/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // models.c -- model loading and caching // models are the only shared resource between a client and server running // on the same machine. #include "quakedef.h" model_t *loadmodel; // LordHavoc: increased from 512 to 2048 #define MAX_MOD_KNOWN 2048 static model_t mod_known[MAX_MOD_KNOWN]; rtexture_t *r_notexture; rtexturepool_t *r_notexturepool; texture_t r_surf_notexture; void Mod_SetupNoTexture(void) { int x, y; qbyte pix[16][16][4]; // this makes a light grey/dark grey checkerboard texture for (y = 0;y < 16;y++) { for (x = 0;x < 16;x++) { if ((y < 8) ^ (x < 8)) { pix[y][x][0] = 128; pix[y][x][1] = 128; pix[y][x][2] = 128; pix[y][x][3] = 255; } else { pix[y][x][0] = 64; pix[y][x][1] = 64; pix[y][x][2] = 64; pix[y][x][3] = 255; } } } r_notexturepool = R_AllocTexturePool(); r_notexture = R_LoadTexture2D(r_notexturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_RGBA, TEXF_MIPMAP, NULL); } extern void Mod_BrushStartup (void); extern void Mod_BrushShutdown (void); static void mod_start(void) { int i; for (i = 0;i < MAX_MOD_KNOWN;i++) if (mod_known[i].name[0]) Mod_UnloadModel(&mod_known[i]); Mod_LoadModels(); Mod_SetupNoTexture(); Mod_BrushStartup(); } static void mod_shutdown(void) { int i; for (i = 0;i < MAX_MOD_KNOWN;i++) if (mod_known[i].name[0]) Mod_UnloadModel(&mod_known[i]); R_FreeTexturePool(&r_notexturepool); Mod_BrushShutdown(); } static void mod_newmap(void) { } /* =============== Mod_Init =============== */ static void Mod_Print (void); static void Mod_Flush (void); void Mod_Init (void) { Mod_BrushInit(); Mod_AliasInit(); Mod_SpriteInit(); Cmd_AddCommand ("modellist", Mod_Print); Cmd_AddCommand ("modelflush", Mod_Flush); } void Mod_RenderInit(void) { R_RegisterModule("Models", mod_start, mod_shutdown, mod_newmap); } void Mod_FreeModel (model_t *mod) { R_FreeTexturePool(&mod->texturepool); Mem_FreePool(&mod->mempool); // clear the struct to make it available memset(mod, 0, sizeof(model_t)); } void Mod_UnloadModel (model_t *mod) { char name[MAX_QPATH]; qboolean isworldmodel; strcpy(name, mod->name); isworldmodel = mod->isworldmodel; Mod_FreeModel(mod); strcpy(mod->name, name); mod->isworldmodel = isworldmodel; mod->needload = true; } /* ================== Mod_LoadModel Loads a model ================== */ static model_t *Mod_LoadModel (model_t *mod, qboolean crash, qboolean checkdisk, qboolean isworldmodel) { unsigned int crc; void *buf; mod->used = true; if (mod->name[0] == '*') // submodel return mod; crc = 0; buf = NULL; if (!mod->needload) { if (checkdisk) { buf = COM_LoadFile (mod->name, false); if (!buf) { if (crash) Host_Error ("Mod_LoadModel: %s not found", mod->name); // LordHavoc: Sys_Error was *ANNOYING* return NULL; } crc = CRC_Block(buf, com_filesize); } else crc = mod->crc; if (mod->crc == crc && mod->isworldmodel == isworldmodel) { if (buf) Mem_Free(buf); return mod; // already loaded } } Con_DPrintf("loading model %s\n", mod->name); if (!buf) { buf = COM_LoadFile (mod->name, false); if (!buf) { if (crash) Host_Error ("Mod_LoadModel: %s not found", mod->name); return NULL; } crc = CRC_Block(buf, com_filesize); } // allocate a new model loadmodel = mod; // LordHavoc: unload the existing model in this slot (if there is one) Mod_UnloadModel(mod); mod->isworldmodel = isworldmodel; mod->needload = false; mod->used = true; mod->crc = crc; // all models use memory, so allocate a memory pool mod->mempool = Mem_AllocPool(mod->name); // all models load textures, so allocate a texture pool if (cls.state != ca_dedicated) mod->texturepool = R_AllocTexturePool(); // call the apropriate loader if (!memcmp(buf, "IDPO" , 4)) Mod_LoadAliasModel (mod, buf); else if (!memcmp(buf, "IDP2" , 4)) Mod_LoadQ2AliasModel(mod, buf); else if (!memcmp(buf, "ZYMOTIC" , 7)) Mod_LoadZymoticModel(mod, buf); else if (!memcmp(buf, "IDSP" , 4)) Mod_LoadSpriteModel (mod, buf); else Mod_LoadBrushModel (mod, buf); Mem_Free(buf); return mod; } void Mod_CheckLoaded (model_t *mod) { if (mod) { if (mod->needload) Mod_LoadModel(mod, true, true, mod->isworldmodel); else { if (mod->type == mod_invalid) Host_Error("Mod_CheckLoaded: invalid model\n"); mod->used = true; return; } } } /* =================== Mod_ClearAll =================== */ void Mod_ClearAll (void) { } void Mod_ClearUsed(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) mod->used = false; } void Mod_PurgeUnused(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) if (!mod->used) Mod_FreeModel(mod); } void Mod_LoadModels(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) if (mod->used) Mod_CheckLoaded(mod); } /* ================== Mod_FindName ================== */ model_t *Mod_FindName (const char *name) { int i; model_t *mod, *freemod; if (!name[0]) Host_Error ("Mod_ForName: NULL name"); // search the currently loaded models freemod = NULL; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) { if (mod->name[0]) { if (!strcmp (mod->name, name)) { mod->used = true; return mod; } } else if (freemod == NULL) freemod = mod; } if (freemod) { mod = freemod; strcpy (mod->name, name); mod->needload = true; mod->used = true; return mod; } Host_Error ("Mod_FindName: ran out of models\n"); return NULL; } /* ================== Mod_TouchModel ================== */ void Mod_TouchModel (const char *name) { model_t *mod; mod = Mod_FindName (name); mod->used = true; } /* ================== Mod_ForName Loads in a model for the given name ================== */ model_t *Mod_ForName (const char *name, qboolean crash, qboolean checkdisk, qboolean isworldmodel) { return Mod_LoadModel (Mod_FindName (name), crash, checkdisk, isworldmodel); } qbyte *mod_base; //============================================================================= /* ================ Mod_Print ================ */ static void Mod_Print (void) { int i; model_t *mod; Con_Printf ("Loaded models:\n"); for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) Con_Printf ("%4iK %s\n", mod->mempool ? (mod->mempool->totalsize + 1023) / 1024 : 0, mod->name); } static void Mod_Flush (void) { int i; Con_Printf ("Unloading models\n"); for (i = 0;i < MAX_MOD_KNOWN;i++) if (mod_known[i].name[0]) Mod_UnloadModel(&mod_known[i]); Mod_LoadModels(); } int Mod_FindTriangleWithEdge(const int *elements, int numtriangles, int start, int end) { int i; for (i = 0;i < numtriangles;i++, elements += 3) { if (elements[0] == start && elements[1] == end) return i; if (elements[1] == start && elements[2] == end) return i; if (elements[2] == start && elements[0] == end) return i; } return -1; } void Mod_BuildTriangleNeighbors(int *neighbors, const int *elements, int numtriangles) { int i, *n; const int *e; for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3) { n[0] = Mod_FindTriangleWithEdge(elements, numtriangles, e[1], e[0]); n[1] = Mod_FindTriangleWithEdge(elements, numtriangles, e[2], e[1]); n[2] = Mod_FindTriangleWithEdge(elements, numtriangles, e[0], e[2]); } } void Mod_ValidateElements(const int *elements, int numtriangles, int numverts, const char *filename, int fileline) { int i; for (i = 0;i < numtriangles * 3;i++) if ((unsigned int)elements[i] >= (unsigned int)numverts) Con_Printf("Mod_ValidateElements: out of bounds element detected at %s:%d\n", filename, fileline); } /* a note on the cost of executing this function: per triangle: 188 (83 42 13 45 4 1) assignments: 83 (20 3 3 3 1 4 4 1 3 4 3 4 30) adds: 42 (2 2 2 2 3 2 2 27) subtracts: 13 (3 3 3 1 3) multiplies: 45 (6 3 6 6 3 3 6 6 6) rsqrts: 4 (1 1 1 1) compares: 1 (1) per vertex: 39 (12 6 18 3) assignments: 12 (4 4 4) adds: 6 (2 2 2) multiplies: 18 (6 6 6) rsqrts: 3 (1 1 1) */ void Mod_BuildTextureVectorsAndNormals(int numverts, int numtriangles, const float *vertex, const float *texcoord, const int *elements, float *svectors, float *tvectors, float *normals) { int i, tnum, voffset; float vert[3][4], vec[3][4], sdir[3], tdir[3], normal[3], f, *v; const int *e; // clear the vectors memset(svectors, 0, numverts * sizeof(float[4])); memset(tvectors, 0, numverts * sizeof(float[4])); memset(normals, 0, numverts * sizeof(float[4])); // process each vertex of each triangle and accumulate the results for (tnum = 0, e = elements;tnum < numtriangles;tnum++, e += 3) { // calculate texture matrix for triangle // 20 assignments voffset = e[0] * 4; vert[0][0] = vertex[voffset+0]; vert[0][1] = vertex[voffset+1]; vert[0][2] = vertex[voffset+2]; vert[0][3] = texcoord[voffset]; voffset = e[1] * 4; vert[1][0] = vertex[voffset+0]; vert[1][1] = vertex[voffset+1]; vert[1][2] = vertex[voffset+2]; vert[1][3] = texcoord[voffset]; voffset = e[2] * 4; vert[2][0] = vertex[voffset+0]; vert[2][1] = vertex[voffset+1]; vert[2][2] = vertex[voffset+2]; vert[2][3] = texcoord[voffset]; // 3 assignments, 3 subtracts VectorSubtract(vert[1], vert[0], vec[0]); // 3 assignments, 3 subtracts VectorSubtract(vert[2], vert[0], vec[1]); // 3 assignments, 3 subtracts, 6 multiplies CrossProduct(vec[0], vec[1], normal); // 1 assignment, 2 adds, 3 multiplies, 1 compare if (DotProduct(normal, normal) >= 0.001) { // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(normal); sdir[0] = (vert[1][3] - vert[0][3]) * (vert[2][0] - vert[0][0]) - (vert[2][3] - vert[0][3]) * (vert[1][0] - vert[0][0]); sdir[1] = (vert[1][3] - vert[0][3]) * (vert[2][1] - vert[0][1]) - (vert[2][3] - vert[0][3]) * (vert[1][1] - vert[0][1]); sdir[2] = (vert[1][3] - vert[0][3]) * (vert[2][2] - vert[0][2]) - (vert[2][3] - vert[0][3]) * (vert[1][2] - vert[0][2]); // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(sdir); // 1 assignments, 1 negates, 2 adds, 3 multiplies f = -DotProduct(sdir, normal); // 3 assignments, 3 adds, 3 multiplies VectorMA(sdir, f, normal, sdir); // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(sdir); // 3 assignments, 3 subtracts, 6 multiplies CrossProduct(sdir, normal, tdir); // this is probably not necessary // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(tdir); // accumulate matrix onto verts used by triangle // 30 assignments, 27 adds for (i = 0;i < 3;i++) { voffset = e[i] * 4; svectors[voffset ] += sdir[0]; svectors[voffset + 1] += sdir[1]; svectors[voffset + 2] += sdir[2]; tvectors[voffset ] += tdir[0]; tvectors[voffset + 1] += tdir[1]; tvectors[voffset + 2] += tdir[2]; normals[voffset ] += normal[0]; normals[voffset + 1] += normal[1]; normals[voffset + 2] += normal[2]; } } } // now we could divide the vectors by the number of averaged values on // each vertex... but instead normalize them for (i = 0, v = svectors;i < numverts;i++, v += 4) // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(v); for (i = 0, v = tvectors;i < numverts;i++, v += 4) // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(v); for (i = 0, v = normals;i < numverts;i++, v += 4) // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(v); } shadowmesh_t *Mod_ShadowMesh_Alloc(mempool_t *mempool, int maxverts) { shadowmesh_t *mesh; #define ALLOCMESHINPIECES 0 #if ALLOCMESHINPIECES mesh = Mem_Alloc(mempool, sizeof(shadowmesh_t)); #else mesh = Mem_Alloc(mempool, sizeof(shadowmesh_t) + maxverts * sizeof(float[4]) + maxverts * sizeof(int[3]) + maxverts * sizeof(int[3])); #endif mesh->maxverts = maxverts; mesh->maxtriangles = maxverts; mesh->numverts = 0; mesh->numtriangles = 0; #if ALLOCMESHINPIECES mesh->verts = Mem_Alloc(mempool, maxverts * sizeof(float[4])); mesh->elements = Mem_Alloc(mempool, maxverts * sizeof(int[3])); mesh->neighbors = Mem_Alloc(mempool, maxverts * sizeof(int[3])); #else mesh->verts = (float *)(mesh + 1); mesh->elements = (int *)(mesh->verts + mesh->maxverts * 4); mesh->neighbors = (int *)(mesh->elements + mesh->maxtriangles * 3); #endif return mesh; } shadowmesh_t *Mod_ShadowMesh_ReAlloc(mempool_t *mempool, shadowmesh_t *oldmesh) { shadowmesh_t *newmesh; #if ALLOCMESHINPIECES newmesh = Mem_Alloc(mempool, sizeof(shadowmesh_t)); #else newmesh = Mem_Alloc(mempool, sizeof(shadowmesh_t) + oldmesh->numverts * sizeof(float[4]) + oldmesh->numtriangles * sizeof(int[3]) + oldmesh->numtriangles * sizeof(int[3])); #endif newmesh->maxverts = newmesh->numverts = oldmesh->numverts; newmesh->maxtriangles = newmesh->numtriangles = oldmesh->numtriangles; #if ALLOCMESHINPIECES newmesh->verts = Mem_Alloc(mempool, newmesh->maxverts * sizeof(float[4])); newmesh->elements = Mem_Alloc(mempool, newmesh->numtriangles * sizeof(int[3])); newmesh->neighbors = Mem_Alloc(mempool, newmesh->numtriangles * sizeof(int[3])); #else newmesh->verts = (float *)(newmesh + 1); newmesh->elements = (int *)(newmesh->verts + newmesh->maxverts * 4); newmesh->neighbors = (int *)(newmesh->elements + newmesh->maxtriangles * 3); #endif memcpy(newmesh->verts, oldmesh->verts, newmesh->numverts * sizeof(float[4])); memcpy(newmesh->elements, oldmesh->elements, newmesh->numtriangles * sizeof(int[3])); memcpy(newmesh->neighbors, oldmesh->neighbors, newmesh->numtriangles * sizeof(int[3])); return newmesh; } int Mod_ShadowMesh_AddVertex(shadowmesh_t *mesh, float *v) { int j; float *m, temp[3]; for (j = 0, m = mesh->verts;j < mesh->numverts;j++, m += 4) { VectorSubtract(v, m, temp); if (DotProduct(temp, temp) < 0.1) return j; } mesh->numverts++; VectorCopy(v, m); return j; } void Mod_ShadowMesh_AddTriangle(mempool_t *mempool, shadowmesh_t *mesh, float *vert0, float *vert1, float *vert2) { while (mesh->numverts + 3 > mesh->maxverts || mesh->numtriangles + 1 > mesh->maxtriangles) { if (mesh->next == NULL) mesh->next = Mod_ShadowMesh_Alloc(mempool, max(mesh->maxtriangles, 1)); mesh = mesh->next; } mesh->elements[mesh->numtriangles * 3 + 0] = Mod_ShadowMesh_AddVertex(mesh, vert0); mesh->elements[mesh->numtriangles * 3 + 1] = Mod_ShadowMesh_AddVertex(mesh, vert1); mesh->elements[mesh->numtriangles * 3 + 2] = Mod_ShadowMesh_AddVertex(mesh, vert2); mesh->numtriangles++; } void Mod_ShadowMesh_AddPolygon(mempool_t *mempool, shadowmesh_t *mesh, int numverts, float *verts) { int i; float *v; for (i = 0, v = verts + 3;i < numverts - 2;i++, v += 3) Mod_ShadowMesh_AddTriangle(mempool, mesh, verts, v, v + 3); /* int i, i1, i2, i3; float *v; while (mesh->numverts + numverts > mesh->maxverts || mesh->numtriangles + (numverts - 2) > mesh->maxtriangles) { if (mesh->next == NULL) mesh->next = Mod_ShadowMesh_Alloc(mempool, max(mesh->maxtriangles, numverts)); mesh = mesh->next; } i1 = Mod_ShadowMesh_AddVertex(mesh, verts); i2 = 0; i3 = Mod_ShadowMesh_AddVertex(mesh, verts + 3); for (i = 0, v = verts + 6;i < numverts - 2;i++, v += 3) { i2 = i3; i3 = Mod_ShadowMesh_AddVertex(mesh, v); mesh->elements[mesh->numtriangles * 3 + 0] = i1; mesh->elements[mesh->numtriangles * 3 + 1] = i2; mesh->elements[mesh->numtriangles * 3 + 2] = i3; mesh->numtriangles++; } */ } void Mod_ShadowMesh_AddMesh(mempool_t *mempool, shadowmesh_t *mesh, int numverts, float *verts, int numtris, int *elements) { int i; for (i = 0;i < numtris;i++, elements += 3) Mod_ShadowMesh_AddTriangle(mempool, mesh, verts + elements[0] * 4, verts + elements[1] * 4, verts + elements[2] * 4); } shadowmesh_t *Mod_ShadowMesh_Begin(mempool_t *mempool, int initialnumtriangles) { return Mod_ShadowMesh_Alloc(mempool, initialnumtriangles); } shadowmesh_t *Mod_ShadowMesh_Finish(mempool_t *mempool, shadowmesh_t *firstmesh) { #if 1 //int i; shadowmesh_t *mesh, *newmesh, *nextmesh; // reallocate meshs to conserve space for (mesh = firstmesh, firstmesh = NULL;mesh;mesh = nextmesh) { nextmesh = mesh->next; if (mesh->numverts >= 3 && mesh->numtriangles >= 1) { newmesh = Mod_ShadowMesh_ReAlloc(mempool, mesh); newmesh->next = firstmesh; firstmesh = newmesh; //Con_Printf("mesh\n"); //for (i = 0;i < newmesh->numtriangles;i++) // Con_Printf("tri %d %d %d\n", newmesh->elements[i * 3 + 0], newmesh->elements[i * 3 + 1], newmesh->elements[i * 3 + 2]); Mod_BuildTriangleNeighbors(newmesh->neighbors, newmesh->elements, newmesh->numtriangles); } Mem_Free(mesh); } #else shadowmesh_t *mesh; for (mesh = firstmesh;mesh;mesh = mesh->next) Mod_BuildTriangleNeighbors(mesh->neighbors, mesh->elements, mesh->numtriangles); #endif return firstmesh; } void Mod_ShadowMesh_CalcBBox(shadowmesh_t *firstmesh, vec3_t mins, vec3_t maxs, vec3_t center, float *radius) { int i; shadowmesh_t *mesh; vec3_t nmins, nmaxs, ncenter, temp; float nradius2, dist2, *v; // calculate bbox for (mesh = firstmesh;mesh;mesh = mesh->next) { if (mesh == firstmesh) { VectorCopy(mesh->verts, nmins); VectorCopy(mesh->verts, nmaxs); } for (i = 0, v = mesh->verts;i < mesh->numverts;i++, v += 4) { if (nmins[0] > v[0]) nmins[0] = v[0];if (nmaxs[0] < v[0]) nmaxs[0] = v[0]; if (nmins[1] > v[1]) nmins[1] = v[1];if (nmaxs[1] < v[1]) nmaxs[1] = v[1]; if (nmins[2] > v[2]) nmins[2] = v[2];if (nmaxs[2] < v[2]) nmaxs[2] = v[2]; } } // calculate center and radius ncenter[0] = (nmins[0] + nmaxs[0]) * 0.5f; ncenter[1] = (nmins[1] + nmaxs[1]) * 0.5f; ncenter[2] = (nmins[2] + nmaxs[2]) * 0.5f; nradius2 = 0; for (mesh = firstmesh;mesh;mesh = mesh->next) { for (i = 0, v = mesh->verts;i < mesh->numverts;i++, v += 4) { VectorSubtract(v, ncenter, temp); dist2 = DotProduct(temp, temp); if (nradius2 < dist2) nradius2 = dist2; } } // return data if (mins) VectorCopy(nmins, mins); if (maxs) VectorCopy(nmaxs, maxs); if (center) VectorCopy(ncenter, center); if (radius) *radius = sqrt(nradius2); } void Mod_ShadowMesh_Free(shadowmesh_t *mesh) { shadowmesh_t *nextmesh; for (;mesh;mesh = nextmesh) { nextmesh = mesh->next; #if ALLOCMESHINPIECES Mem_Free(mesh->verts); Mem_Free(mesh->elements); Mem_Free(mesh->neighbors); #endif Mem_Free(mesh); } }