// Shadow Volume BSP code written by Forest "LordHavoc" Hale on 2003-11-06 and placed into public domain. // Modified by LordHavoc (to make it work and other nice things like that) on 2007-01-24 and 2007-01-25 #include #include #include "svbsp.h" #include "polygon.h" #define MAX_SVBSP_POLYGONPOINTS 64 #define SVBSP_CLIP_EPSILON (1.0 / 1024.0) #define SVBSP_DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2]) static void SVBSP_PlaneFromPoints(double *plane4f, const double *p1, const double *p2, const double *p3) { double ilength; // calculate unnormalized plane plane4f[0] = (p1[1] - p2[1]) * (p3[2] - p2[2]) - (p1[2] - p2[2]) * (p3[1] - p2[1]); plane4f[1] = (p1[2] - p2[2]) * (p3[0] - p2[0]) - (p1[0] - p2[0]) * (p3[2] - p2[2]); plane4f[2] = (p1[0] - p2[0]) * (p3[1] - p2[1]) - (p1[1] - p2[1]) * (p3[0] - p2[0]); plane4f[3] = SVBSP_DotProduct(plane4f, p1); // normalize the plane normal and adjust distance accordingly ilength = sqrt(SVBSP_DotProduct(plane4f, plane4f)); if (ilength) ilength = 1.0 / ilength; plane4f[0] *= ilength; plane4f[1] *= ilength; plane4f[2] *= ilength; plane4f[3] *= ilength; } void SVBSP_Init(svbsp_t *b, const double *origin, int maxnodes, svbsp_node_t *nodes) { memset(b, 0, sizeof(*b)); b->origin[0] = origin[0]; b->origin[1] = origin[1]; b->origin[2] = origin[2]; b->numnodes = 3; b->maxnodes = maxnodes; b->nodes = nodes; b->ranoutofnodes = 0; b->stat_occluders_rejected = 0; b->stat_occluders_accepted = 0; b->stat_occluders_fragments_accepted = 0; b->stat_occluders_fragments_rejected = 0; b->stat_queries_rejected = 0; b->stat_queries_accepted = 0; b->stat_queries_fragments_accepted = 0; b->stat_queries_fragments_rejected = 0; // the bsp tree must be initialized to have two perpendicular splits axes // through origin, otherwise the polygon insertions would affect the // opposite side of the tree, which would be disasterous. // // so this code has to make 3 nodes and 4 leafs, and since the leafs are // represented by empty/solid state numbers in this system rather than // actual structs, we only need to make the 3 nodes. // root node // this one splits the world into +X and -X sides b->nodes[0].plane[0] = 1; b->nodes[0].plane[1] = 0; b->nodes[0].plane[2] = 0; b->nodes[0].plane[3] = origin[0]; b->nodes[0].parent = -1; b->nodes[0].children[0] = 1; b->nodes[0].children[1] = 2; // +X side node // this one splits the +X half of the world into +Y and -Y b->nodes[1].plane[0] = 0; b->nodes[1].plane[1] = 1; b->nodes[1].plane[2] = 0; b->nodes[1].plane[3] = origin[1]; b->nodes[1].parent = 0; b->nodes[1].children[0] = -1; b->nodes[1].children[1] = -1; // -X side node // this one splits the -X half of the world into +Y and -Y b->nodes[2].plane[0] = 0; b->nodes[2].plane[1] = 1; b->nodes[2].plane[2] = 0; b->nodes[2].plane[3] = origin[1]; b->nodes[2].parent = 0; b->nodes[2].children[0] = -1; b->nodes[2].children[1] = -1; } static void SVBSP_InsertOccluderPolygonNodes(svbsp_t *b, int *parentnodenumpointer, int parentnodenum, int numpoints, const double *points, void (*fragmentcallback)(void *fragmentcallback_pointer1, int fragmentcallback_number1, svbsp_t *b, int numpoints, const double *points), void *fragmentcallback_pointer1, int fragmentcallback_number1) { // now we need to create up to numpoints + 1 new nodes, forming a BSP tree // describing the occluder polygon's shadow volume int i, j, p, basenum; svbsp_node_t *node; // if there aren't enough nodes remaining, skip it if (b->numnodes + numpoints + 1 >= b->maxnodes) { b->ranoutofnodes = 1; return; } // add one node per side, then the actual occluding face node // thread safety notes: // DO NOT multithread insertion, it could be made 'safe' but the results // would be inconsistent. // // it is completely safe to multithread queries in all cases. // // if an insertion is occurring the query will give intermediate results, // being blocked by some volumes but not others, which is perfectly okay // for visibility culling intended only to reduce rendering work // note down the first available nodenum for the *parentnodenumpointer // line which is done last to allow multithreaded queries during an // insertion basenum = b->numnodes; for (i = 0, p = numpoints - 1;i < numpoints;p = i, i++) { #if 1 // see if a parent plane describes this side for (j = parentnodenum;j >= 0;j = b->nodes[j].parent) { double *parentnodeplane = b->nodes[j].plane; if (fabs(SVBSP_DotProduct(b->origin , parentnodeplane) - parentnodeplane[3]) < SVBSP_CLIP_EPSILON && fabs(SVBSP_DotProduct(points + p * 3, parentnodeplane) - parentnodeplane[3]) < SVBSP_CLIP_EPSILON && fabs(SVBSP_DotProduct(points + i * 3, parentnodeplane) - parentnodeplane[3]) < SVBSP_CLIP_EPSILON) break; } if (j >= 0) continue; // already have a matching parent plane #endif // create a side plane // anything infront of this is not inside the shadow volume node = b->nodes + b->numnodes++; SVBSP_PlaneFromPoints(node->plane, b->origin, points + p * 3, points + i * 3); // we need to flip the plane if it puts any part of the polygon on the // wrong side // (in this way this code treats all polygons as double sided) // // because speed is important this stops as soon as it finds proof // that the orientation is right or wrong // (we know that the plane is on one edge of the polygon, so there is // never a case where points lie on both sides, so the first hint is // sufficient) for (j = 0;j < numpoints;j++) { double d = SVBSP_DotProduct(points + j * 3, node->plane) - node->plane[3]; if (d < -SVBSP_CLIP_EPSILON) break; if (d > SVBSP_CLIP_EPSILON) { node->plane[0] *= -1; node->plane[1] *= -1; node->plane[2] *= -1; node->plane[3] *= -1; break; } } node->parent = parentnodenum; node->children[0] = -1; // empty node->children[1] = -1; // empty // link this child into the tree *parentnodenumpointer = parentnodenum = (int)(node - b->nodes); // now point to the child pointer for the next node to update later parentnodenumpointer = &node->children[1]; } #if 1 // see if a parent plane describes the face plane for (j = parentnodenum;j >= 0;j = b->nodes[j].parent) { double *parentnodeplane = b->nodes[j].plane; if (fabs(SVBSP_DotProduct(points , parentnodeplane) - parentnodeplane[3]) < SVBSP_CLIP_EPSILON && fabs(SVBSP_DotProduct(points + 3, parentnodeplane) - parentnodeplane[3]) < SVBSP_CLIP_EPSILON && fabs(SVBSP_DotProduct(points + 6, parentnodeplane) - parentnodeplane[3]) < SVBSP_CLIP_EPSILON) break; } if (j < 0) #endif { // add the face-plane node // infront is empty, behind is shadow node = b->nodes + b->numnodes++; SVBSP_PlaneFromPoints(node->plane, points, points + 3, points + 6); // this is a flip check similar to the one above // this one checks if the plane faces the origin, if not, flip it if (SVBSP_DotProduct(b->origin, node->plane) - node->plane[3] < -SVBSP_CLIP_EPSILON) { node->plane[0] *= -1; node->plane[1] *= -1; node->plane[2] *= -1; node->plane[3] *= -1; } node->parent = parentnodenum; node->children[0] = -1; // empty node->children[1] = -2; // shadow // link this child into the tree // (with the addition of this node, queries will now be culled by it) *parentnodenumpointer = (int)(node - b->nodes); } } static int SVBSP_AddPolygonNode(svbsp_t *b, int *parentnodenumpointer, int parentnodenum, int numpoints, const double *points, int insertoccluder, void (*fragmentcallback)(void *fragmentcallback_pointer1, int fragmentcallback_number1, svbsp_t *b, int numpoints, const double *points), void *fragmentcallback_pointer1, int fragmentcallback_number1) { int i; int frontnumpoints, backnumpoints; double frontpoints[MAX_SVBSP_POLYGONPOINTS * 3], backpoints[MAX_SVBSP_POLYGONPOINTS * 3]; if (numpoints < 3) return 0; // recurse through plane nodes while (*parentnodenumpointer >= 0) { // do a quick check to see if there is any need to split the polygon svbsp_node_t *node = b->nodes + *parentnodenumpointer; parentnodenum = *parentnodenumpointer; #if 1 if (SVBSP_DotProduct(points, node->plane) >= node->plane[3] + SVBSP_CLIP_EPSILON) { for (i = 1;i < numpoints && SVBSP_DotProduct(points + i * 3, node->plane) >= node->plane[3] + SVBSP_CLIP_EPSILON;i++); if (i == numpoints) { // no need to split, just go to one side parentnodenumpointer = &node->children[0]; continue; } } else if (SVBSP_DotProduct(points, node->plane) <= node->plane[3] - SVBSP_CLIP_EPSILON) { for (i = 1;i < numpoints && SVBSP_DotProduct(points + i * 3, node->plane) <= node->plane[3] - SVBSP_CLIP_EPSILON;i++); if (i == numpoints) { // no need to split, just go to one side parentnodenumpointer = &node->children[1]; continue; } } #endif // at this point we know it crosses the plane, so we need to split it PolygonD_Divide(numpoints, points, node->plane[0], node->plane[1], node->plane[2], node->plane[3], SVBSP_CLIP_EPSILON, MAX_SVBSP_POLYGONPOINTS, frontpoints, &frontnumpoints, MAX_SVBSP_POLYGONPOINTS, backpoints, &backnumpoints, NULL); if (frontnumpoints > MAX_SVBSP_POLYGONPOINTS) frontnumpoints = MAX_SVBSP_POLYGONPOINTS; if (backnumpoints > MAX_SVBSP_POLYGONPOINTS) backnumpoints = MAX_SVBSP_POLYGONPOINTS; // recurse the sides and return the resulting bit flags i = 0; if (frontnumpoints >= 3) i |= SVBSP_AddPolygonNode(b, &node->children[0], (int)(node - b->nodes), frontnumpoints, frontpoints, insertoccluder, fragmentcallback, fragmentcallback_pointer1, fragmentcallback_number1); if (backnumpoints >= 3) i |= SVBSP_AddPolygonNode(b, &node->children[1], (int)(node - b->nodes), backnumpoints , backpoints , insertoccluder, fragmentcallback, fragmentcallback_pointer1, fragmentcallback_number1); return i; } // leaf node if (*parentnodenumpointer == -1) { // empty leaf node; and some geometry survived // if inserting an occluder, replace this empty leaf with a shadow volume #if 0 for (i = 0;i < numpoints-2;i++) { Debug_PolygonBegin(NULL, DRAWFLAG_ADDITIVE); Debug_PolygonVertex(points[0], points[1], points[2], 0, 0, 0.25, 0, 0, 1); Debug_PolygonVertex(points[0 + (i + 1) * 3], points[1 + (i + 1) * 3], points[2 + (i + 1) * 3], 0, 0, 0.25, 0, 0, 1); Debug_PolygonVertex(points[0 + (i + 2) * 3], points[1 + (i + 2) * 3], points[2 + (i + 2) * 3], 0, 0, 0.25, 0, 0, 1); Debug_PolygonEnd(); } #endif if (insertoccluder) { b->stat_occluders_fragments_accepted++; SVBSP_InsertOccluderPolygonNodes(b, parentnodenumpointer, parentnodenum, numpoints, points, fragmentcallback, fragmentcallback_pointer1, fragmentcallback_number1); } else b->stat_queries_fragments_accepted++; if (fragmentcallback) fragmentcallback(fragmentcallback_pointer1, fragmentcallback_number1, b, numpoints, points); return 2; } else { // otherwise it's a solid leaf which destroys all polygons inside it if (insertoccluder) b->stat_occluders_fragments_rejected++; else b->stat_queries_fragments_rejected++; #if 0 for (i = 0;i < numpoints-2;i++) { Debug_PolygonBegin(NULL, DRAWFLAG_ADDITIVE); Debug_PolygonVertex(points[0], points[1], points[2], 0, 0, 0, 0, 0.25, 1); Debug_PolygonVertex(points[0 + (i + 1) * 3], points[1 + (i + 1) * 3], points[2 + (i + 1) * 3], 0, 0, 0, 0, 0.25, 1); Debug_PolygonVertex(points[0 + (i + 2) * 3], points[1 + (i + 2) * 3], points[2 + (i + 2) * 3], 0, 0, 0, 0, 0.25, 1); Debug_PolygonEnd(); } #endif } return 1; } int SVBSP_AddPolygon(svbsp_t *b, int numpoints, const double *points, int insertoccluder, void (*fragmentcallback)(void *fragmentcallback_pointer1, int fragmentcallback_number1, svbsp_t *b, int numpoints, const double *points), void *fragmentcallback_pointer1, int fragmentcallback_number1) { int i; int nodenum; // don't even consider an empty polygon if (numpoints < 3) return 0; #if 0 //if (insertoccluder) for (i = 0;i < numpoints-2;i++) { Debug_PolygonBegin(NULL, DRAWFLAG_ADDITIVE); Debug_PolygonVertex(points[0], points[1], points[2], 0, 0, 0, 0.25, 0, 1); Debug_PolygonVertex(points[0 + (i + 1) * 3], points[1 + (i + 1) * 3], points[2 + (i + 1) * 3], 0, 0, 0, 0.25, 0, 1); Debug_PolygonVertex(points[0 + (i + 2) * 3], points[1 + (i + 2) * 3], points[2 + (i + 2) * 3], 0, 0, 0, 0.25, 0, 1); Debug_PolygonEnd(); } #endif nodenum = 0; i = SVBSP_AddPolygonNode(b, &nodenum, -1, numpoints, points, insertoccluder, fragmentcallback, fragmentcallback_pointer1, fragmentcallback_number1); if (insertoccluder) { if (i & 2) b->stat_occluders_accepted++; else b->stat_occluders_rejected++; } else { if (i & 2) b->stat_queries_accepted++; else b->stat_queries_rejected++; } return i; }