#include "quakedef.h" #include "r_shadow.h" #include "cl_collision.h" #include "portals.h" extern void R_Shadow_EditLights_Init(void); #define SHADOWSTAGE_NONE 0 #define SHADOWSTAGE_STENCIL 1 #define SHADOWSTAGE_LIGHT 2 #define SHADOWSTAGE_ERASESTENCIL 3 int r_shadowstage = SHADOWSTAGE_NONE; int r_shadow_reloadlights = false; mempool_t *r_shadow_mempool; int maxshadowelements; int *shadowelements; int maxtrianglefacinglight; qbyte *trianglefacinglight; int *trianglefacinglightlist; int maxshadowvertices; float *shadowvertex3f; int maxvertexupdate; int *vertexupdate; int vertexupdatenum; rtexturepool_t *r_shadow_texturepool; rtexture_t *r_shadow_normalcubetexture; rtexture_t *r_shadow_attenuation2dtexture; rtexture_t *r_shadow_attenuation3dtexture; rtexture_t *r_shadow_blankbumptexture; rtexture_t *r_shadow_blankglosstexture; rtexture_t *r_shadow_blankwhitetexture; cvar_t r_shadow_lightattenuationpower = {0, "r_shadow_lightattenuationpower", "0.5"}; cvar_t r_shadow_lightattenuationscale = {0, "r_shadow_lightattenuationscale", "1"}; cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1"}; cvar_t r_shadow_realtime_world = {0, "r_shadow_realtime_world", "0"}; cvar_t r_shadow_realtime_dlight = {0, "r_shadow_realtime_dlight", "0"}; cvar_t r_shadow_visiblevolumes = {0, "r_shadow_visiblevolumes", "0"}; cvar_t r_shadow_gloss = {0, "r_shadow_gloss", "1"}; cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1"}; cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1"}; cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4"}; cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0"}; cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "-1"}; cvar_t r_shadow_portallight = {0, "r_shadow_portallight", "1"}; cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "100000"}; cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1"}; int c_rt_lights, c_rt_clears, c_rt_scissored; int c_rt_shadowmeshes, c_rt_shadowtris, c_rt_lightmeshes, c_rt_lighttris; int c_rtcached_shadowmeshes, c_rtcached_shadowtris; void R_Shadow_ClearWorldLights(void); void R_Shadow_SaveWorldLights(void); void R_Shadow_LoadWorldLights(void); void R_Shadow_LoadLightsFile(void); void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void); void r_shadow_start(void) { // allocate vertex processing arrays r_shadow_mempool = Mem_AllocPool("R_Shadow"); maxshadowelements = 0; shadowelements = NULL; maxshadowvertices = 0; shadowvertex3f = NULL; maxvertexupdate = 0; vertexupdate = NULL; vertexupdatenum = 0; maxtrianglefacinglight = 0; trianglefacinglight = NULL; trianglefacinglightlist = NULL; r_shadow_normalcubetexture = NULL; r_shadow_attenuation2dtexture = NULL; r_shadow_attenuation3dtexture = NULL; r_shadow_blankbumptexture = NULL; r_shadow_blankglosstexture = NULL; r_shadow_blankwhitetexture = NULL; r_shadow_texturepool = NULL; R_Shadow_ClearWorldLights(); r_shadow_reloadlights = true; } void r_shadow_shutdown(void) { R_Shadow_ClearWorldLights(); r_shadow_reloadlights = true; r_shadow_normalcubetexture = NULL; r_shadow_attenuation2dtexture = NULL; r_shadow_attenuation3dtexture = NULL; r_shadow_blankbumptexture = NULL; r_shadow_blankglosstexture = NULL; r_shadow_blankwhitetexture = NULL; R_FreeTexturePool(&r_shadow_texturepool); maxshadowelements = 0; shadowelements = NULL; maxshadowvertices = 0; shadowvertex3f = NULL; maxvertexupdate = 0; vertexupdate = NULL; vertexupdatenum = 0; maxtrianglefacinglight = 0; trianglefacinglight = NULL; trianglefacinglightlist = NULL; Mem_FreePool(&r_shadow_mempool); } void r_shadow_newmap(void) { R_Shadow_ClearWorldLights(); r_shadow_reloadlights = true; } void R_Shadow_Init(void) { Cvar_RegisterVariable(&r_shadow_lightattenuationpower); Cvar_RegisterVariable(&r_shadow_lightattenuationscale); Cvar_RegisterVariable(&r_shadow_lightintensityscale); Cvar_RegisterVariable(&r_shadow_realtime_world); Cvar_RegisterVariable(&r_shadow_realtime_dlight); Cvar_RegisterVariable(&r_shadow_visiblevolumes); Cvar_RegisterVariable(&r_shadow_gloss); Cvar_RegisterVariable(&r_shadow_debuglight); Cvar_RegisterVariable(&r_shadow_scissor); Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap); Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture); Cvar_RegisterVariable(&r_shadow_polygonoffset); Cvar_RegisterVariable(&r_shadow_portallight); Cvar_RegisterVariable(&r_shadow_projectdistance); Cvar_RegisterVariable(&r_shadow_texture3d); R_Shadow_EditLights_Init(); R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap); } int R_Shadow_MakeTriangleShadowFlags_Vertex3f(const int *elements, const float *vertex, int numtris, qbyte *facing, int *list, const float *relativelightorigin) { int i, tris = 0; const float *v0, *v1, *v2; for (i = 0;i < numtris;i++, elements += 3) { // calculate triangle facing flag v0 = vertex + elements[0] * 3; v1 = vertex + elements[1] * 3; v2 = vertex + elements[2] * 3; if(PointInfrontOfTriangle(relativelightorigin, v0, v1, v2)) { facing[i] = true; list[tris++] = i; } else facing[i] = false; } return tris; } int R_Shadow_BuildShadowVolume(const int *elements, const int *neighbors, int numverts, const qbyte *facing, const int *facinglist, int numfacing, int *out, float *vertices, const float *relativelightorigin, float projectdistance) { int i, j, tris, vertexpointeradjust = numverts * 3; const int *e, *n; float *vin, *vout; if (maxvertexupdate < numverts) { maxvertexupdate = numverts; if (vertexupdate) Mem_Free(vertexupdate); vertexupdate = Mem_Alloc(r_shadow_mempool, maxvertexupdate * sizeof(int)); } vertexupdatenum++; // check each frontface for bordering backfaces, // and cast shadow polygons from those edges, // also create front and back caps for shadow volume tris = numfacing * 2; // output front caps for (i = 0;i < numfacing;i++) { e = elements + facinglist[i] * 3; out[0] = e[0]; out[1] = e[1]; out[2] = e[2]; out += 3; } // output back caps for (i = 0;i < numfacing;i++) { e = elements + facinglist[i] * 3; // generate vertices if needed for (j = 0;j < 3;j++) { if (vertexupdate[e[j]] != vertexupdatenum) { vertexupdate[e[j]] = vertexupdatenum; vin = vertices + e[j] * 3; vout = vin + vertexpointeradjust; vout[0] = relativelightorigin[0] + projectdistance * (vin[0] - relativelightorigin[0]); vout[1] = relativelightorigin[1] + projectdistance * (vin[1] - relativelightorigin[1]); vout[2] = relativelightorigin[2] + projectdistance * (vin[2] - relativelightorigin[2]); } } out[0] = e[2] + numverts; out[1] = e[1] + numverts; out[2] = e[0] + numverts; out += 3; } // output sides around frontfaces for (i = 0;i < numfacing;i++) { n = neighbors + facinglist[i] * 3; // check the edges if (n[0] < 0 || !facing[n[0]]) { e = elements + facinglist[i] * 3; out[0] = e[1]; out[1] = e[0]; out[2] = e[0] + numverts; out[3] = e[1]; out[4] = e[0] + numverts; out[5] = e[1] + numverts; out += 6; tris += 2; } if (n[1] < 0 || !facing[n[1]]) { e = elements + facinglist[i] * 3; out[0] = e[2]; out[1] = e[1]; out[2] = e[1] + numverts; out[3] = e[2]; out[4] = e[1] + numverts; out[5] = e[2] + numverts; out += 6; tris += 2; } if (n[2] < 0 || !facing[n[2]]) { e = elements + facinglist[i] * 3; out[0] = e[0]; out[1] = e[2]; out[2] = e[2] + numverts; out[3] = e[0]; out[4] = e[2] + numverts; out[5] = e[0] + numverts; out += 6; tris += 2; } } return tris; } void R_Shadow_ResizeTriangleFacingLight(int numtris) { // make sure trianglefacinglight is big enough for this volume // ameks ru ertaignelaficgnilhg tsib gie ongu hof rhtsiv lomu e // m4k3 5ur3 7r14ng13f4c1n5115h7 15 b15 3n0u5h f0r 7h15 v01um3 if (maxtrianglefacinglight < numtris) { maxtrianglefacinglight = numtris; if (trianglefacinglight) Mem_Free(trianglefacinglight); if (trianglefacinglightlist) Mem_Free(trianglefacinglightlist); trianglefacinglight = Mem_Alloc(r_shadow_mempool, maxtrianglefacinglight); trianglefacinglightlist = Mem_Alloc(r_shadow_mempool, sizeof(int) * maxtrianglefacinglight); } } int *R_Shadow_ResizeShadowElements(int numtris) { // make sure shadowelements is big enough for this volume if (maxshadowelements < numtris * 24) { maxshadowelements = numtris * 24; if (shadowelements) Mem_Free(shadowelements); shadowelements = Mem_Alloc(r_shadow_mempool, maxshadowelements * sizeof(int)); } return shadowelements; } float *R_Shadow_VertexBuffer(int numvertices) { if (maxshadowvertices < numvertices) { maxshadowvertices = numvertices; if (shadowvertex3f) Mem_Free(shadowvertex3f); shadowvertex3f = Mem_Alloc(r_shadow_mempool, maxshadowvertices * sizeof(float[3])); } return shadowvertex3f; } void R_Shadow_Volume(int numverts, int numtris, int *elements, int *neighbors, vec3_t relativelightorigin, float lightradius, float projectdistance) { int tris; if (projectdistance < 0.1) { Con_Printf("R_Shadow_Volume: projectdistance %f\n"); return; } if (!numverts) return; // terminology: // // frontface: // a triangle facing the light source // // backface: // a triangle not facing the light source // // shadow volume: // an extrusion of the frontfaces, beginning at the original geometry and // ending further from the light source than the original geometry // (presumably at least as far as the light's radius, if the light has a // radius at all), capped at both front and back to avoid any problems // // description: // draws the shadow volumes of the model. // requirements: // vertex locations must already be in varray_vertex3f before use. // varray_vertex3f must have capacity for numverts * 2. // make sure trianglefacinglight is big enough for this volume if (maxtrianglefacinglight < numtris) R_Shadow_ResizeTriangleFacingLight(numtris); // make sure shadowelements is big enough for this volume if (maxshadowelements < numtris * 24) R_Shadow_ResizeShadowElements(numtris); // check which triangles are facing the light tris = R_Shadow_MakeTriangleShadowFlags_Vertex3f(elements, varray_vertex3f, numtris, trianglefacinglight, trianglefacinglightlist, relativelightorigin); if (!tris) return; // by clever use of elements we can construct the whole shadow from // the unprojected vertices and the projected vertices // output triangle elements and vertices tris = R_Shadow_BuildShadowVolume(elements, neighbors, numverts, trianglefacinglight, trianglefacinglightlist, tris, shadowelements, varray_vertex3f, relativelightorigin, projectdistance); if (!tris) return; if (r_shadowstage == SHADOWSTAGE_STENCIL) { // increment stencil if backface is behind depthbuffer qglCullFace(GL_BACK); // quake is backwards, this culls front faces qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP); R_Mesh_Draw(numverts * 2, tris, shadowelements); c_rt_shadowmeshes++; c_rt_shadowtris += numtris; // decrement stencil if frontface is behind depthbuffer qglCullFace(GL_FRONT); // quake is backwards, this culls back faces qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP); } R_Mesh_Draw(numverts * 2, tris, shadowelements); c_rt_shadowmeshes++; c_rt_shadowtris += numtris; } void R_Shadow_RenderShadowMeshVolume(shadowmesh_t *firstmesh) { shadowmesh_t *mesh; if (r_shadowstage == SHADOWSTAGE_STENCIL) { // increment stencil if backface is behind depthbuffer qglCullFace(GL_BACK); // quake is backwards, this culls front faces qglStencilOp(GL_KEEP, GL_INCR, GL_KEEP); for (mesh = firstmesh;mesh;mesh = mesh->next) { R_Mesh_GetSpace(mesh->numverts); R_Mesh_CopyVertex3f(mesh->vertex3f, mesh->numverts); R_Mesh_Draw(mesh->numverts, mesh->numtriangles, mesh->element3i); c_rtcached_shadowmeshes++; c_rtcached_shadowtris += mesh->numtriangles; } // decrement stencil if frontface is behind depthbuffer qglCullFace(GL_FRONT); // quake is backwards, this culls back faces qglStencilOp(GL_KEEP, GL_DECR, GL_KEEP); } for (mesh = firstmesh;mesh;mesh = mesh->next) { R_Mesh_GetSpace(mesh->numverts); R_Mesh_CopyVertex3f(mesh->vertex3f, mesh->numverts); R_Mesh_Draw(mesh->numverts, mesh->numtriangles, mesh->element3i); c_rtcached_shadowmeshes++; c_rtcached_shadowtris += mesh->numtriangles; } } float r_shadow_attenpower, r_shadow_attenscale; static void R_Shadow_MakeTextures(void) { int x, y, z, d, side; float v[3], s, t, intensity; qbyte *data; R_FreeTexturePool(&r_shadow_texturepool); r_shadow_texturepool = R_AllocTexturePool(); r_shadow_attenpower = r_shadow_lightattenuationpower.value; r_shadow_attenscale = r_shadow_lightattenuationscale.value; #define NORMSIZE 64 #define ATTEN2DSIZE 64 #define ATTEN3DSIZE 32 data = Mem_Alloc(tempmempool, max(6*NORMSIZE*NORMSIZE*4, max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE*4, ATTEN2DSIZE*ATTEN2DSIZE*4))); data[0] = 128; data[1] = 128; data[2] = 255; data[3] = 255; r_shadow_blankbumptexture = R_LoadTexture2D(r_shadow_texturepool, "blankbump", 1, 1, data, TEXTYPE_RGBA, TEXF_PRECACHE, NULL); data[0] = 255; data[1] = 255; data[2] = 255; data[3] = 255; r_shadow_blankglosstexture = R_LoadTexture2D(r_shadow_texturepool, "blankgloss", 1, 1, data, TEXTYPE_RGBA, TEXF_PRECACHE, NULL); data[0] = 255; data[1] = 255; data[2] = 255; data[3] = 255; r_shadow_blankwhitetexture = R_LoadTexture2D(r_shadow_texturepool, "blankwhite", 1, 1, data, TEXTYPE_RGBA, TEXF_PRECACHE, NULL); if (gl_texturecubemap) { for (side = 0;side < 6;side++) { for (y = 0;y < NORMSIZE;y++) { for (x = 0;x < NORMSIZE;x++) { s = (x + 0.5f) * (2.0f / NORMSIZE) - 1.0f; t = (y + 0.5f) * (2.0f / NORMSIZE) - 1.0f; switch(side) { case 0: v[0] = 1; v[1] = -t; v[2] = -s; break; case 1: v[0] = -1; v[1] = -t; v[2] = s; break; case 2: v[0] = s; v[1] = 1; v[2] = t; break; case 3: v[0] = s; v[1] = -1; v[2] = -t; break; case 4: v[0] = s; v[1] = -t; v[2] = 1; break; case 5: v[0] = -s; v[1] = -t; v[2] = -1; break; } intensity = 127.0f / sqrt(DotProduct(v, v)); data[((side*NORMSIZE+y)*NORMSIZE+x)*4+0] = 128.0f + intensity * v[0]; data[((side*NORMSIZE+y)*NORMSIZE+x)*4+1] = 128.0f + intensity * v[1]; data[((side*NORMSIZE+y)*NORMSIZE+x)*4+2] = 128.0f + intensity * v[2]; data[((side*NORMSIZE+y)*NORMSIZE+x)*4+3] = 255; } } } r_shadow_normalcubetexture = R_LoadTextureCubeMap(r_shadow_texturepool, "normalcube", NORMSIZE, data, TEXTYPE_RGBA, TEXF_PRECACHE | TEXF_CLAMP, NULL); } else r_shadow_normalcubetexture = NULL; for (y = 0;y < ATTEN2DSIZE;y++) { for (x = 0;x < ATTEN2DSIZE;x++) { v[0] = ((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375); v[1] = ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375); v[2] = 0; intensity = 1.0f - sqrt(DotProduct(v, v)); if (intensity > 0) intensity = pow(intensity, r_shadow_attenpower) * r_shadow_attenscale * 256.0f; d = bound(0, intensity, 255); data[(y*ATTEN2DSIZE+x)*4+0] = d; data[(y*ATTEN2DSIZE+x)*4+1] = d; data[(y*ATTEN2DSIZE+x)*4+2] = d; data[(y*ATTEN2DSIZE+x)*4+3] = d; } } r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, data, TEXTYPE_RGBA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, NULL); if (r_shadow_texture3d.integer) { for (z = 0;z < ATTEN3DSIZE;z++) { for (y = 0;y < ATTEN3DSIZE;y++) { for (x = 0;x < ATTEN3DSIZE;x++) { v[0] = ((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375); v[1] = ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375); v[2] = ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375); intensity = 1.0f - sqrt(DotProduct(v, v)); if (intensity > 0) intensity = pow(intensity, r_shadow_attenpower) * r_shadow_attenscale * 256.0f; d = bound(0, intensity, 255); data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+0] = d; data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+1] = d; data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+2] = d; data[((z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x)*4+3] = d; } } } r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, data, TEXTYPE_RGBA, TEXF_PRECACHE | TEXF_CLAMP | TEXF_ALPHA, NULL); } Mem_Free(data); } void R_Shadow_Stage_Begin(void) { rmeshstate_t m; if (r_shadow_texture3d.integer && !gl_texture3d) Cvar_SetValueQuick(&r_shadow_texture3d, 0); //cl.worldmodel->numlights = min(cl.worldmodel->numlights, 1); if (!r_shadow_attenuation2dtexture || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer) || r_shadow_lightattenuationpower.value != r_shadow_attenpower || r_shadow_lightattenuationscale.value != r_shadow_attenscale) R_Shadow_MakeTextures(); memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_ONE; m.blendfunc2 = GL_ZERO; R_Mesh_State(&m); GL_Color(0, 0, 0, 1); r_shadowstage = SHADOWSTAGE_NONE; c_rt_lights = c_rt_clears = c_rt_scissored = 0; c_rt_shadowmeshes = c_rt_shadowtris = c_rt_lightmeshes = c_rt_lighttris = 0; c_rtcached_shadowmeshes = c_rtcached_shadowtris = 0; } void R_Shadow_LoadWorldLightsIfNeeded(void) { if (r_shadow_reloadlights && cl.worldmodel) { R_Shadow_ClearWorldLights(); r_shadow_reloadlights = false; R_Shadow_LoadWorldLights(); if (r_shadow_worldlightchain == NULL) { R_Shadow_LoadLightsFile(); if (r_shadow_worldlightchain == NULL) R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(); } } } void R_Shadow_Stage_ShadowVolumes(void) { rmeshstate_t m; memset(&m, 0, sizeof(m)); R_Mesh_TextureState(&m); GL_Color(1, 1, 1, 1); qglColorMask(0, 0, 0, 0); qglDisable(GL_BLEND); qglDepthMask(0); qglDepthFunc(GL_LESS); qglEnable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); qglStencilFunc(GL_ALWAYS, 128, 0xFF); qglEnable(GL_CULL_FACE); qglEnable(GL_DEPTH_TEST); r_shadowstage = SHADOWSTAGE_STENCIL; qglClear(GL_STENCIL_BUFFER_BIT); c_rt_clears++; // LordHavoc note: many shadow volumes reside entirely inside the world // (that is to say they are entirely bounded by their lit surfaces), // which can be optimized by handling things as an inverted light volume, // with the shadow boundaries of the world being simulated by an altered // (129) bias to stencil clearing on such lights // FIXME: generate inverted light volumes for use as shadow volumes and // optimize for them as noted above } void R_Shadow_Stage_LightWithoutShadows(void) { rmeshstate_t m; memset(&m, 0, sizeof(m)); R_Mesh_TextureState(&m); qglActiveTexture(GL_TEXTURE0_ARB); qglEnable(GL_BLEND); qglBlendFunc(GL_ONE, GL_ONE); GL_Color(1, 1, 1, 1); qglColorMask(1, 1, 1, 1); qglDepthMask(0); qglDepthFunc(GL_EQUAL); qglDisable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); qglStencilFunc(GL_EQUAL, 128, 0xFF); qglEnable(GL_CULL_FACE); qglEnable(GL_DEPTH_TEST); r_shadowstage = SHADOWSTAGE_LIGHT; c_rt_lights++; } void R_Shadow_Stage_LightWithShadows(void) { rmeshstate_t m; memset(&m, 0, sizeof(m)); R_Mesh_TextureState(&m); qglActiveTexture(GL_TEXTURE0_ARB); qglEnable(GL_BLEND); qglBlendFunc(GL_ONE, GL_ONE); GL_Color(1, 1, 1, 1); qglColorMask(1, 1, 1, 1); qglDepthMask(0); qglDepthFunc(GL_EQUAL); qglEnable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // only draw light where this geometry was already rendered AND the // stencil is 128 (values other than this mean shadow) qglStencilFunc(GL_EQUAL, 128, 0xFF); qglEnable(GL_CULL_FACE); qglEnable(GL_DEPTH_TEST); r_shadowstage = SHADOWSTAGE_LIGHT; c_rt_lights++; } void R_Shadow_Stage_End(void) { rmeshstate_t m; // attempt to restore state to what Mesh_State thinks it is qglDisable(GL_BLEND); qglBlendFunc(GL_ONE, GL_ZERO); qglDepthMask(1); // now restore the rest of the state to normal GL_Color(1, 1, 1, 1); qglColorMask(1, 1, 1, 1); qglDisable(GL_SCISSOR_TEST); qglDepthFunc(GL_LEQUAL); qglDisable(GL_STENCIL_TEST); qglStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); qglStencilFunc(GL_ALWAYS, 128, 0xFF); qglEnable(GL_CULL_FACE); qglEnable(GL_DEPTH_TEST); // force mesh state to reset by using various combinations of features memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_SRC_ALPHA; m.blendfunc2 = GL_ONE_MINUS_SRC_ALPHA; R_Mesh_State(&m); m.blendfunc1 = GL_ONE; m.blendfunc2 = GL_ZERO; R_Mesh_State(&m); r_shadowstage = SHADOWSTAGE_NONE; } #if 0 int R_Shadow_ScissorForBBoxAndSphere(const float *mins, const float *maxs, const float *origin, float radius) { int i, ix1, iy1, ix2, iy2; float x1, y1, x2, y2, x, y; vec3_t smins, smaxs; vec4_t v, v2; if (!r_shadow_scissor.integer) return false; // if view is inside the box, just say yes it's visible if (r_origin[0] >= mins[0] && r_origin[0] <= maxs[0] && r_origin[1] >= mins[1] && r_origin[1] <= maxs[1] && r_origin[2] >= mins[2] && r_origin[2] <= maxs[2]) { qglDisable(GL_SCISSOR_TEST); return false; } VectorSubtract(r_origin, origin, v); if (DotProduct(v, v) < radius * radius) { qglDisable(GL_SCISSOR_TEST); return false; } // create viewspace bbox for (i = 0;i < 8;i++) { v[0] = ((i & 1) ? mins[0] : maxs[0]) - r_origin[0]; v[1] = ((i & 2) ? mins[1] : maxs[1]) - r_origin[1]; v[2] = ((i & 4) ? mins[2] : maxs[2]) - r_origin[2]; v2[0] = DotProduct(v, vright); v2[1] = DotProduct(v, vup); v2[2] = DotProduct(v, vpn); if (i) { if (smins[0] > v2[0]) smins[0] = v2[0]; if (smaxs[0] < v2[0]) smaxs[0] = v2[0]; if (smins[1] > v2[1]) smins[1] = v2[1]; if (smaxs[1] < v2[1]) smaxs[1] = v2[1]; if (smins[2] > v2[2]) smins[2] = v2[2]; if (smaxs[2] < v2[2]) smaxs[2] = v2[2]; } else { smins[0] = smaxs[0] = v2[0]; smins[1] = smaxs[1] = v2[1]; smins[2] = smaxs[2] = v2[2]; } } // now we have a bbox in viewspace // clip it to the viewspace version of the sphere v[0] = origin[0] - r_origin[0]; v[1] = origin[1] - r_origin[1]; v[2] = origin[2] - r_origin[2]; v2[0] = DotProduct(v, vright); v2[1] = DotProduct(v, vup); v2[2] = DotProduct(v, vpn); if (smins[0] < v2[0] - radius) smins[0] = v2[0] - radius; if (smaxs[0] < v2[0] - radius) smaxs[0] = v2[0] + radius; if (smins[1] < v2[1] - radius) smins[1] = v2[1] - radius; if (smaxs[1] < v2[1] - radius) smaxs[1] = v2[1] + radius; if (smins[2] < v2[2] - radius) smins[2] = v2[2] - radius; if (smaxs[2] < v2[2] - radius) smaxs[2] = v2[2] + radius; // clip it to the view plane if (smins[2] < 1) smins[2] = 1; // return true if that culled the box if (smins[2] >= smaxs[2]) return true; // ok some of it is infront of the view, transform each corner back to // worldspace and then to screenspace and make screen rect // initialize these variables just to avoid compiler warnings x1 = y1 = x2 = y2 = 0; for (i = 0;i < 8;i++) { v2[0] = (i & 1) ? smins[0] : smaxs[0]; v2[1] = (i & 2) ? smins[1] : smaxs[1]; v2[2] = (i & 4) ? smins[2] : smaxs[2]; v[0] = v2[0] * vright[0] + v2[1] * vup[0] + v2[2] * vpn[0] + r_origin[0]; v[1] = v2[0] * vright[1] + v2[1] * vup[1] + v2[2] * vpn[1] + r_origin[1]; v[2] = v2[0] * vright[2] + v2[1] * vup[2] + v2[2] * vpn[2] + r_origin[2]; v[3] = 1.0f; GL_TransformToScreen(v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); x = v2[0]; y = v2[1]; if (i) { if (x1 > x) x1 = x; if (x2 < x) x2 = x; if (y1 > y) y1 = y; if (y2 < y) y2 = y; } else { x1 = x2 = x; y1 = y2 = y; } } /* // this code doesn't handle boxes with any points behind view properly x1 = 1000;x2 = -1000; y1 = 1000;y2 = -1000; for (i = 0;i < 8;i++) { v[0] = (i & 1) ? mins[0] : maxs[0]; v[1] = (i & 2) ? mins[1] : maxs[1]; v[2] = (i & 4) ? mins[2] : maxs[2]; v[3] = 1.0f; GL_TransformToScreen(v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); if (v2[2] > 0) { x = v2[0]; y = v2[1]; if (x1 > x) x1 = x; if (x2 < x) x2 = x; if (y1 > y) y1 = y; if (y2 < y) y2 = y; } } */ ix1 = x1 - 1.0f; iy1 = y1 - 1.0f; ix2 = x2 + 1.0f; iy2 = y2 + 1.0f; //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2); if (ix1 < r_refdef.x) ix1 = r_refdef.x; if (iy1 < r_refdef.y) iy1 = r_refdef.y; if (ix2 > r_refdef.x + r_refdef.width) ix2 = r_refdef.x + r_refdef.width; if (iy2 > r_refdef.y + r_refdef.height) iy2 = r_refdef.y + r_refdef.height; if (ix2 <= ix1 || iy2 <= iy1) return true; // set up the scissor rectangle qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1); qglEnable(GL_SCISSOR_TEST); c_rt_scissored++; return false; } #endif int R_Shadow_ScissorForBBox(const float *mins, const float *maxs) { int i, ix1, iy1, ix2, iy2; float x1, y1, x2, y2, x, y, f; vec3_t smins, smaxs; vec4_t v, v2; if (!r_shadow_scissor.integer) return false; // if view is inside the box, just say yes it's visible if (BoxesOverlap(r_origin, r_origin, mins, maxs)) { qglDisable(GL_SCISSOR_TEST); return false; } for (i = 0;i < 3;i++) { if (vpn[i] >= 0) { v[i] = mins[i]; v2[i] = maxs[i]; } else { v[i] = maxs[i]; v2[i] = mins[i]; } } f = DotProduct(vpn, r_origin) + 1; if (DotProduct(vpn, v2) <= f) { // entirely behind nearclip plane qglDisable(GL_SCISSOR_TEST); return false; } if (DotProduct(vpn, v) >= f) { // entirely infront of nearclip plane x1 = y1 = x2 = y2 = 0; for (i = 0;i < 8;i++) { v[0] = (i & 1) ? mins[0] : maxs[0]; v[1] = (i & 2) ? mins[1] : maxs[1]; v[2] = (i & 4) ? mins[2] : maxs[2]; v[3] = 1.0f; GL_TransformToScreen(v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); x = v2[0]; y = v2[1]; if (i) { if (x1 > x) x1 = x; if (x2 < x) x2 = x; if (y1 > y) y1 = y; if (y2 < y) y2 = y; } else { x1 = x2 = x; y1 = y2 = y; } } } else { // clipped by nearclip plane // this is nasty and crude... // create viewspace bbox for (i = 0;i < 8;i++) { v[0] = ((i & 1) ? mins[0] : maxs[0]) - r_origin[0]; v[1] = ((i & 2) ? mins[1] : maxs[1]) - r_origin[1]; v[2] = ((i & 4) ? mins[2] : maxs[2]) - r_origin[2]; v2[0] = DotProduct(v, vright); v2[1] = DotProduct(v, vup); v2[2] = DotProduct(v, vpn); if (i) { if (smins[0] > v2[0]) smins[0] = v2[0]; if (smaxs[0] < v2[0]) smaxs[0] = v2[0]; if (smins[1] > v2[1]) smins[1] = v2[1]; if (smaxs[1] < v2[1]) smaxs[1] = v2[1]; if (smins[2] > v2[2]) smins[2] = v2[2]; if (smaxs[2] < v2[2]) smaxs[2] = v2[2]; } else { smins[0] = smaxs[0] = v2[0]; smins[1] = smaxs[1] = v2[1]; smins[2] = smaxs[2] = v2[2]; } } // now we have a bbox in viewspace // clip it to the view plane if (smins[2] < 1) smins[2] = 1; // return true if that culled the box if (smins[2] >= smaxs[2]) return true; // ok some of it is infront of the view, transform each corner back to // worldspace and then to screenspace and make screen rect // initialize these variables just to avoid compiler warnings x1 = y1 = x2 = y2 = 0; for (i = 0;i < 8;i++) { v2[0] = (i & 1) ? smins[0] : smaxs[0]; v2[1] = (i & 2) ? smins[1] : smaxs[1]; v2[2] = (i & 4) ? smins[2] : smaxs[2]; v[0] = v2[0] * vright[0] + v2[1] * vup[0] + v2[2] * vpn[0] + r_origin[0]; v[1] = v2[0] * vright[1] + v2[1] * vup[1] + v2[2] * vpn[1] + r_origin[1]; v[2] = v2[0] * vright[2] + v2[1] * vup[2] + v2[2] * vpn[2] + r_origin[2]; v[3] = 1.0f; GL_TransformToScreen(v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); x = v2[0]; y = v2[1]; if (i) { if (x1 > x) x1 = x; if (x2 < x) x2 = x; if (y1 > y) y1 = y; if (y2 < y) y2 = y; } else { x1 = x2 = x; y1 = y2 = y; } } /* // this code doesn't handle boxes with any points behind view properly x1 = 1000;x2 = -1000; y1 = 1000;y2 = -1000; for (i = 0;i < 8;i++) { v[0] = (i & 1) ? mins[0] : maxs[0]; v[1] = (i & 2) ? mins[1] : maxs[1]; v[2] = (i & 4) ? mins[2] : maxs[2]; v[3] = 1.0f; GL_TransformToScreen(v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); if (v2[2] > 0) { x = v2[0]; y = v2[1]; if (x1 > x) x1 = x; if (x2 < x) x2 = x; if (y1 > y) y1 = y; if (y2 < y) y2 = y; } } */ } ix1 = x1 - 1.0f; iy1 = y1 - 1.0f; ix2 = x2 + 1.0f; iy2 = y2 + 1.0f; //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2); if (ix1 < r_refdef.x) ix1 = r_refdef.x; if (iy1 < r_refdef.y) iy1 = r_refdef.y; if (ix2 > r_refdef.x + r_refdef.width) ix2 = r_refdef.x + r_refdef.width; if (iy2 > r_refdef.y + r_refdef.height) iy2 = r_refdef.y + r_refdef.height; if (ix2 <= ix1 || iy2 <= iy1) return true; // set up the scissor rectangle qglScissor(ix1, iy1, ix2 - ix1, iy2 - iy1); qglEnable(GL_SCISSOR_TEST); c_rt_scissored++; return false; } void R_Shadow_VertexLighting(int numverts, const float *vertex3f, const float *normal3f, const float *lightcolor, const matrix4x4_t *m) { float *color4f = varray_color4f; float dist, dot, intensity, v[3], n[3]; for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4) { Matrix4x4_Transform(m, vertex3f, v); if ((dist = DotProduct(v, v)) < 1) { Matrix4x4_Transform3x3(m, normal3f, n); if ((dot = DotProduct(n, v)) > 0) { dist = sqrt(dist); intensity = pow(1 - dist, r_shadow_attenpower) * r_shadow_attenscale * dot / sqrt(DotProduct(n,n)); VectorScale(lightcolor, intensity, color4f); color4f[3] = 1; } else { VectorClear(color4f); color4f[3] = 1; } } else { VectorClear(color4f); color4f[3] = 1; } } } void R_Shadow_VertexLightingWithXYAttenuationTexture(int numverts, const float *vertex3f, const float *normal3f, const float *lightcolor, const matrix4x4_t *m) { float *color4f = varray_color4f; float dist, dot, intensity, v[3], n[3]; for (;numverts > 0;numverts--, vertex3f += 3, normal3f += 3, color4f += 4) { Matrix4x4_Transform(m, vertex3f, v); if ((dist = fabs(v[2])) < 1) { Matrix4x4_Transform3x3(m, normal3f, n); if ((dot = DotProduct(n, v)) > 0) { intensity = pow(1 - dist, r_shadow_attenpower) * r_shadow_attenscale * dot / sqrt(DotProduct(n,n)); VectorScale(lightcolor, intensity, color4f); color4f[3] = 1; } else { VectorClear(color4f); color4f[3] = 1; } } else { VectorClear(color4f); color4f[3] = 1; } } } // FIXME: this should be done in a vertex program when possible // FIXME: if vertex program not available, this would really benefit from 3DNow! or SSE void R_Shadow_Transform_Vertex3f_TexCoord3f(float *tc3f, int numverts, const float *vertex3f, const matrix4x4_t *matrix) { do { tc3f[0] = vertex3f[0] * matrix->m[0][0] + vertex3f[1] * matrix->m[0][1] + vertex3f[2] * matrix->m[0][2] + matrix->m[0][3]; tc3f[1] = vertex3f[0] * matrix->m[1][0] + vertex3f[1] * matrix->m[1][1] + vertex3f[2] * matrix->m[1][2] + matrix->m[1][3]; tc3f[2] = vertex3f[0] * matrix->m[2][0] + vertex3f[1] * matrix->m[2][1] + vertex3f[2] * matrix->m[2][2] + matrix->m[2][3]; vertex3f += 3; tc3f += 3; } while (--numverts); } void R_Shadow_Transform_Vertex3f_TexCoord2f(float *tc2f, int numverts, const float *vertex3f, const matrix4x4_t *matrix) { do { tc2f[0] = vertex3f[0] * matrix->m[0][0] + vertex3f[1] * matrix->m[0][1] + vertex3f[2] * matrix->m[0][2] + matrix->m[0][3]; tc2f[1] = vertex3f[0] * matrix->m[1][0] + vertex3f[1] * matrix->m[1][1] + vertex3f[2] * matrix->m[1][2] + matrix->m[1][3]; vertex3f += 3; tc2f += 2; } while (--numverts); } void R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(float *out3f, int numverts, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const vec3_t relativelightorigin) { int i; float lightdir[3]; for (i = 0;i < numverts;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3) { VectorSubtract(vertex3f, relativelightorigin, lightdir); // the cubemap normalizes this for us out3f[0] = DotProduct(svector3f, lightdir); out3f[1] = DotProduct(tvector3f, lightdir); out3f[2] = DotProduct(normal3f, lightdir); } } void R_Shadow_GenTexCoords_Specular_NormalCubeMap(float *out3f, int numverts, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const vec3_t relativelightorigin, const vec3_t relativeeyeorigin) { int i; float lightdir[3], eyedir[3], halfdir[3]; for (i = 0;i < numverts;i++, vertex3f += 3, svector3f += 3, tvector3f += 3, normal3f += 3, out3f += 3) { VectorSubtract(vertex3f, relativelightorigin, lightdir); VectorNormalizeFast(lightdir); VectorSubtract(vertex3f, relativeeyeorigin, eyedir); VectorNormalizeFast(eyedir); VectorAdd(lightdir, eyedir, halfdir); // the cubemap normalizes this for us out3f[0] = DotProduct(svector3f, halfdir); out3f[1] = DotProduct(tvector3f, halfdir); out3f[2] = DotProduct(normal3f, halfdir); } } void R_Shadow_DiffuseLighting(int numverts, int numtriangles, const int *elements, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const float *texcoord2f, const float *relativelightorigin, float lightradius, const float *lightcolor, const matrix4x4_t *matrix_modeltofilter, const matrix4x4_t *matrix_modeltoattenuationxyz, const matrix4x4_t *matrix_modeltoattenuationz, rtexture_t *basetexture, rtexture_t *bumptexture, rtexture_t *lightcubemap) { int renders; float color[3], color2[3]; rmeshstate_t m; memset(&m, 0, sizeof(m)); if (gl_dot3arb && gl_texturecubemap && gl_combine.integer && gl_stencil) { if (!bumptexture) bumptexture = r_shadow_blankbumptexture; // colorscale accounts for how much we multiply the brightness during combine // mult is how many times the final pass of the lighting will be // performed to get more brightness than otherwise possible // limit mult to 64 for sanity sake if (r_shadow_texture3d.integer && r_textureunits.integer >= 4) { // 3/2 3D combine path (Geforce3, Radeon 8500) m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.tex3d[2] = R_GetTexture(r_shadow_attenuation3dtexture); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); GL_Color(1,1,1,1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin); R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[2], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(basetexture); m.tex[1] = 0; m.texcubemap[1] = R_GetTexture(lightcubemap); m.tex3d[2] = 0; m.texcombinergb[0] = GL_MODULATE; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); qglEnable(GL_BLEND); VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); if (lightcubemap) R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && lightcubemap) { // 1/2/2 3D combine path (original Radeon) m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture); R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); GL_Color(1,1,1,1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[0], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(bumptexture); m.tex3d[0] = 0; m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglBlendFunc(GL_DST_ALPHA, GL_ZERO); qglEnable(GL_BLEND); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(basetexture); m.texcubemap[1] = R_GetTexture(lightcubemap); m.texcombinergb[0] = GL_MODULATE; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); if (lightcubemap) R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && !lightcubemap) { // 2/2 3D combine path (original Radeon) m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); GL_Color(1,1,1,1); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(basetexture); m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture); m.texcubemap[1] = 0; m.texcombinergb[0] = GL_MODULATE; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); qglEnable(GL_BLEND); VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } else if (r_textureunits.integer >= 4) { // 4/2 2D combine path (Geforce3, Radeon 8500) m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_DOT3_RGBA_ARB; m.tex[2] = R_GetTexture(r_shadow_attenuation2dtexture); m.tex[3] = R_GetTexture(r_shadow_attenuation2dtexture); R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); GL_Color(1,1,1,1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin); R_Shadow_Transform_Vertex3f_TexCoord2f(varray_texcoord2f[2], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Shadow_Transform_Vertex3f_TexCoord2f(varray_texcoord2f[3], numverts, vertex3f, matrix_modeltoattenuationz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(basetexture); m.texcubemap[1] = R_GetTexture(lightcubemap); m.texcombinergb[0] = GL_MODULATE; m.texcombinergb[1] = GL_MODULATE; m.tex[2] = 0; m.tex[3] = 0; R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); qglEnable(GL_BLEND); VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); if (lightcubemap) R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } else { // 2/2/2 2D combine path (any dot3 card) m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture); m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture); R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); qglDisable(GL_BLEND); GL_Color(1,1,1,1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Shadow_Transform_Vertex3f_TexCoord2f(varray_texcoord2f[0], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Shadow_Transform_Vertex3f_TexCoord2f(varray_texcoord2f[1], numverts, vertex3f, matrix_modeltoattenuationz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(bumptexture); m.tex[1] = 0; m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.texcombinergb[0] = GL_REPLACE; m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglBlendFunc(GL_DST_ALPHA, GL_ZERO); qglEnable(GL_BLEND); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Diffuse_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(basetexture); m.texcubemap[1] = R_GetTexture(lightcubemap); m.texcombinergb[0] = GL_MODULATE; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); if (lightcubemap) R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } } else { if (r_textureunits.integer >= 2) { // voodoo2 #if 1 m.tex[0] = R_GetTexture(basetexture); m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture); R_Mesh_TextureState(&m); qglBlendFunc(GL_SRC_ALPHA, GL_ONE); qglEnable(GL_BLEND); #else m.tex[0] = R_GetTexture(basetexture); m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture); m.blendfunc1 = GL_SRC_ALPHA; m.blendfunc2 = GL_ONE; R_Mesh_State(&m); #endif VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_UseColorArray(); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_Transform_Vertex3f_TexCoord2f(varray_texcoord2f[1], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Shadow_VertexLightingWithXYAttenuationTexture(numverts, vertex3f, normal3f, color, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); } } else { // voodoo1 #if 1 m.tex[0] = R_GetTexture(basetexture); R_Mesh_TextureState(&m); qglBlendFunc(GL_SRC_ALPHA, GL_ONE); qglEnable(GL_BLEND); #else m.tex[0] = R_GetTexture(basetexture); m.blendfunc1 = GL_SRC_ALPHA; m.blendfunc2 = GL_ONE; R_Mesh_State(&m); #endif VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_UseColorArray(); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_VertexLighting(numverts, vertex3f, normal3f, color, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); } } } } void R_Shadow_SpecularLighting(int numverts, int numtriangles, const int *elements, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const float *texcoord2f, const float *relativelightorigin, const float *relativeeyeorigin, float lightradius, const float *lightcolor, const matrix4x4_t *matrix_modeltofilter, const matrix4x4_t *matrix_modeltoattenuationxyz, const matrix4x4_t *matrix_modeltoattenuationz, rtexture_t *glosstexture, rtexture_t *bumptexture, rtexture_t *lightcubemap) { int renders; float color[3], color2[3]; rmeshstate_t m; if (!gl_dot3arb || !gl_texturecubemap || !gl_combine.integer || !gl_stencil) return; memset(&m, 0, sizeof(m)); if (!bumptexture) bumptexture = r_shadow_blankbumptexture; if (!glosstexture) glosstexture = r_shadow_blankglosstexture; if (r_shadow_gloss.integer >= 2 || (r_shadow_gloss.integer >= 1 && glosstexture != r_shadow_blankglosstexture)) { if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && lightcubemap /*&& gl_support_blendsquare*/) // FIXME: detect blendsquare! { // 2/0/0/1/2 3D combine blendsquare path m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); // this squares the result qglEnable(GL_BLEND); qglBlendFunc(GL_SRC_ALPHA, GL_ZERO); GL_Color(1,1,1,1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Specular_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin, relativeeyeorigin); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = 0; m.texcubemap[1] = 0; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); // square alpha in framebuffer a few times to make it shiny qglBlendFunc(GL_ZERO, GL_DST_ALPHA); // these comments are a test run through this math for intensity 0.5 // 0.5 * 0.5 = 0.25 (done by the BlendFunc earlier) // 0.25 * 0.25 = 0.0625 (this is another pass) // 0.0625 * 0.0625 = 0.00390625 (this is another pass) for (renders = 0;renders < 2;renders++) { R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_Draw(numverts, numtriangles, elements); } c_rt_lightmeshes += 3; c_rt_lighttris += numtriangles * 3; m.tex3d[0] = R_GetTexture(r_shadow_attenuation3dtexture); R_Mesh_TextureState(&m); qglBlendFunc(GL_DST_ALPHA, GL_ZERO); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[0], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex3d[0] = 0; m.tex[0] = R_GetTexture(glosstexture); m.texcubemap[1] = R_GetTexture(lightcubemap); R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value * 0.25f, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); if (lightcubemap) R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } else if (r_shadow_texture3d.integer && r_textureunits.integer >= 2 && !lightcubemap /*&& gl_support_blendsquare*/) // FIXME: detect blendsquare! { // 2/0/0/2 3D combine blendsquare path m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); // this squares the result qglEnable(GL_BLEND); qglBlendFunc(GL_SRC_ALPHA, GL_ZERO); GL_Color(1,1,1,1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Specular_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin, relativeeyeorigin); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = 0; m.texcubemap[1] = 0; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); // square alpha in framebuffer a few times to make it shiny qglBlendFunc(GL_ZERO, GL_DST_ALPHA); // these comments are a test run through this math for intensity 0.5 // 0.5 * 0.5 = 0.25 (done by the BlendFunc earlier) // 0.25 * 0.25 = 0.0625 (this is another pass) // 0.0625 * 0.0625 = 0.00390625 (this is another pass) for (renders = 0;renders < 2;renders++) { R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_Draw(numverts, numtriangles, elements); } c_rt_lightmeshes += 3; c_rt_lighttris += numtriangles * 3; R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); m.tex[0] = R_GetTexture(glosstexture); m.tex3d[1] = R_GetTexture(r_shadow_attenuation3dtexture); R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value * 0.25f, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } else if (r_textureunits.integer >= 2 /*&& gl_support_blendsquare*/) // FIXME: detect blendsquare! { // 2/0/0/2/2 2D combine blendsquare path m.tex[0] = R_GetTexture(bumptexture); m.texcubemap[1] = R_GetTexture(r_shadow_normalcubetexture); m.texcombinergb[1] = GL_DOT3_RGBA_ARB; R_Mesh_TextureState(&m); qglColorMask(0,0,0,1); // this squares the result qglEnable(GL_BLEND); qglBlendFunc(GL_SRC_ALPHA, GL_ZERO); GL_Color(1,1,1,1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); R_Shadow_GenTexCoords_Specular_NormalCubeMap(varray_texcoord3f[1], numverts, vertex3f, svector3f, tvector3f, normal3f, relativelightorigin, relativeeyeorigin); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = 0; m.texcubemap[1] = 0; m.texcombinergb[1] = GL_MODULATE; R_Mesh_TextureState(&m); // square alpha in framebuffer a few times to make it shiny qglBlendFunc(GL_ZERO, GL_DST_ALPHA); // these comments are a test run through this math for intensity 0.5 // 0.5 * 0.5 = 0.25 (done by the BlendFunc earlier) // 0.25 * 0.25 = 0.0625 (this is another pass) // 0.0625 * 0.0625 = 0.00390625 (this is another pass) for (renders = 0;renders < 2;renders++) { R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_Draw(numverts, numtriangles, elements); } c_rt_lightmeshes += 3; c_rt_lighttris += numtriangles * 3; m.tex[0] = R_GetTexture(r_shadow_attenuation2dtexture); m.tex[1] = R_GetTexture(r_shadow_attenuation2dtexture); R_Mesh_TextureState(&m); qglBlendFunc(GL_DST_ALPHA, GL_ZERO); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Shadow_Transform_Vertex3f_TexCoord2f(varray_texcoord2f[0], numverts, vertex3f, matrix_modeltoattenuationxyz); R_Shadow_Transform_Vertex3f_TexCoord2f(varray_texcoord2f[1], numverts, vertex3f, matrix_modeltoattenuationz); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; m.tex[0] = R_GetTexture(glosstexture); m.texcubemap[1] = R_GetTexture(lightcubemap); R_Mesh_TextureState(&m); qglColorMask(1,1,1,0); qglBlendFunc(GL_DST_ALPHA, GL_ONE); VectorScale(lightcolor, r_colorscale * r_shadow_lightintensityscale.value * 0.25f, color2); for (renders = 0;renders < 64 && (color2[0] > 0 || color2[1] > 0 || color2[2] > 0);renders++, color2[0]--, color2[1]--, color2[2]--) { color[0] = bound(0, color2[0], 1); color[1] = bound(0, color2[1], 1); color[2] = bound(0, color2[2], 1); GL_Color(color[0], color[1], color[2], 1); R_Mesh_GetSpace(numverts); R_Mesh_CopyVertex3f(vertex3f, numverts); R_Mesh_CopyTexCoord2f(0, texcoord2f, numverts); if (lightcubemap) R_Shadow_Transform_Vertex3f_TexCoord3f(varray_texcoord3f[1], numverts, vertex3f, matrix_modeltofilter); R_Mesh_Draw(numverts, numtriangles, elements); c_rt_lightmeshes++; c_rt_lighttris += numtriangles; } } } } void R_Shadow_DrawWorldLightShadowVolume(matrix4x4_t *matrix, worldlight_t *light) { R_Mesh_Matrix(matrix); R_Shadow_RenderShadowMeshVolume(light->shadowvolume); } cvar_t r_editlights = {0, "r_editlights", "0"}; cvar_t r_editlights_cursordistance = {0, "r_editlights_distance", "1024"}; cvar_t r_editlights_cursorpushback = {0, "r_editlights_pushback", "0"}; cvar_t r_editlights_cursorpushoff = {0, "r_editlights_pushoff", "4"}; cvar_t r_editlights_cursorgrid = {0, "r_editlights_grid", "4"}; cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "0.8"}; cvar_t r_editlights_rtlightssizescale = {CVAR_SAVE, "r_editlights_rtlightssizescale", "0.7"}; cvar_t r_editlights_rtlightscolorscale = {CVAR_SAVE, "r_editlights_rtlightscolorscale", "2"}; worldlight_t *r_shadow_worldlightchain; worldlight_t *r_shadow_selectedlight; vec3_t r_editlights_cursorlocation; static int castshadowcount = 1; void R_Shadow_NewWorldLight(vec3_t origin, float radius, vec3_t color, int style, const char *cubemapname, int castshadow) { int i, j, k, l, maxverts = 256, *mark, tris; float *vertex3f = NULL; worldlight_t *e; shadowmesh_t *mesh, *castmesh; mleaf_t *leaf; msurface_t *surf; qbyte *pvs; surfmesh_t *surfmesh; if (radius < 15 || DotProduct(color, color) < 0.03) { Con_Printf("R_Shadow_NewWorldLight: refusing to create a light too small/dim\n"); return; } e = Mem_Alloc(r_shadow_mempool, sizeof(worldlight_t)); VectorCopy(origin, e->origin); VectorCopy(color, e->light); e->lightradius = radius; e->style = style; if (e->style < 0 || e->style >= MAX_LIGHTSTYLES) { Con_Printf("R_Shadow_NewWorldLight: invalid light style number %i, must be >= 0 and < %i\n", e->style, MAX_LIGHTSTYLES); e->style = 0; } e->castshadows = castshadow; e->cullradius = e->lightradius; for (k = 0;k < 3;k++) { e->mins[k] = e->origin[k] - e->lightradius; e->maxs[k] = e->origin[k] + e->lightradius; } e->next = r_shadow_worldlightchain; r_shadow_worldlightchain = e; if (cubemapname && cubemapname[0]) { e->cubemapname = Mem_Alloc(r_shadow_mempool, strlen(cubemapname) + 1); strcpy(e->cubemapname, cubemapname); // FIXME: add cubemap loading (and don't load a cubemap twice) } if (cl.worldmodel) { castshadowcount++; i = Mod_PointContents(e->origin, cl.worldmodel); if (r_shadow_portallight.integer && i != CONTENTS_SOLID && i != CONTENTS_SKY) { qbyte *byteleafpvs; qbyte *bytesurfacepvs; byteleafpvs = Mem_Alloc(tempmempool, cl.worldmodel->numleafs + 1); bytesurfacepvs = Mem_Alloc(tempmempool, cl.worldmodel->numsurfaces); Portal_Visibility(cl.worldmodel, e->origin, byteleafpvs, bytesurfacepvs, NULL, 0, true, RadiusFromBoundsAndOrigin(e->mins, e->maxs, e->origin)); for (i = 0, leaf = cl.worldmodel->leafs + 1;i < cl.worldmodel->numleafs;i++, leaf++) if (byteleafpvs[i+1] && BoxesOverlap(leaf->mins, leaf->maxs, e->mins, e->maxs)) leaf->worldnodeframe = castshadowcount; for (i = 0, surf = cl.worldmodel->surfaces;i < cl.worldmodel->numsurfaces;i++, surf++) if (bytesurfacepvs[i] && BoxesOverlap(surf->poly_mins, surf->poly_maxs, e->mins, e->maxs)) surf->castshadow = castshadowcount; Mem_Free(byteleafpvs); Mem_Free(bytesurfacepvs); } else { leaf = Mod_PointInLeaf(origin, cl.worldmodel); pvs = Mod_LeafPVS(leaf, cl.worldmodel); for (i = 0, leaf = cl.worldmodel->leafs + 1;i < cl.worldmodel->numleafs;i++, leaf++) { if (pvs[i >> 3] & (1 << (i & 7)) && BoxesOverlap(leaf->mins, leaf->maxs, e->mins, e->maxs)) { leaf->worldnodeframe = castshadowcount; for (j = 0, mark = leaf->firstmarksurface;j < leaf->nummarksurfaces;j++, mark++) { surf = cl.worldmodel->surfaces + *mark; if (surf->castshadow != castshadowcount && BoxesOverlap(surf->poly_mins, surf->poly_maxs, e->mins, e->maxs)) surf->castshadow = castshadowcount; } } } } e->numleafs = 0; for (i = 0, leaf = cl.worldmodel->leafs + 1;i < cl.worldmodel->numleafs;i++, leaf++) if (leaf->worldnodeframe == castshadowcount) e->numleafs++; e->numsurfaces = 0; for (i = 0, surf = cl.worldmodel->surfaces + cl.worldmodel->firstmodelsurface;i < cl.worldmodel->nummodelsurfaces;i++, surf++) if (surf->castshadow == castshadowcount) e->numsurfaces++; if (e->numleafs) e->leafs = Mem_Alloc(r_shadow_mempool, e->numleafs * sizeof(mleaf_t *)); if (e->numsurfaces) e->surfaces = Mem_Alloc(r_shadow_mempool, e->numsurfaces * sizeof(msurface_t *)); e->numleafs = 0; for (i = 0, leaf = cl.worldmodel->leafs + 1;i < cl.worldmodel->numleafs;i++, leaf++) if (leaf->worldnodeframe == castshadowcount) e->leafs[e->numleafs++] = leaf; e->numsurfaces = 0; for (i = 0, surf = cl.worldmodel->surfaces + cl.worldmodel->firstmodelsurface;i < cl.worldmodel->nummodelsurfaces;i++, surf++) if (surf->castshadow == castshadowcount) e->surfaces[e->numsurfaces++] = surf; // find bounding box of lit leafs VectorCopy(e->origin, e->mins); VectorCopy(e->origin, e->maxs); for (j = 0;j < e->numleafs;j++) { leaf = e->leafs[j]; for (k = 0;k < 3;k++) { if (e->mins[k] > leaf->mins[k]) e->mins[k] = leaf->mins[k]; if (e->maxs[k] < leaf->maxs[k]) e->maxs[k] = leaf->maxs[k]; } } for (k = 0;k < 3;k++) { if (e->mins[k] < e->origin[k] - e->lightradius) e->mins[k] = e->origin[k] - e->lightradius; if (e->maxs[k] > e->origin[k] + e->lightradius) e->maxs[k] = e->origin[k] + e->lightradius; } e->cullradius = RadiusFromBoundsAndOrigin(e->mins, e->maxs, e->origin); if (e->castshadows) { castshadowcount++; for (j = 0;j < e->numsurfaces;j++) { surf = e->surfaces[j]; if (surf->flags & SURF_SHADOWCAST) { surf->castshadow = castshadowcount; if (maxverts < surf->poly_numverts) maxverts = surf->poly_numverts; } } e->shadowvolume = Mod_ShadowMesh_Begin(r_shadow_mempool, 32768); // make a mesh to cast a shadow volume from castmesh = Mod_ShadowMesh_Begin(r_shadow_mempool, 32768); for (j = 0;j < e->numsurfaces;j++) if (e->surfaces[j]->castshadow == castshadowcount) for (surfmesh = e->surfaces[j]->mesh;surfmesh;surfmesh = surfmesh->chain) Mod_ShadowMesh_AddMesh(r_shadow_mempool, castmesh, surfmesh->numverts, surfmesh->vertex3f, surfmesh->numtriangles, surfmesh->element3i); castmesh = Mod_ShadowMesh_Finish(r_shadow_mempool, castmesh); // cast shadow volume from castmesh for (mesh = castmesh;mesh;mesh = mesh->next) { R_Shadow_ResizeTriangleFacingLight(castmesh->numtriangles); R_Shadow_ResizeShadowElements(castmesh->numtriangles); if (maxverts < castmesh->numverts * 2) { maxverts = castmesh->numverts * 2; if (vertex3f) Mem_Free(vertex3f); vertex3f = NULL; } if (vertex3f == NULL && maxverts > 0) vertex3f = Mem_Alloc(r_shadow_mempool, maxverts * sizeof(float[3])); // now that we have the buffers big enough, construct shadow volume mesh memcpy(vertex3f, castmesh->vertex3f, castmesh->numverts * sizeof(float[3])); tris = R_Shadow_MakeTriangleShadowFlags_Vertex3f(castmesh->element3i, vertex3f, castmesh->numtriangles, trianglefacinglight, trianglefacinglightlist, e->origin); tris = R_Shadow_BuildShadowVolume(castmesh->element3i, castmesh->neighbor3i, castmesh->numverts, trianglefacinglight, trianglefacinglightlist, tris, shadowelements, vertex3f, e->origin, r_shadow_projectdistance.value); // add the constructed shadow volume mesh Mod_ShadowMesh_AddMesh(r_shadow_mempool, e->shadowvolume, castmesh->numverts, vertex3f, tris, shadowelements); } if (vertex3f) Mem_Free(vertex3f); vertex3f = NULL; // we're done with castmesh now Mod_ShadowMesh_Free(castmesh); e->shadowvolume = Mod_ShadowMesh_Finish(r_shadow_mempool, e->shadowvolume); for (l = 0, mesh = e->shadowvolume;mesh;mesh = mesh->next) l += mesh->numtriangles; Con_Printf("static shadow volume built containing %i triangles\n", l); } } Con_Printf("%f %f %f, %f %f %f, %f, %f, %d, %d\n", e->mins[0], e->mins[1], e->mins[2], e->maxs[0], e->maxs[1], e->maxs[2], e->cullradius, e->lightradius, e->numleafs, e->numsurfaces); } void R_Shadow_FreeWorldLight(worldlight_t *light) { worldlight_t **lightpointer; for (lightpointer = &r_shadow_worldlightchain;*lightpointer && *lightpointer != light;lightpointer = &(*lightpointer)->next); if (*lightpointer != light) Sys_Error("R_Shadow_FreeWorldLight: light not linked into chain\n"); *lightpointer = light->next; if (light->cubemapname) Mem_Free(light->cubemapname); if (light->shadowvolume) Mod_ShadowMesh_Free(light->shadowvolume); if (light->surfaces) Mem_Free(light->surfaces); if (light->leafs) Mem_Free(light->leafs); Mem_Free(light); } void R_Shadow_ClearWorldLights(void) { while (r_shadow_worldlightchain) R_Shadow_FreeWorldLight(r_shadow_worldlightchain); r_shadow_selectedlight = NULL; } void R_Shadow_SelectLight(worldlight_t *light) { if (r_shadow_selectedlight) r_shadow_selectedlight->selected = false; r_shadow_selectedlight = light; if (r_shadow_selectedlight) r_shadow_selectedlight->selected = true; } void R_DrawLightSprite(int texnum, const vec3_t origin, vec_t scale, float cr, float cg, float cb, float ca) { rmeshstate_t m; float diff[3]; if (fogenabled) { VectorSubtract(origin, r_origin, diff); ca *= 1 - exp(fogdensity/DotProduct(diff,diff)); } memset(&m, 0, sizeof(m)); m.blendfunc1 = GL_SRC_ALPHA; m.blendfunc2 = GL_ONE; m.tex[0] = texnum; R_Mesh_Matrix(&r_identitymatrix); R_Mesh_State(&m); GL_Color(cr * r_colorscale, cg * r_colorscale, cb * r_colorscale, ca); R_DrawSpriteMesh(origin, vright, vup, scale, -scale, -scale, scale); } void R_Shadow_DrawCursorCallback(const void *calldata1, int calldata2) { cachepic_t *pic; pic = Draw_CachePic("gfx/crosshair1.tga"); if (pic) R_DrawLightSprite(R_GetTexture(pic->tex), r_editlights_cursorlocation, r_editlights_cursorgrid.value * 0.5f, 1, 1, 1, 0.5); } void R_Shadow_DrawLightSpriteCallback(const void *calldata1, int calldata2) { float intensity; const worldlight_t *light; light = calldata1; intensity = 0.5; if (light->selected) intensity = 0.75 + 0.25 * sin(realtime * M_PI * 4.0); if (light->shadowvolume) R_DrawLightSprite(calldata2, light->origin, 8, intensity, intensity, intensity, 0.5); else R_DrawLightSprite(calldata2, light->origin, 8, intensity * 0.5, intensity * 0.5, intensity * 0.5, 0.5); } void R_Shadow_DrawLightSprites(void) { int i, texnums[5]; cachepic_t *pic; worldlight_t *light; for (i = 0;i < 5;i++) { pic = Draw_CachePic(va("gfx/crosshair%i.tga", i + 1)); if (pic) texnums[i] = R_GetTexture(pic->tex); else texnums[i] = 0; } for (light = r_shadow_worldlightchain;light;light = light->next) R_MeshQueue_AddTransparent(light->origin, R_Shadow_DrawLightSpriteCallback, light, texnums[((int) light) % 5]); R_MeshQueue_AddTransparent(r_editlights_cursorlocation, R_Shadow_DrawCursorCallback, NULL, 0); } void R_Shadow_SelectLightInView(void) { float bestrating, rating, temp[3]; worldlight_t *best, *light; best = NULL; bestrating = 0; for (light = r_shadow_worldlightchain;light;light = light->next) { VectorSubtract(light->origin, r_refdef.vieworg, temp); rating = (DotProduct(temp, vpn) / sqrt(DotProduct(temp, temp))); if (rating >= 0.95) { rating /= (1 + 0.0625f * sqrt(DotProduct(temp, temp))); if (bestrating < rating && CL_TraceLine(light->origin, r_refdef.vieworg, NULL, NULL, 0, true, NULL) == 1.0f) { bestrating = rating; best = light; } } } R_Shadow_SelectLight(best); } void R_Shadow_LoadWorldLights(void) { int n, a, style, shadow; char name[MAX_QPATH], cubemapname[MAX_QPATH], *lightsstring, *s, *t; float origin[3], radius, color[3]; if (cl.worldmodel == NULL) { Con_Printf("No map loaded.\n"); return; } FS_StripExtension(cl.worldmodel->name, name); strcat(name, ".rtlights"); lightsstring = FS_LoadFile(name, false); if (lightsstring) { s = lightsstring; n = 0; while (*s) { t = s; while (*s && *s != '\n') s++; if (!*s) break; *s = 0; shadow = true; // check for modifier flags if (*t == '!') { shadow = false; t++; } a = sscanf(t, "%f %f %f %f %f %f %f %d %s", &origin[0], &origin[1], &origin[2], &radius, &color[0], &color[1], &color[2], &style, cubemapname); if (a < 9) cubemapname[0] = 0; *s = '\n'; if (a < 8) { Con_Printf("found %d parameters on line %i, should be 8 or 9 parameters (origin[0] origin[1] origin[2] radius color[0] color[1] color[2] style cubemapname)\n", a, n + 1); break; } VectorScale(color, r_editlights_rtlightscolorscale.value, color); radius *= r_editlights_rtlightssizescale.value; R_Shadow_NewWorldLight(origin, radius, color, style, cubemapname, shadow); s++; n++; } if (*s) Con_Printf("invalid rtlights file \"%s\"\n", name); Mem_Free(lightsstring); } } void R_Shadow_SaveWorldLights(void) { worldlight_t *light; int bufchars, bufmaxchars; char *buf, *oldbuf; char name[MAX_QPATH]; char line[1024]; if (!r_shadow_worldlightchain) return; if (cl.worldmodel == NULL) { Con_Printf("No map loaded.\n"); return; } FS_StripExtension(cl.worldmodel->name, name); strcat(name, ".rtlights"); bufchars = bufmaxchars = 0; buf = NULL; for (light = r_shadow_worldlightchain;light;light = light->next) { sprintf(line, "%s%g %g %g %g %g %g %g %d %s\n", light->castshadows ? "" : "!", light->origin[0], light->origin[1], light->origin[2], light->lightradius / r_editlights_rtlightssizescale.value, light->light[0] / r_editlights_rtlightscolorscale.value, light->light[1] / r_editlights_rtlightscolorscale.value, light->light[2] / r_editlights_rtlightscolorscale.value, light->style, light->cubemapname ? light->cubemapname : ""); if (bufchars + strlen(line) > bufmaxchars) { bufmaxchars = bufchars + strlen(line) + 2048; oldbuf = buf; buf = Mem_Alloc(r_shadow_mempool, bufmaxchars); if (oldbuf) { if (bufchars) memcpy(buf, oldbuf, bufchars); Mem_Free(oldbuf); } } if (strlen(line)) { memcpy(buf + bufchars, line, strlen(line)); bufchars += strlen(line); } } if (bufchars) FS_WriteFile(name, buf, bufchars); if (buf) Mem_Free(buf); } void R_Shadow_LoadLightsFile(void) { int n, a, style; char name[MAX_QPATH], *lightsstring, *s, *t; float origin[3], radius, color[3], subtract, spotdir[3], spotcone, falloff, distbias; if (cl.worldmodel == NULL) { Con_Printf("No map loaded.\n"); return; } FS_StripExtension(cl.worldmodel->name, name); strcat(name, ".lights"); lightsstring = FS_LoadFile(name, false); if (lightsstring) { s = lightsstring; n = 0; while (*s) { t = s; while (*s && *s != '\n') s++; if (!*s) break; *s = 0; a = sscanf(t, "%f %f %f %f %f %f %f %f %f %f %f %f %f %d", &origin[0], &origin[1], &origin[2], &falloff, &color[0], &color[1], &color[2], &subtract, &spotdir[0], &spotdir[1], &spotdir[2], &spotcone, &distbias, &style); *s = '\n'; if (a < 14) { Con_Printf("invalid lights file, found %d parameters on line %i, should be 14 parameters (origin[0] origin[1] origin[2] falloff light[0] light[1] light[2] subtract spotdir[0] spotdir[1] spotdir[2] spotcone distancebias style)\n", a, n + 1); break; } radius = sqrt(DotProduct(color, color) / (falloff * falloff * 8192.0f * 8192.0f)); radius = bound(15, radius, 4096); VectorScale(color, (2.0f / (8388608.0f)), color); R_Shadow_NewWorldLight(origin, radius, color, style, NULL, true); s++; n++; } if (*s) Con_Printf("invalid lights file \"%s\"\n", name); Mem_Free(lightsstring); } } void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void) { int entnum, style, islight; char key[256], value[1024]; float origin[3], radius, color[3], light, scale, originhack[3], overridecolor[3]; const char *data; if (cl.worldmodel == NULL) { Con_Printf("No map loaded.\n"); return; } data = cl.worldmodel->entities; if (!data) return; for (entnum = 0;COM_ParseToken(&data) && com_token[0] == '{';entnum++) { light = 0; origin[0] = origin[1] = origin[2] = 0; originhack[0] = originhack[1] = originhack[2] = 0; color[0] = color[1] = color[2] = 1; overridecolor[0] = overridecolor[1] = overridecolor[2] = 1; scale = 1; style = 0; islight = false; while (1) { if (!COM_ParseToken(&data)) break; // error if (com_token[0] == '}') break; // end of entity if (com_token[0] == '_') strcpy(key, com_token + 1); else strcpy(key, com_token); while (key[strlen(key)-1] == ' ') // remove trailing spaces key[strlen(key)-1] = 0; if (!COM_ParseToken(&data)) break; // error strcpy(value, com_token); // now that we have the key pair worked out... if (!strcmp("light", key)) light = atof(value); else if (!strcmp("origin", key)) sscanf(value, "%f %f %f", &origin[0], &origin[1], &origin[2]); else if (!strcmp("color", key)) sscanf(value, "%f %f %f", &color[0], &color[1], &color[2]); else if (!strcmp("wait", key)) scale = atof(value); else if (!strcmp("classname", key)) { if (!strncmp(value, "light", 5)) { islight = true; if (!strcmp(value, "light_fluoro")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 0; overridecolor[0] = 1; overridecolor[1] = 1; overridecolor[2] = 1; } if (!strcmp(value, "light_fluorospark")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 0; overridecolor[0] = 1; overridecolor[1] = 1; overridecolor[2] = 1; } if (!strcmp(value, "light_globe")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 0; overridecolor[0] = 1; overridecolor[1] = 0.8; overridecolor[2] = 0.4; } if (!strcmp(value, "light_flame_large_yellow")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 48; overridecolor[0] = 1; overridecolor[1] = 0.5; overridecolor[2] = 0.1; } if (!strcmp(value, "light_flame_small_yellow")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 40; overridecolor[0] = 1; overridecolor[1] = 0.5; overridecolor[2] = 0.1; } if (!strcmp(value, "light_torch_small_white")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 40; overridecolor[0] = 1; overridecolor[1] = 0.5; overridecolor[2] = 0.1; } if (!strcmp(value, "light_torch_small_walltorch")) { originhack[0] = 0; originhack[1] = 0; originhack[2] = 40; overridecolor[0] = 1; overridecolor[1] = 0.5; overridecolor[2] = 0.1; } } } else if (!strcmp("style", key)) style = atoi(value); } if (light <= 0 && islight) light = 300; radius = min(light * r_editlights_quakelightsizescale.value / scale, 1048576); light = sqrt(bound(0, light, 1048576)) * (1.0f / 16.0f); if (color[0] == 1 && color[1] == 1 && color[2] == 1) VectorCopy(overridecolor, color); VectorScale(color, light, color); VectorAdd(origin, originhack, origin); if (radius >= 15) R_Shadow_NewWorldLight(origin, radius, color, style, NULL, true); } } void R_Shadow_SetCursorLocationForView(void) { vec_t dist, push, frac; vec3_t dest, endpos, normal; VectorMA(r_refdef.vieworg, r_editlights_cursordistance.value, vpn, dest); frac = CL_TraceLine(r_refdef.vieworg, dest, endpos, normal, 0, true, NULL); if (frac < 1) { dist = frac * r_editlights_cursordistance.value; push = r_editlights_cursorpushback.value; if (push > dist) push = dist; push = -push; VectorMA(endpos, push, vpn, endpos); VectorMA(endpos, r_editlights_cursorpushoff.value, normal, endpos); } r_editlights_cursorlocation[0] = floor(endpos[0] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value; r_editlights_cursorlocation[1] = floor(endpos[1] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value; r_editlights_cursorlocation[2] = floor(endpos[2] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value; } void R_Shadow_UpdateWorldLightSelection(void) { R_Shadow_SetCursorLocationForView(); if (r_editlights.integer) { R_Shadow_SelectLightInView(); R_Shadow_DrawLightSprites(); } else R_Shadow_SelectLight(NULL); } void R_Shadow_EditLights_Clear_f(void) { R_Shadow_ClearWorldLights(); } void R_Shadow_EditLights_Reload_f(void) { r_shadow_reloadlights = true; } void R_Shadow_EditLights_Save_f(void) { if (cl.worldmodel) R_Shadow_SaveWorldLights(); } void R_Shadow_EditLights_ImportLightEntitiesFromMap_f(void) { R_Shadow_ClearWorldLights(); R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(); } void R_Shadow_EditLights_ImportLightsFile_f(void) { R_Shadow_ClearWorldLights(); R_Shadow_LoadLightsFile(); } void R_Shadow_EditLights_Spawn_f(void) { vec3_t color; if (!r_editlights.integer) { Con_Printf("Cannot spawn light when not in editing mode. Set r_editlights to 1.\n"); return; } if (Cmd_Argc() != 1) { Con_Printf("r_editlights_spawn does not take parameters\n"); return; } color[0] = color[1] = color[2] = 1; R_Shadow_NewWorldLight(r_editlights_cursorlocation, 200, color, 0, NULL, true); } void R_Shadow_EditLights_Edit_f(void) { vec3_t origin, color; vec_t radius; int style, shadows; char cubemapname[1024]; if (!r_editlights.integer) { Con_Printf("Cannot spawn light when not in editing mode. Set r_editlights to 1.\n"); return; } if (!r_shadow_selectedlight) { Con_Printf("No selected light.\n"); return; } VectorCopy(r_shadow_selectedlight->origin, origin); radius = r_shadow_selectedlight->lightradius; VectorCopy(r_shadow_selectedlight->light, color); style = r_shadow_selectedlight->style; if (r_shadow_selectedlight->cubemapname) strcpy(cubemapname, r_shadow_selectedlight->cubemapname); else cubemapname[0] = 0; shadows = r_shadow_selectedlight->castshadows; if (!strcmp(Cmd_Argv(1), "origin")) { if (Cmd_Argc() != 5) { Con_Printf("usage: r_editlights_edit %s x y z\n", Cmd_Argv(0)); return; } origin[0] = atof(Cmd_Argv(2)); origin[1] = atof(Cmd_Argv(3)); origin[2] = atof(Cmd_Argv(4)); } else if (!strcmp(Cmd_Argv(1), "originx")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } origin[0] = atof(Cmd_Argv(2)); } else if (!strcmp(Cmd_Argv(1), "originy")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } origin[1] = atof(Cmd_Argv(2)); } else if (!strcmp(Cmd_Argv(1), "originz")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } origin[2] = atof(Cmd_Argv(2)); } else if (!strcmp(Cmd_Argv(1), "move")) { if (Cmd_Argc() != 5) { Con_Printf("usage: r_editlights_edit %s x y z\n", Cmd_Argv(0)); return; } origin[0] += atof(Cmd_Argv(2)); origin[1] += atof(Cmd_Argv(3)); origin[2] += atof(Cmd_Argv(4)); } else if (!strcmp(Cmd_Argv(1), "movex")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } origin[0] += atof(Cmd_Argv(2)); } else if (!strcmp(Cmd_Argv(1), "movey")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } origin[1] += atof(Cmd_Argv(2)); } else if (!strcmp(Cmd_Argv(1), "movez")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } origin[2] += atof(Cmd_Argv(2)); } else if (!strcmp(Cmd_Argv(1), "color")) { if (Cmd_Argc() != 5) { Con_Printf("usage: r_editlights_edit %s red green blue\n", Cmd_Argv(0)); return; } color[0] = atof(Cmd_Argv(2)); color[1] = atof(Cmd_Argv(3)); color[2] = atof(Cmd_Argv(4)); } else if (!strcmp(Cmd_Argv(1), "radius")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } radius = atof(Cmd_Argv(2)); } else if (Cmd_Argc() == 3 && !strcmp(Cmd_Argv(1), "style")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } style = atoi(Cmd_Argv(2)); } else if (Cmd_Argc() == 3 && !strcmp(Cmd_Argv(1), "cubemap")) { if (Cmd_Argc() > 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } if (Cmd_Argc() == 3) strcpy(cubemapname, Cmd_Argv(2)); else cubemapname[0] = 0; } else if (Cmd_Argc() == 3 && !strcmp(Cmd_Argv(1), "shadows")) { if (Cmd_Argc() != 3) { Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(0)); return; } shadows = Cmd_Argv(2)[0] == 'y' || Cmd_Argv(2)[0] == 'Y' || Cmd_Argv(2)[0] == 't' || atoi(Cmd_Argv(2)); } else { Con_Printf("usage: r_editlights_edit [property] [value]\n"); Con_Printf("Selected light's properties:\n"); Con_Printf("Origin: %f %f %f\n", r_shadow_selectedlight->origin[0], r_shadow_selectedlight->origin[1], r_shadow_selectedlight->origin[2]); Con_Printf("Radius: %f\n", r_shadow_selectedlight->lightradius); Con_Printf("Color: %f %f %f\n", r_shadow_selectedlight->light[0], r_shadow_selectedlight->light[1], r_shadow_selectedlight->light[2]); Con_Printf("Style: %i\n", r_shadow_selectedlight->style); Con_Printf("Cubemap: %s\n", r_shadow_selectedlight->cubemapname); Con_Printf("Shadows: %s\n", r_shadow_selectedlight->castshadows ? "yes" : "no"); return; } R_Shadow_FreeWorldLight(r_shadow_selectedlight); r_shadow_selectedlight = NULL; R_Shadow_NewWorldLight(origin, radius, color, style, cubemapname, shadows); } extern int con_vislines; void R_Shadow_EditLights_DrawSelectedLightProperties(void) { float x, y; char temp[256]; if (r_shadow_selectedlight == NULL) return; x = 0; y = con_vislines; sprintf(temp, "Light properties");DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0);y += 8; sprintf(temp, "Origin %f %f %f", r_shadow_selectedlight->origin[0], r_shadow_selectedlight->origin[1], r_shadow_selectedlight->origin[2]);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0);y += 8; sprintf(temp, "Radius %f", r_shadow_selectedlight->lightradius);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0);y += 8; sprintf(temp, "Color %f %f %f", r_shadow_selectedlight->light[0], r_shadow_selectedlight->light[1], r_shadow_selectedlight->light[2]);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0);y += 8; sprintf(temp, "Style %i", r_shadow_selectedlight->style);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0);y += 8; sprintf(temp, "Cubemap %s", r_shadow_selectedlight->cubemapname);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0);y += 8; sprintf(temp, "Shadows %s", r_shadow_selectedlight->castshadows ? "yes" : "no");DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0);y += 8; } void R_Shadow_EditLights_ToggleShadow_f(void) { if (!r_editlights.integer) { Con_Printf("Cannot spawn light when not in editing mode. Set r_editlights to 1.\n"); return; } if (!r_shadow_selectedlight) { Con_Printf("No selected light.\n"); return; } R_Shadow_NewWorldLight(r_shadow_selectedlight->origin, r_shadow_selectedlight->lightradius, r_shadow_selectedlight->light, r_shadow_selectedlight->style, r_shadow_selectedlight->cubemapname, !r_shadow_selectedlight->castshadows); R_Shadow_FreeWorldLight(r_shadow_selectedlight); r_shadow_selectedlight = NULL; } void R_Shadow_EditLights_Remove_f(void) { if (!r_editlights.integer) { Con_Printf("Cannot remove light when not in editing mode. Set r_editlights to 1.\n"); return; } if (!r_shadow_selectedlight) { Con_Printf("No selected light.\n"); return; } R_Shadow_FreeWorldLight(r_shadow_selectedlight); r_shadow_selectedlight = NULL; } void R_Shadow_EditLights_Init(void) { Cvar_RegisterVariable(&r_editlights); Cvar_RegisterVariable(&r_editlights_cursordistance); Cvar_RegisterVariable(&r_editlights_cursorpushback); Cvar_RegisterVariable(&r_editlights_cursorpushoff); Cvar_RegisterVariable(&r_editlights_cursorgrid); Cvar_RegisterVariable(&r_editlights_quakelightsizescale); Cvar_RegisterVariable(&r_editlights_rtlightssizescale); Cvar_RegisterVariable(&r_editlights_rtlightscolorscale); Cmd_AddCommand("r_editlights_clear", R_Shadow_EditLights_Clear_f); Cmd_AddCommand("r_editlights_reload", R_Shadow_EditLights_Reload_f); Cmd_AddCommand("r_editlights_save", R_Shadow_EditLights_Save_f); Cmd_AddCommand("r_editlights_spawn", R_Shadow_EditLights_Spawn_f); Cmd_AddCommand("r_editlights_edit", R_Shadow_EditLights_Edit_f); Cmd_AddCommand("r_editlights_remove", R_Shadow_EditLights_Remove_f); Cmd_AddCommand("r_editlights_toggleshadow", R_Shadow_EditLights_ToggleShadow_f); Cmd_AddCommand("r_editlights_importlightentitiesfrommap", R_Shadow_EditLights_ImportLightEntitiesFromMap_f); Cmd_AddCommand("r_editlights_importlightsfile", R_Shadow_EditLights_ImportLightsFile_f); }