/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_light.c #include "quakedef.h" #include "cl_collision.h" #include "r_shadow.h" dlight_t r_dlight[MAX_DLIGHTS]; int r_numdlights = 0; cvar_t r_modellights = {CVAR_SAVE, "r_modellights", "4"}; cvar_t r_vismarklights = {0, "r_vismarklights", "1"}; cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "1"}; cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0"}; static rtexture_t *lightcorona; static rtexturepool_t *lighttexturepool; void r_light_start(void) { float dx, dy; int x, y, a; qbyte pixels[32][32][4]; lighttexturepool = R_AllocTexturePool(); for (y = 0;y < 32;y++) { dy = (y - 15.5f) * (1.0f / 16.0f); for (x = 0;x < 32;x++) { dx = (x - 15.5f) * (1.0f / 16.0f); a = ((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)); a = bound(0, a, 255); pixels[y][x][0] = a; pixels[y][x][1] = a; pixels[y][x][2] = a; pixels[y][x][3] = 255; } } lightcorona = R_LoadTexture2D(lighttexturepool, "lightcorona", 32, 32, &pixels[0][0][0], TEXTYPE_RGBA, TEXF_PRECACHE, NULL); } void r_light_shutdown(void) { lighttexturepool = NULL; lightcorona = NULL; } void r_light_newmap(void) { int i; for (i = 0;i < 256;i++) d_lightstylevalue[i] = 264; // normal light value } void R_Light_Init(void) { Cvar_RegisterVariable(&r_modellights); Cvar_RegisterVariable(&r_vismarklights); Cvar_RegisterVariable(&r_coronas); Cvar_RegisterVariable(&gl_flashblend); R_RegisterModule("R_Light", r_light_start, r_light_shutdown, r_light_newmap); } /* ================== R_UpdateLights ================== */ void R_UpdateLights(void) { float frac; int i, j, k, l; // light animations // 'm' is normal light, 'a' is no light, 'z' is double bright i = (int)(cl.time * 10); frac = (cl.time * 10) - i; for (j = 0;j < MAX_LIGHTSTYLES;j++) { if (!cl_lightstyle || !cl_lightstyle[j].length) { d_lightstylevalue[j] = 256; continue; } k = i % cl_lightstyle[j].length; l = (i-1) % cl_lightstyle[j].length; k = cl_lightstyle[j].map[k] - 'a'; l = cl_lightstyle[j].map[l] - 'a'; d_lightstylevalue[j] = ((k*frac)+(l*(1-frac)))*22; } r_numdlights = 0; c_dlights = 0; if (!r_dynamic.integer || !cl_dlights) return; // TODO: optimize to not scan whole cl_dlights array if possible for (i = 0;i < MAX_DLIGHTS;i++) { if (cl_dlights[i].radius > 0) { R_RTLight_UpdateFromDLight(&cl_dlights[i].rtlight, &cl_dlights[i], false); // FIXME: use pointer instead of copy r_dlight[r_numdlights++] = cl_dlights[i]; c_dlights++; // count every dlight in use } } } void R_DrawCoronas(void) { int i, lnum, flag; float cscale, scale, viewdist, dist; dlight_t *light; if (r_coronas.value < 0.01) return; R_Mesh_Matrix(&r_identitymatrix); viewdist = DotProduct(r_vieworigin, r_viewforward); flag = r_rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE; for (lnum = 0, light = r_shadow_worldlightchain;light;light = light->next, lnum++) { if ((light->flags & flag) && light->corona * r_coronas.value > 0 && (r_shadow_debuglight.integer < 0 || r_shadow_debuglight.integer == lnum) && (dist = (DotProduct(light->rtlight.shadoworigin, r_viewforward) - viewdist)) >= 24.0f && CL_TraceLine(light->rtlight.shadoworigin, r_vieworigin, NULL, NULL, true, NULL, SUPERCONTENTS_SOLID) == 1) { cscale = light->rtlight.corona * r_coronas.value * 0.25f; scale = light->rtlight.radius * light->rtlight.coronasizescale; R_DrawSprite(GL_ONE, GL_ONE, lightcorona, true, light->rtlight.shadoworigin, r_viewright, r_viewup, scale, -scale, -scale, scale, light->rtlight.color[0] * cscale, light->rtlight.color[1] * cscale, light->rtlight.color[2] * cscale, 1); } } for (i = 0, light = r_dlight;i < r_numdlights;i++, light++) { if ((light->flags & flag) && light->corona * r_coronas.value > 0 && (dist = (DotProduct(light->origin, r_viewforward) - viewdist)) >= 24.0f && CL_TraceLine(light->origin, r_vieworigin, NULL, NULL, true, NULL, SUPERCONTENTS_SOLID) == 1) { cscale = light->corona * r_coronas.value * 0.25f; scale = light->rtlight.radius * light->rtlight.coronasizescale; if (gl_flashblend.integer) { cscale *= 4.0f; scale *= 2.0f; } R_DrawSprite(GL_ONE, GL_ONE, lightcorona, true, light->origin, r_viewright, r_viewup, scale, -scale, -scale, scale, light->color[0] * cscale, light->color[1] * cscale, light->color[2] * cscale, 1); } } } /* ============================================================================= LIGHT SAMPLING ============================================================================= */ void R_CompleteLightPoint(vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal, const vec3_t p, int dynamic) { VectorClear(diffusecolor); VectorClear(diffusenormal); if (!r_fullbright.integer && r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint) { ambientcolor[0] = ambientcolor[1] = ambientcolor[2] = r_ambient.value * (2.0f / 128.0f); r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, p, ambientcolor, diffusecolor, diffusenormal); } else VectorSet(ambientcolor, 1, 1, 1); // FIXME: this .lights related stuff needs to be ported into the Mod_Q1BSP code if (r_refdef.worldmodel->brushq1.numlights) { int i; vec3_t v; float f; mlight_t *sl; for (i = 0;i < r_refdef.worldmodel->brushq1.numlights;i++) { sl = r_refdef.worldmodel->brushq1.lights + i; if (d_lightstylevalue[sl->style] > 0) { VectorSubtract (p, sl->origin, v); f = ((1.0f / (DotProduct(v, v) * sl->falloff + sl->distbias)) - sl->subtract); if (f > 0 && CL_TraceLine(p, sl->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1) { f *= d_lightstylevalue[sl->style] * (1.0f / 65536.0f); VectorMA(ambientcolor, f, sl->light, ambientcolor); } } } } if (dynamic) { int i; float f, v[3]; dlight_t *light; // FIXME: this really should handle dlights as diffusecolor/diffusenormal somehow for (i = 0;i < r_numdlights;i++) { light = r_dlight + i; VectorSubtract(p, light->origin, v); f = DotProduct(v, v); if (f < light->rtlight.lightmap_cullradius2 && CL_TraceLine(p, light->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1) { f = (1.0f / (f + LIGHTOFFSET)) - light->rtlight.lightmap_subtract; VectorMA(ambientcolor, f, light->rtlight.lightmap_light, ambientcolor); } } } } typedef struct { vec3_t origin; //vec_t cullradius2; vec3_t light; // how much this light would contribute to ambient if replaced vec3_t ambientlight; vec_t subtract; vec_t falloff; vec_t offset; // used for choosing only the brightest lights vec_t intensity; } nearlight_t; static int nearlights; static nearlight_t nearlight[MAX_DLIGHTS]; int R_LightModel(float *ambient4f, float *diffusecolor, float *diffusenormal, const entity_render_t *ent, float colorr, float colorg, float colorb, float colora, int worldcoords) { int i, j, maxnearlights; float v[3], f, mscale, stylescale, intensity, ambientcolor[3], tempdiffusenormal[3]; nearlight_t *nl; mlight_t *sl; dlight_t *light; nearlights = 0; maxnearlights = r_modellights.integer; ambient4f[0] = ambient4f[1] = ambient4f[2] = r_ambient.value * (2.0f / 128.0f); VectorClear(diffusecolor); VectorClear(diffusenormal); if (!(ent->flags & RENDER_LIGHT)) { // highly rare VectorSet(ambient4f, 1, 1, 1); maxnearlights = 0; } else if (r_lightmapintensity <= 0 && !(ent->flags & RENDER_TRANSPARENT)) maxnearlights = 0; else { if (r_refdef.worldmodel && r_refdef.worldmodel->brush.LightPoint) { r_refdef.worldmodel->brush.LightPoint(r_refdef.worldmodel, ent->origin, ambient4f, diffusecolor, tempdiffusenormal); Matrix4x4_Transform3x3(&ent->inversematrix, tempdiffusenormal, diffusenormal); VectorNormalize(diffusenormal); } else VectorSet(ambient4f, 1, 1, 1); } // scale of the model's coordinate space, to alter light attenuation to match // make the mscale squared so it can scale the squared distance results mscale = ent->scale * ent->scale; // FIXME: no support for .lights on non-Q1BSP? nl = &nearlight[0]; for (i = 0;i < ent->numentlights;i++) { sl = r_refdef.worldmodel->brushq1.lights + ent->entlights[i]; stylescale = d_lightstylevalue[sl->style] * (1.0f / 65536.0f); VectorSubtract (ent->origin, sl->origin, v); f = ((1.0f / (DotProduct(v, v) * sl->falloff + sl->distbias)) - sl->subtract) * stylescale; VectorScale(sl->light, f, ambientcolor); intensity = DotProduct(ambientcolor, ambientcolor); if (f < 0) intensity *= -1.0f; if (nearlights < maxnearlights) j = nearlights++; else { for (j = 0;j < maxnearlights;j++) { if (nearlight[j].intensity < intensity) { if (nearlight[j].intensity > 0) VectorAdd(ambient4f, nearlight[j].ambientlight, ambient4f); break; } } } if (j >= maxnearlights) { // this light is less significant than all others, // add it to ambient if (intensity > 0) VectorAdd(ambient4f, ambientcolor, ambient4f); } else { nl = nearlight + j; nl->intensity = intensity; // transform the light into the model's coordinate system if (worldcoords) VectorCopy(sl->origin, nl->origin); else Matrix4x4_Transform(&ent->inversematrix, sl->origin, nl->origin); // integrate mscale into falloff, for maximum speed nl->falloff = sl->falloff * mscale; VectorCopy(ambientcolor, nl->ambientlight); nl->light[0] = sl->light[0] * stylescale * colorr * 4.0f; nl->light[1] = sl->light[1] * stylescale * colorg * 4.0f; nl->light[2] = sl->light[2] * stylescale * colorb * 4.0f; nl->subtract = sl->subtract; nl->offset = sl->distbias; } } if (!r_rtdlight || (ent->flags & RENDER_TRANSPARENT)) { // FIXME: this dlighting doesn't look like rtlights for (i = 0;i < r_numdlights;i++) { light = r_dlight + i; VectorCopy(light->origin, v); if (v[0] < ent->mins[0]) v[0] = ent->mins[0];if (v[0] > ent->maxs[0]) v[0] = ent->maxs[0]; if (v[1] < ent->mins[1]) v[1] = ent->mins[1];if (v[1] > ent->maxs[1]) v[1] = ent->maxs[1]; if (v[2] < ent->mins[2]) v[2] = ent->mins[2];if (v[2] > ent->maxs[2]) v[2] = ent->maxs[2]; VectorSubtract (v, light->origin, v); if (DotProduct(v, v) < light->rtlight.lightmap_cullradius2) { if (CL_TraceLine(ent->origin, light->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) != 1) continue; VectorSubtract (ent->origin, light->origin, v); f = ((1.0f / (DotProduct(v, v) + LIGHTOFFSET)) - light->rtlight.lightmap_subtract); VectorScale(light->rtlight.lightmap_light, f, ambientcolor); intensity = DotProduct(ambientcolor, ambientcolor); if (f < 0) intensity *= -1.0f; if (nearlights < maxnearlights) j = nearlights++; else { for (j = 0;j < maxnearlights;j++) { if (nearlight[j].intensity < intensity) { if (nearlight[j].intensity > 0) VectorAdd(ambient4f, nearlight[j].ambientlight, ambient4f); break; } } } if (j >= maxnearlights) { // this light is less significant than all others, // add it to ambient if (intensity > 0) VectorAdd(ambient4f, ambientcolor, ambient4f); } else { nl = nearlight + j; nl->intensity = intensity; // transform the light into the model's coordinate system if (worldcoords) VectorCopy(light->origin, nl->origin); else { Matrix4x4_Transform(&ent->inversematrix, light->origin, nl->origin); /* Con_Printf("%i %s : %f %f %f : %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n%f %f %f %f\n" , rd - r_dlight, ent->model->name , light->origin[0], light->origin[1], light->origin[2] , nl->origin[0], nl->origin[1], nl->origin[2] , ent->inversematrix.m[0][0], ent->inversematrix.m[0][1], ent->inversematrix.m[0][2], ent->inversematrix.m[0][3] , ent->inversematrix.m[1][0], ent->inversematrix.m[1][1], ent->inversematrix.m[1][2], ent->inversematrix.m[1][3] , ent->inversematrix.m[2][0], ent->inversematrix.m[2][1], ent->inversematrix.m[2][2], ent->inversematrix.m[2][3] , ent->inversematrix.m[3][0], ent->inversematrix.m[3][1], ent->inversematrix.m[3][2], ent->inversematrix.m[3][3]); */ } // integrate mscale into falloff, for maximum speed nl->falloff = mscale; VectorCopy(ambientcolor, nl->ambientlight); nl->light[0] = light->rtlight.lightmap_light[0] * colorr * 4.0f; nl->light[1] = light->rtlight.lightmap_light[1] * colorg * 4.0f; nl->light[2] = light->rtlight.lightmap_light[2] * colorb * 4.0f; nl->subtract = light->rtlight.lightmap_subtract; nl->offset = LIGHTOFFSET; } } } } ambient4f[0] *= colorr; ambient4f[1] *= colorg; ambient4f[2] *= colorb; ambient4f[3] = colora; diffusecolor[0] *= colorr; diffusecolor[1] *= colorg; diffusecolor[2] *= colorb; return nearlights != 0 || DotProduct(diffusecolor, diffusecolor) > 0; } void R_LightModel_CalcVertexColors(const float *ambientcolor4f, const float *diffusecolor, const float *diffusenormal, int numverts, const float *vertex3f, const float *normal3f, float *color4f) { int i, j, usediffuse; float color[4], v[3], dot, dist2, f, dnormal[3]; nearlight_t *nl; usediffuse = DotProduct(diffusecolor, diffusecolor) > 0; // negate the diffuse normal to avoid the need to negate the // dotproduct on each vertex VectorNegate(diffusenormal, dnormal); if (usediffuse) VectorNormalize(dnormal); // directional shading code here for (i = 0;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4) { VectorCopy4(ambientcolor4f, color); // silly directional diffuse shading if (usediffuse) { dot = DotProduct(normal3f, dnormal); if (dot > 0) VectorMA(color, dot, diffusecolor, color); } // pretty good lighting for (j = 0, nl = &nearlight[0];j < nearlights;j++, nl++) { VectorSubtract(nl->origin, vertex3f, v); // first eliminate negative lighting (back side) dot = DotProduct(normal3f, v); if (dot > 0) { // we'll need this again later to normalize the dotproduct dist2 = DotProduct(v,v); // do the distance attenuation math f = (1.0f / (dist2 * nl->falloff + nl->offset)) - nl->subtract; if (f > 0) { // we must divide dot by sqrt(dist2) to compensate for // the fact we did not normalize v before doing the // dotproduct, the result is in the range 0 to 1 (we // eliminated negative numbers already) f *= dot / sqrt(dist2); // blend in the lighting VectorMA(color, f, nl->light, color); } } } VectorCopy4(color, color4f); } } void R_UpdateEntLights(entity_render_t *ent) { int i; const mlight_t *sl; vec3_t v; if (r_lightmapintensity <= 0 && !(ent->flags & RENDER_TRANSPARENT)) return; VectorSubtract(ent->origin, ent->entlightsorigin, v); if (ent->entlightsframe != (r_framecount - 1) || (realtime > ent->entlightstime && DotProduct(v,v) >= 1.0f)) { ent->entlightstime = realtime + 0.1; VectorCopy(ent->origin, ent->entlightsorigin); ent->numentlights = 0; if (r_refdef.worldmodel) for (i = 0, sl = r_refdef.worldmodel->brushq1.lights;i < r_refdef.worldmodel->brushq1.numlights && ent->numentlights < MAXENTLIGHTS;i++, sl++) if (CL_TraceLine(ent->origin, sl->origin, NULL, NULL, false, NULL, SUPERCONTENTS_SOLID) == 1) ent->entlights[ent->numentlights++] = i; } ent->entlightsframe = r_framecount; }