/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // models.c -- model loading and caching // models are the only shared resource between a client and server running // on the same machine. #include "quakedef.h" #include "image.h" #include "r_shadow.h" cvar_t r_mipskins = {CVAR_SAVE, "r_mipskins", "0", "mipmaps skins (so they become blurrier in the distance), disabled by default because it tends to blur with strange border colors from the skin"}; model_t *loadmodel; #if 0 // LordHavoc: was 512 static int mod_numknown = 0; static int mod_maxknown = 0; static model_t *mod_known = NULL; #else // LordHavoc: was 512 #define MAX_MOD_KNOWN (MAX_MODELS + 256) static int mod_numknown = 0; static int mod_maxknown = MAX_MOD_KNOWN; static model_t mod_known[MAX_MOD_KNOWN]; #endif static void mod_start(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) if (mod->name[0] && mod->name[0] != '*') if (mod->used) Mod_LoadModel(mod, true, false, mod->isworldmodel); } static void mod_shutdown(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) if (mod->loaded || mod->mempool) Mod_UnloadModel(mod); } static void mod_newmap(void) { msurface_t *surface; int i, surfacenum, ssize, tsize; if (!cl_stainmaps_clearonload.integer) return; for (i = 0;i < mod_numknown;i++) { if (mod_known[i].mempool && mod_known[i].data_surfaces) { for (surfacenum = 0, surface = mod_known[i].data_surfaces;surfacenum < mod_known[i].num_surfaces;surfacenum++, surface++) { if (surface->lightmapinfo && surface->lightmapinfo->stainsamples) { ssize = (surface->lightmapinfo->extents[0] >> 4) + 1; tsize = (surface->lightmapinfo->extents[1] >> 4) + 1; memset(surface->lightmapinfo->stainsamples, 255, ssize * tsize * 3); surface->cached_dlight = true; } } } } } /* =============== Mod_Init =============== */ static void Mod_Print(void); static void Mod_Precache (void); void Mod_Init (void) { Mod_BrushInit(); Mod_AliasInit(); Mod_SpriteInit(); Cvar_RegisterVariable(&r_mipskins); Cmd_AddCommand ("modellist", Mod_Print, "prints a list of loaded models"); Cmd_AddCommand ("modelprecache", Mod_Precache, "load a model"); } void Mod_RenderInit(void) { R_RegisterModule("Models", mod_start, mod_shutdown, mod_newmap); } void Mod_UnloadModel (model_t *mod) { char name[MAX_QPATH]; qboolean isworldmodel; qboolean used; strlcpy(name, mod->name, sizeof(name)); isworldmodel = mod->isworldmodel; used = mod->used; // free textures/memory attached to the model R_FreeTexturePool(&mod->texturepool); Mem_FreePool(&mod->mempool); // clear the struct to make it available memset(mod, 0, sizeof(model_t)); // restore the fields we want to preserve strlcpy(mod->name, name, sizeof(mod->name)); mod->isworldmodel = isworldmodel; mod->used = used; mod->loaded = false; } /* ================== Mod_LoadModel Loads a model ================== */ model_t *Mod_LoadModel(model_t *mod, qboolean crash, qboolean checkdisk, qboolean isworldmodel) { int num; unsigned int crc; void *buf; fs_offset_t filesize; mod->used = true; if (mod->name[0] == '*') // submodel return mod; crc = 0; buf = NULL; if (mod->isworldmodel != isworldmodel) mod->loaded = false; if (!mod->loaded || checkdisk) { if (checkdisk && mod->loaded) Con_DPrintf("checking model %s\n", mod->name); buf = FS_LoadFile (mod->name, tempmempool, false, &filesize); if (buf) { crc = CRC_Block((unsigned char *)buf, filesize); if (mod->crc != crc) mod->loaded = false; } } if (mod->loaded) { // already loaded if (buf) Mem_Free(buf); return mod; } Con_DPrintf("loading model %s\n", mod->name); // LordHavoc: unload the existing model in this slot (if there is one) if (mod->loaded || mod->mempool) Mod_UnloadModel(mod); // load the model mod->isworldmodel = isworldmodel; mod->used = true; mod->crc = crc; // errors can prevent the corresponding mod->loaded = true; mod->loaded = false; // default model radius and bounding box (mainly for missing models) mod->radius = 16; VectorSet(mod->normalmins, -mod->radius, -mod->radius, -mod->radius); VectorSet(mod->normalmaxs, mod->radius, mod->radius, mod->radius); VectorSet(mod->yawmins, -mod->radius, -mod->radius, -mod->radius); VectorSet(mod->yawmaxs, mod->radius, mod->radius, mod->radius); VectorSet(mod->rotatedmins, -mod->radius, -mod->radius, -mod->radius); VectorSet(mod->rotatedmaxs, mod->radius, mod->radius, mod->radius); if (buf) { char *bufend = (char *)buf + filesize; // all models use memory, so allocate a memory pool mod->mempool = Mem_AllocPool(mod->name, 0, NULL); // all models load textures, so allocate a texture pool if (cls.state != ca_dedicated) mod->texturepool = R_AllocTexturePool(); num = LittleLong(*((int *)buf)); // call the apropriate loader loadmodel = mod; if (!memcmp(buf, "IDPO", 4)) Mod_IDP0_Load(mod, buf, bufend); else if (!memcmp(buf, "IDP2", 4)) Mod_IDP2_Load(mod, buf, bufend); else if (!memcmp(buf, "IDP3", 4)) Mod_IDP3_Load(mod, buf, bufend); else if (!memcmp(buf, "IDSP", 4)) Mod_IDSP_Load(mod, buf, bufend); else if (!memcmp(buf, "IDS2", 4)) Mod_IDS2_Load(mod, buf, bufend); else if (!memcmp(buf, "IBSP", 4)) Mod_IBSP_Load(mod, buf, bufend); else if (!memcmp(buf, "ZYMOTICMODEL", 12)) Mod_ZYMOTICMODEL_Load(mod, buf, bufend); else if (!memcmp(buf, "DARKPLACESMODEL", 16)) Mod_DARKPLACESMODEL_Load(mod, buf, bufend); else if (!memcmp(buf, "ACTRHEAD", 8)) Mod_PSKMODEL_Load(mod, buf, bufend); else if (strlen(mod->name) >= 4 && !strcmp(mod->name - 4, ".map")) Mod_MAP_Load(mod, buf, bufend); else if (!memcmp(buf, "MCBSPpad", 8)) Mod_Q1BSP_Load(mod, buf, bufend); else if (num == BSPVERSION || num == 30) Mod_Q1BSP_Load(mod, buf, bufend); else Con_Printf("Mod_LoadModel: model \"%s\" is of unknown/unsupported type\n", mod->name); Mem_Free(buf); // no fatal errors occurred, so this model is ready to use. mod->loaded = true; } else if (crash) { // LordHavoc: Sys_Error was *ANNOYING* Con_Printf ("Mod_LoadModel: %s not found\n", mod->name); } return mod; } void Mod_ClearUsed(void) { #if 0 int i; model_t *mod; for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) if (mod->name[0]) mod->used = false; #endif } void Mod_PurgeUnused(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) if (mod->name[0]) if (!mod->used) Mod_UnloadModel(mod); } // only used during loading! void Mod_RemoveStaleWorldModels(model_t *skip) { int i; model_t *mod; for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) { if (mod->isworldmodel && mod->loaded && skip != mod) { Mod_UnloadModel(mod); mod->isworldmodel = false; mod->used = false; } } } /* ================== Mod_FindName ================== */ model_t *Mod_FindName(const char *name) { int i; model_t *mod; if (!name[0]) Host_Error ("Mod_ForName: NULL name"); // search the currently loaded models for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) { if (mod->name[0] && !strcmp(mod->name, name)) { mod->used = true; return mod; } } // no match found, find room for a new one for (i = 0;i < mod_numknown;i++) if (!mod_known[i].name[0]) break; if (mod_maxknown == i) { #if 0 model_t *old; mod_maxknown += 256; old = mod_known; mod_known = Mem_Alloc(mod_mempool, mod_maxknown * sizeof(model_t)); if (old) { memcpy(mod_known, old, mod_numknown * sizeof(model_t)); Mem_Free(old); } #else Host_Error ("Mod_FindName: ran out of models"); #endif } if (mod_numknown == i) mod_numknown++; mod = mod_known + i; strlcpy (mod->name, name, sizeof(mod->name)); mod->loaded = false; mod->used = true; return mod; } /* ================== Mod_ForName Loads in a model for the given name ================== */ model_t *Mod_ForName(const char *name, qboolean crash, qboolean checkdisk, qboolean isworldmodel) { model_t *model; model = Mod_FindName(name); if (model->name[0] != '*' && (!model->loaded || checkdisk)) Mod_LoadModel(model, crash, checkdisk, isworldmodel); return model; } /* ================== Mod_Reload Reloads all models if they have changed ================== */ void Mod_Reload() { int i; model_t *mod; for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) if (mod->name[0] && mod->name[0] != '*') if (mod->used) Mod_LoadModel(mod, true, true, mod->isworldmodel); } unsigned char *mod_base; //============================================================================= /* ================ Mod_Print ================ */ static void Mod_Print(void) { int i; model_t *mod; Con_Print("Loaded models:\n"); for (i = 0, mod = mod_known;i < mod_numknown;i++, mod++) if (mod->name[0]) Con_Printf("%4iK %s\n", mod->mempool ? (mod->mempool->totalsize + 1023) / 1024 : 0, mod->name); } /* ================ Mod_Precache ================ */ static void Mod_Precache(void) { if (Cmd_Argc() == 2) Mod_ForName(Cmd_Argv(1), false, true, cl.worldmodel && !strcasecmp(Cmd_Argv(1), cl.worldmodel->name)); else Con_Print("usage: modelprecache \n"); } int Mod_BuildVertexRemapTableFromElements(int numelements, const int *elements, int numvertices, int *remapvertices) { int i, count; unsigned char *used; used = (unsigned char *)Mem_Alloc(tempmempool, numvertices); memset(used, 0, numvertices); for (i = 0;i < numelements;i++) used[elements[i]] = 1; for (i = 0, count = 0;i < numvertices;i++) remapvertices[i] = used[i] ? count++ : -1; Mem_Free(used); return count; } #if 1 // fast way, using an edge hash #define TRIANGLEEDGEHASH 8192 void Mod_BuildTriangleNeighbors(int *neighbors, const int *elements, int numtriangles) { int i, j, p, e1, e2, *n, hashindex, count, match; const int *e; typedef struct edgehashentry_s { struct edgehashentry_s *next; int triangle; int element[2]; } edgehashentry_t; edgehashentry_t *edgehash[TRIANGLEEDGEHASH], *edgehashentries, edgehashentriesbuffer[TRIANGLEEDGEHASH*3], *hash; memset(edgehash, 0, sizeof(edgehash)); edgehashentries = edgehashentriesbuffer; // if there are too many triangles for the stack array, allocate larger buffer if (numtriangles > TRIANGLEEDGEHASH) edgehashentries = (edgehashentry_t *)Mem_Alloc(tempmempool, numtriangles * 3 * sizeof(edgehashentry_t)); // find neighboring triangles for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3) { for (j = 0, p = 2;j < 3;p = j, j++) { e1 = e[p]; e2 = e[j]; // this hash index works for both forward and backward edges hashindex = (unsigned int)(e1 + e2) % TRIANGLEEDGEHASH; hash = edgehashentries + i * 3 + j; hash->next = edgehash[hashindex]; edgehash[hashindex] = hash; hash->triangle = i; hash->element[0] = e1; hash->element[1] = e2; } } for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3) { for (j = 0, p = 2;j < 3;p = j, j++) { e1 = e[p]; e2 = e[j]; // this hash index works for both forward and backward edges hashindex = (unsigned int)(e1 + e2) % TRIANGLEEDGEHASH; count = 0; match = -1; for (hash = edgehash[hashindex];hash;hash = hash->next) { if (hash->element[0] == e2 && hash->element[1] == e1) { if (hash->triangle != i) match = hash->triangle; count++; } else if ((hash->element[0] == e1 && hash->element[1] == e2)) count++; } // detect edges shared by three triangles and make them seams if (count > 2) match = -1; n[p] = match; } } // free the allocated buffer if (edgehashentries != edgehashentriesbuffer) Mem_Free(edgehashentries); } #else // very slow but simple way static int Mod_FindTriangleWithEdge(const int *elements, int numtriangles, int start, int end, int ignore) { int i, match, count; count = 0; match = -1; for (i = 0;i < numtriangles;i++, elements += 3) { if ((elements[0] == start && elements[1] == end) || (elements[1] == start && elements[2] == end) || (elements[2] == start && elements[0] == end)) { if (i != ignore) match = i; count++; } else if ((elements[1] == start && elements[0] == end) || (elements[2] == start && elements[1] == end) || (elements[0] == start && elements[2] == end)) count++; } // detect edges shared by three triangles and make them seams if (count > 2) match = -1; return match; } void Mod_BuildTriangleNeighbors(int *neighbors, const int *elements, int numtriangles) { int i, *n; const int *e; for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3) { n[0] = Mod_FindTriangleWithEdge(elements, numtriangles, e[1], e[0], i); n[1] = Mod_FindTriangleWithEdge(elements, numtriangles, e[2], e[1], i); n[2] = Mod_FindTriangleWithEdge(elements, numtriangles, e[0], e[2], i); } } #endif void Mod_ValidateElements(int *elements, int numtriangles, int firstvertex, int numverts, const char *filename, int fileline) { int i, warned = false, endvertex = firstvertex + numverts; for (i = 0;i < numtriangles * 3;i++) { if (elements[i] < firstvertex || elements[i] >= endvertex) { if (!warned) { warned = true; Con_Printf("Mod_ValidateElements: out of bounds elements detected at %s:%d\n", filename, fileline); } elements[i] = firstvertex; } } } // warning: this is an expensive function! void Mod_BuildNormals(int firstvertex, int numvertices, int numtriangles, const float *vertex3f, const int *elements, float *normal3f, qboolean areaweighting) { int i, j; const int *element; float *vectorNormal; float areaNormal[3]; // clear the vectors memset(normal3f + 3 * firstvertex, 0, numvertices * sizeof(float[3])); // process each vertex of each triangle and accumulate the results // use area-averaging, to make triangles with a big area have a bigger // weighting on the vertex normal than triangles with a small area // to do so, just add the 'normals' together (the bigger the area // the greater the length of the normal is element = elements; for (i = 0; i < numtriangles; i++, element += 3) { TriangleNormal( vertex3f + element[0] * 3, vertex3f + element[1] * 3, vertex3f + element[2] * 3, areaNormal ); if (!areaweighting) VectorNormalize(areaNormal); for (j = 0;j < 3;j++) { vectorNormal = normal3f + element[j] * 3; vectorNormal[0] += areaNormal[0]; vectorNormal[1] += areaNormal[1]; vectorNormal[2] += areaNormal[2]; } } // and just normalize the accumulated vertex normal in the end vectorNormal = normal3f + 3 * firstvertex; for (i = 0; i < numvertices; i++, vectorNormal += 3) VectorNormalize(vectorNormal); } void Mod_BuildBumpVectors(const float *v0, const float *v1, const float *v2, const float *tc0, const float *tc1, const float *tc2, float *svector3f, float *tvector3f, float *normal3f) { float f, tangentcross[3], v10[3], v20[3], tc10[2], tc20[2]; // 79 add/sub/negate/multiply (1 cycle), 1 compare (3 cycle?), total cycles not counting load/store/exchange roughly 82 cycles // 6 add, 28 subtract, 39 multiply, 1 compare, 50% chance of 6 negates // 6 multiply, 9 subtract VectorSubtract(v1, v0, v10); VectorSubtract(v2, v0, v20); normal3f[0] = v20[1] * v10[2] - v20[2] * v10[1]; normal3f[1] = v20[2] * v10[0] - v20[0] * v10[2]; normal3f[2] = v20[0] * v10[1] - v20[1] * v10[0]; // 12 multiply, 10 subtract tc10[1] = tc1[1] - tc0[1]; tc20[1] = tc2[1] - tc0[1]; svector3f[0] = tc10[1] * v20[0] - tc20[1] * v10[0]; svector3f[1] = tc10[1] * v20[1] - tc20[1] * v10[1]; svector3f[2] = tc10[1] * v20[2] - tc20[1] * v10[2]; tc10[0] = tc1[0] - tc0[0]; tc20[0] = tc2[0] - tc0[0]; tvector3f[0] = tc10[0] * v20[0] - tc20[0] * v10[0]; tvector3f[1] = tc10[0] * v20[1] - tc20[0] * v10[1]; tvector3f[2] = tc10[0] * v20[2] - tc20[0] * v10[2]; // 12 multiply, 4 add, 6 subtract f = DotProduct(svector3f, normal3f); svector3f[0] -= f * normal3f[0]; svector3f[1] -= f * normal3f[1]; svector3f[2] -= f * normal3f[2]; f = DotProduct(tvector3f, normal3f); tvector3f[0] -= f * normal3f[0]; tvector3f[1] -= f * normal3f[1]; tvector3f[2] -= f * normal3f[2]; // if texture is mapped the wrong way (counterclockwise), the tangents // have to be flipped, this is detected by calculating a normal from the // two tangents, and seeing if it is opposite the surface normal // 9 multiply, 2 add, 3 subtract, 1 compare, 50% chance of: 6 negates CrossProduct(tvector3f, svector3f, tangentcross); if (DotProduct(tangentcross, normal3f) < 0) { VectorNegate(svector3f, svector3f); VectorNegate(tvector3f, tvector3f); } } // warning: this is a very expensive function! void Mod_BuildTextureVectorsFromNormals(int firstvertex, int numvertices, int numtriangles, const float *vertex3f, const float *texcoord2f, const float *normal3f, const int *elements, float *svector3f, float *tvector3f, qboolean areaweighting) { int i, tnum; float sdir[3], tdir[3], normal[3], *sv, *tv; const float *v0, *v1, *v2, *tc0, *tc1, *tc2, *n; float f, tangentcross[3], v10[3], v20[3], tc10[2], tc20[2]; const int *e; // clear the vectors memset(svector3f + 3 * firstvertex, 0, numvertices * sizeof(float[3])); memset(tvector3f + 3 * firstvertex, 0, numvertices * sizeof(float[3])); // process each vertex of each triangle and accumulate the results for (tnum = 0, e = elements;tnum < numtriangles;tnum++, e += 3) { v0 = vertex3f + e[0] * 3; v1 = vertex3f + e[1] * 3; v2 = vertex3f + e[2] * 3; tc0 = texcoord2f + e[0] * 2; tc1 = texcoord2f + e[1] * 2; tc2 = texcoord2f + e[2] * 2; // 79 add/sub/negate/multiply (1 cycle), 1 compare (3 cycle?), total cycles not counting load/store/exchange roughly 82 cycles // 6 add, 28 subtract, 39 multiply, 1 compare, 50% chance of 6 negates // calculate the edge directions and surface normal // 6 multiply, 9 subtract VectorSubtract(v1, v0, v10); VectorSubtract(v2, v0, v20); normal[0] = v20[1] * v10[2] - v20[2] * v10[1]; normal[1] = v20[2] * v10[0] - v20[0] * v10[2]; normal[2] = v20[0] * v10[1] - v20[1] * v10[0]; // calculate the tangents // 12 multiply, 10 subtract tc10[1] = tc1[1] - tc0[1]; tc20[1] = tc2[1] - tc0[1]; sdir[0] = tc10[1] * v20[0] - tc20[1] * v10[0]; sdir[1] = tc10[1] * v20[1] - tc20[1] * v10[1]; sdir[2] = tc10[1] * v20[2] - tc20[1] * v10[2]; tc10[0] = tc1[0] - tc0[0]; tc20[0] = tc2[0] - tc0[0]; tdir[0] = tc10[0] * v20[0] - tc20[0] * v10[0]; tdir[1] = tc10[0] * v20[1] - tc20[0] * v10[1]; tdir[2] = tc10[0] * v20[2] - tc20[0] * v10[2]; // if texture is mapped the wrong way (counterclockwise), the tangents // have to be flipped, this is detected by calculating a normal from the // two tangents, and seeing if it is opposite the surface normal // 9 multiply, 2 add, 3 subtract, 1 compare, 50% chance of: 6 negates CrossProduct(tdir, sdir, tangentcross); if (DotProduct(tangentcross, normal) < 0) { VectorNegate(sdir, sdir); VectorNegate(tdir, tdir); } if (!areaweighting) { VectorNormalize(sdir); VectorNormalize(tdir); } for (i = 0;i < 3;i++) { VectorAdd(svector3f + e[i]*3, sdir, svector3f + e[i]*3); VectorAdd(tvector3f + e[i]*3, tdir, tvector3f + e[i]*3); } } // make the tangents completely perpendicular to the surface normal, and // then normalize them // 16 assignments, 2 divide, 2 sqrt, 2 negates, 14 adds, 24 multiplies for (i = 0, sv = svector3f + 3 * firstvertex, tv = tvector3f + 3 * firstvertex, n = normal3f + 3 * firstvertex;i < numvertices;i++, sv += 3, tv += 3, n += 3) { f = -DotProduct(sv, n); VectorMA(sv, f, n, sv); VectorNormalize(sv); f = -DotProduct(tv, n); VectorMA(tv, f, n, tv); VectorNormalize(tv); } } void Mod_AllocSurfMesh(mempool_t *mempool, int numvertices, int numtriangles, qboolean lightmapoffsets, qboolean vertexcolors, qboolean neighbors) { unsigned char *data; data = (unsigned char *)Mem_Alloc(mempool, numvertices * (3 + 3 + 3 + 3 + 2 + 2 + (vertexcolors ? 4 : 0)) * sizeof(float) + numvertices * (lightmapoffsets ? 1 : 0) * sizeof(int) + numtriangles * (3 + (neighbors ? 3 : 0)) * sizeof(int)); loadmodel->surfmesh.num_vertices = numvertices; loadmodel->surfmesh.num_triangles = numtriangles; if (loadmodel->surfmesh.num_vertices) { loadmodel->surfmesh.data_vertex3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices; loadmodel->surfmesh.data_svector3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices; loadmodel->surfmesh.data_tvector3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices; loadmodel->surfmesh.data_normal3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices; loadmodel->surfmesh.data_texcoordtexture2f = (float *)data, data += sizeof(float[2]) * loadmodel->surfmesh.num_vertices; loadmodel->surfmesh.data_texcoordlightmap2f = (float *)data, data += sizeof(float[2]) * loadmodel->surfmesh.num_vertices; if (vertexcolors) loadmodel->surfmesh.data_lightmapcolor4f = (float *)data, data += sizeof(float[4]) * loadmodel->surfmesh.num_vertices; if (lightmapoffsets) loadmodel->surfmesh.data_lightmapoffsets = (int *)data, data += sizeof(int) * loadmodel->surfmesh.num_vertices; } if (loadmodel->surfmesh.num_triangles) { loadmodel->surfmesh.data_element3i = (int *)data, data += sizeof(int[3]) * loadmodel->surfmesh.num_triangles; if (neighbors) loadmodel->surfmesh.data_neighbor3i = (int *)data, data += sizeof(int[3]) * loadmodel->surfmesh.num_triangles; } } shadowmesh_t *Mod_ShadowMesh_Alloc(mempool_t *mempool, int maxverts, int maxtriangles, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, int light, int neighbors, int expandable) { shadowmesh_t *newmesh; unsigned char *data; int size; size = sizeof(shadowmesh_t); size += maxverts * sizeof(float[3]); if (light) size += maxverts * sizeof(float[11]); size += maxtriangles * sizeof(int[3]); if (neighbors) size += maxtriangles * sizeof(int[3]); if (expandable) size += SHADOWMESHVERTEXHASH * sizeof(shadowmeshvertexhash_t *) + maxverts * sizeof(shadowmeshvertexhash_t); data = (unsigned char *)Mem_Alloc(mempool, size); newmesh = (shadowmesh_t *)data;data += sizeof(*newmesh); newmesh->map_diffuse = map_diffuse; newmesh->map_specular = map_specular; newmesh->map_normal = map_normal; newmesh->maxverts = maxverts; newmesh->maxtriangles = maxtriangles; newmesh->numverts = 0; newmesh->numtriangles = 0; newmesh->vertex3f = (float *)data;data += maxverts * sizeof(float[3]); if (light) { newmesh->svector3f = (float *)data;data += maxverts * sizeof(float[3]); newmesh->tvector3f = (float *)data;data += maxverts * sizeof(float[3]); newmesh->normal3f = (float *)data;data += maxverts * sizeof(float[3]); newmesh->texcoord2f = (float *)data;data += maxverts * sizeof(float[2]); } newmesh->element3i = (int *)data;data += maxtriangles * sizeof(int[3]); if (neighbors) { newmesh->neighbor3i = (int *)data;data += maxtriangles * sizeof(int[3]); } if (expandable) { newmesh->vertexhashtable = (shadowmeshvertexhash_t **)data;data += SHADOWMESHVERTEXHASH * sizeof(shadowmeshvertexhash_t *); newmesh->vertexhashentries = (shadowmeshvertexhash_t *)data;data += maxverts * sizeof(shadowmeshvertexhash_t); } return newmesh; } shadowmesh_t *Mod_ShadowMesh_ReAlloc(mempool_t *mempool, shadowmesh_t *oldmesh, int light, int neighbors) { shadowmesh_t *newmesh; newmesh = Mod_ShadowMesh_Alloc(mempool, oldmesh->numverts, oldmesh->numtriangles, oldmesh->map_diffuse, oldmesh->map_specular, oldmesh->map_normal, light, neighbors, false); newmesh->numverts = oldmesh->numverts; newmesh->numtriangles = oldmesh->numtriangles; memcpy(newmesh->vertex3f, oldmesh->vertex3f, oldmesh->numverts * sizeof(float[3])); if (newmesh->svector3f && oldmesh->svector3f) { memcpy(newmesh->svector3f, oldmesh->svector3f, oldmesh->numverts * sizeof(float[3])); memcpy(newmesh->tvector3f, oldmesh->tvector3f, oldmesh->numverts * sizeof(float[3])); memcpy(newmesh->normal3f, oldmesh->normal3f, oldmesh->numverts * sizeof(float[3])); memcpy(newmesh->texcoord2f, oldmesh->texcoord2f, oldmesh->numverts * sizeof(float[2])); } memcpy(newmesh->element3i, oldmesh->element3i, oldmesh->numtriangles * sizeof(int[3])); if (newmesh->neighbor3i && oldmesh->neighbor3i) memcpy(newmesh->neighbor3i, oldmesh->neighbor3i, oldmesh->numtriangles * sizeof(int[3])); return newmesh; } int Mod_ShadowMesh_AddVertex(shadowmesh_t *mesh, float *vertex14f) { int hashindex, vnum; shadowmeshvertexhash_t *hash; // this uses prime numbers intentionally hashindex = (unsigned int) (vertex14f[0] * 3 + vertex14f[1] * 5 + vertex14f[2] * 7) % SHADOWMESHVERTEXHASH; for (hash = mesh->vertexhashtable[hashindex];hash;hash = hash->next) { vnum = (hash - mesh->vertexhashentries); if ((mesh->vertex3f == NULL || (mesh->vertex3f[vnum * 3 + 0] == vertex14f[0] && mesh->vertex3f[vnum * 3 + 1] == vertex14f[1] && mesh->vertex3f[vnum * 3 + 2] == vertex14f[2])) && (mesh->svector3f == NULL || (mesh->svector3f[vnum * 3 + 0] == vertex14f[3] && mesh->svector3f[vnum * 3 + 1] == vertex14f[4] && mesh->svector3f[vnum * 3 + 2] == vertex14f[5])) && (mesh->tvector3f == NULL || (mesh->tvector3f[vnum * 3 + 0] == vertex14f[6] && mesh->tvector3f[vnum * 3 + 1] == vertex14f[7] && mesh->tvector3f[vnum * 3 + 2] == vertex14f[8])) && (mesh->normal3f == NULL || (mesh->normal3f[vnum * 3 + 0] == vertex14f[9] && mesh->normal3f[vnum * 3 + 1] == vertex14f[10] && mesh->normal3f[vnum * 3 + 2] == vertex14f[11])) && (mesh->texcoord2f == NULL || (mesh->texcoord2f[vnum * 2 + 0] == vertex14f[12] && mesh->texcoord2f[vnum * 2 + 1] == vertex14f[13]))) return hash - mesh->vertexhashentries; } vnum = mesh->numverts++; hash = mesh->vertexhashentries + vnum; hash->next = mesh->vertexhashtable[hashindex]; mesh->vertexhashtable[hashindex] = hash; if (mesh->vertex3f) {mesh->vertex3f[vnum * 3 + 0] = vertex14f[0];mesh->vertex3f[vnum * 3 + 1] = vertex14f[1];mesh->vertex3f[vnum * 3 + 2] = vertex14f[2];} if (mesh->svector3f) {mesh->svector3f[vnum * 3 + 0] = vertex14f[3];mesh->svector3f[vnum * 3 + 1] = vertex14f[4];mesh->svector3f[vnum * 3 + 2] = vertex14f[5];} if (mesh->tvector3f) {mesh->tvector3f[vnum * 3 + 0] = vertex14f[6];mesh->tvector3f[vnum * 3 + 1] = vertex14f[7];mesh->tvector3f[vnum * 3 + 2] = vertex14f[8];} if (mesh->normal3f) {mesh->normal3f[vnum * 3 + 0] = vertex14f[9];mesh->normal3f[vnum * 3 + 1] = vertex14f[10];mesh->normal3f[vnum * 3 + 2] = vertex14f[11];} if (mesh->texcoord2f) {mesh->texcoord2f[vnum * 2 + 0] = vertex14f[12];mesh->texcoord2f[vnum * 2 + 1] = vertex14f[13];} return vnum; } void Mod_ShadowMesh_AddTriangle(mempool_t *mempool, shadowmesh_t *mesh, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, float *vertex14f) { if (mesh->numtriangles == 0) { // set the properties on this empty mesh to be more favorable... // (note: this case only occurs for the first triangle added to a new mesh chain) mesh->map_diffuse = map_diffuse; mesh->map_specular = map_specular; mesh->map_normal = map_normal; } while (mesh->map_diffuse != map_diffuse || mesh->map_specular != map_specular || mesh->map_normal != map_normal || mesh->numverts + 3 > mesh->maxverts || mesh->numtriangles + 1 > mesh->maxtriangles) { if (mesh->next == NULL) mesh->next = Mod_ShadowMesh_Alloc(mempool, max(mesh->maxverts, 300), max(mesh->maxtriangles, 100), map_diffuse, map_specular, map_normal, mesh->svector3f != NULL, mesh->neighbor3i != NULL, true); mesh = mesh->next; } mesh->element3i[mesh->numtriangles * 3 + 0] = Mod_ShadowMesh_AddVertex(mesh, vertex14f + 14 * 0); mesh->element3i[mesh->numtriangles * 3 + 1] = Mod_ShadowMesh_AddVertex(mesh, vertex14f + 14 * 1); mesh->element3i[mesh->numtriangles * 3 + 2] = Mod_ShadowMesh_AddVertex(mesh, vertex14f + 14 * 2); mesh->numtriangles++; } void Mod_ShadowMesh_AddMesh(mempool_t *mempool, shadowmesh_t *mesh, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const float *texcoord2f, int numtris, const int *element3i) { int i, j, e; float vbuf[3*14], *v; memset(vbuf, 0, sizeof(vbuf)); for (i = 0;i < numtris;i++) { for (j = 0, v = vbuf;j < 3;j++, v += 14) { e = *element3i++; if (vertex3f) { v[0] = vertex3f[e * 3 + 0]; v[1] = vertex3f[e * 3 + 1]; v[2] = vertex3f[e * 3 + 2]; } if (svector3f) { v[3] = svector3f[e * 3 + 0]; v[4] = svector3f[e * 3 + 1]; v[5] = svector3f[e * 3 + 2]; } if (tvector3f) { v[6] = tvector3f[e * 3 + 0]; v[7] = tvector3f[e * 3 + 1]; v[8] = tvector3f[e * 3 + 2]; } if (normal3f) { v[9] = normal3f[e * 3 + 0]; v[10] = normal3f[e * 3 + 1]; v[11] = normal3f[e * 3 + 2]; } if (texcoord2f) { v[12] = texcoord2f[e * 2 + 0]; v[13] = texcoord2f[e * 2 + 1]; } } Mod_ShadowMesh_AddTriangle(mempool, mesh, map_diffuse, map_specular, map_normal, vbuf); } } shadowmesh_t *Mod_ShadowMesh_Begin(mempool_t *mempool, int maxverts, int maxtriangles, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, int light, int neighbors, int expandable) { return Mod_ShadowMesh_Alloc(mempool, maxverts, maxtriangles, map_diffuse, map_specular, map_normal, light, neighbors, expandable); } shadowmesh_t *Mod_ShadowMesh_Finish(mempool_t *mempool, shadowmesh_t *firstmesh, int light, int neighbors) { shadowmesh_t *mesh, *newmesh, *nextmesh; // reallocate meshs to conserve space for (mesh = firstmesh, firstmesh = NULL;mesh;mesh = nextmesh) { nextmesh = mesh->next; if (mesh->numverts >= 3 && mesh->numtriangles >= 1) { newmesh = Mod_ShadowMesh_ReAlloc(mempool, mesh, light, neighbors); newmesh->next = firstmesh; firstmesh = newmesh; } Mem_Free(mesh); } return firstmesh; } void Mod_ShadowMesh_CalcBBox(shadowmesh_t *firstmesh, vec3_t mins, vec3_t maxs, vec3_t center, float *radius) { int i; shadowmesh_t *mesh; vec3_t nmins, nmaxs, ncenter, temp; float nradius2, dist2, *v; VectorClear(nmins); VectorClear(nmaxs); // calculate bbox for (mesh = firstmesh;mesh;mesh = mesh->next) { if (mesh == firstmesh) { VectorCopy(mesh->vertex3f, nmins); VectorCopy(mesh->vertex3f, nmaxs); } for (i = 0, v = mesh->vertex3f;i < mesh->numverts;i++, v += 3) { if (nmins[0] > v[0]) nmins[0] = v[0];if (nmaxs[0] < v[0]) nmaxs[0] = v[0]; if (nmins[1] > v[1]) nmins[1] = v[1];if (nmaxs[1] < v[1]) nmaxs[1] = v[1]; if (nmins[2] > v[2]) nmins[2] = v[2];if (nmaxs[2] < v[2]) nmaxs[2] = v[2]; } } // calculate center and radius ncenter[0] = (nmins[0] + nmaxs[0]) * 0.5f; ncenter[1] = (nmins[1] + nmaxs[1]) * 0.5f; ncenter[2] = (nmins[2] + nmaxs[2]) * 0.5f; nradius2 = 0; for (mesh = firstmesh;mesh;mesh = mesh->next) { for (i = 0, v = mesh->vertex3f;i < mesh->numverts;i++, v += 3) { VectorSubtract(v, ncenter, temp); dist2 = DotProduct(temp, temp); if (nradius2 < dist2) nradius2 = dist2; } } // return data if (mins) VectorCopy(nmins, mins); if (maxs) VectorCopy(nmaxs, maxs); if (center) VectorCopy(ncenter, center); if (radius) *radius = sqrt(nradius2); } void Mod_ShadowMesh_Free(shadowmesh_t *mesh) { shadowmesh_t *nextmesh; for (;mesh;mesh = nextmesh) { nextmesh = mesh->next; Mem_Free(mesh); } } static rtexture_t *GL_TextureForSkinLayer(const unsigned char *in, int width, int height, const char *name, const unsigned int *palette, int textureflags) { int i; for (i = 0;i < width*height;i++) if (((unsigned char *)&palette[in[i]])[3] > 0) return R_LoadTexture2D (loadmodel->texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette); return NULL; } int Mod_LoadSkinFrame(skinframe_t *skinframe, const char *basename, int textureflags, int loadpantsandshirt, int loadglowtexture) { imageskin_t s; memset(skinframe, 0, sizeof(*skinframe)); if (cls.state == ca_dedicated) return false; if (!image_loadskin(&s, basename)) return false; skinframe->base = R_LoadTexture2D (loadmodel->texturepool, basename, s.basepixels_width, s.basepixels_height, s.basepixels, TEXTYPE_RGBA, textureflags, NULL); if (s.nmappixels != NULL) skinframe->nmap = R_LoadTexture2D (loadmodel->texturepool, va("%s_nmap", basename), s.nmappixels_width, s.nmappixels_height, s.nmappixels, TEXTYPE_RGBA, textureflags, NULL); if (s.glosspixels != NULL) skinframe->gloss = R_LoadTexture2D (loadmodel->texturepool, va("%s_gloss", basename), s.glosspixels_width, s.glosspixels_height, s.glosspixels, TEXTYPE_RGBA, textureflags, NULL); if (s.glowpixels != NULL && loadglowtexture) skinframe->glow = R_LoadTexture2D (loadmodel->texturepool, va("%s_glow", basename), s.glowpixels_width, s.glowpixels_height, s.glowpixels, TEXTYPE_RGBA, textureflags, NULL); if (s.maskpixels != NULL) skinframe->fog = R_LoadTexture2D (loadmodel->texturepool, va("%s_mask", basename), s.maskpixels_width, s.maskpixels_height, s.maskpixels, TEXTYPE_RGBA, textureflags, NULL); if (loadpantsandshirt) { if (s.pantspixels != NULL) skinframe->pants = R_LoadTexture2D (loadmodel->texturepool, va("%s_pants", basename), s.pantspixels_width, s.pantspixels_height, s.pantspixels, TEXTYPE_RGBA, textureflags, NULL); if (s.shirtpixels != NULL) skinframe->shirt = R_LoadTexture2D (loadmodel->texturepool, va("%s_shirt", basename), s.shirtpixels_width, s.shirtpixels_height, s.shirtpixels, TEXTYPE_RGBA, textureflags, NULL); } if (!skinframe->base) skinframe->base = r_texture_notexture; if (!skinframe->nmap) skinframe->nmap = r_texture_blanknormalmap; image_freeskin(&s); return true; } int Mod_LoadSkinFrame_Internal(skinframe_t *skinframe, const char *basename, int textureflags, int loadpantsandshirt, int loadglowtexture, const unsigned char *skindata, int width, int height, int bitsperpixel, const unsigned int *palette, const unsigned int *alphapalette) { int i; unsigned char *temp1, *temp2; memset(skinframe, 0, sizeof(*skinframe)); if (cls.state == ca_dedicated) return false; if (!skindata) return false; if (bitsperpixel == 32) { if (r_shadow_bumpscale_basetexture.value > 0) { temp1 = (unsigned char *)Mem_Alloc(loadmodel->mempool, width * height * 8); temp2 = temp1 + width * height * 4; Image_HeightmapToNormalmap(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value); skinframe->nmap = R_LoadTexture2D(loadmodel->texturepool, va("%s_nmap", basename), width, height, temp2, TEXTYPE_RGBA, textureflags | TEXF_ALPHA, NULL); Mem_Free(temp1); } skinframe->base = skinframe->merged = R_LoadTexture2D(loadmodel->texturepool, basename, width, height, skindata, TEXTYPE_RGBA, textureflags, NULL); if (textureflags & TEXF_ALPHA) { for (i = 3;i < width * height * 4;i += 4) if (skindata[i] < 255) break; if (i < width * height * 4) { unsigned char *fogpixels = (unsigned char *)Mem_Alloc(loadmodel->mempool, width * height * 4); memcpy(fogpixels, skindata, width * height * 4); for (i = 0;i < width * height * 4;i += 4) fogpixels[i] = fogpixels[i+1] = fogpixels[i+2] = 255; skinframe->fog = R_LoadTexture2D(loadmodel->texturepool, va("%s_fog", basename), width, height, fogpixels, TEXTYPE_RGBA, textureflags, NULL); Mem_Free(fogpixels); } } } else if (bitsperpixel == 8) { if (r_shadow_bumpscale_basetexture.value > 0) { temp1 = (unsigned char *)Mem_Alloc(loadmodel->mempool, width * height * 8); temp2 = temp1 + width * height * 4; if (bitsperpixel == 32) Image_HeightmapToNormalmap(skindata, temp2, width, height, false, r_shadow_bumpscale_basetexture.value); else { // use either a custom palette or the quake palette Image_Copy8bitRGBA(skindata, temp1, width * height, palette ? palette : palette_complete); Image_HeightmapToNormalmap(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value); } skinframe->nmap = R_LoadTexture2D(loadmodel->texturepool, va("%s_nmap", basename), width, height, temp2, TEXTYPE_RGBA, textureflags | TEXF_ALPHA, NULL); Mem_Free(temp1); } // use either a custom palette, or the quake palette skinframe->base = skinframe->merged = GL_TextureForSkinLayer(skindata, width, height, va("%s_merged", basename), palette ? palette : (loadglowtexture ? palette_nofullbrights : ((textureflags & TEXF_ALPHA) ? palette_transparent : palette_complete)), textureflags); // all if (!palette && loadglowtexture) skinframe->glow = GL_TextureForSkinLayer(skindata, width, height, va("%s_glow", basename), palette_onlyfullbrights, textureflags); // glow if (!palette && loadpantsandshirt) { skinframe->pants = GL_TextureForSkinLayer(skindata, width, height, va("%s_pants", basename), palette_pantsaswhite, textureflags); // pants skinframe->shirt = GL_TextureForSkinLayer(skindata, width, height, va("%s_shirt", basename), palette_shirtaswhite, textureflags); // shirt } if (skinframe->pants || skinframe->shirt) skinframe->base = GL_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", basename),loadglowtexture ? palette_nocolormapnofullbrights : palette_nocolormap, textureflags); // no special colors if (textureflags & TEXF_ALPHA) { // if not using a custom alphapalette, use the quake one if (!alphapalette) alphapalette = palette_alpha; for (i = 0;i < width * height;i++) if (((unsigned char *)alphapalette)[skindata[i]*4+3] < 255) break; if (i < width * height) skinframe->fog = GL_TextureForSkinLayer(skindata, width, height, va("%s_fog", basename), alphapalette, textureflags); // fog mask } } else return false; if (!skinframe->nmap) skinframe->nmap = r_texture_blanknormalmap; return true; } void Mod_GetTerrainVertex3fTexCoord2fFromRGBA(const unsigned char *imagepixels, int imagewidth, int imageheight, int ix, int iy, float *vertex3f, float *texcoord2f, matrix4x4_t *pixelstepmatrix, matrix4x4_t *pixeltexturestepmatrix) { float v[3], tc[3]; v[0] = ix; v[1] = iy; if (ix >= 0 && iy >= 0 && ix < imagewidth && iy < imageheight) v[2] = (imagepixels[((iy*imagewidth)+ix)*4+0] + imagepixels[((iy*imagewidth)+ix)*4+1] + imagepixels[((iy*imagewidth)+ix)*4+2]) * (1.0f / 765.0f); else v[2] = 0; Matrix4x4_Transform(pixelstepmatrix, v, vertex3f); Matrix4x4_Transform(pixeltexturestepmatrix, v, tc); texcoord2f[0] = tc[0]; texcoord2f[1] = tc[1]; } void Mod_GetTerrainVertexFromRGBA(const unsigned char *imagepixels, int imagewidth, int imageheight, int ix, int iy, float *vertex3f, float *svector3f, float *tvector3f, float *normal3f, float *texcoord2f, matrix4x4_t *pixelstepmatrix, matrix4x4_t *pixeltexturestepmatrix) { float vup[3], vdown[3], vleft[3], vright[3]; float tcup[3], tcdown[3], tcleft[3], tcright[3]; float sv[3], tv[3], nl[3]; Mod_GetTerrainVertex3fTexCoord2fFromRGBA(imagepixels, imagewidth, imageheight, ix, iy, vertex3f, texcoord2f, pixelstepmatrix, pixeltexturestepmatrix); Mod_GetTerrainVertex3fTexCoord2fFromRGBA(imagepixels, imagewidth, imageheight, ix, iy - 1, vup, tcup, pixelstepmatrix, pixeltexturestepmatrix); Mod_GetTerrainVertex3fTexCoord2fFromRGBA(imagepixels, imagewidth, imageheight, ix, iy + 1, vdown, tcdown, pixelstepmatrix, pixeltexturestepmatrix); Mod_GetTerrainVertex3fTexCoord2fFromRGBA(imagepixels, imagewidth, imageheight, ix - 1, iy, vleft, tcleft, pixelstepmatrix, pixeltexturestepmatrix); Mod_GetTerrainVertex3fTexCoord2fFromRGBA(imagepixels, imagewidth, imageheight, ix + 1, iy, vright, tcright, pixelstepmatrix, pixeltexturestepmatrix); Mod_BuildBumpVectors(vertex3f, vup, vright, texcoord2f, tcup, tcright, svector3f, tvector3f, normal3f); Mod_BuildBumpVectors(vertex3f, vright, vdown, texcoord2f, tcright, tcdown, sv, tv, nl); VectorAdd(svector3f, sv, svector3f); VectorAdd(tvector3f, tv, tvector3f); VectorAdd(normal3f, nl, normal3f); Mod_BuildBumpVectors(vertex3f, vdown, vleft, texcoord2f, tcdown, tcleft, sv, tv, nl); VectorAdd(svector3f, sv, svector3f); VectorAdd(tvector3f, tv, tvector3f); VectorAdd(normal3f, nl, normal3f); Mod_BuildBumpVectors(vertex3f, vleft, vup, texcoord2f, tcleft, tcup, sv, tv, nl); VectorAdd(svector3f, sv, svector3f); VectorAdd(tvector3f, tv, tvector3f); VectorAdd(normal3f, nl, normal3f); } void Mod_ConstructTerrainPatchFromRGBA(const unsigned char *imagepixels, int imagewidth, int imageheight, int x1, int y1, int width, int height, int *element3i, int *neighbor3i, float *vertex3f, float *svector3f, float *tvector3f, float *normal3f, float *texcoord2f, matrix4x4_t *pixelstepmatrix, matrix4x4_t *pixeltexturestepmatrix) { int x, y, ix, iy, *e; e = element3i; for (y = 0;y < height;y++) { for (x = 0;x < width;x++) { e[0] = (y + 1) * (width + 1) + (x + 0); e[1] = (y + 0) * (width + 1) + (x + 0); e[2] = (y + 1) * (width + 1) + (x + 1); e[3] = (y + 0) * (width + 1) + (x + 0); e[4] = (y + 0) * (width + 1) + (x + 1); e[5] = (y + 1) * (width + 1) + (x + 1); e += 6; } } Mod_BuildTriangleNeighbors(neighbor3i, element3i, width*height*2); for (y = 0, iy = y1;y < height + 1;y++, iy++) for (x = 0, ix = x1;x < width + 1;x++, ix++, vertex3f += 3, texcoord2f += 2, svector3f += 3, tvector3f += 3, normal3f += 3) Mod_GetTerrainVertexFromRGBA(imagepixels, imagewidth, imageheight, ix, iy, vertex3f, texcoord2f, svector3f, tvector3f, normal3f, pixelstepmatrix, pixeltexturestepmatrix); } skinfile_t *Mod_LoadSkinFiles(void) { int i, words, numtags, line, tagsetsused = false, wordsoverflow; char *text; const char *data; skinfile_t *skinfile = NULL, *first = NULL; skinfileitem_t *skinfileitem; char word[10][MAX_QPATH]; overridetagnameset_t tagsets[MAX_SKINS]; overridetagname_t tags[256]; /* sample file: U_bodyBox,models/players/Legoman/BikerA2.tga U_RArm,models/players/Legoman/BikerA1.tga U_LArm,models/players/Legoman/BikerA1.tga U_armor,common/nodraw U_sword,common/nodraw U_shield,common/nodraw U_homb,common/nodraw U_backpack,common/nodraw U_colcha,common/nodraw tag_head, tag_weapon, tag_torso, */ memset(tagsets, 0, sizeof(tagsets)); memset(word, 0, sizeof(word)); for (i = 0;i < MAX_SKINS && (data = text = (char *)FS_LoadFile(va("%s_%i.skin", loadmodel->name, i), tempmempool, true, NULL));i++) { numtags = 0; // If it's the first file we parse if (skinfile == NULL) { skinfile = (skinfile_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfile_t)); first = skinfile; } else { skinfile->next = (skinfile_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfile_t)); skinfile = skinfile->next; } skinfile->next = NULL; for(line = 0;;line++) { // parse line if (!COM_ParseToken(&data, true)) break; if (!strcmp(com_token, "\n")) continue; words = 0; wordsoverflow = false; do { if (words < 10) strlcpy(word[words++], com_token, sizeof (word[0])); else wordsoverflow = true; } while (COM_ParseToken(&data, true) && strcmp(com_token, "\n")); if (wordsoverflow) { Con_Printf("Mod_LoadSkinFiles: parsing error in file \"%s_%i.skin\" on line #%i: line with too many statements, skipping\n", loadmodel->name, i, line); continue; } // words is always >= 1 if (!strcmp(word[0], "replace")) { if (words == 3) { Con_DPrintf("Mod_LoadSkinFiles: parsed mesh \"%s\" shader replacement \"%s\"\n", word[1], word[2]); skinfileitem = (skinfileitem_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfileitem_t)); skinfileitem->next = skinfile->items; skinfile->items = skinfileitem; strlcpy (skinfileitem->name, word[1], sizeof (skinfileitem->name)); strlcpy (skinfileitem->replacement, word[2], sizeof (skinfileitem->replacement)); } else Con_Printf("Mod_LoadSkinFiles: parsing error in file \"%s_%i.skin\" on line #%i: wrong number of parameters to command \"%s\", see documentation in DP_GFX_SKINFILES extension in dpextensions.qc\n", loadmodel->name, i, line, word[0]); } else if (words == 2 && !strcmp(word[1], ",")) { // tag name, like "tag_weapon," Con_DPrintf("Mod_LoadSkinFiles: parsed tag #%i \"%s\"\n", numtags, word[0]); memset(tags + numtags, 0, sizeof(tags[numtags])); strlcpy (tags[numtags].name, word[0], sizeof (tags[numtags].name)); numtags++; } else if (words == 3 && !strcmp(word[1], ",")) { // mesh shader name, like "U_RArm,models/players/Legoman/BikerA1.tga" Con_DPrintf("Mod_LoadSkinFiles: parsed mesh \"%s\" shader replacement \"%s\"\n", word[0], word[2]); skinfileitem = (skinfileitem_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfileitem_t)); skinfileitem->next = skinfile->items; skinfile->items = skinfileitem; strlcpy (skinfileitem->name, word[0], sizeof (skinfileitem->name)); strlcpy (skinfileitem->replacement, word[2], sizeof (skinfileitem->replacement)); } else Con_Printf("Mod_LoadSkinFiles: parsing error in file \"%s_%i.skin\" on line #%i: does not look like tag or mesh specification, or replace command, see documentation in DP_GFX_SKINFILES extension in dpextensions.qc\n", loadmodel->name, i, line); } Mem_Free(text); if (numtags) { overridetagnameset_t *t; t = tagsets + i; t->num_overridetagnames = numtags; t->data_overridetagnames = (overridetagname_t *)Mem_Alloc(loadmodel->mempool, t->num_overridetagnames * sizeof(overridetagname_t)); memcpy(t->data_overridetagnames, tags, t->num_overridetagnames * sizeof(overridetagname_t)); tagsetsused = true; } } if (tagsetsused) { loadmodel->data_overridetagnamesforskin = (overridetagnameset_t *)Mem_Alloc(loadmodel->mempool, i * sizeof(overridetagnameset_t)); memcpy(loadmodel->data_overridetagnamesforskin, tagsets, i * sizeof(overridetagnameset_t)); } if (i) loadmodel->numskins = i; return first; } void Mod_FreeSkinFiles(skinfile_t *skinfile) { skinfile_t *next; skinfileitem_t *skinfileitem, *nextitem; for (;skinfile;skinfile = next) { next = skinfile->next; for (skinfileitem = skinfile->items;skinfileitem;skinfileitem = nextitem) { nextitem = skinfileitem->next; Mem_Free(skinfileitem); } Mem_Free(skinfile); } } int Mod_CountSkinFiles(skinfile_t *skinfile) { int i; for (i = 0;skinfile;skinfile = skinfile->next, i++); return i; } void Mod_SnapVertices(int numcomponents, int numvertices, float *vertices, float snap) { int i; double isnap = 1.0 / snap; for (i = 0;i < numvertices*numcomponents;i++) vertices[i] = floor(vertices[i]*isnap)*snap; } int Mod_RemoveDegenerateTriangles(int numtriangles, const int *inelement3i, int *outelement3i, const float *vertex3f) { int i, outtriangles; float d, edgedir[3], temp[3]; // a degenerate triangle is one with no width (thickness, surface area) // these are characterized by having all 3 points colinear (along a line) // or having two points identical for (i = 0, outtriangles = 0;i < numtriangles;i++, inelement3i += 3) { // calculate first edge VectorSubtract(vertex3f + inelement3i[1] * 3, vertex3f + inelement3i[0] * 3, edgedir); if (VectorLength2(edgedir) < 0.0001f) continue; // degenerate first edge (no length) VectorNormalize(edgedir); // check if third point is on the edge (colinear) d = -DotProduct(vertex3f + inelement3i[2] * 3, edgedir); VectorMA(vertex3f + inelement3i[2] * 3, d, edgedir, temp); if (VectorLength2(temp) < 0.0001f) continue; // third point colinear with first edge // valid triangle (no colinear points, no duplicate points) VectorCopy(inelement3i, outelement3i); outelement3i += 3; outtriangles++; } return outtriangles; }