#include "quakedef.h" #include "r_shadow.h" #include "cl_collision.h" extern void R_Shadow_EditLights_Init(void); #define SHADOWSTAGE_NONE 0 #define SHADOWSTAGE_STENCIL 1 #define SHADOWSTAGE_LIGHT 2 #define SHADOWSTAGE_ERASESTENCIL 3 int r_shadowstage = SHADOWSTAGE_NONE; int r_shadow_reloadlights = false; int r_shadow_lightingmode = 0; mempool_t *r_shadow_mempool; int maxshadowelements; int *shadowelements; int maxtrianglefacinglight; qbyte *trianglefacinglight; rtexturepool_t *r_shadow_texturepool; rtexture_t *r_shadow_normalscubetexture; rtexture_t *r_shadow_attenuation2dtexture; rtexture_t *r_shadow_blankbumptexture; rtexture_t *r_shadow_blankglosstexture; rtexture_t *r_shadow_blankwhitetexture; cvar_t r_shadow_lightattenuationscale = {0, "r_shadow_lightattenuationscale", "2"}; cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1"}; cvar_t r_shadow_realtime = {0, "r_shadow_realtime", "0"}; cvar_t r_shadow_gloss = {0, "r_shadow_gloss", "1"}; cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1"}; cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1"}; cvar_t r_shadow_bumpscale = {0, "r_shadow_bumpscale", "4"}; cvar_t r_shadow_shadownudge = {0, "r_shadow_shadownudge", "1"}; void R_Shadow_ClearWorldLights(void); void R_Shadow_SaveWorldLights(void); void R_Shadow_LoadWorldLights(void); void R_Shadow_LoadLightsFile(void); void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void); void r_shadow_start(void) { // allocate vertex processing arrays r_shadow_mempool = Mem_AllocPool("R_Shadow"); maxshadowelements = 0; shadowelements = NULL; maxtrianglefacinglight = 0; trianglefacinglight = NULL; r_shadow_normalscubetexture = NULL; r_shadow_attenuation2dtexture = NULL; r_shadow_blankbumptexture = NULL; r_shadow_blankglosstexture = NULL; r_shadow_blankwhitetexture = NULL; r_shadow_texturepool = NULL; R_Shadow_ClearWorldLights(); r_shadow_reloadlights = true; } void r_shadow_shutdown(void) { R_Shadow_ClearWorldLights(); r_shadow_reloadlights = true; r_shadow_normalscubetexture = NULL; r_shadow_attenuation2dtexture = NULL; r_shadow_blankbumptexture = NULL; r_shadow_blankglosstexture = NULL; r_shadow_blankwhitetexture = NULL; R_FreeTexturePool(&r_shadow_texturepool); maxshadowelements = 0; shadowelements = NULL; maxtrianglefacinglight = 0; trianglefacinglight = NULL; Mem_FreePool(&r_shadow_mempool); } void r_shadow_newmap(void) { R_Shadow_ClearWorldLights(); r_shadow_reloadlights = true; } void R_Shadow_Init(void) { Cvar_RegisterVariable(&r_shadow_lightattenuationscale); Cvar_RegisterVariable(&r_shadow_lightintensityscale); Cvar_RegisterVariable(&r_shadow_realtime); Cvar_RegisterVariable(&r_shadow_gloss); Cvar_RegisterVariable(&r_shadow_debuglight); Cvar_RegisterVariable(&r_shadow_scissor); Cvar_RegisterVariable(&r_shadow_bumpscale); Cvar_RegisterVariable(&r_shadow_shadownudge); R_Shadow_EditLights_Init(); R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap); } void R_Shadow_ProjectVertices(float *verts, int numverts, const float *relativelightorigin, float projectdistance) { int i; float *in, *out, diff[4]; in = verts; out = verts + numverts * 4; for (i = 0;i < numverts;i++, in += 4, out += 4) { VectorSubtract(in, relativelightorigin, diff); VectorNormalizeFast(diff); VectorMA(in, projectdistance, diff, out); VectorMA(in, r_shadow_shadownudge.value, diff, in); } } void R_Shadow_MakeTriangleShadowFlags(const int *elements, const float *vertex, int numtris, qbyte *trianglefacinglight, const float *relativelightorigin, float lightradius) { int i; const float *v0, *v1, *v2; for (i = 0;i < numtris;i++, elements += 3) { // calculate triangle facing flag v0 = vertex + elements[0] * 4; v1 = vertex + elements[1] * 4; v2 = vertex + elements[2] * 4; // we do not need to normalize the surface normal because both sides // of the comparison use it, therefore they are both multiplied the // same amount... furthermore the subtract can be done on the // vectors, saving a little bit of math in the dotproducts #if 0 // fast version // subtracts v1 from v0 and v2, combined into a crossproduct, // combined with a dotproduct of the light location relative to the // first point of the triangle (any point works, since the triangle // is obviously flat), and finally a comparison to determine if the // light is infront of the triangle (the goal of this statement) trianglefacinglight[i] = (relativelightorigin[0] - v0[0]) * ((v0[1] - v1[1]) * (v2[2] - v1[2]) - (v0[2] - v1[2]) * (v2[1] - v1[1])) + (relativelightorigin[1] - v0[1]) * ((v0[2] - v1[2]) * (v2[0] - v1[0]) - (v0[0] - v1[0]) * (v2[2] - v1[2])) + (relativelightorigin[2] - v0[2]) * ((v0[0] - v1[0]) * (v2[1] - v1[1]) - (v0[1] - v1[1]) * (v2[0] - v1[0])) > 0; #else // readable version { float dir0[3], dir1[3], temp[3], f; // calculate two mostly perpendicular edge directions VectorSubtract(v0, v1, dir0); VectorSubtract(v2, v1, dir1); // we have two edge directions, we can calculate a third vector from // them, which is the direction of the surface normal (it's magnitude // is not 1 however) CrossProduct(dir0, dir1, temp); // this is entirely unnecessary, but kept for clarity //VectorNormalize(temp); // compare distance of light along normal, with distance of any point // of the triangle along the same normal (the triangle is planar, // I.E. flat, so all points give the same answer) // the normal is not normalized because it is used on both sides of // the comparison, so it's magnitude does not matter //trianglefacinglight[i] = DotProduct(relativelightorigin, temp) >= DotProduct(v0, temp); f = DotProduct(relativelightorigin, temp) - DotProduct(v0, temp); trianglefacinglight[i] = f > 0 && f < lightradius * sqrt(DotProduct(temp, temp)); } #endif } } int R_Shadow_BuildShadowVolumeTriangles(const int *elements, const int *neighbors, int numtris, int numverts, const qbyte *trianglefacinglight, int *out) { int i, tris; // check each frontface for bordering backfaces, // and cast shadow polygons from those edges, // also create front and back caps for shadow volume tris = 0; for (i = 0;i < numtris;i++, elements += 3, neighbors += 3) { if (trianglefacinglight[i]) { // triangle is frontface and therefore casts shadow, // output front and back caps for shadow volume // front cap out[0] = elements[0]; out[1] = elements[1]; out[2] = elements[2]; // rear cap (with flipped winding order) out[3] = elements[0] + numverts; out[4] = elements[2] + numverts; out[5] = elements[1] + numverts; out += 6; tris += 2; // check the edges if (neighbors[0] < 0 || !trianglefacinglight[neighbors[0]]) { out[0] = elements[1]; out[1] = elements[0]; out[2] = elements[0] + numverts; out[3] = elements[1]; out[4] = elements[0] + numverts; out[5] = elements[1] + numverts; out += 6; tris += 2; } if (neighbors[1] < 0 || !trianglefacinglight[neighbors[1]]) { out[0] = elements[2]; out[1] = elements[1]; out[2] = elements[1] + numverts; out[3] = elements[2]; out[4] = elements[1] + numverts; out[5] = elements[2] + numverts; out += 6; tris += 2; } if (neighbors[2] < 0 || !trianglefacinglight[neighbors[2]]) { out[0] = elements[0]; out[1] = elements[2]; out[2] = elements[2] + numverts; out[3] = elements[0]; out[4] = elements[2] + numverts; out[5] = elements[0] + numverts; out += 6; tris += 2; } } } return tris; } void R_Shadow_ResizeTriangleFacingLight(int numtris) { // make sure trianglefacinglight is big enough for this volume if (maxtrianglefacinglight < numtris) { maxtrianglefacinglight = numtris; if (trianglefacinglight) Mem_Free(trianglefacinglight); trianglefacinglight = Mem_Alloc(r_shadow_mempool, maxtrianglefacinglight); } } void R_Shadow_ResizeShadowElements(int numtris) { // make sure shadowelements is big enough for this volume if (maxshadowelements < numtris * 24) { maxshadowelements = numtris * 24; if (shadowelements) Mem_Free(shadowelements); shadowelements = Mem_Alloc(r_shadow_mempool, maxshadowelements * sizeof(int)); } } void R_Shadow_Volume(int numverts, int numtris, int *elements, int *neighbors, vec3_t relativelightorigin, float lightradius, float projectdistance) { int tris; if (projectdistance < 0.1) { Con_Printf("R_Shadow_Volume: projectdistance %f\n"); return; } // terminology: // // frontface: // a triangle facing the light source // // backface: // a triangle not facing the light source // // shadow volume: // an extrusion of the frontfaces, beginning at the original geometry and // ending further from the light source than the original geometry // (presumably at least as far as the light's radius, if the light has a // radius at all), capped at both front and back to avoid any problems // // description: // draws the shadow volumes of the model. // requirements: // vertex locations must already be in varray_vertex before use. // varray_vertex must have capacity for numverts * 2. // make sure trianglefacinglight is big enough for this volume if (maxtrianglefacinglight < numtris) R_Shadow_ResizeTriangleFacingLight(numtris); // make sure shadowelements is big enough for this volume if (maxshadowelements < numtris * 24) R_Shadow_ResizeShadowElements(numtris); // check which triangles are facing the light R_Shadow_MakeTriangleShadowFlags(elements, varray_vertex, numtris, trianglefacinglight, relativelightorigin, lightradius); // generate projected vertices // by clever use of elements we'll construct the whole shadow from // the unprojected vertices and these projected vertices R_Shadow_ProjectVertices(varray_vertex, numverts, relativelightorigin, projectdistance); // output triangle elements tris = R_Shadow_BuildShadowVolumeTriangles(elements, neighbors, numtris, numverts, trianglefacinglight, shadowelements); R_Shadow_RenderVolume(numverts * 2, tris, shadowelements); } void R_Shadow_RenderVolume(int numverts, int numtris, int *elements) { if (!numverts || !numtris) return; if (r_shadowstage == SHADOWSTAGE_STENCIL) { // increment stencil if backface is behind depthbuffer qglCullFace(GL_BACK); // quake is backwards, this culls front faces qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP); R_Mesh_Draw(numverts, numtris, elements); // decrement stencil if frontface is behind depthbuffer qglCullFace(GL_FRONT); // quake is backwards, this culls back faces qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP); } R_Mesh_Draw(numverts, numtris, elements); } void R_Shadow_RenderShadowMeshVolume(shadowmesh_t *firstmesh) { shadowmesh_t *mesh; if (r_shadowstage == SHADOWSTAGE_STENCIL) { // increment stencil if backface is behind depthbuffer qglCullFace(GL_BACK); // quake is backwards, this culls front faces qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP); for (mesh = firstmesh;mesh;mesh = mesh->next) { R_Mesh_ResizeCheck(mesh->numverts); memcpy(varray_vertex, mesh->verts, mesh->numverts * sizeof(float[4])); R_Mesh_Draw(mesh->numverts, mesh->numtriangles, mesh->elements); } // decrement stencil if frontface is behind depthbuffer qglCullFace(GL_FRONT); // quake is backwards, this culls back faces qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP); } for (mesh = firstmesh;mesh;mesh = mesh->next) { R_Mesh_ResizeCheck(mesh->numverts); memcpy(varray_vertex, mesh->verts, mesh->numverts * sizeof(float[4])); R_Mesh_Draw(mesh->numverts, mesh->numtriangles, mesh->elements); } } float r_shadow_atten1; static void R_Shadow_MakeTextures(void) { int x, y, d, side; float v[3], s, t, intensity; qbyte *data; R_FreeTexturePool(&r_shadow_texturepool); r_shadow_texturepool = R_AllocTexturePool(); r_shadow_atten1 = r_shadow_lightattenuationscale.value; data = Mem_Alloc(tempmempool, 6*128*128*4); data[0] = 128; data[1] = 128; data[2] = 255; data[3] = 255; r_shadow_blankbumptexture = R_LoadTexture2D(r_shadow_texturepool, "blankbump", 1, 1, data, TEXTYPE_RGBA, TEXF_PRECACHE, NULL); data[0] = 64; data[1] = 64; data[2] = 64; data[3] = 255; r_shadow_blankglosstexture = R_LoadTexture2D(r_shadow_texturepool, "blankgloss", 1, 1, data, TEXTYPE_RGBA, TEXF_PRECACHE, NULL); data[0] = 255; data[1] = 255; data[2] = 255; data[3] = 255; r_shadow_blankwhitetexture = R_LoadTexture2D(r_shadow_texturepool, "blankwhite", 1, 1, data, TEXTYPE_RGBA, TEXF_PRECACHE, NULL); for (side = 0;side < 6;side++) { for (y = 0;y < 128;y++) { for (x = 0;x < 128;x++) { s = (x + 0.5f) * (2.0f / 128.0f) - 1.0f; t = (y + 0.5f) * (2.0f / 128.0f) - 1.0f; switch(side) { case 0: v[0] = 1; v[1] = -t; v[2] = -s; break; case 1: v[0] = -1; v[1] = -t; v[2] = s; break; case 2: v[0] = s; v[1] = 1; v[2] = t; break; case 3: v[0] = s; v[1] = -1; v[2] = -t; break; case 4: v[0] = s; v[1] = -t; v[2] = 1; break; case 5: v[0] = -s; v[1] = -t; v[2] = -1; break; } intensity = 127.0f / sqrt(DotProduct(v, v)); data[((side*128+y)*128+x)*4+0] = 128.0f + intensity * v[0]; data[((side*128+y)*128+x)*4+1] = 128.0f + intensity * v[1]; data[((side*128+y)*128+x)*4+2] = 128.0f + intensity * v[2]; data[((side*128+y)*128+x)*4+3] = 255; } } } r_shadow_normalscubetexture = R_LoadTextureCubeMap(r_shadow_texturepool, "normalscube", 128, data, TEXTYPE_RGBA, TEXF_PRECACHE | TEXF_CLAMP, NULL); for (y = 0;y < 128;y++) { for (x = 0;x < 128;x++) { v[0] = (x + 0.5f) * (2.0f / 128.0f) - 1.0f; v[1] = (y + 0.5f) * (2.0f / 128.0f) - 1.0f; v[2] = 0; intensity = 1.0f - sqrt(DotProduct(v, v)); if (intensity > 0) intensity *= intensity; intensity = bound(0, intensity * r_shadow_atten1 * 256.0f, 255.0f); d = bound(0, intensity, 255); data[((0*128+y)*128+x)*4+0] = d; data[((0*128+y)*128+x)*4+1] = d; data[((0*128+y)*128+x)*4+2] = d; data[((0*128+y)*128+x)*4+3] = d; } } r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", 128, 128, data, TEXTYPE_RGBA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA | TEXF_MIPMAP, NULL); Mem_Free(data); } void R_Shadow_Stage_Begin(void) { rmeshstate_t m; //cl.worldmodel->numlights = min(cl.worldmodel->numlights, 1); if (!r_shadow_attenuation2dtexture || r_shadow_lightattenuationscale.value != r_shadow_atten1) R_Shadow_MakeTextures(); if (r_shadow_reloadlights && cl.worldmodel) { R_Shadow_ClearWorldLights(); r_shadow_reloadlights = false; R_Shadow_LoadWorldLights(); if (r_shadow_worldlightchain == NULL) { R_Shadow_LoadLightsFile(); if (r_shadow_worldlightchain == NULL) R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(); } } memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_ONE; m.blendfunc2 = GL_ZERO; R_Mesh_State(&m); GL_Color(0, 0, 0, 1); r_shadowstage = SHADOWSTAGE_NONE; } void R_Shadow_Stage_ShadowVolumes(void) { rmeshstate_t m; memset(&m, 0, sizeof(m)); R_Mesh_TextureState(&m); GL_Color(1, 1, 1, 1); qglColorMask(0, 0, 0, 0); qglDisable(GL_BLEND); qglDepthMask(0); qglDepthFunc(GL_LESS); qglEnable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); qglStencilFunc(GL_ALWAYS, 128, 0xFF); qglEnable(GL_CULL_FACE); qglEnable(GL_DEPTH_TEST); r_shadowstage = SHADOWSTAGE_STENCIL; qglClear(GL_STENCIL_BUFFER_BIT); } void R_Shadow_Stage_Light(void) { rmeshstate_t m; memset(&m, 0, sizeof(m)); R_Mesh_TextureState(&m); qglActiveTexture(GL_TEXTURE0_ARB); qglEnable(GL_BLEND); qglBlendFunc(GL_ONE, GL_ONE); GL_Color(1, 1, 1, 1); qglColorMask(1, 1, 1, 1); qglDepthMask(0); qglDepthFunc(GL_EQUAL); qglEnable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // only draw light where this geometry was already rendered AND the // stencil is 128 (values other than this mean shadow) qglStencilFunc(GL_EQUAL, 128, 0xFF); qglEnable(GL_CULL_FACE); qglEnable(GL_DEPTH_TEST); r_shadowstage = SHADOWSTAGE_LIGHT; } void R_Shadow_Stage_End(void) { rmeshstate_t m; // attempt to restore state to what Mesh_State thinks it is qglDisable(GL_BLEND); qglBlendFunc(GL_ONE, GL_ZERO); qglDepthMask(1); // now restore the rest of the state to normal GL_Color(1, 1, 1, 1); qglColorMask(1, 1, 1, 1); qglDisable(GL_SCISSOR_TEST); qglDepthFunc(GL_LEQUAL); qglDisable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); qglStencilFunc(GL_ALWAYS, 128, 0xFF); qglEnable(GL_CULL_FACE); qglEnable(GL_DEPTH_TEST); // force mesh state to reset by using various combinations of features memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_SRC_ALPHA; m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; R_Mesh_State(&m); m.blendfunc1 = GL_ONE; m.blendfunc2 = GL_ZERO; R_Mesh_State(&m); r_shadowstage = SHADOWSTAGE_NONE; } int R_Shadow_ScissorForBBoxAndSphere(const float *mins, const float *maxs, const float *origin, float radius) { int i, ix1, iy1, ix2, iy2; float x1, y1, x2, y2, x, y; vec3_t smins, smaxs; vec4_t v, v2; if (!r_shadow_scissor.integer) return false; // if view is inside the box, just say yes it's visible if (r_origin[0] >= mins[0] && r_origin[0] <= maxs[0] && r_origin[1] >= mins[1] && r_origin[1] <= maxs[1] && r_origin[2] >= mins[2] && r_origin[2] <= maxs[2]) { qglDisable(GL_SCISSOR_TEST); return false; } VectorSubtract(r_origin, origin, v); if (DotProduct(v, v) < radius * radius) { qglDisable(GL_SCISSOR_TEST); return false; } // create viewspace bbox for (i = 0;i < 8;i++) { v[0] = ((i & 1) ? mins[0] : maxs[0]) - r_origin[0]; v[1] = ((i & 2) ? mins[1] : maxs[1]) - r_origin[1]; v[2] = ((i & 4) ? mins[2] : maxs[2]) - r_origin[2]; v2[0] = DotProduct(v, vright); v2[1] = DotProduct(v, vup); v2[2] = DotProduct(v, vpn); if (i) { if (smins[0] > v2[0]) smins[0] = v2[0]; if (smaxs[0] < v2[0]) smaxs[0] = v2[0]; if (smins[1] > v2[1]) smins[1] = v2[1]; if (smaxs[1] < v2[1]) smaxs[1] = v2[1]; if (smins[2] > v2[2]) smins[2] = v2[2]; if (smaxs[2] < v2[2]) smaxs[2] = v2[2]; } else { smins[0] = smaxs[0] = v2[0]; smins[1] = smaxs[1] = v2[1]; smins[2] = smaxs[2] = v2[2]; } } // now we have a bbox in viewspace // clip it to the viewspace version of the sphere v[0] = origin[0] - r_origin[0]; v[1] = origin[1] - r_origin[1]; v[2] = origin[2] - r_origin[2]; v2[0] = DotProduct(v, vright); v2[1] = DotProduct(v, vup); v2[2] = DotProduct(v, vpn); if (smins[0] < v2[0] - radius) smins[0] = v2[0] - radius; if (smaxs[0] < v2[0] - radius) smaxs[0] = v2[0] + radius; if (smins[1] < v2[1] - radius) smins[1] = v2[1] - radius; if (smaxs[1] < v2[1] - radius) smaxs[1] = v2[1] + radius; if (smins[2] < v2[2] - radius) smins[2] = v2[2] - radius; if (smaxs[2] < v2[2] - radius) smaxs[2] = v2[2] + radius; // clip it to the view plane if (smins[2] < 1) smins[2] = 1; // return true if that culled the box if (smins[2] >= smaxs[2]) return true; // ok some of it is infront of the view, transform each corner back to // worldspace and then to screenspace and make screen rect for (i = 0;i < 8;i++) { v2[0] = (i & 1) ? smins[0] : smaxs[0]; v2[1] = (i & 2) ? smins[1] : smaxs[1]; v2[2] = (i & 4) ? smins[2] : smaxs[2]; v[0] = v2[0] * vright[0] + v2[1] * vup[0] + v2[2] * vpn[0] + r_origin[0]; v[1] = v2[0] * vright[1] + v2[1] * vup[1] + v2[2] * vpn[1] + r_origin[1]; v[2] = v2[0] * vright[2] + v2[1] * vup[2] + v2[2] * vpn[2] + r_origin[2]; v[3] = 1.0f; GL_TransformToScreen(v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); x = v2[0]; y = v2[1]; if (i) { if (x1 > x) x1 = x; if (x2 < x) x2 = x; if (y1 > y) y1 = y; if (y2 < y) y2 = y; } else { x1 = x2 = x; y1 = y2 = y; } } /* // this code doesn't handle boxes with any points behind view properly x1 = 1000;x2 = -1000; y1 = 1000;y2 = -1000; for (i = 0;i < 8;i++) { v[0] = (i & 1) ? mins[0] : maxs[0]; v[1] = (i & 2) ? mins[1] : maxs[1]; v[2] = (i & 4) ? mins[2] : maxs[2]; v[3] = 1.0f; GL_TransformToScreen(v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); if (v2[2] > 0) { x = v2[0]; y = v2[1]; if (x1 > x) x1 = x; if (x2 < x) x2 = x; if (y1 > y) y1 = y; if (y2 < y) y2 = y; } } */ ix1 = x1 - 1.0f; iy1 = y1 - 1.0f; ix2 = x2 + 1.0f; iy2 = y2 + 1.0f; //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2); if (ix1 < r_refdef.x) ix1 = r_refdef.x; if (iy1 < r_refdef.y) iy1 = r_refdef.y; if (ix2 > r_refdef.x + r_refdef.width) ix2 = r_refdef.x + r_refdef.width; if (iy2 > r_refdef.y + r_refdef.height) iy2 = r_refdef.y + r_refdef.height; if (ix2 <= ix1 || iy2 <= iy1) return true; // set up the scissor rectangle qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1); qglEnable(GL_SCISSOR_TEST); return false; } void R_Shadow_GenTexCoords_Attenuation2D1D(float *out2d, float *out1d, int numverts, const float *vertex, const float *svectors, const float *tvectors, const float *normals, const vec3_t relativelightorigin, float lightradius) { int i; float lightvec[3], iradius; iradius = 0.5f / lightradius; for (i = 0;i < numverts;i++, vertex += 4, svectors += 4, tvectors += 4, normals += 4, out2d += 4, out1d += 4) { VectorSubtract(vertex, relativelightorigin, lightvec); out2d[0] = 0.5f + DotProduct(svectors, lightvec) * iradius; out2d[1] = 0.5f + DotProduct(tvectors, lightvec) * iradius; out2d[2] = 0; out1d[0] = 0.5f + DotProduct(normals, lightvec) * iradius; out1d[1] = 0.5f; out1d[2] = 0; } } void R_Shadow_GenTexCoords_Diffuse_Attenuation3D(float *out, int numverts, const float *vertex, const float *svectors, const float *tvectors, const float *normals, const vec3_t relativelightorigin, float lightradius) { int i; float lightvec[3], iradius; iradius = 0.5f / lightradius; for (i = 0;i < numverts;i++, vertex += 4, svectors += 4, tvectors += 4, normals += 4, out += 4) { VectorSubtract(vertex, relativelightorigin, lightvec); out[0] = 0.5f + DotProduct(svectors, lightvec) * iradius; out[1] = 0.5f + DotProduct(tvectors, lightvec) * iradius; out[2] = 0.5f + DotProduct(normals, lightvec) * iradius; } } void R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(float *out, int numverts, const float *vertex, const float *svectors, const float *tvectors, const float *normals, const vec3_t relativelightorigin) { int i; float lightdir[3]; for (i = 0;i < numverts;i++, vertex += 4, svectors += 4, tvectors += 4, normals += 4, out += 4) { VectorSubtract(vertex, relativelightorigin, lightdir); // the cubemap normalizes this for us out[0] = DotProduct(svectors, lightdir); out[1] = DotProduct(tvectors, lightdir); out[2] = DotProduct(normals, lightdir); } } void R_Shadow_GenTexCoords_Specular_Attenuation3D(float *out, int numverts, const float *vertex, const float *svectors, const float *tvectors, const float *normals, const vec3_t relativelightorigin, const vec3_t relativeeyeorigin, float lightradius) { int i; float lightdir[3], eyedir[3], halfdir[3], lightdirlen, iradius; iradius = 0.5f / lightradius; for (i = 0;i < numverts;i++, vertex += 4, svectors += 4, tvectors += 4, normals += 4, out += 4) { VectorSubtract(vertex, relativelightorigin, lightdir); // this is used later to make the attenuation correct lightdirlen = sqrt(DotProduct(lightdir, lightdir)) * iradius; VectorNormalizeFast(lightdir); VectorSubtract(vertex, relativeeyeorigin, eyedir); VectorNormalizeFast(eyedir); VectorAdd(lightdir, eyedir, halfdir); VectorNormalizeFast(halfdir); out[0] = 0.5f + DotProduct(svectors, halfdir) * lightdirlen; out[1] = 0.5f + DotProduct(tvectors, halfdir) * lightdirlen; out[2] = 0.5f + DotProduct(normals, halfdir) * lightdirlen; } } void R_Shadow_GenTexCoords_Specular_NormalCubeMap(float *out, int numverts, const float *vertex, const float *svectors, const float *tvectors, const float *normals, const vec3_t relativelightorigin, const vec3_t relativeeyeorigin) { int i; float lightdir[3], eyedir[3], halfdir[3]; for (i = 0;i < numverts;i++, vertex += 4, svectors += 4, tvectors += 4, normals += 4, out += 4) { VectorSubtract(vertex, relativelightorigin, lightdir); VectorNormalizeFast(lightdir); VectorSubtract(vertex, relativeeyeorigin, eyedir); VectorNormalizeFast(eyedir); VectorAdd(lightdir, eyedir, halfdir); // the cubemap normalizes this for us out[0] = DotProduct(svectors, halfdir); out[1] = DotProduct(tvectors, halfdir); out[2] = DotProduct(normals, halfdir); } } void R_Shadow_GenTexCoords_LightCubeMap(float *out, int numverts, const float *vertex, const vec3_t relativelightorigin) { int i; // FIXME: this needs to be written // this code assumes the vertices are in worldspace (a false assumption) for (i = 0;i < numverts;i++, vertex += 4, out += 4) VectorSubtract(vertex, relativelightorigin, out); } void R_Shadow_DiffuseLighting(int numverts, int numtriangles, const int *elements, const float *svectors, const float *tvectors, const float *normals, const float *texcoords, const float *relativelightorigin, float lightradius, const float *lightcolor, rtexture_t *basetexture, rtexture_t *bumptexture, rtexture_t *lightcubemap) { int renders, mult; float scale, colorscale; rmeshstate_t m; memset(&m, 0, sizeof(m)); if (!bumptexture) bumptexture = r_shadow_blankbumptexture; // colorscale accounts for how much we multiply the brightness during combine // mult is how many times the final pass of the lighting will be // performed to get more brightness than otherwise possible // limit mult to 64 for sanity sake if (r_textureunits.integer >= 4) { // 4 texture no3D combine path, two pass m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalscubetexture); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_DOT3_RGBA_ARB; m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture); m.tex[3] = R_GetTexture(r_shadow_attenuation2dtexture); R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); GL_Color(1,1,1,1); memcpy(varray_texcoord[0], texcoords, numverts * sizeof(float[4])); R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord[1], numverts, varray_vertex, svectors, tvectors, normals, relativelightorigin); R_Shadow_GenTexCoords_Attenuation2D1D(varray_texcoord[2], varray_texcoord[3], numverts, varray_vertex, svectors, tvectors, normals, relativelightorigin, lightradius); R_Mesh_Draw(numverts, numtriangles, elements); m.tex[0] = R_GetTexture(basetexture); m.texcubemap[1] = R_GetTexture(lightcubemap); m.texcombinergb[0] = GL_MODULATE; m.texcombinergb[1] = GL_MODULATE; m.tex[2] = 0; m.tex[3] = 0; R_Mesh_TextureState(&m); qglColorMask(1,1,1,1); qglBlendFunc(GL_DST_ALPHA, GL_ONE); qglEnable(GL_BLEND); if (lightcubemap) R_Shadow_GenTexCoords_LightCubeMap(varray_texcoord[1], numverts, varray_vertex, relativelightorigin); colorscale = r_colorscale * r_shadow_lightintensityscale.value; for (mult = 1, scale = ixtable[mult];mult < 64 && (lightcolor[0] * scale * colorscale > 1 || lightcolor[1] * scale * colorscale > 1 || lightcolor[2] * scale * colorscale > 1);mult++, scale = ixtable[mult]); colorscale *= scale; GL_Color(lightcolor[0] * colorscale, lightcolor[1] * colorscale, lightcolor[2] * colorscale, 1); for (renders = 0;renders < mult;renders++) R_Mesh_Draw(numverts, numtriangles, elements); } else { // 2 texture no3D combine path, three pass m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture); m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture); R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); GL_Color(1,1,1,1); R_Shadow_GenTexCoords_Attenuation2D1D(varray_texcoord[0], varray_texcoord[1], numverts, varray_vertex, svectors, tvectors, normals, relativelightorigin, lightradius); R_Mesh_Draw(numverts, numtriangles, elements); m.tex[0] = R_GetTexture(bumptexture); m.tex[1] = 0; m.texcubemap[1] = R_GetTexture(r_shadow_normalscubetexture); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglBlendFunc(GL_DST_ALPHA, GL_ZERO); qglEnable(GL_BLEND); memcpy(varray_texcoord[0], texcoords, numverts * sizeof(float[4])); R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord[1], numverts, varray_vertex, svectors, tvectors, normals, relativelightorigin); R_Mesh_Draw(numverts, numtriangles, elements); m.tex[0] = R_GetTexture(basetexture); m.texcubemap[1] = R_GetTexture(lightcubemap); m.texcombinergb[0] = GL_MODULATE; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); qglColorMask(1,1,1,1); qglBlendFunc(GL_DST_ALPHA, GL_ONE); if (lightcubemap) R_Shadow_GenTexCoords_LightCubeMap(varray_texcoord[1], numverts, varray_vertex, relativelightorigin); colorscale = r_colorscale * r_shadow_lightintensityscale.value; for (mult = 1, scale = ixtable[mult];mult < 64 && (lightcolor[0] * scale * colorscale > 1 || lightcolor[1] * scale * colorscale > 1 || lightcolor[2] * scale * colorscale > 1);mult++, scale = ixtable[mult]); colorscale *= scale; GL_Color(lightcolor[0] * colorscale, lightcolor[1] * colorscale, lightcolor[2] * colorscale, 1); for (renders = 0;renders < mult;renders++) R_Mesh_Draw(numverts, numtriangles, elements); } } void R_Shadow_SpecularLighting(int numverts, int numtriangles, const int *elements, const float *svectors, const float *tvectors, const float *normals, const float *texcoords, const float *relativelightorigin, const float *relativeeyeorigin, float lightradius, const float *lightcolor, rtexture_t *glosstexture, rtexture_t *bumptexture, rtexture_t *lightcubemap) { int renders, mult; float scale, colorscale; rmeshstate_t m; memset(&m, 0, sizeof(m)); if (!bumptexture) bumptexture = r_shadow_blankbumptexture; if (!glosstexture) glosstexture = r_shadow_blankglosstexture; if (r_shadow_gloss.integer >= 2 || (r_shadow_gloss.integer >= 1 && glosstexture != r_shadow_blankglosstexture)) { // 2 texture no3D combine path, five pass memset(&m, 0, sizeof(m)); m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalscubetexture); m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); GL_Color(1,1,1,1); memcpy(varray_texcoord[0], texcoords, numverts * sizeof(float[4])); R_Shadow_GenTexCoords_Specular_NormalCubeMap(varray_texcoord[1], numverts, varray_vertex, svectors, tvectors, normals, relativelightorigin, relativeeyeorigin); R_Mesh_Draw(numverts, numtriangles, elements); m.tex[0] = 0; m.texcubemap[1] = 0; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); // square alpha in framebuffer a few times to make it shiny qglBlendFunc(GL_ZERO, GL_DST_ALPHA); qglEnable(GL_BLEND); // these comments are a test run through this math for intensity 0.5 // 0.5 * 0.5 = 0.25 R_Mesh_Draw(numverts, numtriangles, elements); // 0.25 * 0.25 = 0.0625 R_Mesh_Draw(numverts, numtriangles, elements); // 0.0625 * 0.0625 = 0.00390625 R_Mesh_Draw(numverts, numtriangles, elements); m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture); m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture); R_Mesh_TextureState(&m); qglBlendFunc(GL_DST_ALPHA, GL_ZERO); R_Shadow_GenTexCoords_Attenuation2D1D(varray_texcoord[0], varray_texcoord[1], numverts, varray_vertex, svectors, tvectors, normals, relativelightorigin, lightradius); R_Mesh_Draw(numverts, numtriangles, elements); m.tex[0] = R_GetTexture(glosstexture); m.texcubemap[1] = R_GetTexture(lightcubemap); R_Mesh_TextureState(&m); qglColorMask(1,1,1,1); qglBlendFunc(GL_DST_ALPHA, GL_ONE); memcpy(varray_texcoord[0], texcoords, numverts * sizeof(float[4])); if (lightcubemap) R_Shadow_GenTexCoords_LightCubeMap(varray_texcoord[1], numverts, varray_vertex, relativelightorigin); colorscale = r_colorscale * r_shadow_lightintensityscale.value; for (mult = 1, scale = ixtable[mult];mult < 64 && (lightcolor[0] * scale * colorscale > 1 || lightcolor[1] * scale * colorscale > 1 || lightcolor[2] * scale * colorscale > 1);mult++, scale = ixtable[mult]); colorscale *= scale; GL_Color(lightcolor[0] * colorscale, lightcolor[1] * colorscale, lightcolor[2] * colorscale, 1); for (renders = 0;renders < mult;renders++) R_Mesh_Draw(numverts, numtriangles, elements); } } void R_Shadow_DrawWorldLightShadowVolume(matrix4x4_t *matrix, worldlight_t *light) { R_Mesh_Matrix(matrix); R_Shadow_RenderShadowMeshVolume(light->shadowvolume); } cvar_t r_editlights = {0, "r_editlights", "0"}; cvar_t r_editlights_cursordistance = {0, "r_editlights_distance", "1024"}; cvar_t r_editlights_cursorpushback = {0, "r_editlights_pushback", "0"}; cvar_t r_editlights_cursorpushoff = {0, "r_editlights_pushoff", "4"}; cvar_t r_editlights_cursorgrid = {0, "r_editlights_grid", "4"}; cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "0.8"}; worldlight_t *r_shadow_worldlightchain; worldlight_t *r_shadow_selectedlight; vec3_t r_editlights_cursorlocation; static int castshadowcount = 1; void R_Shadow_NewWorldLight(vec3_t origin, float radius, vec3_t color, int style, const char *cubemapname) { int i, j, k, l, maxverts, *mark, tris; float *verts, *v, f, temp[3], radius2; //float projectdistance, *v0, *v1, temp2[3], temp3[3]; worldlight_t *e; shadowmesh_t *mesh, *castmesh; mleaf_t *leaf; msurface_t *surf; qbyte *pvs; surfmesh_t *surfmesh; if (radius < 15 || DotProduct(color, color) < 0.03) { Con_Printf("R_Shadow_NewWorldLight: refusing to create a light too small/dim\n"); return; } e = Mem_Alloc(r_shadow_mempool, sizeof(worldlight_t)); VectorCopy(origin, e->origin); VectorCopy(color, e->light); e->lightradius = radius; VectorCopy(origin, e->mins); VectorCopy(origin, e->maxs); e->cullradius = 0; e->style = style; e->next = r_shadow_worldlightchain; r_shadow_worldlightchain = e; if (cubemapname) { e->cubemapname = Mem_Alloc(r_shadow_mempool, strlen(cubemapname) + 1); strcpy(e->cubemapname, cubemapname); // FIXME: add cubemap loading (and don't load a cubemap twice) } if (cl.worldmodel) { castshadowcount++; leaf = Mod_PointInLeaf(origin, cl.worldmodel); pvs = Mod_LeafPVS(leaf, cl.worldmodel); for (i = 0, leaf = cl.worldmodel->leafs + 1;i < cl.worldmodel->numleafs;i++, leaf++) { if (pvs[i >> 3] & (1 << (i & 7))) { VectorCopy(origin, temp); if (temp[0] < leaf->mins[0]) temp[0] = leaf->mins[0]; if (temp[0] > leaf->maxs[0]) temp[0] = leaf->maxs[0]; if (temp[1] < leaf->mins[1]) temp[1] = leaf->mins[1]; if (temp[1] > leaf->maxs[1]) temp[1] = leaf->maxs[1]; if (temp[2] < leaf->mins[2]) temp[2] = leaf->mins[2]; if (temp[2] > leaf->maxs[2]) temp[2] = leaf->maxs[2]; VectorSubtract(temp, origin, temp); if (DotProduct(temp, temp) < e->lightradius * e->lightradius) { leaf->worldnodeframe = castshadowcount; for (j = 0, mark = leaf->firstmarksurface;j < leaf->nummarksurfaces;j++, mark++) { surf = cl.worldmodel->surfaces + *mark; if (surf->castshadow != castshadowcount) { f = DotProduct(e->origin, surf->plane->normal) - surf->plane->dist; if (surf->flags & SURF_PLANEBACK) f = -f; if (f > 0 && f < e->lightradius) { temp[0] = bound(surf->poly_mins[0], e->origin[0], surf->poly_maxs[0]) - e->origin[0]; temp[1] = bound(surf->poly_mins[1], e->origin[1], surf->poly_maxs[1]) - e->origin[1]; temp[2] = bound(surf->poly_mins[2], e->origin[2], surf->poly_maxs[2]) - e->origin[2]; if (DotProduct(temp, temp) < e->lightradius * e->lightradius) surf->castshadow = castshadowcount; } } } } } } e->numleafs = 0; for (i = 0, leaf = cl.worldmodel->leafs + 1;i < cl.worldmodel->numleafs;i++, leaf++) if (leaf->worldnodeframe == castshadowcount) e->numleafs++; e->numsurfaces = 0; for (i = 0, surf = cl.worldmodel->surfaces + cl.worldmodel->firstmodelsurface;i < cl.worldmodel->nummodelsurfaces;i++, surf++) if (surf->castshadow == castshadowcount) e->numsurfaces++; if (e->numleafs) e->leafs = Mem_Alloc(r_shadow_mempool, e->numleafs * sizeof(mleaf_t *)); if (e->numsurfaces) e->surfaces = Mem_Alloc(r_shadow_mempool, e->numsurfaces * sizeof(msurface_t *)); e->numleafs = 0; for (i = 0, leaf = cl.worldmodel->leafs + 1;i < cl.worldmodel->numleafs;i++, leaf++) if (leaf->worldnodeframe == castshadowcount) e->leafs[e->numleafs++] = leaf; e->numsurfaces = 0; for (i = 0, surf = cl.worldmodel->surfaces + cl.worldmodel->firstmodelsurface;i < cl.worldmodel->nummodelsurfaces;i++, surf++) if (surf->castshadow == castshadowcount) e->surfaces[e->numsurfaces++] = surf; // find bounding box and sphere of lit surfaces // (these will be used for creating a shape to clip the light) radius2 = 0; VectorCopy(e->origin, e->mins); VectorCopy(e->origin, e->maxs); for (j = 0;j < e->numsurfaces;j++) { surf = e->surfaces[j]; for (k = 0, v = surf->poly_verts;k < surf->poly_numverts;k++, v += 3) { if (e->mins[0] > v[0]) e->mins[0] = v[0];if (e->maxs[0] < v[0]) e->maxs[0] = v[0]; if (e->mins[1] > v[1]) e->mins[1] = v[1];if (e->maxs[1] < v[1]) e->maxs[1] = v[1]; if (e->mins[2] > v[2]) e->mins[2] = v[2];if (e->maxs[2] < v[2]) e->maxs[2] = v[2]; VectorSubtract(v, e->origin, temp); f = DotProduct(temp, temp); if (radius2 < f) radius2 = f; } } e->cullradius = sqrt(radius2); if (e->cullradius > e->lightradius) e->cullradius = e->lightradius; if (e->mins[0] < e->origin[0] - e->lightradius) e->mins[0] = e->origin[0] - e->lightradius; if (e->maxs[0] > e->origin[0] + e->lightradius) e->maxs[0] = e->origin[0] + e->lightradius; if (e->mins[1] < e->origin[1] - e->lightradius) e->mins[1] = e->origin[1] - e->lightradius; if (e->maxs[1] > e->origin[1] + e->lightradius) e->maxs[1] = e->origin[1] + e->lightradius; if (e->mins[2] < e->origin[2] - e->lightradius) e->mins[2] = e->origin[2] - e->lightradius; if (e->maxs[2] > e->origin[2] + e->lightradius) e->maxs[2] = e->origin[2] + e->lightradius; Con_Printf("%f %f %f, %f %f %f, %f, %f, %d, %d\n", e->mins[0], e->mins[1], e->mins[2], e->maxs[0], e->maxs[1], e->maxs[2], e->cullradius, e->lightradius, e->numleafs, e->numsurfaces); // clip shadow volumes against eachother to remove unnecessary // polygons (and sections of polygons) maxverts = 256; verts = NULL; castshadowcount++; for (j = 0;j < e->numsurfaces;j++) { surf = e->surfaces[j]; if (surf->flags & SURF_SHADOWCAST) { surf->castshadow = castshadowcount; if (maxverts < surf->poly_numverts) maxverts = surf->poly_numverts; } } e->shadowvolume = Mod_ShadowMesh_Begin(r_shadow_mempool, 32768); // make a mesh to cast a shadow volume from castmesh = Mod_ShadowMesh_Begin(r_shadow_mempool, 32768); for (j = 0;j < e->numsurfaces;j++) if (e->surfaces[j]->castshadow == castshadowcount) for (surfmesh = e->surfaces[j]->mesh;surfmesh;surfmesh = surfmesh->chain) Mod_ShadowMesh_AddMesh(r_shadow_mempool, castmesh, surfmesh->numverts, surfmesh->verts, surfmesh->numtriangles, surfmesh->index); castmesh = Mod_ShadowMesh_Finish(r_shadow_mempool, castmesh); // cast shadow volume from castmesh for (mesh = castmesh;mesh;mesh = mesh->next) { R_Shadow_ResizeTriangleFacingLight(castmesh->numtriangles); R_Shadow_ResizeShadowElements(castmesh->numtriangles); if (maxverts < castmesh->numverts * 2) { maxverts = castmesh->numverts * 2; if (verts) Mem_Free(verts); verts = NULL; } if (verts == NULL && maxverts > 0) verts = Mem_Alloc(r_shadow_mempool, maxverts * sizeof(float[4])); // now that we have the buffers big enough, construct shadow volume mesh memcpy(verts, castmesh->verts, castmesh->numverts * sizeof(float[4])); R_Shadow_ProjectVertices(verts, castmesh->numverts, e->origin, 1000000.0f);//, e->lightradius); R_Shadow_MakeTriangleShadowFlags(castmesh->elements, verts, castmesh->numtriangles, trianglefacinglight, e->origin, e->lightradius); tris = R_Shadow_BuildShadowVolumeTriangles(castmesh->elements, castmesh->neighbors, castmesh->numtriangles, castmesh->numverts, trianglefacinglight, shadowelements); // add the constructed shadow volume mesh Mod_ShadowMesh_AddMesh(r_shadow_mempool, e->shadowvolume, castmesh->numverts, verts, tris, shadowelements); } // we're done with castmesh now Mod_ShadowMesh_Free(castmesh); e->shadowvolume = Mod_ShadowMesh_Finish(r_shadow_mempool, e->shadowvolume); for (l = 0, mesh = e->shadowvolume;mesh;mesh = mesh->next) l += mesh->numtriangles; Con_Printf("static shadow volume built containing %i triangles\n", l); } } void R_Shadow_FreeWorldLight(worldlight_t *light) { worldlight_t **lightpointer; for (lightpointer = &r_shadow_worldlightchain;*lightpointer && *lightpointer != light;lightpointer = &(*lightpointer)->next); if (*lightpointer != light) Sys_Error("R_Shadow_FreeWorldLight: light not linked into chain\n"); *lightpointer = light->next; if (light->cubemapname) Mem_Free(light->cubemapname); if (light->shadowvolume) Mod_ShadowMesh_Free(light->shadowvolume); if (light->surfaces) Mem_Free(light->surfaces); if (light->leafs) Mem_Free(light->leafs); Mem_Free(light); } void R_Shadow_ClearWorldLights(void) { while (r_shadow_worldlightchain) R_Shadow_FreeWorldLight(r_shadow_worldlightchain); r_shadow_selectedlight = NULL; } void R_Shadow_SelectLight(worldlight_t *light) { if (r_shadow_selectedlight) r_shadow_selectedlight->selected = false; r_shadow_selectedlight = light; if (r_shadow_selectedlight) r_shadow_selectedlight->selected = true; } void R_Shadow_FreeSelectedWorldLight(void) { if (r_shadow_selectedlight) { R_Shadow_FreeWorldLight(r_shadow_selectedlight); r_shadow_selectedlight = NULL; } } void R_DrawLightSprite(int texnum, const vec3_t origin, vec_t scale, float cr, float cg, float cb, float ca) { rmeshstate_t m; float diff[3]; if (fogenabled) { VectorSubtract(origin, r_origin, diff); ca *= 1 - exp(fogdensity/DotProduct(diff,diff)); } memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_SRC_ALPHA; m.blendfunc2 = GL_ONE; m.tex[0] = texnum; R_Mesh_Matrix(&r_identitymatrix); R_Mesh_State(&m); GL_Color(cr * r_colorscale, cg * r_colorscale, cb * r_colorscale, ca); varray_texcoord[0][ 0] = 0;varray_texcoord[0][ 1] = 0; varray_texcoord[0][ 4] = 0;varray_texcoord[0][ 5] = 1; varray_texcoord[0][ 8] = 1;varray_texcoord[0][ 9] = 1; varray_texcoord[0][12] = 1;varray_texcoord[0][13] = 0; varray_vertex[0] = origin[0] - vright[0] * scale - vup[0] * scale; varray_vertex[1] = origin[1] - vright[1] * scale - vup[1] * scale; varray_vertex[2] = origin[2] - vright[2] * scale - vup[2] * scale; varray_vertex[4] = origin[0] - vright[0] * scale + vup[0] * scale; varray_vertex[5] = origin[1] - vright[1] * scale + vup[1] * scale; varray_vertex[6] = origin[2] - vright[2] * scale + vup[2] * scale; varray_vertex[8] = origin[0] + vright[0] * scale + vup[0] * scale; varray_vertex[9] = origin[1] + vright[1] * scale + vup[1] * scale; varray_vertex[10] = origin[2] + vright[2] * scale + vup[2] * scale; varray_vertex[12] = origin[0] + vright[0] * scale - vup[0] * scale; varray_vertex[13] = origin[1] + vright[1] * scale - vup[1] * scale; varray_vertex[14] = origin[2] + vright[2] * scale - vup[2] * scale; R_Mesh_Draw(4, 2, polygonelements); } void R_Shadow_DrawCursorCallback(const void *calldata1, int calldata2) { cachepic_t *pic; pic = Draw_CachePic("gfx/crosshair1.tga"); if (pic) R_DrawLightSprite(R_GetTexture(pic->tex), r_editlights_cursorlocation, r_editlights_cursorgrid.value * 0.5f, 1, 1, 1, 0.5); } void R_Shadow_DrawLightSpriteCallback(const void *calldata1, int calldata2) { float intensity; const worldlight_t *light; light = calldata1; intensity = 0.5; if (light->selected) intensity = 0.75 + 0.25 * sin(realtime * M_PI * 4.0); if (light->shadowvolume) R_DrawLightSprite(calldata2, light->origin, 8, intensity, intensity, intensity, 0.5); else R_DrawLightSprite(calldata2, light->origin, 8, intensity * 0.5, intensity * 0.5, intensity * 0.5, 0.5); } void R_Shadow_DrawLightSprites(void) { int i, texnums[5]; cachepic_t *pic; worldlight_t *light; for (i = 0;i < 5;i++) { pic = Draw_CachePic(va("gfx/crosshair%i.tga", i + 1)); if (pic) texnums[i] = R_GetTexture(pic->tex); else texnums[i] = 0; } for (light = r_shadow_worldlightchain;light;light = light->next) R_MeshQueue_AddTransparent(light->origin, R_Shadow_DrawLightSpriteCallback, light, texnums[((int) light) % 5]); R_MeshQueue_AddTransparent(r_editlights_cursorlocation, R_Shadow_DrawCursorCallback, NULL, 0); } void R_Shadow_SelectLightInView(void) { float bestrating, rating, temp[3]; worldlight_t *best, *light; best = NULL; bestrating = 0; for (light = r_shadow_worldlightchain;light;light = light->next) { VectorSubtract(light->origin, r_refdef.vieworg, temp); rating = (DotProduct(temp, vpn) / sqrt(DotProduct(temp, temp))); if (rating >= 0.95) { rating /= (1 + 0.0625f * sqrt(DotProduct(temp, temp))); if (bestrating < rating && CL_TraceLine(light->origin, r_refdef.vieworg, NULL, NULL, 0, true, NULL) == 1.0f) { bestrating = rating; best = light; } } } R_Shadow_SelectLight(best); } void R_Shadow_LoadWorldLights(void) { int n, a, style; char name[MAX_QPATH], cubemapname[MAX_QPATH], *lightsstring, *s, *t; float origin[3], radius, color[3]; COM_StripExtension(cl.worldmodel->name, name); strcat(name, ".rtlights"); lightsstring = COM_LoadFile(name, false); if (lightsstring) { s = lightsstring; n = 0; while (*s) { t = s; while (*s && *s != '\n') s++; if (!*s) break; *s = 0; a = sscanf(t, "%f %f %f %f %f %f %f %d %s", &origin[0], &origin[1], &origin[2], &radius, &color[0], &color[1], &color[2], &style, &cubemapname); if (a < 9) cubemapname[0] = 0; *s = '\n'; if (a < 8) { Con_Printf("found %d parameters on line %i, should be 8 or 9 parameters (origin[0] origin[1] origin[2] radius color[0] color[1] color[2] style cubemapname)\n", a, n + 1); break; } R_Shadow_NewWorldLight(origin, radius, color, style, cubemapname); s++; n++; } if (*s) Con_Printf("invalid rtlights file \"%s\"\n", name); Mem_Free(lightsstring); } } void R_Shadow_SaveWorldLights(void) { worldlight_t *light; int bufchars, bufmaxchars; char *buf, *oldbuf; char name[MAX_QPATH]; char line[1024]; if (!r_shadow_worldlightchain) return; COM_StripExtension(cl.worldmodel->name, name); strcat(name, ".rtlights"); bufchars = bufmaxchars = 0; buf = NULL; for (light = r_shadow_worldlightchain;light;light = light->next) { sprintf(line, "%g %g %g %g %g %g %g %d %s\n", light->origin[0], light->origin[1], light->origin[2], light->lightradius, light->light[0], light->light[1], light->light[2], light->style, light->cubemapname ? light->cubemapname : ""); if (bufchars + strlen(line) > bufmaxchars) { bufmaxchars = bufchars + strlen(line) + 2048; oldbuf = buf; buf = Mem_Alloc(r_shadow_mempool, bufmaxchars); if (oldbuf) { if (bufchars) memcpy(buf, oldbuf, bufchars); Mem_Free(oldbuf); } } if (strlen(line)) { memcpy(buf + bufchars, line, strlen(line)); bufchars += strlen(line); } } if (bufchars) COM_WriteFile(name, buf, bufchars); if (buf) Mem_Free(buf); } void R_Shadow_LoadLightsFile(void) { int n, a, style; char name[MAX_QPATH], *lightsstring, *s, *t; float origin[3], radius, color[3], subtract, spotdir[3], spotcone, falloff, distbias; COM_StripExtension(cl.worldmodel->name, name); strcat(name, ".lights"); lightsstring = COM_LoadFile(name, false); if (lightsstring) { s = lightsstring; n = 0; while (*s) { t = s; while (*s && *s != '\n') s++; if (!*s) break; *s = 0; a = sscanf(t, "%f %f %f %f %f %f %f %f %f %f %f %f %f %d", &origin[0], &origin[1], &origin[2], &falloff, &color[0], &color[1], &color[2], &subtract, &spotdir[0], &spotdir[1], &spotdir[2], &spotcone, &distbias, &style); *s = '\n'; if (a < 14) { Con_Printf("invalid lights file, found %d parameters on line %i, should be 14 parameters (origin[0] origin[1] origin[2] falloff light[0] light[1] light[2] subtract spotdir[0] spotdir[1] spotdir[2] spotcone distancebias style)\n", a, n + 1); break; } radius = sqrt(DotProduct(color, color) / (falloff * falloff * 8192.0f * 8192.0f)); radius = bound(15, radius, 4096); VectorScale(color, (1.0f / (8388608.0f)), color); R_Shadow_NewWorldLight(origin, radius, color, style, NULL); s++; n++; } if (*s) Con_Printf("invalid lights file \"%s\"\n", name); Mem_Free(lightsstring); } } void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void) { int entnum, style, islight; char key[256], value[1024]; float origin[3], radius, color[3], light, scale, originhack[3], overridecolor[3]; const char *data; data = cl.worldmodel->entities; if (!data) return; for (entnum = 0;COM_ParseToken(&data) && com_token[0] == '{';entnum++) { light = 0; origin[0] = origin[1] = origin[2] = 0; originhack[0] = originhack[1] = originhack[2] = 0; color[0] = color[1] = color[2] = 1; overridecolor[0] = overridecolor[1] = overridecolor[2] = 1; scale = 1; style = 0; islight = false; while (1) { if (!COM_ParseToken(&data)) break; // error if (com_token[0] == '}') break; // end of entity if (com_token[0] == '_') strcpy(key, com_token + 1); else strcpy(key, com_token); while (key[strlen(key)-1] == ' ') // remove trailing spaces key[strlen(key)-1] = 0; if (!COM_ParseToken(&data)) break; // error strcpy(value, com_token); // now that we have the key pair worked out... if (!strcmp("light", key)) light = atof(value); else if (!strcmp("origin", key)) sscanf(value, "%f %f %f", &origin[0], &origin[1], &origin[2]); else if (!strcmp("color", key)) sscanf(value, "%f %f %f", &color[0], &color[1], &color[2]); else if (!strcmp("wait", key)) scale = atof(value); else if (!strcmp("classname", key)) { if (!strncmp(value, "light", 5)) { islight = true; if (!strcmp(value, "light_fluoro")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 0; overridecolor[0] = 1; overridecolor[1] = 1; overridecolor[2] = 1; } if (!strcmp(value, "light_fluorospark")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 0; overridecolor[0] = 1; overridecolor[1] = 1; overridecolor[2] = 1; } if (!strcmp(value, "light_globe")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 0; overridecolor[0] = 1; overridecolor[1] = 0.8; overridecolor[2] = 0.4; } if (!strcmp(value, "light_flame_large_yellow")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 48; overridecolor[0] = 1; overridecolor[1] = 0.7; overridecolor[2] = 0.2; } if (!strcmp(value, "light_flame_small_yellow")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 40; overridecolor[0] = 1; overridecolor[1] = 0.7; overridecolor[2] = 0.2; } if (!strcmp(value, "light_torch_small_white")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 40; overridecolor[0] = 1; overridecolor[1] = 0.9; overridecolor[2] = 0.7; } if (!strcmp(value, "light_torch_small_walltorch")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 40; overridecolor[0] = 1; overridecolor[1] = 0.7; overridecolor[2] = 0.2; } } } else if (!strcmp("style", key)) style = atoi(value); } if (light <= 0 && islight) light = 300; radius = bound(15, light * r_editlights_quakelightsizescale.value / scale, 1048576); light = sqrt(bound(0, light, 1048576)) * (1.0f / 16.0f); if (color[0] == 1 && color[1] == 1 && color[2] == 1) VectorCopy(overridecolor, color); VectorScale(color, light, color); VectorAdd(origin, originhack, origin); if (radius >= 15) R_Shadow_NewWorldLight(origin, radius, color, style, NULL); } } void R_Shadow_SetCursorLocationForView(void) { vec_t dist, push, frac; vec3_t dest, endpos, normal; VectorMA(r_refdef.vieworg, r_editlights_cursordistance.value, vpn, dest); frac = CL_TraceLine(r_refdef.vieworg, dest, endpos, normal, 0, true, NULL); if (frac < 1) { dist = frac * r_editlights_cursordistance.value; push = r_editlights_cursorpushback.value; if (push > dist) push = dist; push = -push; VectorMA(endpos, push, vpn, endpos); VectorMA(endpos, r_editlights_cursorpushoff.value, normal, endpos); } r_editlights_cursorlocation[0] = floor(endpos[0] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value; r_editlights_cursorlocation[1] = floor(endpos[1] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value; r_editlights_cursorlocation[2] = floor(endpos[2] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value; } void R_Shadow_UpdateLightingMode(void) { r_shadow_lightingmode = 0; if (r_shadow_realtime.integer) { if (r_shadow_worldlightchain) r_shadow_lightingmode = 2; else r_shadow_lightingmode = 1; } } void R_Shadow_UpdateWorldLightSelection(void) { if (r_editlights.integer) { R_Shadow_SetCursorLocationForView(); R_Shadow_SelectLightInView(); R_Shadow_DrawLightSprites(); } else R_Shadow_SelectLight(NULL); } void R_Shadow_EditLights_Clear_f(void) { R_Shadow_ClearWorldLights(); } void R_Shadow_EditLights_Reload_f(void) { r_shadow_reloadlights = true; } void R_Shadow_EditLights_Save_f(void) { if (cl.worldmodel) R_Shadow_SaveWorldLights(); } void R_Shadow_EditLights_ImportLightEntitiesFromMap_f(void) { R_Shadow_ClearWorldLights(); R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(); } void R_Shadow_EditLights_ImportLightsFile_f(void) { R_Shadow_ClearWorldLights(); R_Shadow_LoadLightsFile(); } void R_Shadow_EditLights_Spawn_f(void) { vec3_t origin, color; vec_t radius; int style; const char *cubemapname; if (!r_editlights.integer) { Con_Printf("Cannot spawn light when not in editing mode. Set r_editlights to 1.\n"); return; } if (Cmd_Argc() <= 7) { radius = 200; color[0] = color[1] = color[2] = 1; style = 0; cubemapname = NULL; if (Cmd_Argc() >= 2) { radius = atof(Cmd_Argv(1)); if (Cmd_Argc() >= 3) { color[0] = atof(Cmd_Argv(2)); color[1] = color[0]; color[2] = color[0]; if (Cmd_Argc() >= 5) { color[1] = atof(Cmd_Argv(3)); color[2] = atof(Cmd_Argv(4)); if (Cmd_Argc() >= 6) { style = atoi(Cmd_Argv(5)); if (Cmd_Argc() >= 7) cubemapname = Cmd_Argv(6); } } } } if (cubemapname && !cubemapname[0]) cubemapname = NULL; if (radius >= 16 && color[0] >= 0 && color[1] >= 0 && color[2] >= 0 && style >= 0 && style < 256 && (color[0] >= 0.1 || color[1] >= 0.1 || color[2] >= 0.1)) { VectorCopy(r_editlights_cursorlocation, origin); R_Shadow_NewWorldLight(origin, radius, color, style, cubemapname); return; } } Con_Printf("usage: r_editlights_spawn radius red green blue [style [cubemap]]\n"); } void R_Shadow_EditLights_Edit_f(void) { vec3_t origin, color; vec_t radius; int style; const char *cubemapname; if (!r_editlights.integer) { Con_Printf("Cannot spawn light when not in editing mode. Set r_editlights to 1.\n"); return; } if (!r_shadow_selectedlight) { Con_Printf("No selected light.\n"); return; } if (Cmd_Argc() <= 7) { radius = 200; color[0] = color[1] = color[2] = 1; style = 0; cubemapname = NULL; if (Cmd_Argc() >= 2) { radius = atof(Cmd_Argv(1)); if (Cmd_Argc() >= 3) { color[0] = atof(Cmd_Argv(2)); color[1] = color[0]; color[2] = color[0]; if (Cmd_Argc() >= 5) { color[1] = atof(Cmd_Argv(3)); color[2] = atof(Cmd_Argv(4)); if (Cmd_Argc() >= 6) { style = atoi(Cmd_Argv(5)); if (Cmd_Argc() >= 7) cubemapname = Cmd_Argv(6); } } } } if (cubemapname && !cubemapname[0]) cubemapname = NULL; if (radius >= 16 && color[0] >= 0 && color[1] >= 0 && color[2] >= 0 && style >= 0 && style < 256 && (color[0] >= 0.1 || color[1] >= 0.1 || color[2] >= 0.1)) { VectorCopy(r_shadow_selectedlight->origin, origin); R_Shadow_FreeWorldLight(r_shadow_selectedlight); r_shadow_selectedlight = NULL; R_Shadow_NewWorldLight(origin, radius, color, style, cubemapname); return; } } Con_Printf("usage: r_editlights_edit radius red green blue [style [cubemap]]\n"); } void R_Shadow_EditLights_Remove_f(void) { if (!r_editlights.integer) { Con_Printf("Cannot remove light when not in editing mode. Set r_editlights to 1.\n"); return; } if (!r_shadow_selectedlight) { Con_Printf("No selected light.\n"); return; } R_Shadow_FreeSelectedWorldLight(); } void R_Shadow_EditLights_Init(void) { Cvar_RegisterVariable(&r_editlights); Cvar_RegisterVariable(&r_editlights_cursordistance); Cvar_RegisterVariable(&r_editlights_cursorpushback); Cvar_RegisterVariable(&r_editlights_cursorpushoff); Cvar_RegisterVariable(&r_editlights_cursorgrid); Cvar_RegisterVariable(&r_editlights_quakelightsizescale); Cmd_AddCommand("r_editlights_clear", R_Shadow_EditLights_Clear_f); Cmd_AddCommand("r_editlights_reload", R_Shadow_EditLights_Reload_f); Cmd_AddCommand("r_editlights_save", R_Shadow_EditLights_Save_f); Cmd_AddCommand("r_editlights_spawn", R_Shadow_EditLights_Spawn_f); Cmd_AddCommand("r_editlights_edit", R_Shadow_EditLights_Edit_f); Cmd_AddCommand("r_editlights_remove", R_Shadow_EditLights_Remove_f); Cmd_AddCommand("r_editlights_importlightentitiesfrommap", R_Shadow_EditLights_ImportLightEntitiesFromMap_f); Cmd_AddCommand("r_editlights_importlightsfile", R_Shadow_EditLights_ImportLightsFile_f); }