mod = loadmodel; Mem_Free(submodelfirstsurface); Con_DPrintf("Stats for obj model \"%s\": %i faces, %i nodes, %i leafs, %i clusters, %i clusterportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces); } #else // OBJASMODEL #ifdef OBJWORKS typedef struct objvertex_s { float v[3]; float vt[2]; float vn[3]; } objvertex_t; typedef struct objtriangle_s { objvertex_t vertex[3]; int textureindex; // these fields are used only in conversion to surfaces int axis; int surfaceindex; int surfacevertexindex[3]; float edgeplane[3][4]; } objtriangle_t; typedef objnode_s { struct objnode_s *children[2]; struct objnode_s *parent; objtriangle_t *triangles; float normal[3]; float dist; float mins[3]; float maxs[3]; int numtriangles; } objnode_t; objnode_t *Mod_OBJ_BSPNodeForTriangles(objnode_t *parent, objtriangle_t *triangles, int numtriangles, const float *mins, const float *maxs, mem_expandablearray_t *nodesarray, int maxclippedtriangles, objtriangle_t *clippedfronttriangles, objtriangle_t *clippedbacktriangles) { int i, j; float normal[3]; float dist; int score; float bestnormal[3]; float bestdist; int bestscore; float mins[3]; float maxs[3]; int numfronttriangles; int numbacktriangles; int count_front; int count_back; int count_both; int count_on; float outfrontpoints[5][3]; float outbackpoints[5][3]; int neededfrontpoints; int neededbackpoints; int countonpoints; objnode_t *node; node = (objnode_t *)Mem_ExpandableArray_AllocRecord(array); node->parent = parent; if (numtriangles) { VectorCopy(triangles[0].vertex[0].v, mins); VectorCopy(triangles[0].vertex[0].v, maxs); } else if (parent && parent->children[0] == node) { VectorCopy(parent->mins, mins); Vectorcopy(parent->maxs, maxs); } else if (parent && parent->children[1] == node) { VectorCopy(parent->mins, mins); Vectorcopy(parent->maxs, maxs); } else { VectorClear(mins); VectorClear(maxs); } for (i = 0;i < numtriangles;i++) { for (j = 0;j < 3;j++) { mins[0] = min(mins[0], triangles[i].vertex[j].v[0]); mins[1] = min(mins[1], triangles[i].vertex[j].v[1]); mins[2] = min(mins[2], triangles[i].vertex[j].v[2]); maxs[0] = max(maxs[0], triangles[i].vertex[j].v[0]); maxs[1] = max(maxs[1], triangles[i].vertex[j].v[1]); maxs[2] = max(maxs[2], triangles[i].vertex[j].v[2]); } } VectorCopy(mins, node->mins); VectorCopy(maxs, node->maxs); if (numtriangles <= mod_obj_leaftriangles.integer) { // create a leaf loadmodel->brush.num_leafs++; node->triangles = triangles; node->numtriangles = numtriangles; return node; } // create a node loadmodel->brush.num_nodes++; // pick a splitting plane from the various choices available to us... // early splits simply halve the interval bestscore = 0; VectorClear(bestnormal); bestdist = 0; if (numtriangles <= mod_obj_splitterlimit.integer) limit = numtriangles; else limit = 0; for (i = -3;i < limit;i++) { if (i < 0) { // first we try 3 axial splits (kdtree-like) j = i + 3; VectorClear(normal); normal[j] = 1; dist = (mins[j] + maxs[j]) * 0.5f; } else { // then we try each triangle plane TriangleNormal(triangles[i].vertex[0].v, triangles[i].vertex[1].v, triangles[i].vertex[2].v, normal); VectorNormalize(normal); dist = DotProduct(normal, triangles[i].vertex[0].v); // use positive axial values whenever possible if (normal[0] == -1) normal[0] = 1; if (normal[1] == -1) normal[1] = 1; if (normal[2] == -1) normal[2] = 1; // skip planes that match the current best if (VectorCompare(normal, bestnormal) && dist == bestdist) continue; } count_on = 0; count_front = 0; count_back = 0; count_both = 0; for (j = 0;j < numtriangles;j++) { dists[0] = DotProduct(normal, triangles[j].vertex[0].v) - dist; dists[1] = DotProduct(normal, triangles[j].vertex[1].v) - dist; dists[2] = DotProduct(normal, triangles[j].vertex[2].v) - dist; if (dists[0] < -DIST_EPSILON || dists[1] < -DIST_EPSILON || dists[2] < -DIST_EPSILON) { if (dists[0] > DIST_EPSILON || dists[1] > DIST_EPSILON || dists[2] > DIST_EPSILON) count_both++; else count_back++; } else if (dists[0] > DIST_EPSILON || dists[1] > DIST_EPSILON || dists[2] > DIST_EPSILON) count_front++; else count_on++; } // score is supposed to: // prefer axial splits // prefer evenly dividing the input triangles // prefer triangles on the plane // avoid triangles crossing the plane score = count_on*count_on - count_both*count_both + min(count_front, count_back)*(count_front+count_back); if (normal[0] == 1 || normal[1] == 1 || normal[2] == 1) score *= 2; if (i == -3 || bestscore < score) { VectorCopy(normal, bestnormal); bestdist = dist; bestscore = score; } } // now we have chosen an optimal split plane... // divide triangles by the splitting plane numfronttriangles = 0; numbacktriangles = 0; for (i = 0;i < numtriangles;i++) { neededfrontpoints = 0; neededbackpoints = 0; countonpoints = 0; PolygonF_Divide(3, triangles[i].vertex[0].v, bestnormal[0], bestnormal[1], bestnormal[2], bestdist, DIST_EPSILON, 5, outfrontpoints[0], &neededfrontpoints, 5, outbackpoints[0], &neededbackpoints, &countonpoints); if (countonpoints > 1) { // triangle lies on plane, assign it to one child only TriangleNormal(triangles[i].vertex[0].v, triangles[i].vertex[1].v, triangles[i].vertex[2].v, normal); if (DotProduct(bestnormal, normal) >= 0) { // assign to front side child obj_fronttriangles[numfronttriangles++] = triangles[i]; } else { // assign to back side child obj_backtriangles[numbacktriangles++] = triangles[i]; } } else { // convert clipped polygons to triangles for (j = 0;j < neededfrontpoints-2;j++) { obj_fronttriangles[numfronttriangles] = triangles[i]; VectorCopy(outfrontpoints[0], obj_fronttriangles[numfronttriangles].vertex[0].v); VectorCopy(outfrontpoints[j+1], obj_fronttriangles[numfronttriangles].vertex[1].v); VectorCopy(outfrontpoints[j+2], obj_fronttriangles[numfronttriangles].vertex[2].v); numfronttriangles++; } for (j = 0;j < neededbackpoints-2;j++) { obj_backtriangles[numbacktriangles] = triangles[i]; VectorCopy(outbackpoints[0], obj_backtriangles[numbacktriangles].vertex[0].v); VectorCopy(outbackpoints[j+1], obj_backtriangles[numbacktriangles].vertex[1].v); VectorCopy(outbackpoints[j+2], obj_backtriangles[numbacktriangles].vertex[2].v); numbacktriangles++; } } } // now copy the triangles out of the big buffer if (numfronttriangles) { fronttriangles = Mem_Alloc(loadmodel->mempool, fronttriangles * sizeof(*fronttriangles)); memcpy(fronttriangles, obj_fronttriangles, numfronttriangles * sizeof(*fronttriangles)); } else fronttriangles = NULL; if (numbacktriangles) { backtriangles = Mem_Alloc(loadmodel->mempool, backtriangles * sizeof(*backtriangles)); memcpy(backtriangles, obj_backtriangles, numbacktriangles * sizeof(*backtriangles)); } else backtriangles = NULL; // free the original triangles we were given if (triangles) Mem_Free(triangles); triangles = NULL; numtriangles = 0; // now create the children... node->children[0] = Mod_OBJ_BSPNodeForTriangles(node, fronttriangles, numfronttriangles, frontmins, frontmaxs, nodesarray, maxclippedtriangles, clippedfronttriangles, clippedbacktriangles); node->children[1] = Mod_OBJ_BSPNodeForTriangles(node, backtriangles, numbacktriangles, backmins, backmaxs, nodesarray, maxclippedtriangles, clippedfronttriangles, clippedbacktriangles); return node; } void Mod_OBJ_SnapVertex(float *v) { int i; float a = mod_obj_vertexprecision.value; float b = 1.0f / a; v[0] -= floor(v[0] * a + 0.5f) * b; v[1] -= floor(v[1] * a + 0.5f) * b; v[2] -= floor(v[2] * a + 0.5f) * b; } void Mod_OBJ_ConvertBSPNode(objnode_t *objnode, mnode_t *mnodeparent) { if (objnode->children[0]) { // convert to mnode_t mnode_t *mnode = loadmodel->brush.data_nodes + loadmodel->brush.num_nodes++; mnode->parent = mnodeparent; mnode->plane = loadmodel->brush.data_planes + loadmodel->brush.num_planes++; VectorCopy(objnode->normal, mnode->plane->normal); mnode->plane->dist = objnode->dist; PlaneClassify(mnode->plane); VectorCopy(objnode->mins, mnode->mins); VectorCopy(objnode->maxs, mnode->maxs); // push combinedsupercontents up to the parent if (mnodeparent) mnodeparent->combinedsupercontents |= mnode->combinedsupercontents; mnode->children[0] = Mod_OBJ_ConvertBSPNode(objnode->children[0], mnode); mnode->children[1] = Mod_OBJ_ConvertBSPNode(objnode->children[1], mnode); } else { // convert to mleaf_t mleaf_t *mleaf = loadmodel->brush.data_leafs + loadmodel->brush.num_leafs++; mleaf->parent = mnodeparent; VectorCopy(objnode->mins, mleaf->mins); VectorCopy(objnode->maxs, mleaf->maxs); mleaf->clusterindex = loadmodel->brush.num_leafs - 1; if (objnode->numtriangles) { objtriangle_t *triangles = objnode->triangles; int numtriangles = objnode->numtriangles; texture_t *texture; float edge[3][3]; float normal[3]; objvertex_t vertex[3]; numsurfaces = 0; maxsurfaces = numtriangles; surfaces = NULL; // calculate some more data on each triangle for surface gathering for (i = 0;i < numtriangles;i++) { triangle = triangles + i; texture = loadmodel->data_textures + triangle->textureindex; Mod_OBJ_SnapVertex(triangle->vertex[0].v); Mod_OBJ_SnapVertex(triangle->vertex[1].v); Mod_OBJ_SnapVertex(triangle->vertex[2].v); TriangleNormal(triangle->vertex[0].v, triangle->vertex[1].v, triangle->vertex[2].v, normal); axis = 0; if (fabs(normal[axis]) < fabs(normal[1])) axis = 1; if (fabs(normal[axis]) < fabs(normal[2])) axis = 2; VectorClear(normal); normal[axis] = 1; triangle->axis = axis; VectorSubtract(triangle->vertex[1].v, triangle->vertex[0].v, edge[0]); VectorSubtract(triangle->vertex[2].v, triangle->vertex[1].v, edge[1]); VectorSubtract(triangle->vertex[0].v, triangle->vertex[2].v, edge[2]); CrossProduct(edge[0], normal, triangle->edgeplane[0]); CrossProduct(edge[1], normal, triangle->edgeplane[1]); CrossProduct(edge[2], normal, triangle->edgeplane[2]); VectorNormalize(triangle->edgeplane[0]); VectorNormalize(triangle->edgeplane[1]); VectorNormalize(triangle->edgeplane[2]); triangle->edgeplane[0][3] = DotProduct(triangle->edgeplane[0], triangle->vertex[0].v); triangle->edgeplane[1][3] = DotProduct(triangle->edgeplane[1], triangle->vertex[1].v); triangle->edgeplane[2][3] = DotProduct(triangle->edgeplane[2], triangle->vertex[2].v); triangle->surfaceindex = 0; // add to the combined supercontents while we're here... mleaf->combinedsupercontents |= texture->supercontents; } surfaceindex = 1; for (i = 0;i < numtriangles;i++) { // skip already-assigned triangles if (triangles[i].surfaceindex) continue; texture = loadmodel->data_textures + triangles[i].textureindex; // assign a new surface to this triangle triangles[i].surfaceindex = surfaceindex++; axis = triangles[i].axis; numvertices = 3; // find the triangle's neighbors, this can take multiple passes retry = true; while (retry) { retry = false; for (j = i+1;j < numtriangles;j++) { if (triangles[j].surfaceindex || triangles[j].axis != axis || triangles[j].texture != texture) continue; triangle = triangles + j; for (k = i;k < j;k++) { if (triangles[k].surfaceindex != surfaceindex) continue; if (VectorCompare(triangles[k].vertex[0].v, triangles[j].vertex[0].v) || VectorCompare(triangles[k].vertex[0].v, triangles[j].vertex[1].v) || VectorCompare(triangles[k].vertex[0].v, triangles[j].vertex[2].v) || VectorCompare(triangles[k].vertex[1].v, triangles[j].vertex[0].v) || VectorCompare(triangles[k].vertex[1].v, triangles[j].vertex[1].v) || VectorCompare(triangles[k].vertex[1].v, triangles[j].vertex[2].v) || VectorCompare(triangles[k].vertex[2].v, triangles[j].vertex[0].v) || VectorCompare(triangles[k].vertex[2].v, triangles[j].vertex[1].v) || VectorCompare(triangles[k].vertex[2].v, triangles[j].vertex[2].v)) { // shares a vertex position --- FIXME --- } } for (k = 0;k < numvertices;k++) if (!VectorCompare(vertex[k].v, triangles[j].vertex[0].v) || !VectorCompare(vertex[k].v, triangles[j].vertex[1].v) || !VectorCompare(vertex[k].v, triangles[j].vertex[2].v)) break; if (k == numvertices) break; // not a neighbor // this triangle is a neighbor and has the same axis and texture // check now if it overlaps in lightmap projection space triangles[j].surfaceindex; if (triangles[j]. } } //triangles[i].surfaceindex = surfaceindex++; for (surfaceindex = 0;surfaceindex < numsurfaces;surfaceindex++) { if (surfaces[surfaceindex].texture != texture) continue; // check if any triangles already in this surface overlap in lightmap projection space { } break; } } // let the collision code simply use the surfaces mleaf->containscollisionsurfaces = mleaf->combinedsupercontents != 0; mleaf->numleafsurfaces = ?; mleaf->firstleafsurface = ?; } // push combinedsupercontents up to the parent if (mnodeparent) mnodeparent->combinedsupercontents |= mleaf->combinedsupercontents; } } #endif void Mod_OBJ_Load(dp_model_t *mod, void *buffer, void *bufferend) { #ifdef OBJWORKS const char *textbase = (char *)buffer, *text = textbase; char *s; char *argv[512]; char line[1024]; char materialname[MAX_QPATH]; int j, index1, index2, index3, first, prev, index; int argc; int linelen; int numtriangles = 0; int maxtriangles = 131072; objtriangle_t *triangles = Mem_Alloc(tempmempool, maxtriangles * sizeof(*triangles)); int linenumber = 0; int maxtextures = 256, numtextures = 0, textureindex = 0; int maxv = 1024, numv = 0; int maxvt = 1024, numvt = 0; int maxvn = 1024, numvn = 0; char **texturenames; float *v = Mem_Alloc(tempmempool, maxv * sizeof(float[3])); float *vt = Mem_Alloc(tempmempool, maxvt * sizeof(float[2])); float *vn = Mem_Alloc(tempmempool, maxvn * sizeof(float[3])); objvertex_t vfirst, vprev, vcurrent; float mins[3]; float maxs[3]; #if 0 int hashindex; int maxverthash = 65536, numverthash = 0; int numhashindex = 65536; struct objverthash_s { struct objverthash_s *next; int s; int v; int vt; int vn; } *hash, **verthash = Mem_Alloc(tempmempool, numhashindex * sizeof(*verthash)), *verthashdata = Mem_Alloc(tempmempool, maxverthash * sizeof(*verthashdata)), *oldverthashdata; #endif dpsnprintf(materialname, sizeof(materialname), "%s", loadmodel->name); loadmodel->modeldatatypestring = "OBJ"; loadmodel->type = mod_obj; loadmodel->soundfromcenter = true; loadmodel->TraceBox = Mod_OBJ_TraceBox; loadmodel->TraceLine = Mod_OBJ_TraceLine; loadmodel->TracePoint = Mod_OBJ_TracePoint; loadmodel->PointSuperContents = Mod_OBJ_PointSuperContents; loadmodel->TraceLineAgainstSurfaces = Mod_OBJ_TraceLineAgainstSurfaces; loadmodel->brush.TraceLineOfSight = Mod_OBJ_TraceLineOfSight; loadmodel->brush.SuperContentsFromNativeContents = Mod_OBJ_SuperContentsFromNativeContents; loadmodel->brush.NativeContentsFromSuperContents = Mod_OBJ_NativeContentsFromSuperContents; loadmodel->brush.GetPVS = Mod_OBJ_GetPVS; loadmodel->brush.FatPVS = Mod_OBJ_FatPVS; loadmodel->brush.BoxTouchingPVS = Mod_OBJ_BoxTouchingPVS; loadmodel->brush.BoxTouchingLeafPVS = Mod_OBJ_BoxTouchingLeafPVS; loadmodel->brush.BoxTouchingVisibleLeafs = Mod_OBJ_BoxTouchingVisibleLeafs; loadmodel->brush.FindBoxClusters = Mod_OBJ_FindBoxClusters; loadmodel->brush.LightPoint = Mod_OBJ_LightPoint; loadmodel->brush.FindNonSolidLocation = Mod_OBJ_FindNonSolidLocation; loadmodel->brush.AmbientSoundLevelsForPoint = NULL; loadmodel->brush.RoundUpToHullSize = NULL; loadmodel->brush.PointInLeaf = Mod_OBJ_PointInLeaf; loadmodel->Draw = R_Q1BSP_Draw; loadmodel->DrawDepth = R_Q1BSP_DrawDepth; loadmodel->DrawDebug = R_Q1BSP_DrawDebug; loadmodel->DrawPrepass = R_Q1BSP_DrawPrepass; loadmodel->GetLightInfo = R_Q1BSP_GetLightInfo; loadmodel->CompileShadowMap = R_Q1BSP_CompileShadowMap; loadmodel->DrawShadowMap = R_Q1BSP_DrawShadowMap; loadmodel->CompileShadowVolume = R_Q1BSP_CompileShadowVolume; loadmodel->DrawShadowVolume = R_Q1BSP_DrawShadowVolume; loadmodel->DrawLight = R_Q1BSP_DrawLight; VectorClear(mins); VectorClear(maxs); // parse the OBJ text now for(;;) { if (!*text) break; linenumber++; linelen = 0; for (linelen = 0;text[linelen] && text[linelen] != '\r' && text[linelen] != '\n';linelen++) line[linelen] = text[linelen]; line[linelen] = 0; for (argc = 0;argc < (int)(sizeof(argv)/sizeof(argv[0]));argc++) argv[argc] = ""; argc = 0; s = line; while (*s == ' ' || *s == '\t') s++; while (*s) { argv[argc++] = s; while (*s > ' ') s++; if (!*s) break; *s++ = 0; while (*s == ' ' || *s == '\t') s++; } if (!argc) continue; if (argv[0][0] == '#') continue; if (!strcmp(argv[0], "v")) { if (maxv <= numv) { float *oldv = v; maxv *= 2; v = Mem_Alloc(tempmempool, maxv * sizeof(float[3])); if (oldv) { memcpy(v, oldv, numv * sizeof(float[3])); Mem_Free(oldv); } } v[numv*3+0] = atof(argv[1]); v[numv*3+1] = atof(argv[2]); v[numv*3+2] = atof(argv[3]); numv++; } else if (!strcmp(argv[0], "vt")) { if (maxvt <= numvt) { float *oldvt = vt; maxvt *= 2; vt = Mem_Alloc(tempmempool, maxvt * sizeof(float[2])); if (oldvt) { memcpy(vt, oldvt, numvt * sizeof(float[2])); Mem_Free(oldvt); } } vt[numvt*2+0] = atof(argv[1]); vt[numvt*2+1] = atof(argv[2]); numvt++; } else if (!strcmp(argv[0], "vn")) { if (maxvn <= numvn) { float *oldvn = vn; maxvn *= 2; vn = Mem_Alloc(tempmempool, maxvn * sizeof(float[3])); if (oldvn) { memcpy(vn, oldvn, numvn * sizeof(float[3])); Mem_Free(oldvn); } } vn[numvn*3+0] = atof(argv[1]); vn[numvn*3+1] = atof(argv[2]); vn[numvn*3+2] = atof(argv[3]); numvn++; } else if (!strcmp(argv[0], "f")) { for (j = 1;j < argc;j++) { index1 = atoi(argv[j]); while(argv[j][0] && argv[j][0] != '/') argv[j]++; if (argv[j][0]) argv[j]++; index2 = atoi(argv[j]); while(argv[j][0] && argv[j][0] != '/') argv[j]++; if (argv[j][0]) argv[j]++; index3 = atoi(argv[j]); // negative refers to a recent vertex // zero means not specified // positive means an absolute vertex index if (index1 < 0) index1 = numv - index1; if (index2 < 0) index2 = numvt - index2; if (index3 < 0) index3 = numvn - index3; VectorCopy(v + 3*index1, vcurrent.v); Vector2Copy(vt + 2*index2, vcurrent.vt); VectorCopy(vn + 3*index3, vcurrent.vn); if (numtriangles == 0) { VectorCopy(vcurrent.v, mins); VectorCopy(vcurrent.v, maxs); } else { mins[0] = min(mins[0], vcurrent.v[0]); mins[1] = min(mins[1], vcurrent.v[1]); mins[2] = min(mins[2], vcurrent.v[2]); maxs[0] = max(maxs[0], vcurrent.v[0]); maxs[1] = max(maxs[1], vcurrent.v[1]); maxs[2] = max(maxs[2], vcurrent.v[2]); } if (j == 1) vfirst = vcurrent; else if (j >= 3) { if (maxtriangles <= numtriangles) { objtriangle_t *oldtriangles = triangles; maxtriangles *= 2; triangles = Mem_Alloc(tempmempool, maxtriangles * sizeof(*triangles)); if (oldtriangles) { memcpy(triangles, oldtriangles, maxtriangles * sizeof(*triangles)); Mem_Free(oldtriangles); } } triangles[numtriangles].textureindex = textureindex; triangles[numtriangles].vertex[0] = vfirst; triangles[numtriangles].vertex[1] = vprev; triangles[numtriangles].vertex[2] = vcurrent; numtriangles++; } vprev = vcurrent; prev = index; } } else if (!strcmp(argv[0], "o") || !strcmp(argv[0], "g")) ; else if (!!strcmp(argv[0], "usemtl")) { for (i = 0;i < numtextures;i++) if (!strcmp(texturenames[numtextures], argv[1])) break; if (i < numtextures) texture = textures + i; else { if (maxtextures <= numtextures) { texture_t *oldtextures = textures; maxtextures *= 2; textures = Mem_Alloc(tempmempool, maxtextures * sizeof(*textures)); if (oldtextures) { memcpy(textures, oldtextures, numtextures * sizeof(*textures)); Mem_Free(oldtextures); } } textureindex = numtextures++; texturenames[textureindex] = Mem_Alloc(tempmempool, strlen(argv[1]) + 1); memcpy(texturenames[textureindex], argv[1], strlen(argv[1]) + 1); } } text += linelen; if (*text == '\r') text++; if (*text == '\n') text++; } // now that we have the OBJ data loaded as-is, we can convert it // load the textures loadmodel->num_textures = numtextures; loadmodel->data_textures = Mem_Alloc(loadmodel->mempool, loadmodel->num_textures * sizeof(texture_t)); for (i = 0;i < numtextures;i++) Mod_LoadTextureFromQ3Shader(loadmodel->data_textures + i, texturenames[i], true, true, TEXF_MIPMAP | TEXF_ALPHA | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS); // free the texturenames array since we are now done with it for (i = 0;i < numtextures;i++) { Mem_Free(texturenames[i]); texturenames[i] = NULL; } Mem_Free(texturenames); texturenames = NULL; // copy the model bounds, then enlarge the yaw and rotated bounds according to radius VectorCopy(mins, loadmodel->normalmins); VectorCopy(maxs, loadmodel->normalmaxs); dist = max(fabs(loadmodel->normalmins[0]), fabs(loadmodel->normalmaxs[0])); modelyawradius = max(fabs(loadmodel->normalmins[1]), fabs(loadmodel->normalmaxs[1])); modelyawradius = dist*dist+modelyawradius*modelyawradius; modelradius = max(fabs(loadmodel->normalmins[2]), fabs(loadmodel->normalmaxs[2])); modelradius = modelyawradius + modelradius * modelradius; modelyawradius = sqrt(modelyawradius); modelradius = sqrt(modelradius); loadmodel->yawmins[0] = loadmodel->yawmins[1] = -modelyawradius; loadmodel->yawmins[2] = loadmodel->normalmins[2]; loadmodel->yawmaxs[0] = loadmodel->yawmaxs[1] = modelyawradius; loadmodel->yawmaxs[2] = loadmodel->normalmaxs[2]; loadmodel->rotatedmins[0] = loadmodel->rotatedmins[1] = loadmodel->rotatedmins[2] = -modelradius; loadmodel->rotatedmaxs[0] = loadmodel->rotatedmaxs[1] = loadmodel->rotatedmaxs[2] = modelradius; loadmodel->radius = modelradius; loadmodel->radius2 = modelradius * modelradius; // make sure the temp triangle buffer is big enough for BSP building maxclippedtriangles = numtriangles*4; if (numtriangles > 0) { clippedfronttriangles = Mem_Alloc(loadmodel->mempool, maxclippedtriangles * 2 * sizeof(objtriangle_t)); clippedbacktriangles = clippedfronttriangles + maxclippedtriangles; } // generate a rough BSP tree from triangle data, we don't have to be too careful here, it only has to define the basic areas of the map loadmodel->brush.num_leafs = 0; loadmodel->brush.num_nodes = 0; Mem_ExpandableArray_NewArray(&nodesarray, loadmodel->mempool, sizeof(objnode_t), 1024); rootnode = Mod_OBJ_BSPNodeForTriangles(triangles, numtriangles, mins, maxs, &nodesarray, maxclippedtriangles, clippedfronttriangles, clippedbacktriangles); // convert the BSP tree to mnode_t and mleaf_t structures and convert the triangles to msurface_t... loadmodel->brush.data_leafs = Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafs * sizeof(mleaf_t)); loadmodel->brush.data_nodes = Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_nodes * sizeof(mnode_t)); loadmodel->brush.data_planes = Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_nodes * sizeof(mplane_t)); loadmodel->brush.num_leafs = 0; loadmodel->brush.num_nodes = 0; loadmodel->brush.num_planes = 0; Mod_OBJ_ConvertAndFreeBSPNode(rootnode); if (clippedfronttriangles) Mem_Free(clippedfronttriangles); maxclippedtriangles = 0; clippedfronttriangles = NULL; clippedbacktriangles = NULL; --- NOTHING DONE PAST THIS POINT --- loadmodel->numskins = LittleLong(pinmodel->num_skins); numxyz = LittleLong(pinmodel->num_xyz); numst = LittleLong(pinmodel->num_st); loadmodel->surfmesh.num_triangles = LittleLong(pinmodel->num_tris); loadmodel->numframes = LittleLong(pinmodel->num_frames); loadmodel->surfmesh.num_morphframes = loadmodel->numframes; loadmodel->num_poses = loadmodel->surfmesh.num_morphframes; skinwidth = LittleLong(pinmodel->skinwidth); skinheight = LittleLong(pinmodel->skinheight); iskinwidth = 1.0f / skinwidth; iskinheight = 1.0f / skinheight; loadmodel->num_surfaces = 1; loadmodel->nummodelsurfaces = loadmodel->num_surfaces; data = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->num_surfaces * sizeof(msurface_t) + loadmodel->num_surfaces * sizeof(int) + loadmodel->numframes * sizeof(animscene_t) + loadmodel->numframes * sizeof(float[6]) + loadmodel->surfmesh.num_triangles * sizeof(int[3]) + (r_enableshadowvolume.integer ? loadmodel->surfmesh.num_triangles * sizeof(int[3]) : 0)); loadmodel->data_surfaces = (msurface_t *)data;data += loadmodel->num_surfaces * sizeof(msurface_t); loadmodel->sortedmodelsurfaces = (int *)data;data += loadmodel->num_surfaces * sizeof(int); loadmodel->sortedmodelsurfaces[0] = 0; loadmodel->animscenes = (animscene_t *)data;data += loadmodel->numframes * sizeof(animscene_t); loadmodel->surfmesh.data_morphmd2framesize6f = (float *)data;data += loadmodel->numframes * sizeof(float[6]); loadmodel->surfmesh.data_element3i = (int *)data;data += loadmodel->surfmesh.num_triangles * sizeof(int[3]); if (r_enableshadowvolumes.integer) loadmodel->surfmesh.data_neighbor3i = (int *)data;data += loadmodel->surfmesh.num_triangles * sizeof(int[3]); loadmodel->synctype = ST_RAND; // load the skins inskin = (char *)(base + LittleLong(pinmodel->ofs_skins)); skinfiles = Mod_LoadSkinFiles(); if (skinfiles) { loadmodel->num_textures = loadmodel->num_surfaces * loadmodel->numskins; loadmodel->num_texturesperskin = loadmodel->num_surfaces; loadmodel->data_textures = (texture_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t)); Mod_BuildAliasSkinsFromSkinFiles(loadmodel->data_textures, skinfiles, "default", ""); Mod_FreeSkinFiles(skinfiles); } else if (loadmodel->numskins) { // skins found (most likely not a player model) loadmodel->num_textures = loadmodel->num_surfaces * loadmodel->numskins; loadmodel->num_texturesperskin = loadmodel->num_surfaces; loadmodel->data_textures = (texture_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t)); for (i = 0;i < loadmodel->numskins;i++, inskin += MD2_SKINNAME) Mod_LoadTextureFromQ3Shader(loadmodel->data_textures + i * loadmodel->num_surfaces, inskin, true, true, (r_mipskins.integer ? TEXF_MIPMAP : 0) | TEXF_ALPHA | TEXF_PICMIP | TEXF_COMPRESS); } else { // no skins (most likely a player model) loadmodel->numskins = 1; loadmodel->num_textures = loadmodel->num_surfaces * loadmodel->numskins; loadmodel->num_texturesperskin = loadmodel->num_surfaces; loadmodel->data_textures = (texture_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t)); Mod_BuildAliasSkinFromSkinFrame(loadmodel->data_textures, NULL); } loadmodel->skinscenes = (animscene_t *)Mem_Alloc(loadmodel->mempool, sizeof(animscene_t) * loadmodel->numskins); for (i = 0;i < loadmodel->numskins;i++) { loadmodel->skinscenes[i].firstframe = i; loadmodel->skinscenes[i].framecount = 1; loadmodel->skinscenes[i].loop = true; loadmodel->skinscenes[i].framerate = 10; } // load the triangles and stvert data inst = (unsigned short *)(base + LittleLong(pinmodel->ofs_st)); intri = (md2triangle_t *)(base + LittleLong(pinmodel->ofs_tris)); md2verthash = (struct md2verthash_s **)Mem_Alloc(tempmempool, 65536 * sizeof(hash)); md2verthashdata = (struct md2verthash_s *)Mem_Alloc(tempmempool, loadmodel->surfmesh.num_triangles * 3 * sizeof(*hash)); // swap the triangle list loadmodel->surfmesh.num_vertices = 0; for (i = 0;i < loadmodel->surfmesh.num_triangles;i++) { for (j = 0;j < 3;j++) { xyz = (unsigned short) LittleShort (intri[i].index_xyz[j]); st = (unsigned short) LittleShort (intri[i].index_st[j]); if (xyz >= numxyz) { Con_Printf("%s has an invalid xyz index (%i) on triangle %i, resetting to 0\n", loadmodel->name, xyz, i); xyz = 0; } if (st >= numst) { Con_Printf("%s has an invalid st index (%i) on triangle %i, resetting to 0\n", loadmodel->name, st, i); st = 0; } hashindex = (xyz * 256 + st) & 65535; for (hash = md2verthash[hashindex];hash;hash = hash->next) if (hash->xyz == xyz && hash->st == st) break; if (hash == NULL) { hash = md2verthashdata + loadmodel->surfmesh.num_vertices++; hash->xyz = xyz; hash->st = st; hash->next = md2verthash[hashindex]; md2verthash[hashindex] = hash; } loadmodel->surfmesh.data_element3i[i*3+j] = (hash - md2verthashdata); } } vertremap = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->surfmesh.num_vertices * sizeof(int)); data = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->surfmesh.num_vertices * sizeof(float[2]) + loadmodel->surfmesh.num_vertices * loadmodel->surfmesh.num_morphframes * sizeof(trivertx_t)); loadmodel->surfmesh.data_texcoordtexture2f = (float *)data;data += loadmodel->surfmesh.num_vertices * sizeof(float[2]); loadmodel->surfmesh.data_morphmdlvertex = (trivertx_t *)data;data += loadmodel->surfmesh.num_vertices * loadmodel->surfmesh.num_morphframes * sizeof(trivertx_t); for (i = 0;i < loadmodel->surfmesh.num_vertices;i++) { int sts, stt; hash = md2verthashdata + i; vertremap[i] = hash->xyz; sts = LittleShort(inst[hash->st*2+0]); stt = LittleShort(inst[hash->st*2+1]); if (sts < 0 || sts >= skinwidth || stt < 0 || stt >= skinheight) { Con_Printf("%s has an invalid skin coordinate (%i %i) on vert %i, changing to 0 0\n", loadmodel->name, sts, stt, i); sts = 0; stt = 0; } loadmodel->surfmesh.data_texcoordtexture2f[i*2+0] = sts * iskinwidth; loadmodel->surfmesh.data_texcoordtexture2f[i*2+1] = stt * iskinheight; } Mem_Free(md2verthash); Mem_Free(md2verthashdata); // generate ushort elements array if possible if (loadmodel->surfmesh.num_vertices <= 65536) loadmodel->surfmesh.data_element3s = (unsigned short *)Mem_Alloc(loadmodel->mempool, sizeof(unsigned short[3]) * loadmodel->surfmesh.num_triangles); // load the frames datapointer = (base + LittleLong(pinmodel->ofs_frames)); for (i = 0;i < loadmodel->surfmesh.num_morphframes;i++) { int k; trivertx_t *v; trivertx_t *out; pinframe = (md2frame_t *)datapointer; datapointer += sizeof(md2frame_t); // store the frame scale/translate into the appropriate array for (j = 0;j < 3;j++) { loadmodel->surfmesh.data_morphmd2framesize6f[i*6+j] = LittleFloat(pinframe->scale[j]); loadmodel->surfmesh.data_morphmd2framesize6f[i*6+3+j] = LittleFloat(pinframe->translate[j]); } // convert the vertices v = (trivertx_t *)datapointer; out = loadmodel->surfmesh.data_morphmdlvertex + i * loadmodel->surfmesh.num_vertices; for (k = 0;k < loadmodel->surfmesh.num_vertices;k++) out[k] = v[vertremap[k]]; datapointer += numxyz * sizeof(trivertx_t); strlcpy(loadmodel->animscenes[i].name, pinframe->name, sizeof(loadmodel->animscenes[i].name)); loadmodel->animscenes[i].firstframe = i; loadmodel->animscenes[i].framecount = 1; loadmodel->animscenes[i].framerate = 10; loadmodel->animscenes[i].loop = true; } Mem_Free(vertremap); Mod_MakeSortedSurfaces(loadmodel); if (loadmodel->surfmesh.data_neighbor3i) Mod_BuildTriangleNeighbors(loadmodel->surfmesh.data_neighbor3i, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles); Mod_Alias_CalculateBoundingBox(); Mod_Alias_MorphMesh_CompileFrames(); surface = loadmodel->data_surfaces; surface->texture = loadmodel->data_textures; surface->num_firsttriangle = 0; surface->num_triangles = loadmodel->surfmesh.num_triangles; surface->num_firstvertex = 0; surface->num_vertices = loadmodel->surfmesh.num_vertices; loadmodel->surfmesh.isanimated = false; if (loadmodel->surfmesh.data_element3s) for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++) loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i]; #endif } #endif // !OBJASMODEL qboolean Mod_CanSeeBox_Trace(int numsamples, float t, dp_model_t *model, vec3_t eye, vec3_t minsX, vec3_t maxsX) { // we already have done PVS culling at this point... // so we don't need to do it again. int i; vec3_t testorigin, mins, maxs; testorigin[0] = (minsX[0] + maxsX[0]) * 0.5; testorigin[1] = (minsX[1] + maxsX[1]) * 0.5; testorigin[2] = (minsX[2] + maxsX[2]) * 0.5; if(model->brush.TraceLineOfSight(model, eye, testorigin)) return 1; // expand the box a little mins[0] = (t+1) * minsX[0] - t * maxsX[0]; maxs[0] = (t+1) * maxsX[0] - t * minsX[0]; mins[1] = (t+1) * minsX[1] - t * maxsX[1]; maxs[1] = (t+1) * maxsX[1] - t * minsX[1]; mins[2] = (t+1) * minsX[2] - t * maxsX[2]; maxs[2] = (t+1) * maxsX[2] - t * minsX[2]; for(i = 0; i != numsamples; ++i) { testorigin[0] = lhrandom(mins[0], maxs[0]); testorigin[1] = lhrandom(mins[1], maxs[1]); testorigin[2] = lhrandom(mins[2], maxs[2]); if(model->brush.TraceLineOfSight(model, eye, testorigin)) return 1; } return 0; }