/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // models.c -- model loading and caching // models are the only shared resource between a client and server running // on the same machine. #include "quakedef.h" #include "image.h" #include "r_shadow.h" model_t *loadmodel; // LordHavoc: increased from 512 to 2048 #define MAX_MOD_KNOWN 2048 static model_t mod_known[MAX_MOD_KNOWN]; rtexturepool_t *mod_shared_texturepool; rtexture_t *r_notexture; rtexture_t *mod_shared_detailtextures[NUM_DETAILTEXTURES]; void Mod_BuildDetailTextures (void) { int i, x, y, light; float vc[3], vx[3], vy[3], vn[3], lightdir[3]; #define DETAILRESOLUTION 256 qbyte data[DETAILRESOLUTION][DETAILRESOLUTION][4], noise[DETAILRESOLUTION][DETAILRESOLUTION]; lightdir[0] = 0.5; lightdir[1] = 1; lightdir[2] = -0.25; VectorNormalize(lightdir); for (i = 0;i < NUM_DETAILTEXTURES;i++) { fractalnoise(&noise[0][0], DETAILRESOLUTION, DETAILRESOLUTION >> 4); for (y = 0;y < DETAILRESOLUTION;y++) { for (x = 0;x < DETAILRESOLUTION;x++) { vc[0] = x; vc[1] = y; vc[2] = noise[y][x] * (1.0f / 32.0f); vx[0] = x + 1; vx[1] = y; vx[2] = noise[y][(x + 1) % DETAILRESOLUTION] * (1.0f / 32.0f); vy[0] = x; vy[1] = y + 1; vy[2] = noise[(y + 1) % DETAILRESOLUTION][x] * (1.0f / 32.0f); VectorSubtract(vx, vc, vx); VectorSubtract(vy, vc, vy); CrossProduct(vx, vy, vn); VectorNormalize(vn); light = 128 - DotProduct(vn, lightdir) * 128; light = bound(0, light, 255); data[y][x][0] = data[y][x][1] = data[y][x][2] = light; data[y][x][3] = 255; } } mod_shared_detailtextures[i] = R_LoadTexture2D(mod_shared_texturepool, va("detailtexture%i", i), DETAILRESOLUTION, DETAILRESOLUTION, &data[0][0][0], TEXTYPE_RGBA, TEXF_MIPMAP | TEXF_PRECACHE, NULL); } } texture_t r_surf_notexture; void Mod_SetupNoTexture(void) { int x, y; qbyte pix[16][16][4]; // this makes a light grey/dark grey checkerboard texture for (y = 0;y < 16;y++) { for (x = 0;x < 16;x++) { if ((y < 8) ^ (x < 8)) { pix[y][x][0] = 128; pix[y][x][1] = 128; pix[y][x][2] = 128; pix[y][x][3] = 255; } else { pix[y][x][0] = 64; pix[y][x][1] = 64; pix[y][x][2] = 64; pix[y][x][3] = 255; } } } r_notexture = R_LoadTexture2D(mod_shared_texturepool, "notexture", 16, 16, &pix[0][0][0], TEXTYPE_RGBA, TEXF_MIPMAP, NULL); } static void mod_start(void) { int i; for (i = 0;i < MAX_MOD_KNOWN;i++) if (mod_known[i].name[0]) Mod_UnloadModel(&mod_known[i]); Mod_LoadModels(); mod_shared_texturepool = R_AllocTexturePool(); Mod_SetupNoTexture(); Mod_BuildDetailTextures(); } static void mod_shutdown(void) { int i; for (i = 0;i < MAX_MOD_KNOWN;i++) if (mod_known[i].name[0]) Mod_UnloadModel(&mod_known[i]); R_FreeTexturePool(&mod_shared_texturepool); } static void mod_newmap(void) { } /* =============== Mod_Init =============== */ static void Mod_Print (void); void Mod_Init (void) { Mod_BrushInit(); Mod_AliasInit(); Mod_SpriteInit(); Cmd_AddCommand ("modellist", Mod_Print); } void Mod_RenderInit(void) { R_RegisterModule("Models", mod_start, mod_shutdown, mod_newmap); } void Mod_FreeModel (model_t *mod) { R_FreeTexturePool(&mod->texturepool); Mem_FreePool(&mod->mempool); // clear the struct to make it available memset(mod, 0, sizeof(model_t)); } void Mod_UnloadModel (model_t *mod) { char name[MAX_QPATH]; qboolean isworldmodel; strcpy(name, mod->name); isworldmodel = mod->isworldmodel; Mod_FreeModel(mod); strcpy(mod->name, name); mod->isworldmodel = isworldmodel; mod->needload = true; } /* ================== Mod_LoadModel Loads a model ================== */ static model_t *Mod_LoadModel (model_t *mod, qboolean crash, qboolean checkdisk, qboolean isworldmodel) { unsigned int crc; void *buf; mod->used = true; if (mod->name[0] == '*') // submodel return mod; crc = 0; buf = NULL; if (!mod->needload) { if (checkdisk) { buf = FS_LoadFile (mod->name, false); if (!buf) { if (crash) Host_Error ("Mod_LoadModel: %s not found", mod->name); // LordHavoc: Sys_Error was *ANNOYING* return NULL; } crc = CRC_Block(buf, fs_filesize); } else crc = mod->crc; if (mod->crc == crc && mod->isworldmodel == isworldmodel) { if (buf) Mem_Free(buf); return mod; // already loaded } } Con_DPrintf("loading model %s\n", mod->name); if (!buf) { buf = FS_LoadFile (mod->name, false); if (!buf) { if (crash) Host_Error ("Mod_LoadModel: %s not found", mod->name); return NULL; } crc = CRC_Block(buf, fs_filesize); } // allocate a new model loadmodel = mod; // LordHavoc: unload the existing model in this slot (if there is one) Mod_UnloadModel(mod); mod->isworldmodel = isworldmodel; mod->needload = false; mod->used = true; mod->crc = crc; // errors can prevent the corresponding mod->error = false; mod->error = true; // all models use memory, so allocate a memory pool mod->mempool = Mem_AllocPool(mod->name); // all models load textures, so allocate a texture pool if (cls.state != ca_dedicated) mod->texturepool = R_AllocTexturePool(); // call the apropriate loader if (!memcmp(buf, "IDPO" , 4)) Mod_LoadQ1AliasModel(mod, buf); else if (!memcmp(buf, "IDP2" , 4)) Mod_LoadQ2AliasModel(mod, buf); else if (!memcmp(buf, "IDP3" , 4)) Mod_LoadQ3AliasModel(mod, buf); else if (!memcmp(buf, "ZYMOTIC" , 7)) Mod_LoadZymoticModel(mod, buf); else if (!memcmp(buf, "IDSP" , 4)) Mod_LoadSpriteModel (mod, buf); else Mod_LoadBrushModel (mod, buf); Mem_Free(buf); // no errors occurred mod->error = false; return mod; } void Mod_CheckLoaded (model_t *mod) { if (mod) { if (mod->needload) Mod_LoadModel(mod, true, true, mod->isworldmodel); else { if (mod->type == mod_invalid) Host_Error("Mod_CheckLoaded: invalid model\n"); mod->used = true; return; } } } /* =================== Mod_ClearAll =================== */ void Mod_ClearAll (void) { } void Mod_ClearErrorModels (void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->error) Mod_FreeModel(mod); } void Mod_ClearUsed(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) mod->used = false; } void Mod_PurgeUnused(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) if (!mod->used) Mod_FreeModel(mod); } void Mod_LoadModels(void) { int i; model_t *mod; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) if (mod->used) Mod_CheckLoaded(mod); } /* ================== Mod_FindName ================== */ model_t *Mod_FindName (const char *name) { int i; model_t *mod, *freemod; if (!name[0]) Host_Error ("Mod_ForName: NULL name"); // search the currently loaded models freemod = NULL; for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) { if (mod->name[0]) { if (!strcmp (mod->name, name)) { mod->used = true; return mod; } } else if (freemod == NULL) freemod = mod; } if (freemod) { mod = freemod; strcpy (mod->name, name); mod->needload = true; mod->used = true; return mod; } Host_Error ("Mod_FindName: ran out of models\n"); return NULL; } /* ================== Mod_TouchModel ================== */ void Mod_TouchModel (const char *name) { model_t *mod; mod = Mod_FindName (name); mod->used = true; } /* ================== Mod_ForName Loads in a model for the given name ================== */ model_t *Mod_ForName (const char *name, qboolean crash, qboolean checkdisk, qboolean isworldmodel) { return Mod_LoadModel (Mod_FindName (name), crash, checkdisk, isworldmodel); } qbyte *mod_base; //============================================================================= /* ================ Mod_Print ================ */ static void Mod_Print (void) { int i; model_t *mod; Con_Printf ("Loaded models:\n"); for (i = 0, mod = mod_known;i < MAX_MOD_KNOWN;i++, mod++) if (mod->name[0]) Con_Printf ("%4iK %s\n", mod->mempool ? (mod->mempool->totalsize + 1023) / 1024 : 0, mod->name); } int Mod_FindTriangleWithEdge(const int *elements, int numtriangles, int start, int end, int ignore) { int i, match, count; count = 0; match = -1; for (i = 0;i < numtriangles;i++, elements += 3) { if ((elements[0] == start && elements[1] == end) || (elements[1] == start && elements[2] == end) || (elements[2] == start && elements[0] == end)) { if (i != ignore) match = i; count++; } else if ((elements[1] == start && elements[0] == end) || (elements[2] == start && elements[1] == end) || (elements[0] == start && elements[2] == end)) count++; } // detect edges shared by three triangles and make them seams if (count > 2) match = -1; return match; } void Mod_BuildTriangleNeighbors(int *neighbors, const int *elements, int numtriangles) { int i, *n; const int *e; for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3) { n[0] = Mod_FindTriangleWithEdge(elements, numtriangles, e[1], e[0], i); n[1] = Mod_FindTriangleWithEdge(elements, numtriangles, e[2], e[1], i); n[2] = Mod_FindTriangleWithEdge(elements, numtriangles, e[0], e[2], i); } } void Mod_ValidateElements(const int *elements, int numtriangles, int numverts, const char *filename, int fileline) { int i; for (i = 0;i < numtriangles * 3;i++) if ((unsigned int)elements[i] >= (unsigned int)numverts) Con_Printf("Mod_ValidateElements: out of bounds element detected at %s:%d\n", filename, fileline); } /* a note on the cost of executing this function: per triangle: 188 (83 42 13 45 4 1) assignments: 83 (20 3 3 3 1 4 4 1 3 4 3 4 30) adds: 42 (2 2 2 2 3 2 2 27) subtracts: 13 (3 3 3 1 3) multiplies: 45 (6 3 6 6 3 3 6 6 6) rsqrts: 4 (1 1 1 1) compares: 1 (1) per vertex: 39 (12 6 18 3) assignments: 12 (4 4 4) adds: 6 (2 2 2) multiplies: 18 (6 6 6) rsqrts: 3 (1 1 1) */ void Mod_BuildTextureVectorsAndNormals(int numverts, int numtriangles, const float *vertex3f, const float *texcoord2f, const int *elements, float *svector3f, float *tvector3f, float *normal3f) { int i, tnum, voffset; float vert[3][4], vec[3][4], sdir[3], tdir[3], normal[3], f, *v; const int *e; // clear the vectors memset(svector3f, 0, numverts * sizeof(float[3])); memset(tvector3f, 0, numverts * sizeof(float[3])); memset(normal3f, 0, numverts * sizeof(float[3])); // process each vertex of each triangle and accumulate the results for (tnum = 0, e = elements;tnum < numtriangles;tnum++, e += 3) { // calculate texture matrix for triangle // 20 assignments voffset = e[0]; vert[0][0] = vertex3f[voffset*3+0]; vert[0][1] = vertex3f[voffset*3+1]; vert[0][2] = vertex3f[voffset*3+2]; vert[0][3] = texcoord2f[voffset*2]; voffset = e[1]; vert[1][0] = vertex3f[voffset*3+0]; vert[1][1] = vertex3f[voffset*3+1]; vert[1][2] = vertex3f[voffset*3+2]; vert[1][3] = texcoord2f[voffset*2]; voffset = e[2]; vert[2][0] = vertex3f[voffset*3+0]; vert[2][1] = vertex3f[voffset*3+1]; vert[2][2] = vertex3f[voffset*3+2]; vert[2][3] = texcoord2f[voffset*2]; // 3 assignments, 3 subtracts VectorSubtract(vert[1], vert[0], vec[0]); // 3 assignments, 3 subtracts VectorSubtract(vert[2], vert[0], vec[1]); // 3 assignments, 3 subtracts, 6 multiplies CrossProduct(vec[0], vec[1], normal); // 1 assignment, 2 adds, 3 multiplies, 1 compare if (DotProduct(normal, normal) >= 0.001) { // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(normal); tdir[0] = ((vert[1][3] - vert[0][3]) * (vert[2][0] - vert[0][0]) - (vert[2][3] - vert[0][3]) * (vert[1][0] - vert[0][0])); tdir[1] = ((vert[1][3] - vert[0][3]) * (vert[2][1] - vert[0][1]) - (vert[2][3] - vert[0][3]) * (vert[1][1] - vert[0][1])); tdir[2] = ((vert[1][3] - vert[0][3]) * (vert[2][2] - vert[0][2]) - (vert[2][3] - vert[0][3]) * (vert[1][2] - vert[0][2])); // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(tdir); // 1 assignments, 1 negates, 2 adds, 3 multiplies f = -DotProduct(tdir, normal); // 3 assignments, 3 adds, 3 multiplies VectorMA(tdir, f, normal, tdir); // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(tdir); // 3 assignments, 3 subtracts, 6 multiplies CrossProduct(tdir, normal, sdir); // this is probably not necessary // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(sdir); // VectorNegate(sdir, sdir); // accumulate matrix onto verts used by triangle // 30 assignments, 27 adds for (i = 0;i < 3;i++) { voffset = e[i]; svector3f[voffset*3 ] += sdir[0]; svector3f[voffset*3+1] += sdir[1]; svector3f[voffset*3+2] += sdir[2]; tvector3f[voffset*3 ] += tdir[0]; tvector3f[voffset*3+1] += tdir[1]; tvector3f[voffset*3+2] += tdir[2]; normal3f[voffset*3 ] += normal[0]; normal3f[voffset*3+1] += normal[1]; normal3f[voffset*3+2] += normal[2]; } } } // now we could divide the vectors by the number of averaged values on // each vertex... but instead normalize them for (i = 0, v = svector3f;i < numverts;i++, v += 3) // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(v); for (i = 0, v = tvector3f;i < numverts;i++, v += 3) // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(v); for (i = 0, v = normal3f;i < numverts;i++, v += 3) // 4 assignments, 1 rsqrt, 2 adds, 6 multiplies VectorNormalize(v); } shadowmesh_t *Mod_ShadowMesh_Alloc(mempool_t *mempool, int maxverts) { shadowmesh_t *mesh; mesh = Mem_Alloc(mempool, sizeof(shadowmesh_t) + maxverts * sizeof(float[3]) + maxverts * sizeof(int[3]) + maxverts * sizeof(int[3]) + SHADOWMESHVERTEXHASH * sizeof(shadowmeshvertexhash_t *) + maxverts * sizeof(shadowmeshvertexhash_t)); mesh->maxverts = maxverts; mesh->maxtriangles = maxverts; mesh->numverts = 0; mesh->numtriangles = 0; mesh->vertex3f = (float *)(mesh + 1); mesh->element3i = (int *)(mesh->vertex3f + mesh->maxverts * 3); mesh->neighbor3i = (int *)(mesh->element3i + mesh->maxtriangles * 3); mesh->vertexhashtable = (shadowmeshvertexhash_t **)(mesh->neighbor3i + mesh->maxtriangles * 3); mesh->vertexhashentries = (shadowmeshvertexhash_t *)(mesh->vertexhashtable + SHADOWMESHVERTEXHASH); return mesh; } shadowmesh_t *Mod_ShadowMesh_ReAlloc(mempool_t *mempool, shadowmesh_t *oldmesh) { shadowmesh_t *newmesh; newmesh = Mem_Alloc(mempool, sizeof(shadowmesh_t) + oldmesh->numverts * sizeof(float[3]) + oldmesh->numtriangles * sizeof(int[3]) + oldmesh->numtriangles * sizeof(int[3])); newmesh->maxverts = newmesh->numverts = oldmesh->numverts; newmesh->maxtriangles = newmesh->numtriangles = oldmesh->numtriangles; newmesh->vertex3f = (float *)(newmesh + 1); newmesh->element3i = (int *)(newmesh->vertex3f + newmesh->maxverts * 3); newmesh->neighbor3i = (int *)(newmesh->element3i + newmesh->maxtriangles * 3); memcpy(newmesh->vertex3f, oldmesh->vertex3f, newmesh->numverts * sizeof(float[3])); memcpy(newmesh->element3i, oldmesh->element3i, newmesh->numtriangles * sizeof(int[3])); memcpy(newmesh->neighbor3i, oldmesh->neighbor3i, newmesh->numtriangles * sizeof(int[3])); return newmesh; } int Mod_ShadowMesh_AddVertex(shadowmesh_t *mesh, float *v) { int hashindex; float *m; shadowmeshvertexhash_t *hash; // this uses prime numbers intentionally hashindex = (int) (v[0] * 3 + v[1] * 5 + v[2] * 7) % SHADOWMESHVERTEXHASH; for (hash = mesh->vertexhashtable[hashindex];hash;hash = hash->next) { m = mesh->vertex3f + (hash - mesh->vertexhashentries) * 3; if (m[0] == v[0] && m[1] == v[1] && m[2] == v[2]) return hash - mesh->vertexhashentries; } hash = mesh->vertexhashentries + mesh->numverts; hash->next = mesh->vertexhashtable[hashindex]; mesh->vertexhashtable[hashindex] = hash; m = mesh->vertex3f + (hash - mesh->vertexhashentries) * 3; VectorCopy(v, m); mesh->numverts++; return mesh->numverts - 1; } void Mod_ShadowMesh_AddTriangle(mempool_t *mempool, shadowmesh_t *mesh, float *vert0, float *vert1, float *vert2) { while (mesh->numverts + 3 > mesh->maxverts || mesh->numtriangles + 1 > mesh->maxtriangles) { if (mesh->next == NULL) mesh->next = Mod_ShadowMesh_Alloc(mempool, max(mesh->maxtriangles, 1)); mesh = mesh->next; } mesh->element3i[mesh->numtriangles * 3 + 0] = Mod_ShadowMesh_AddVertex(mesh, vert0); mesh->element3i[mesh->numtriangles * 3 + 1] = Mod_ShadowMesh_AddVertex(mesh, vert1); mesh->element3i[mesh->numtriangles * 3 + 2] = Mod_ShadowMesh_AddVertex(mesh, vert2); mesh->numtriangles++; } void Mod_ShadowMesh_AddPolygon(mempool_t *mempool, shadowmesh_t *mesh, int numverts, float *verts) { int i; float *v; for (i = 0, v = verts + 3;i < numverts - 2;i++, v += 3) Mod_ShadowMesh_AddTriangle(mempool, mesh, verts, v, v + 3); /* int i, i1, i2, i3; float *v; while (mesh->numverts + numverts > mesh->maxverts || mesh->numtriangles + (numverts - 2) > mesh->maxtriangles) { if (mesh->next == NULL) mesh->next = Mod_ShadowMesh_Alloc(mempool, max(mesh->maxtriangles, numverts)); mesh = mesh->next; } i1 = Mod_ShadowMesh_AddVertex(mesh, verts); i2 = 0; i3 = Mod_ShadowMesh_AddVertex(mesh, verts + 3); for (i = 0, v = verts + 6;i < numverts - 2;i++, v += 3) { i2 = i3; i3 = Mod_ShadowMesh_AddVertex(mesh, v); mesh->elements[mesh->numtriangles * 3 + 0] = i1; mesh->elements[mesh->numtriangles * 3 + 1] = i2; mesh->elements[mesh->numtriangles * 3 + 2] = i3; mesh->numtriangles++; } */ } void Mod_ShadowMesh_AddMesh(mempool_t *mempool, shadowmesh_t *mesh, int numverts, float *verts, int numtris, int *elements) { int i; for (i = 0;i < numtris;i++, elements += 3) Mod_ShadowMesh_AddTriangle(mempool, mesh, verts + elements[0] * 3, verts + elements[1] * 3, verts + elements[2] * 3); } shadowmesh_t *Mod_ShadowMesh_Begin(mempool_t *mempool, int initialnumtriangles) { return Mod_ShadowMesh_Alloc(mempool, initialnumtriangles); } shadowmesh_t *Mod_ShadowMesh_Finish(mempool_t *mempool, shadowmesh_t *firstmesh) { #if 1 //int i; shadowmesh_t *mesh, *newmesh, *nextmesh; // reallocate meshs to conserve space for (mesh = firstmesh, firstmesh = NULL;mesh;mesh = nextmesh) { nextmesh = mesh->next; if (mesh->numverts >= 3 && mesh->numtriangles >= 1) { newmesh = Mod_ShadowMesh_ReAlloc(mempool, mesh); newmesh->next = firstmesh; firstmesh = newmesh; //Con_Printf("mesh\n"); //for (i = 0;i < newmesh->numtriangles;i++) // Con_Printf("tri %d %d %d\n", newmesh->elements[i * 3 + 0], newmesh->elements[i * 3 + 1], newmesh->elements[i * 3 + 2]); Mod_ValidateElements(newmesh->element3i, newmesh->numtriangles, newmesh->numverts, __FILE__, __LINE__); Mod_BuildTriangleNeighbors(newmesh->neighbor3i, newmesh->element3i, newmesh->numtriangles); } Mem_Free(mesh); } #else shadowmesh_t *mesh; for (mesh = firstmesh;mesh;mesh = mesh->next) { Mod_ValidateElements(mesh->elements, mesh->numtriangles, mesh->numverts, __FILE__, __LINE__); Mod_BuildTriangleNeighbors(mesh->neighbors, mesh->elements, mesh->numtriangles); } #endif return firstmesh; } void Mod_ShadowMesh_CalcBBox(shadowmesh_t *firstmesh, vec3_t mins, vec3_t maxs, vec3_t center, float *radius) { int i; shadowmesh_t *mesh; vec3_t nmins, nmaxs, ncenter, temp; float nradius2, dist2, *v; // calculate bbox for (mesh = firstmesh;mesh;mesh = mesh->next) { if (mesh == firstmesh) { VectorCopy(mesh->vertex3f, nmins); VectorCopy(mesh->vertex3f, nmaxs); } for (i = 0, v = mesh->vertex3f;i < mesh->numverts;i++, v += 3) { if (nmins[0] > v[0]) nmins[0] = v[0];if (nmaxs[0] < v[0]) nmaxs[0] = v[0]; if (nmins[1] > v[1]) nmins[1] = v[1];if (nmaxs[1] < v[1]) nmaxs[1] = v[1]; if (nmins[2] > v[2]) nmins[2] = v[2];if (nmaxs[2] < v[2]) nmaxs[2] = v[2]; } } // calculate center and radius ncenter[0] = (nmins[0] + nmaxs[0]) * 0.5f; ncenter[1] = (nmins[1] + nmaxs[1]) * 0.5f; ncenter[2] = (nmins[2] + nmaxs[2]) * 0.5f; nradius2 = 0; for (mesh = firstmesh;mesh;mesh = mesh->next) { for (i = 0, v = mesh->vertex3f;i < mesh->numverts;i++, v += 3) { VectorSubtract(v, ncenter, temp); dist2 = DotProduct(temp, temp); if (nradius2 < dist2) nradius2 = dist2; } } // return data if (mins) VectorCopy(nmins, mins); if (maxs) VectorCopy(nmaxs, maxs); if (center) VectorCopy(ncenter, center); if (radius) *radius = sqrt(nradius2); } void Mod_ShadowMesh_Free(shadowmesh_t *mesh) { shadowmesh_t *nextmesh; for (;mesh;mesh = nextmesh) { nextmesh = mesh->next; Mem_Free(mesh); } } static rtexture_t *GL_TextureForSkinLayer(const qbyte *in, int width, int height, const char *name, const unsigned int *palette, int textureflags) { int i; for (i = 0;i < width*height;i++) if (((qbyte *)&palette[in[i]])[3] > 0) return R_LoadTexture2D (loadmodel->texturepool, name, width, height, in, TEXTYPE_PALETTE, textureflags, palette); return NULL; } static int detailtexturecycle = 0; int Mod_LoadSkinFrame (skinframe_t *skinframe, char *basename, int textureflags, int loadpantsandshirt, int usedetailtexture, int loadglowtexture) { imageskin_t s; memset(skinframe, 0, sizeof(*skinframe)); if (!image_loadskin(&s, basename)) return false; if (usedetailtexture) skinframe->detail = mod_shared_detailtextures[(detailtexturecycle++) % NUM_DETAILTEXTURES]; skinframe->base = R_LoadTexture2D (loadmodel->texturepool, basename, s.basepixels_width, s.basepixels_height, s.basepixels, TEXTYPE_RGBA, textureflags, NULL); if (s.nmappixels != NULL) skinframe->nmap = R_LoadTexture2D (loadmodel->texturepool, va("%s_nmap", basename), s.basepixels_width, s.basepixels_height, s.nmappixels, TEXTYPE_RGBA, textureflags, NULL); if (s.glosspixels != NULL) skinframe->gloss = R_LoadTexture2D (loadmodel->texturepool, va("%s_gloss", basename), s.glosspixels_width, s.glosspixels_height, s.glosspixels, TEXTYPE_RGBA, textureflags, NULL); if (s.glowpixels != NULL && loadglowtexture) skinframe->glow = R_LoadTexture2D (loadmodel->texturepool, va("%s_glow", basename), s.glowpixels_width, s.glowpixels_height, s.glowpixels, TEXTYPE_RGBA, textureflags, NULL); if (s.maskpixels != NULL) skinframe->fog = R_LoadTexture2D (loadmodel->texturepool, va("%s_mask", basename), s.maskpixels_width, s.maskpixels_height, s.maskpixels, TEXTYPE_RGBA, textureflags, NULL); if (loadpantsandshirt) { if (s.pantspixels != NULL) skinframe->pants = R_LoadTexture2D (loadmodel->texturepool, va("%s_pants", basename), s.pantspixels_width, s.pantspixels_height, s.pantspixels, TEXTYPE_RGBA, textureflags, NULL); if (s.shirtpixels != NULL) skinframe->shirt = R_LoadTexture2D (loadmodel->texturepool, va("%s_shirt", basename), s.shirtpixels_width, s.shirtpixels_height, s.shirtpixels, TEXTYPE_RGBA, textureflags, NULL); } image_freeskin(&s); return true; } int Mod_LoadSkinFrame_Internal (skinframe_t *skinframe, char *basename, int textureflags, int loadpantsandshirt, int usedetailtexture, int loadglowtexture, qbyte *skindata, int width, int height) { qbyte *temp1, *temp2; memset(skinframe, 0, sizeof(*skinframe)); if (!skindata) return false; if (usedetailtexture) skinframe->detail = mod_shared_detailtextures[(detailtexturecycle++) % NUM_DETAILTEXTURES]; if (r_shadow_bumpscale_basetexture.value > 0) { temp1 = Mem_Alloc(loadmodel->mempool, width * height * 8); temp2 = temp1 + width * height * 4; Image_Copy8bitRGBA(skindata, temp1, width * height, palette_nofullbrights); Image_HeightmapToNormalmap(temp1, temp2, width, height, false, r_shadow_bumpscale_basetexture.value); skinframe->nmap = R_LoadTexture2D(loadmodel->texturepool, va("%s_nmap", basename), width, height, temp2, TEXTYPE_RGBA, textureflags, NULL); Mem_Free(temp1); } if (loadglowtexture) { skinframe->glow = GL_TextureForSkinLayer(skindata, width, height, va("%s_glow", basename), palette_onlyfullbrights, textureflags); // glow skinframe->base = skinframe->merged = GL_TextureForSkinLayer(skindata, width, height, va("%s_merged", basename), palette_nofullbrights, textureflags); // all but fullbrights if (loadpantsandshirt) { skinframe->pants = GL_TextureForSkinLayer(skindata, width, height, va("%s_pants", basename), palette_pantsaswhite, textureflags); // pants skinframe->shirt = GL_TextureForSkinLayer(skindata, width, height, va("%s_shirt", basename), palette_shirtaswhite, textureflags); // shirt if (skinframe->pants || skinframe->shirt) skinframe->base = GL_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", basename), palette_nocolormapnofullbrights, textureflags); // no special colors } } else { skinframe->base = skinframe->merged = GL_TextureForSkinLayer(skindata, width, height, va("%s_merged", basename), palette_complete, textureflags); // all if (loadpantsandshirt) { skinframe->pants = GL_TextureForSkinLayer(skindata, width, height, va("%s_pants", basename), palette_pantsaswhite, textureflags); // pants skinframe->shirt = GL_TextureForSkinLayer(skindata, width, height, va("%s_shirt", basename), palette_shirtaswhite, textureflags); // shirt if (skinframe->pants || skinframe->shirt) skinframe->base = GL_TextureForSkinLayer(skindata, width, height, va("%s_nospecial", basename), palette_nocolormap, textureflags); // no pants or shirt } } return true; }